1
|
Xu L, Liu H, Mittler R, Shabala S. Useful or merely convenient: can enzymatic antioxidant activity be used as a proxy for abiotic stress tolerance? JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1524-1533. [PMID: 39731752 DOI: 10.1093/jxb/erae524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 12/30/2024]
Abstract
During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AOs have often been advocated as suitable proxies for stress tolerance as well as potential targets for improving tolerance traits. However, there are a growing number of reports showing either no changes or even down-regulation of AO systems in stressed plants. Moreover, ROS are recognized now as important second messengers operating in both local and systemic signalling, synergistically interacting with the primary stressor, to regulate gene expression needed for optimal acclimatization. This work critically assesses the suitability of using enzymatic AOs as a proxy for stress tolerance or as a target for crop genetic improvement. It is concluded that constitutively higher AO activity may interfere with stress-induced ROS signalling and be a disadvantage for plant stress tolerance.
Collapse
Affiliation(s)
- Le Xu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025China
| | - Huaqiong Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, 434025China
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO 65201, USA
| | - Sergey Shabala
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
2
|
Rao MJ, Zheng B. The Role of Polyphenols in Abiotic Stress Tolerance and Their Antioxidant Properties to Scavenge Reactive Oxygen Species and Free Radicals. Antioxidants (Basel) 2025; 14:74. [PMID: 39857408 PMCID: PMC11761259 DOI: 10.3390/antiox14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways. This review summarizes our current understanding of polyphenol-mediated stress adaptations in plants, emphasizing the regulation and function of key phenylpropanoid pathway compounds. We discussed how various abiotic stresses, including heat and chilling stress, drought, salinity, light stress, UV radiation, nanoparticles stress, chemical stress, and heavy metal toxicity, modulate phenylpropanoid metabolism and trigger the accumulation of specific polyphenolic compounds. The antioxidant properties of these metabolites, including phenolic acids, flavonoids, anthocyanins, lignin, and polyphenols, and their roles in reactive oxygen species scavenging, neutralizing free radicals, membrane stabilization, and osmotic adjustment are discussed. Understanding these mechanisms and metabolic responses is crucial for developing stress-resilient crops and improving agricultural productivity under increasingly challenging environmental conditions. This review provides comprehensive insights into integrating phenylpropanoid metabolism with plant stress adaptation mechanisms, highlighting potential targets for enhancing crop stress tolerance through metabolic adjustment.
Collapse
Affiliation(s)
- Muhammad Junaid Rao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2025; 33:11-47. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
4
|
Song X, Yin X, Zhu Y, Su Q, Bao Y. Evolution of Duplicated Glutathione Metabolic Pathway in Gossypium hirsutum and Its Response to UV-B Stress. Ecol Evol 2024; 14:e70537. [PMID: 39563703 PMCID: PMC11575938 DOI: 10.1002/ece3.70537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Increasing levels of UV-B radiation caused by the greenhouse effect has become an emerging threat to crop health and yield. The glutathione (GSH) metabolic pathway is generally involved in plant stress responses through scavenging accumulated reactive oxygen species, and is therefore believed to play an essential role in enhancing plant tolerance to UV-B stress. However, the complex evolutionary details of this pathway in polyploid plants, especially under UV-B stress, remain largely unknown. Here, using the important allotetraploid crop, Gossypium hirsutum, as an example, we comprehensively investigated the composition and phylogenetic relationships of genes encoding 12 key structural enzymes in this pathway, and compared the expression changes of all the relevant genes under UV-B stress (16 kJ m-2 d-1) based on six leaf transcriptomes. Consequently, we identified 205 structural genes by genome-wide searching and predicted 98 potential regulatory genes under multiple stress conditions by co-expression network analysis. Furthermore, we revealed that 19 structural genes including 5 homoeologous pairs and 96 regulatory genes possessing 25 homoeologous pairs were reticulately correlated without homoeologous selection preference under UV-B stress. This result suggests a complex rewiring and reassignment between structural genes and their regulatory networks in the duplicated metabolic pathways of polyploid cotton. This study extends our understanding of the molecular dynamics of the GSH metabolic pathway in response to UV-B stress in G. hirsutum and, more broadly, in polyploid plants.
Collapse
Affiliation(s)
- Xiaolin Song
- School of Life Sciences Qufu Normal University Qufu Shandong China
| | - Xiaoyu Yin
- School of Life Sciences Qufu Normal University Qufu Shandong China
| | - Yingjie Zhu
- School of Life Sciences Qufu Normal University Qufu Shandong China
| | - Qi Su
- School of Life Sciences Qufu Normal University Qufu Shandong China
| | - Ying Bao
- School of Life Sciences Qufu Normal University Qufu Shandong China
| |
Collapse
|
5
|
Zhang F, Sun M, Li D, You M, Yan J, Bai S. Metabolomic Analysis of Elymus sibiricus Exposed to UV-B Radiation Stress. Molecules 2024; 29:5133. [PMID: 39519780 PMCID: PMC11548012 DOI: 10.3390/molecules29215133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Plants cultivated on the Qinghai-Tibet Plateau (QTP) are exposed to high ultraviolet radiation intensities, so they require effective mechanisms to adapt to these stress conditions. UV-B radiation is an abiotic stress factor that affects plant growth, development, and environmental adaptation. Elymus sibiricus is a common species in the alpine meadows of the QTP, with high-stress resistance, large biomass, and high nutritional value. This species plays an important role in establishing artificial grasslands and improving degraded grasslands. In this study, UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes were subjected to simulated short-term (5 days, 10 days) and long-term (15 days, 20 days) UV-B radiation stress and the metabolite profiles evaluated to explore the mechanism underlying UV-B radiation resistance in E. sibiricus. A total of 699 metabolites were identified, including 11 primary metabolites such as lipids and lipid-like molecules, phenylpropanoids and polyketides, organic acids and their derivatives, and organic oxygen compounds. Principal component analysis distinctly clustered the samples according to the cultivar, indicating that the two genotypes exhibit distinct response mechanisms to UV-B radiation stress. The results showed that 14 metabolites, including linoleic acid, LPC 18:2, xanthosine, and 23 metabolites, including 2-one heptamethoxyflavone, glycyrrhizin, and caffeic acid were differentially expressed under short-term and long-term UV-B radiation stress, respectively. Therefore, these compounds are potential biomarkers for evaluating E. sibiricus response to UV-B radiation stress. Allantoin specific and consistent expression was up-regulated in the UV-B radiation-tolerant genotype, thereby it can be used to identify varieties resistant to UV-B radiation. Different metabolic profiles and UV-B radiation response mechanisms were observed between the UV-B radiation-tolerant and UV-B radiation-sensitive E. sibiricus genotypes. A model for the metabolic pathways and metabolic profiles was constructed for the two genotypes. This metabolomic study on the E. sibiricus response to UV-B radiation stress provides a reference for the breeding of new UV-B radiation-tolerant E. sibiricus cultivars.
Collapse
Affiliation(s)
- Fei Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ming Sun
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Daxu Li
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Minghong You
- Sichuan Provincial Forestry and Glassland Key Laboratory of Innovation and Utilization of Grasses in the Tibetan Plateau, Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Jiajun Yan
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiqie Bai
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
6
|
Jo SH, Kim JH, Moon JH, Yang SY, Baek JK, Song YS, Shon JY, Chung NJ, Lee HS. Effects of mineral fertilization (NPK) on combined high temperature and ozone damage in rice. BMC PLANT BIOLOGY 2024; 24:974. [PMID: 39415118 PMCID: PMC11484435 DOI: 10.1186/s12870-024-05695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Increasing concern has recently been highlighted regarding crop damage due to extreme weather events caused by global warming and the increased production of ground-level ozone. Several studies have investigated rice growth in response to fertilization conditions under various environmental stress conditions; however, studies on growth development in response to fertilization conditions under combined high-temperature/ozone treatment conditions are scarce. In this study, we aimed investigate the growth and physiological development of rice under combined high temperature and ozone treatment conditions and to reveal the damage-mitigation effects of NPK fertilization treatments. RESULTS The plants were treated with varying levels of NPK [N2 (N-P-K: 9.0-4.5-4.0 kg/a), P2 (4.5-9.0-4.0 kg/a), K2 (4.5-4.5-8.0 kg/a), and control (4.5-4.5-4.0 kg/10a).] under combined high-temperature (35 ℃) and ozone (150 pb) treatment conditions. Analysis of the growth metrics, including plant height, leaf age, dry weight, and the plant height/leaf age (PH/L) ratio were revealed that combined high-temperature/ozone treatment promoted the phenological development indicated by increasing leaf age but decreased the plant height and dry weight indicating its negative effect on quantitative growth. The effects of this combined high-temperature/ozone treatment on growth were alleviated by NPK fertilization, particularly in K2 treatment but worsened in N2 treatment. Visible damage symptoms in rice leaves induced by exposure to the combined stressors was also alleviated by the K2 treatment. At the physiological level, K2 treatment reduced the expression of OsF3H2, which is associated with antioxidant activity, suggesting that potassium improved stress tolerance. Additionally, expression of genes related to abscisic acid (ABA) metabolism showed increased OsNECD (ABA synthesis) and decreased OsCYP707A3 (ABA degradation) in the K2 treatment, promoting a stronger adaptive stress response. Stomatal conductance measurements indicated a slight increase under K2 treatment, reflecting enhanced regulation of stomatal function during stress. CONCLUSION The study highlights the potential of potassium fertilization to mitigate combined high-temperature and ozone stress in rice, suggesting it as a strategy to improve crop resilience and optimize fertilization. The findings offer insights into fertilization treatments and can guide future research on stress tolerance in crops.
Collapse
Affiliation(s)
- So-Hye Jo
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea
| | - Ju-Hee Kim
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea
| | - Ji-Hyeon Moon
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea
| | - Seo-Yeong Yang
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea
| | - Jae-Kyeong Baek
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea
| | - Yeong-Seo Song
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea
| | - Ji-Young Shon
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea
| | - Nam-Jin Chung
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyeon-Seok Lee
- Crop Production & Physiology Division, National Institute of Crop Science, Rural Development Administration, Wanju-Gun, 55365, Republic of Korea.
| |
Collapse
|
7
|
Wang C, Cui Q, Liu Q, Fan Y, Li Q, Zhao M, Zhao L, Zhang J, Rao G. Analysis of heaping-induced decline in olive quality: insights from integrated analysis between phenotypic traits and gene expression profiles. TREE PHYSIOLOGY 2024; 44:tpae066. [PMID: 38861416 DOI: 10.1093/treephys/tpae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Heaping is an unavoidable process before olive milling, and its duration significantly affects the olive quality. However, there is limited research on the quality changes of olive fruits on a short-time scale. To gain a better understanding of the molecular mechanisms underlying postharvest deterioration of olives, this study piled olives at room temperature and extracted oil at 0, 8, 24, 48 and 72 h to analyze oil quality parameters. Gas/Liquid Chromatography-Mass Spectrometry (GC/LC-MS) techniques were employed to investigate variations in metabolite contents. Concurrently, the transcriptional profiles of olives during heaping were examined. As piling time progressed, quality indicators declined, and stored fruit were categorized into three groups based on their quality characters: '0 h' belongs to the first category, '8 h' and '24 h' to the second category, and '48 h' and '72 h' to the third category. Metabolite changes were consistent with the expression patterns of genes related to their synthesis pathways. Additionally, ethylene was identified as a crucial factor influencing fruit senescence. These findings establish a foundation for further research on olive deterioration after harvesting and offer insights for optimizing olive oil production.
Collapse
Affiliation(s)
- Chenhe Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan road, Xuanwu district, Nanjing 210037, China
| | - Qizhen Cui
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan road, Xuanwu district, Nanjing 210037, China
| | - Qingqing Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan road, Xuanwu district, Nanjing 210037, China
| | - Yutong Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan road, Xuanwu district, Nanjing 210037, China
| | - Qiaohua Li
- Longnan Xiangyu Olive Development Co., Ltd, Hanwang road, Wudu district, Longnan, Gansu, 746000, China
| | - Min Zhao
- Longnan Xiangyu Olive Development Co., Ltd, Hanwang road, Wudu district, Longnan, Gansu, 746000, China
| | - Liangmei Zhao
- Longnan Xiangyu Olive Development Co., Ltd, Hanwang road, Wudu district, Longnan, Gansu, 746000, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan road, Xuanwu district, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| | - Guodong Rao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan road, Xuanwu district, Nanjing 210037, China
- Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan road, Haidian district, Beijing 100091, China
| |
Collapse
|
8
|
Ahmed E, Musio B, Todisco S, Mastrorilli P, Gallo V, Saponari M, Nigro F, Gualano S, Santoro F. Non-Targeted Spectranomics for the Early Detection of Xylella fastidiosa Infection in Asymptomatic Olive Trees, cv. Cellina di Nardò. Molecules 2023; 28:7512. [PMID: 38005234 PMCID: PMC10672767 DOI: 10.3390/molecules28227512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Olive quick decline syndrome (OQDS) is a disease that has been seriously affecting olive trees in southern Italy since around 2009. During the disease, caused by Xylella fastidiosa subsp. pauca sequence type ST53 (Xf), the flow of water and nutrients within the trees is significantly compromised. Initially, infected trees may not show any symptoms, making early detection challenging. In this study, young artificially infected plants of the susceptible cultivar Cellina di Nardò were grown in a controlled environment and co-inoculated with additional xylem-inhabiting fungi. Asymptomatic leaves of olive plants at an early stage of infection were collected and analyzed using nuclear magnetic resonance (NMR), hyperspectral reflectance (HSR), and chemometrics. The application of a spectranomic approach contributed to shedding light on the relationship between the presence of specific hydrosoluble metabolites and the optical properties of both asymptomatic Xf-infected and non-infected olive leaves. Significant correlations between wavebands located in the range of 530-560 nm and 1380-1470 nm, and the following metabolites were found to be indicative of Xf infection: malic acid, fructose, sucrose, oleuropein derivatives, and formic acid. This information is the key to the development of HSR-based sensors capable of early detection of Xf infections in olive trees.
Collapse
Affiliation(s)
- Elhussein Ahmed
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM Bari), Via Ceglie 9, 70010 Valenzano, Italy;
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
| | - Piero Mastrorilli
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Zona H 150/B, 70015 Noci, Italy
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona, 4, I-70125 Bari, Italy; (E.A.); (S.T.); (P.M.); (V.G.)
- Innovative Solutions S.r.l.—Spin-Off Company of Polytechnic University of Bari, Zona H 150/B, 70015 Noci, Italy
| | - Maria Saponari
- Istituto Per la Protezione Sostenibile Delle Piante, CNR, Via Amendola 122/D, I-70126 Bari, Italy;
| | - Franco Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona, 4, I-70125 Bari, Italy;
| | - Stefania Gualano
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM Bari), Via Ceglie 9, 70010 Valenzano, Italy;
| | - Franco Santoro
- International Centre for Advanced Mediterranean Agronomic Studies of Bari (CIHEAM Bari), Via Ceglie 9, 70010 Valenzano, Italy;
| |
Collapse
|
9
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
10
|
Rodrigues L, Nogales A, Nunes J, Rodrigues L, Hansen LD, Cardoso H. Germination of Pisum sativum L. Seeds Is Associated with the Alternative Respiratory Pathway. BIOLOGY 2023; 12:1318. [PMID: 37887028 PMCID: PMC10604721 DOI: 10.3390/biology12101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
The alternative oxidase (AOX) is a ubiquinol oxidase with a crucial role in the mitochondrial alternative respiratory pathway, which is associated with various processes in plants. In this study, the activity of AOX in pea seed germination was determined in two pea cultivars, 'Maravilha d'América' (MA) and 'Torta de Quebrar' (TQ), during a germination trial using cytochrome oxidase (COX) and AOX inhibitors [rotenone (RT) and salicylic hydroxamic acid (SHAM), respectively]. Calorespirometry was used to assess respiratory changes during germination. In both cultivars, SHAM had a greater inhibitory effect on germination than RT, demonstrating the involvement of AOX in germination. Although calorespirometry did not provide direct information on the involvement of the alternative pathway in seed germination, this methodology was valuable for distinguishing cultivars. To gain deeper insights into the role of AOX in seed germination, the AOX gene family was characterized, and the gene expression pattern was evaluated. Three PsAOX members were identified-PsAOX1, PsAOX2a and PsAOX2b-and their expression revealed a marked genotype effect. This study emphasizes the importance of AOX in seed germination, contributing to the understanding of the role of the alternative respiratory pathway in plants.
Collapse
Affiliation(s)
- Lénia Rodrigues
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| | - Amaia Nogales
- IRTA Institute of Agrifood Research and Technology, Sustainable Plant Protection Programme, Centre Cabrils, Ctra. Cabrils Km 2, 08348 Cabrils, Spain;
| | - João Nunes
- School of Sciences and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (J.N.); (L.R.)
| | - Leonardo Rodrigues
- School of Sciences and Technology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (J.N.); (L.R.)
| | - Lee D. Hansen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, School of Science and Technology, Department of Biology, University of Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
11
|
Zagoskina NV, Zubova MY, Nechaeva TL, Kazantseva VV, Goncharuk EA, Katanskaya VM, Baranova EN, Aksenova MA. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int J Mol Sci 2023; 24:13874. [PMID: 37762177 PMCID: PMC10531498 DOI: 10.3390/ijms241813874] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Phenolic compounds or polyphenols are among the most common compounds of secondary metabolism in plants. Their biosynthesis is characteristic of all plant cells and is carried out with the participation of the shikimate and acetate-malonate pathways. In this case, polyphenols of various structures are formed, such as phenylpropanoids, flavonoids, and various oligomeric and polymeric compounds of phenolic nature. Their number already exceeds 10,000. The diversity of phenolics affects their biological activity and functional role. Most of their representatives are characterized by interaction with reactive oxygen species, which manifests itself not only in plants but also in the human body, where they enter through food chains. Having a high biological activity, phenolic compounds are successfully used as medicines and nutritional supplements for the health of the population. The accumulation and biosynthesis of polyphenols in plants depend on many factors, including physiological-biochemical, molecular-genetic, and environmental factors. In the review, we present the latest literature data on the structure of various classes of phenolic compounds, their antioxidant activity, and their biosynthesis, including their molecular genetic aspects (genes and transfactors). Since plants grow with significant environmental changes on the planet, their response to the action of abiotic factors (light, UV radiation, temperature, and heavy metals) at the level of accumulation and composition of these secondary metabolites, as well as their metabolic regulation, is considered. Information is given about plant polyphenols as important and necessary components of functional nutrition and pharmaceutically valuable substances for the health of the population. Proposals on promising areas of research and development in the field of plant polyphenols are presented.
Collapse
Affiliation(s)
- Natalia V. Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Maria Y. Zubova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Tatiana L. Nechaeva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Varvara V. Kazantseva
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Evgenia A. Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Vera M. Katanskaya
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| | - Ekaterina N. Baranova
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, 127276 Moscow, Russia;
- All Russia Research Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, 127550 Moscow, Russia
| | - Maria A. Aksenova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (M.Y.Z.); (T.L.N.); k.v.- (V.V.K.); (E.A.G.); (V.M.K.); (M.A.A.)
| |
Collapse
|
12
|
The Oleoside-type Secoiridoid Glycosides: Potential Secoiridoids with Multiple Pharmacological Activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Shen J, Liu Y, Wang X, Bai J, Lin L, Luo F, Zhong H. A Comprehensive Review of Health-Benefiting Components in Rapeseed Oil. Nutrients 2023; 15:999. [PMID: 36839357 PMCID: PMC9962526 DOI: 10.3390/nu15040999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Rapeseed oil is the third most consumed culinary oil in the world. It is well-known for its high content of unsaturated fatty acids, especially polyunsaturated fatty acids, which make it of great nutritional value. There is increasing evidence that a diet rich in unsaturated fatty acids offers health benefits. Although the consumption of rapeseed oil cuts across many areas around the world, the nutritional elements of rapeseed oil and the exact efficacy of the nutrients remain unclear. In this review, we systematically summarized the latest studies on functional rapeseed components to ascertain which component of canola oil contributes to its function. Apart from unsaturated fatty acids, there are nine functional components in rapeseed oil that contribute to its anti-microbial, anti-inflammatory, anti-obesity, anti-diabetic, anti-cancer, neuroprotective, and cardioprotective, among others. These nine functional components are vitamin E, flavonoids, squalene, carotenoids, glucoraphanin, indole-3-Carbinol, sterols, phospholipids, and ferulic acid, which themselves or their derivatives have health-benefiting properties. This review sheds light on the health-benefiting effects of rapeseed oil in the hope of further development of functional foods from rapeseed.
Collapse
Affiliation(s)
- Junjun Shen
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Yejia Liu
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
- Faculty of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415006, China
| | - Xiaoling Wang
- Faculty of Bioscience and Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Bai
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhong Lin
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
- The Research and Development Department, Hunan Jinjian Cereals Industry, Changde 415001, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haiyan Zhong
- National Engineering Laboratory for Deep Processing of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
14
|
Sezen Toksoy Köseoğlu, Ali Doğru. Effect of Short-Term and Long-Term UV-B Radiation on PSII Activity and Antioxidant Enzymes in Cucurbita pepo L. Leaves. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Bai Y, Gu Y, Liu S, Jiang L, Han M, Geng D. Flavonoids metabolism and physiological response to ultraviolet treatments in Tetrastigma hemsleyanum Diels et Gilg. FRONTIERS IN PLANT SCIENCE 2022; 13:926197. [PMID: 36186004 PMCID: PMC9520580 DOI: 10.3389/fpls.2022.926197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a folk herb in Zhejiang Province with anti-inflammatory, antineoplastic, and anti-oxidation effects. Given its pharmacological activity, T. hemsleyanum is known as New "Zhebawei" and included in the medical insurance system of Zhejiang and other provinces. Flavonoids are the most important components of T. hemsleyanum, and their contents are mainly regulated by ultraviolet (UV) radiation. In this study, the total flavonoid contents, flavonoid monomer contents, and flavonoid synthesis related enzyme activities (phenylalanine ammonia-lyase, chalcone synthase, and chalcone isomerase), anti-oxidant enzyme activities (catalase, peroxidase, and superoxide dismutase), and biochemical indicators (malondialdehyde, free amino acid, soluble protein, and soluble sugar) in the leaves (L) and root tubers (R) of T. hemsleyanum with UV treatments were determined. Three kinds of UV radiation (UV-A, UV-B, and UV-C) and six kinds of radiation durations (15 and 30 min, 1, 2, 3, and 5 h) were used. Appropriate doses of UV-B and UV-C radiation (30 min to 3 h) induced eustress, which contributed to the accumulation of flavonoids and improve protective enzyme system activities and bioactive compound contents. Especially, certain results were observed in several special structures of the flavonoid monomer: quercetin contents in L increased by nearly 20 times, isoquercitrin contents in R increased by nearly 34 times; most of flavonoids with glycoside content, such as quercitrin (19 times), baicalin (16 times), and apigenin-7G (13 times), increased multiple times. Compared with the CK group, the flavonoid synthase activities, anti-oxidant enzyme activities, and biochemical substance contents in L and R all increased with UV treatments. This study provides a theoretical foundation for regulating flavonoids by light factors and improving the quality of T. hemsleyanum in production and medical industries.
Collapse
Affiliation(s)
- Yan Bai
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Yiwen Gu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Shouzan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- Botanical Garden, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Lingtai Jiang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Minqi Han
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| | - Dongjie Geng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Yun C, Zhao Z, Ri I, Gao Y, Shi Y, Miao N, Gu L, Wang W, Wang H. How does UV-B stress affect secondary metabolites of Scutellaria baicalensis in vitro shoots grown at different 6-benzyl aminopurine concentrations? PHYSIOLOGIA PLANTARUM 2022; 174:e13778. [PMID: 36086870 DOI: 10.1111/ppl.13778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Ultraviolet-B (UV-B) radiation is one of the abiotic stresses that can significantly affect the secondary metabolite accumulation in in vitro tissue cultures of medicinal plants. The present study investigated the effects of UV-B radiation on the secondary metabolites and antioxidant activities of Scutellaria baicalensis in vitro shoots grown at different concentrations of 6-benzyl aminopurine (6-BA), which is the cytokinin most widely used in plant tissue culture. The UV-B radiation caused significant increases in lipid peroxidation, total phenolic, and flavonoid contents, and antioxidant activities in the in vitro shoots grown at lower 6-BA concentrations (0 and 1 mg L-1 ), while it did not cause any significant changes in those grown at higher 6-BA concentrations (2 and 3 mg L-1 ). However, the UV-B radiation significantly altered the contents of main individual flavonoids at both lower and higher 6-BA concentrations. Upon UV-B radiation, aglycones (including baicalein, wogonin, and scutellarein) increased, while glucuronides such as baicalin and wogonoside decreased; this was more evident at higher 6-BA concentrations. This study demonstrated that the effects of UV-B radiation on the secondary metabolites of S. baicalensis in vitro shoots highly depended on the 6-BA concentration in the culture medium.
Collapse
Affiliation(s)
- Cholil Yun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- College of Forest Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Zhuowen Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Ilbong Ri
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- College of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Yuan Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yutong Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Na Miao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Lin Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Wenjie Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Huimei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| |
Collapse
|
17
|
Lucas JA, García-Villaraco A, Ramos-Solano B, Akdi K, Gutierrez-Mañero FJ. Lipo-Chitooligosaccharides (LCOs) as Elicitors of the Enzymatic Activities Related to ROS Scavenging to Alleviate Oxidative Stress Generated in Tomato Plants under Stress by UV-B Radiation. PLANTS 2022; 11:plants11091246. [PMID: 35567247 PMCID: PMC9101198 DOI: 10.3390/plants11091246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022]
Abstract
Exposure to ultraviolet-B (UV-B) radiation can lead to oxidative damage in plants, increasing reactive oxygen species (ROS) production. To overcome ROS burst, plants have antioxidant mechanisms related to ROS scavenging which can be improved by elicitation with biological agents or derived molecules (elicitors), as they can trigger a physiological alert state called “priming”. This work describes the effects of lipo-chitooligosaccharides (LCOs) treatment applied to tomato plants under UV-B stress. The LCOs used in the study are produced by three species of the genus Ensifer (formerly Sinorhizobium) (SinCEU-1, SinCEU-2, and SinCEU-3) were assayed on tomato plants under UV-B stress. LCOs were able to significantly increase most of the enzymatic activities related to ROS scavenging while non-enzymatic antioxidants were not modified. This response was associated with a lower oxidative stress, according to malondialdehyde (MDA) levels and the higher antioxidant capacity of the plants. Furthermore, the photosynthetic efficiency of LCOs-treated plants indicated a better physiological state than the control plants. Therefore, although more studies and deepening of certain aspects are necessary, LCOs have shown great potential to protect plants from high UV-B radiation conditions.
Collapse
Affiliation(s)
- José A. Lucas
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
- Correspondence:
| | - Ana García-Villaraco
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Beatriz Ramos-Solano
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| | - Khalid Akdi
- Trichodex S.A., Polígono Industrial La Isla, Rio Viejo 57-59, 41703 Sevilla, Spain;
| | - Francisco Javier Gutierrez-Mañero
- Plant Physiology, Pharmaceutical and Health Sciences Department, Faculty of Pharmacy, Universidad San Pablo-CEU Universities, 28668 Boadilla del Monte, Spain; (A.G.-V.); (B.R.-S.); (F.J.G.-M.)
| |
Collapse
|
18
|
Chemical Profiling of Two Italian Olea europaea (L.) Varieties Subjected to UV-B Stress. PLANTS 2022; 11:plants11050680. [PMID: 35270150 PMCID: PMC8912780 DOI: 10.3390/plants11050680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022]
Abstract
The depletion of the stratospheric ozone layer due to natural and/or anthropogenic causes decreases the amount of UV-B radiation filtered, and consequently increases the risk of potential damage to organisms. In the Mediterranean region, high UV-B indices are frequent. Even for species typical of this region, such as the olive tree, the progressive increase in UV-B radiation represents a threat. This work aimed to understand how high UV-B radiation modulates the phenolic and lipophilic profile of olive varieties, and identify metabolites that enhance olive stress tolerance. Two Italian olive varieties were subjected to chronic UV-B stress, and leaves were analyzed by gas and liquid chromatography. The results indicated that the most representative phenolic and lipophilic compounds of Giarraffa and Olivastra Seggianese were readjusted in response to UV-B stress. The Giarraffa variety seemed better suited to prolonged UV-B stress, possibly due to the higher availability of flavonoids that could help control oxidative damage, and the accumulation of hydroxycinnamic acid derivatives that could provide strong UV-B shield protection. In addition, this variety contained higher levels of fatty acids (e.g., palmitic, α-linolenic, and stearic acids), which can help to maintain membrane integrity and accumulate more sorbitol (which may serve as an osmoprotectant or act a free-radical scavenger), terpenes, and long-chain alkanes, providing higher protection against UV-B stress.
Collapse
|
19
|
Comparative analysis of carotenoids and metabolite characteristics in discolored red pepper and normal red pepper based on non-targeted metabolomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Liu S, Fang S, Liu C, Zhao L, Cong B, Zhang Z. Transcriptomics Integrated With Metabolomics Reveal the Effects of Ultraviolet-B Radiation on Flavonoid Biosynthesis in Antarctic Moss. FRONTIERS IN PLANT SCIENCE 2021; 12:788377. [PMID: 34956286 PMCID: PMC8692278 DOI: 10.3389/fpls.2021.788377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/12/2021] [Indexed: 05/24/2023]
Abstract
Bryophytes are the dominant vegetation in the Antarctic continent. They have suffered more unpleasant ultraviolet radiation due to the Antarctic ozone layer destruction. However, it remains unclear about the molecular mechanism of Antarctic moss acclimation to UV-B light. Here, the transcriptomics and metabolomics approaches were conducted to uncover transcriptional and metabolic profiling of the Antarctic moss Leptobryum pyriforme under UV-B radiation. Totally, 67,290 unigenes with N50 length of 2,055 bp were assembled. Of them, 1,594 unigenes were significantly up-regulated and 3353 unigenes were markedly down-regulated under UV-B radiation. These differentially expressed genes (DEGs) involved in UV-B signaling, flavonoid biosynthesis, ROS scavenging, and DNA repair. In addition, a total of 531 metabolites were detected, while flavonoids and anthocyanins accounted for 10.36% of the total compounds. There were 49 upregulated metabolites and 41 downregulated metabolites under UV-B radiation. Flavonoids were the most significantly changed metabolites. qPCR analysis showed that UVR8-COP1-HY5 signaling pathway genes and photolyase genes (i.e., LpUVR3, LpPHR1, and LpDPL) were significantly up-regulated under UV-B light. In addition, the expression levels of JA signaling pathway-related genes (i.e., OPR and JAZ) and flavonoid biosynthesis-related genes were also significantly increased under UV-B radiation. The integrative data analysis showed that UVR8-mediated signaling, jasmonate signaling, flavonoid biosynthesis pathway and DNA repair system might contribute to L. pyriforme acclimating to UV-B radiation. Therefore, these findings present a novel knowledge for understanding the adaption of Antarctic moss to polar environments and provide a foundation for assessing the impact of global climate change on Antarctic land plants.
Collapse
Affiliation(s)
- Shenghao Liu
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuo Fang
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
| | - Chenlin Liu
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
| | - Linlin Zhao
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bailin Cong
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
| | - Zhaohui Zhang
- Key Laboratory of Marine Ecology and Environment Science, First Institute of Oceanography, Natural Resources Ministry, Qingdao, China
- Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
21
|
Piccini C, Cai G, Dias MC, Araújo M, Parri S, Romi M, Faleri C, Cantini C. Olive Varieties under UV-B Stress Show Distinct Responses in Terms of Antioxidant Machinery and Isoform/Activity of RubisCO. Int J Mol Sci 2021; 22:ijms222011214. [PMID: 34681874 PMCID: PMC8538740 DOI: 10.3390/ijms222011214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 01/27/2023] Open
Abstract
In recent decades, atmospheric pollution led to a progressive reduction of the ozone layer with a consequent increase in UV-B radiation. Despite the high adaptation of olive trees to the Mediterranean environment, the progressive increase of UV-B radiation is a risk factor for olive tree cultivation. It is therefore necessary to understand how high levels of UV-B radiation affect olive plants and to identify olive varieties which are better adapted. In this study we analyzed two Italian olive varieties subjected to chronic UV-B stress. We focused on the effects of UV-B radiation on RubisCO, in terms of quantity, enzymatic activity and isoform composition. In addition, we also analyzed changes in the activity of antioxidant enzymes (SOD, CAT, GPox) to get a comprehensive picture of the antioxidant system. We also evaluated the effects of UV-B on the enzyme sucrose synthase. The overall damage at biochemical level was also assessed by analyzing changes in Hsp70, a protein triggered under stress conditions. The results of this work indicate that the varieties (Giarraffa and Olivastra Seggianese) differ significantly in the use of specific antioxidant defense systems, as well as in the activity and isoform composition of RubisCO. Combined with a different use of sucrose synthase, the overall picture shows that Giarraffa optimized the use of GPox and opted for a targeted choice of RubisCO isoforms, in addition to managing the content of sucrose synthase, thereby saving energy during critical stress points.
Collapse
Affiliation(s)
- Chiara Piccini
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
- Institute for BioEconomy, National Research Council of Italy, 58022 Follonica, Italy;
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
- Correspondence: ; Tel.: +39-057-723-2392; Fax: +39-057-723-2861
| | - Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.C.D.); (M.A.)
| | - Márcia Araújo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (M.C.D.); (M.A.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
- CITAB, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Sara Parri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
| | - Marco Romi
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy; (C.P.); (S.P.); (M.R.); (C.F.)
| | - Claudio Cantini
- Institute for BioEconomy, National Research Council of Italy, 58022 Follonica, Italy;
| |
Collapse
|
22
|
Effect of Selected Trichoderma Strains and Metabolites on Olive Drupes. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Beneficial fungal strains of the genus Trichoderma are used as biofungicides and plant growth promoters. Trichoderma strains promote the activation of plant defense mechanisms of action, including the production of phenolic metabolites. In this work, we analyzed the effects of selected Trichoderma strains (T. asperellum KV906, T. virens GV41, and T. harzianum strains TH1, M10, and T22) and their metabolites (harzianic acid and 6-pentyl-α-pyrone) on drupes of young olive trees (4-year-old) cv. Carolea. This study used the untargeted analysis of drupe metabolome, carried out by LC–MS Q-TOF, to evaluate the phenolics profiles and target metabolomics approach to detect oleuropein and luteolin. The untargeted approach showed significant differences in the number and type of phenolic compounds in olive drupes after Trichoderma applications (by root dipping and drench soil irrigation method) compared to control. The levels of oleuropein (secoiridoid) and luteolin (flavonoid) varied according to the strain or metabolite applied, and in some cases, were less abundant in treated plants than in the control. In general, flavonoids’ levels were influenced more than secoiridoid production. The dissimilar aptitudes of the biological treatments could depend on the selective competence to cooperate with the enzymes involved in producing the secondary metabolites to defend plants by environmental stresses. Our results suggest that using selected fungi of the genus Trichoderma and their metabolites could contribute to selecting the nutraceutical properties of the olive drupe. The use of the metabolites would bring further advantages linked to the dosage in culture and storage.
Collapse
|
23
|
Dias MC, Pinto DCGA, Silva AMS. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021; 26:molecules26175377. [PMID: 34500810 PMCID: PMC8434187 DOI: 10.3390/molecules26175377] [Citation(s) in RCA: 525] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, more attention has been paid to natural sources of antioxidants. Flavonoids are natural substances synthesized in several parts of plants that exhibit a high antioxidant capacity. They are a large family, presenting several classes based on their basic structure. Flavonoids have the ability to control the accumulation of reactive oxygen species (ROS) via scavenger ROS when they are formed. Therefore, these antioxidant compounds have an important role in plant stress tolerance and a high relevance in human health, mainly due to their anti-inflammatory and antimicrobial properties. In addition, flavonoids have several applications in the food industry as preservatives, pigments, and antioxidants, as well as in other industries such as cosmetics and pharmaceuticals. However, flavonoids application for industrial purposes implies extraction processes with high purity and quality. Several methodologies have been developed aimed at increasing flavonoid extraction yield and being environmentally friendly. This review presents the most abundant natural flavonoids, their structure and chemical characteristics, extraction methods, and biological activity.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-239-240-752
| | - Diana C. G. A. Pinto
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| |
Collapse
|
24
|
Wu S, Yu K, Ding X, Song F, Liang X, Li Z, Peng L. Transcriptomic analyses reveal dynamic changes of defense response in Glycyrrhiza uralensis leaves under enhanced ultraviolet-B radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:358-366. [PMID: 33915442 DOI: 10.1016/j.plaphy.2021.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
The amount of solar ultraviolet-B (UV-B) radiation reaching the Earth's surface is increasing due to stratospheric ozone dynamics and global climate change. Increased UV-B radiation poses a major threat to ecosystems. Although many studies have focused on the potential effects of enhanced UV-B radiation on plants, the dynamic changes of defense response in plants under continuous UV-B radiation remains enigmatic. In this study, we investigated the effect of UV-B radiation at 0.024 W/m2 on the UVR8-and reactive oxygen species (ROS-) signaling pathways, antioxidant system, and wax synthesis of G. uralensis. These parameters were investigated at different UV-B radiation stages (2 h, 6 h, 12 h, 24 h, 48 h, and 96 h). The results revealed that the uvr8 expression level was significantly repressed after 2 h of UV-B radiation, partly because G. uralensis rapidly acclimated to UV-B. Significant H2O2 accumulation occurred after 12 h UV-B radiation, resulting in activation of the ROS signaling pathway and the antioxidant system. After 24 h of UV-B radiation, wax synthesis was enhanced alongside a decrease in the capacity of the main antioxidant system. The dynamic and ordered changes in these pathways reveal how different strategies function in G. uralensis at different times during adaption to enhanced UV-B radiation. This study will help us better understand dynamic changes of defense response in plant under enhanced UV-B radiation, further providing fundamental knowledge to develop plant resistance gene resources.
Collapse
Affiliation(s)
- Shijie Wu
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Kaiqiang Yu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoli Ding
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Fuyang Song
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China
| | - Xinhua Liang
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China
| | - Zhenkai Li
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China
| | - Li Peng
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China; Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
25
|
Dias MC, Pinto DCGA, Figueiredo C, Santos C, Silva AMS. Phenolic and lipophilic metabolite adjustments in Olea europaea (olive) trees during drought stress and recovery. PHYTOCHEMISTRY 2021; 185:112695. [PMID: 33581598 DOI: 10.1016/j.phytochem.2021.112695] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The frequency of combined stress events is increasing due to climate change and represents a new threat to olive (Olea europaea) culture. How olive plants modulate their profile of metabolites under multiple stressing agents remains to unveil, although several metabolites affect plants' resilience, and olive production and quality. Young olive plants were exposed to a water deficit (WD) for 30 days and then exposed to a shock of heat and high UVB-radiation (WDHS+UVB treatment) for 2 days. Then, plants were re-watered and grown under optimal conditions (recovery) for 30 days. Leaves were collected after stress and recovery, analysed by liquid and gas chromatography, and the lipophilic and phenolic profiles were characterized. Except for the oleuropein derivatives, the qualitative metabolite profile was similar during stress and recovery. Metabolite increases or decreases in response to stress were stronger when WD was followed by WDHS+UVB treatment. Phenolic compounds (luteolin-7-O-glucoside, quercetin-3-O-rutinoside, apigenin-7-O-glucoside, chrysoeriol-7-O-glucoside, kaempferol derivatives, oleuropein, and lucidumoside C) were the most involved after WD and WDHS+UVB, possibly acting as reactive oxygen species (ROS) scavengers. Lipophilic compounds were more relevant during the recovery period. The catabolism of fatty acids and carbohydrates may provide the necessary energy for plant performance reestablishment, and sterols, long-chain alkanes, and terpenes metabolic pathways may be shifted for the production of compounds with a more important stress protection role. This work highlights for the first time that tolerance mechanisms activated by WD in olive plants are related to metabolite changes, that are adjusted when other stressors are overlapped (WDHS+UVB), and also help the plants recover. This metabolites' plasticity represents an essential contribution to understanding how dry-farming olive orchards may deal with drought combined with high UV-B or heat.
Collapse
Affiliation(s)
- Maria Celeste Dias
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; LAQV/REQUIMTE,Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Diana C G A Pinto
- LAQV/REQUIMTE,Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina Figueiredo
- LAQV/REQUIMTE,Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Conceição Santos
- IB2, Department of Biology & LAQV/REQUIMTE, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Artur M S Silva
- LAQV/REQUIMTE,Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
26
|
Araújo M, Prada J, Mariz-Ponte N, Santos C, Pereira JA, Pinto DCGA, Silva AMS, Dias MC. Antioxidant Adjustments of Olive Trees ( Olea Europaea) under Field Stress Conditions. PLANTS 2021; 10:plants10040684. [PMID: 33916326 PMCID: PMC8066335 DOI: 10.3390/plants10040684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
Extreme climate events are increasingly frequent, and the 2017 summer was particularly critical in the Mediterranean region. Olive is one of the most important species of this region, and these climatic events represent a threat to this culture. However, it remains unclear how olive trees adjust the antioxidant enzymatic system and modulate the metabolite profile under field stress conditions. Leaves from two distinct adjacent areas of an olive orchard, one dry and the other hydrated, were harvested. Tree water status, oxidative stress, antioxidant enzymes, and phenolic and lipophilic metabolite profiles were analyzed. The environmental conditions of the 2017 summer caused a water deficit in olive trees of the dry area, and this low leaf water availability was correlated with the reduction of long-chain alkanes and fatty acids. Hydrogen peroxide (H2O2) and superoxide radical (O2•–) levels increased in the trees collected from the dry area, but lipid peroxidation did not augment. The antioxidant response was predominantly marked by guaiacol peroxidase (GPOX) activity that regulates the H2O2 harmful effect and by the action of flavonoids (luteolin-7-O-glucuronide) that may act as reactive oxygen species scavengers. Secoiridoids adjustments may also contribute to stress regulation. This work highlights for the first time the protective role of some metabolite in olive trees under field drought conditions.
Collapse
Affiliation(s)
- Márcia Araújo
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
- Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - João Prada
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - Nuno Mariz-Ponte
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; (J.P.); (N.M.-P.); (C.S.)
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Maria Celeste Dias
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-239-240-752
| |
Collapse
|
27
|
Zeb A. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res Int 2021; 143:110312. [PMID: 33992331 DOI: 10.1016/j.foodres.2021.110312] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Edible oils are used as a frying medium and in the preparation of several food products. They are mainly constituting triacylglycerols as major components, while other compounds are classified as minor constituents, which include polyphenols. This class of compounds plays an important role in the thermal stability and quality attributes of the finished industrial food products. In addition to other antioxidants, the desired thermal stability of edible is achieved by either fortification or mixing of edible oils. This comprehensive review was therefore aimed to review the different classes of polyphenolic compounds present in commonly consumed edible oils. The edible oils reviewed include soybean, olive, rapeseed, canola, sunflower, flaxseed, sesame, cottonseed, palm, almond, peanut, chestnut, coconut, and hazelnut oils. The identified classes of polyphenolic compounds such as simple phenols, hydroxybenzoic acids, phenylethanoids, hydroxycinnamic acid, esters of hydroxycinnamic acids, coumarins & chromans, stilbenes, flavonoids, anthocyanins, and lignans were discussed. It was observed that a single edible from different origins showed the varied composition of the different classes of phenolic compounds. Among the oils, soybean, sunflower, olive, and brassica oils received higher attention in terms of polyphenol composition. Some classes of phenolic compounds were either not reported or absent in one edible oil, while present in others. Among the different classes of phenolics, hydroxybenzoic acids, hydroxycinnamic acid and flavonoids were the most widely present compounds. Phenolic compounds in edible oils possess several health benefits such as antioxidant, antibacterial, anti-viral, anti-inflammatory, anti-tumour, antioxidants, cardioprotective, neuroprotective, anti-diabetic properties and anti-obesity.
Collapse
Affiliation(s)
- Alam Zeb
- Department of Biochemistry, University of Malakand, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
28
|
Marra R, Coppola M, Pironti A, Grasso F, Lombardi N, d’Errico G, Sicari A, Bolletti Censi S, Woo SL, Rao R, Vinale F. The Application of Trichoderma Strains or Metabolites Alters the Olive Leaf Metabolome and the Expression of Defense-Related Genes. J Fungi (Basel) 2020; 6:jof6040369. [PMID: 33339378 PMCID: PMC7766153 DOI: 10.3390/jof6040369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Biocontrol fungal strains of the genus Trichoderma can antagonize numerous plant pathogens and promote plant growth using different mechanisms of action, including the production of secondary metabolites (SMs). In this work we analyzed the effects of repeated applications of selected Trichoderma strains or SMs on young olive trees on the stimulation of plant growth and on the development of olive leaf spot disease caused by Fusicladium oleagineum. In addition, metabolomic analyses and gene expression profiles of olive leaves were carried out by LC-MS Q-TOF and real-time RT-PCR, respectively. A total of 104 phenolic compounds were detected from olive leave extracts and 20 were putatively identified. Targeted and untargeted approaches revealed significant differences in both the number and type of phenolic compounds accumulated in olive leaves after Trichoderma applications, as compared to water-treated plants. Different secoiridoids were less abundant in treated plants than in controls, while the accumulation of flavonoids (including luteolin and apigenin derivatives) increased following the application of specific Trichoderma strain. The induction of defense-related genes, and of genes involved in the synthesis of the secoiridoid oleuropein, was also analyzed and revealed a significant variation of gene expression according to the strain or metabolite applied.
Collapse
Affiliation(s)
- Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Correspondence: ; Tel.: +39-0812532253
| | - Mariangela Coppola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Angela Pironti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Filomena Grasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
| | - Giada d’Errico
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
| | - Andrea Sicari
- Linfa S.c.a r.l., 89900 Vibo Valentia, Italy; (A.S.); (S.B.C.)
| | | | - Sheridan L. Woo
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Rosa Rao
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy; (M.C.); (A.P.); (F.G.); (N.L.); (G.d.); (R.R.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Vinale
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Portici, 80055 Naples, Italy; (S.L.W.); (F.V.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, Portici, 80055 Naples, Italy
| |
Collapse
|
29
|
UV-B Radiation Affects Photosynthesis-Related Processes of Two Italian Olea europaea (L.) Varieties Differently. PLANTS 2020; 9:plants9121712. [PMID: 33291829 PMCID: PMC7762067 DOI: 10.3390/plants9121712] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Given the economical importance of the olive tree it is essential to study its responses to stress agents such as excessive UV-B radiation, to understand the defense mechanisms and to identify the varieties that are able to cope with it. In the light of the analysis carried out in this study, we argue that UV-B radiation represents a dangerous source of stress for the olive tree, especially in the current increasingly changing environmental conditions. Both the varieties considered (Giarraffa and Olivastra Seggianese), although resistant to the strong treatment to which they were exposed, showed, albeit in different ways and at different times, evident effects. The two varieties have different response times and the Giarraffa variety seems better suited to prolonged UV-B stress, possible due to a more efficient and quick activation of the antioxidant response (e.g., flavonoids use to counteract reactive oxygen species) and because of its capacity to maintain the photosynthetic efficiency as well as a relatively higher content of mannitol. Moreover, pigments reduction after a long period of UV-B exposure can also be an adaptation mechanism triggered by Giarraffa to reduce energy absorption under UV-B stress. Olivastra Seggianese seems less suited to overcome UV-B stress for a long period (e.g., higher reduction of Fv/Fm) and has a higher requirement for sugars (e.g., glucose) possible to counteract stress and to restore energy.
Collapse
|
30
|
Hasanuzzaman M, Bhuyan MHMB, Parvin K, Bhuiyan TF, Anee TI, Nahar K, Hossen MS, Zulfiqar F, Alam MM, Fujita M. Regulation of ROS Metabolism in Plants under Environmental Stress: A Review of Recent Experimental Evidence. Int J Mol Sci 2020; 21:ijms21228695. [PMID: 33218014 PMCID: PMC7698618 DOI: 10.3390/ijms21228695] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
- Correspondence: (M.H.); (M.F.)
| | | | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Tasnim Farha Bhuiyan
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.F.B.); (K.N.)
| | | | - Faisal Zulfiqar
- Institute of Horticultural Sciences, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Md. Mahabub Alam
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (T.I.A.); (M.M.A.)
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-Gun, Kagawa 761-0795, Japan;
- Correspondence: (M.H.); (M.F.)
| |
Collapse
|
31
|
Dias MC, Santos C, Silva S, Pinto DCGA, Silva AMS. Physiological and Metabolite Reconfiguration of Olea europaea to Cope and Recover from a Heat or High UV-B Shock. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11339-11349. [PMID: 32955863 DOI: 10.1021/acs.jafc.0c04719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To understand how olives reconfigure their metabolism to face stress shock episodes, plants from the economically relevant olive (Olea europaea cv. Cobrançosa) were exposed to high UV-B radiation (UV-B, 12 kJ m-2 d-1) or heat shock (HS, 40 °C) for two consecutive days. The physiological responses and some important lipophilic compounds were evaluated immediately (day 0) and 30 days after UV-B or HS episodes. Both treatments induced a reduction of the olive physiological performance, particularly increasing cell membrane damages and proline pool and at the same time reducing chlorophyll levels, the quantum yield of photosystem II (ΦPSII), and the efficiency of excitation energy capture by open photosystem II (PSII) reaction centers (F'v/F'm). Nevertheless, the HS episode caused more adverse effects, additionally reducing the pool of protective pigments (carotenoids) and the maximum efficiency of PSII (with F0 increase). In the UV-B treatment, despite the higher lipid peroxidation, the activation of some stress protective mechanisms (e.g., increase of NPQ and carotenoids and remobilization of some metabolites, such as phytol and proline) might have contributed to avoiding photoinhibition. Thirty days after stress relief, the performance of olives from both treatments recovered similarly, in part due to the metabolites' adjustments that contributed to strengthened stress protection (an increase of long-chain alkanes) and provided energy (through the use of soluble sugars, mannitol, and myo-inositol) for re-establishment. Other metabolites, like anthocyanins and squalene, also have an important role in responding specifically to HS or UV-B recovery for helping in the oxidative damage control. These data contribute to understanding how young olive plants may deal with climatic episodes when being transferred from nurseries to field orchards, under the actual context of climate change.
Collapse
Affiliation(s)
- Maria Celeste Dias
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Centre for Functional Ecology, 3000-456 Coimbra, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Conceição Santos
- LAQV-REQUIMTE, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana C G A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
32
|
Khanum Z, Tiznado-Hernández ME, Ali A, Musharraf SG, Shakeel M, Khan IA. Adaptation mechanism of mango fruit ( Mangifera indica L. cv. Chaunsa White) to heat suggest modulation in several metabolic pathways. RSC Adv 2020; 10:35531-35544. [PMID: 35515688 PMCID: PMC9056917 DOI: 10.1039/d0ra01223h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Climate change is becoming a global problem because of its harmful effects on crop productivity. In this regard, it is crucial to carry out studies to determine crops' response to heatwave stress. Response molecular mechanisms during the development and ripening of mango fruit (Mangifera indica L. cv. Chaunsa White) under extreme heatwaves were studied. Mango flowers were tagged and fruits 18, 34, 62, 79, 92 days after flowering (DAF) as well as fruits on 10 and 15 days of postharvest shelf life were studied through RNA-Seq and metabolome of the fruit mesocarp. The environmental temperature was recorded during the experiment. Roughly, 2 000 000 clean reads were generated and assembled into 12 876 redundant transcripts and 2674 non-redundant transcripts. The expression of genes playing a role in oxidative stress, circadian rhythm, senescence, glycolysis, secondary metabolite biosynthesis, flavonoid biosynthesis and monoterpenoid biosynthesis was quantified as well as reactive oxygen species. Higher expressions of six abiotic stress genes and a senescent associated gene was found at 79 DAF (recorded temperature 44 °C). Higher expressions of nucleoredoxin and glutathione S-transferase 1 family protein were also recorded. Activation of the GABA-shunt pathway was detected by the glutamate decarboxylase transcript expression at 79 DAF. Larger energy demands at the beginning of fruit ripening were indicated by an increase in fructose-bisphosphate aldolase gene expression. Finally, the radical-scavenging effect of mango fruit inflorescence and fruit pulp extracts showed decline upon heatwave exposure. We recorded a broad genetic response of mango fruit suggesting the activation of several metabolic pathways which indicated the occurrence of genetic and metabolic crosstalks in response to intense heatwaves. Collectively, this study presents experimental evidence to help in the elucidation of the molecular mechanism of crops response to heat stress which in turn will help in the designing of protocols to increase crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Zainab Khanum
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Martín E Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A. C. Hermosillo Sonora Mexico
| | - Arslan Ali
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Syed Ghulam Musharraf
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
33
|
Quality parameters, chemical compositions and antioxidant activities of Calabrian (Italy) monovarietal extra virgin olive oils from autochthonous (Ottobratica) and allochthonous (Coratina, Leccino, and Nocellara Del Belice) varieties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00640-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases. Antioxidants (Basel) 2020; 9:antiox9020149. [PMID: 32050687 PMCID: PMC7070598 DOI: 10.3390/antiox9020149] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, anti-inflammatory, immunosuppressive, neuroprotective, anti-cancer, and anti-obesity, which increase the interest of studying these types of bioactive compounds in depth. Secoiridoids are thoroughly distributed in several families of plants such as Oleaceae, Valerianaceae, Gentianaceae and Pedialaceae, among others. Specifically, Olea europaea L. (Oleaceae) is rich in oleuropein (OL), dimethyl-OL, and ligstroside secoiridoids, and their hydrolysis derivatives are mostly OL-aglycone, oleocanthal (OLE), oleacein (OLA), elenolate, oleoside-11-methyl ester, elenoic acid, hydroxytyrosol (HTy), and tyrosol (Ty). These compounds have proved their efficacy in the management of diabetes, cardiovascular and neurodegenerative disorders, cancer, and viral and microbial infections. Particularly, the antioxidant, anti-inflammatory, and immunomodulatory properties of secoiridoids from the olive tree (Olea europaea L. (Oleaceae)) have been suggested as a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. Thus, the purpose of this review is to summarize recent advances in the protective role of secoiridoids derived from the olive tree (preclinical studies and clinical trials) in diseases with an important pathogenic contribution of oxidative and peroxidative stress and damage, focusing on their plausible mechanisms of the action involved.
Collapse
|