1
|
Ostermeier M, Garibay-Hernández A, Holzer VJC, Schroda M, Nickelsen J. Structure, biogenesis, and evolution of thylakoid membranes. THE PLANT CELL 2024; 36:4014-4035. [PMID: 38567528 PMCID: PMC11448915 DOI: 10.1093/plcell/koae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
Cyanobacteria and chloroplasts of algae and plants harbor specialized thylakoid membranes (TMs) that convert sunlight into chemical energy. These membranes house PSII and I, the vital protein-pigment complexes that drive oxygenic photosynthesis. In the course of their evolution, TMs have diversified in structure. However, the core machinery for photosynthetic electron transport remained largely unchanged, with adaptations occurring primarily in the light-harvesting antenna systems. Whereas TMs in cyanobacteria are relatively simple, they become more complex in algae and plants. The chloroplasts of vascular plants contain intricate networks of stacked grana and unstacked stroma thylakoids. This review provides an in-depth view of TM architectures in phototrophs and the determinants that shape their forms, as well as presenting recent insights into the spatial organization of their biogenesis and maintenance. Its overall goal is to define the underlying principles that have guided the evolution of these bioenergetic membranes.
Collapse
Affiliation(s)
| | | | | | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jörg Nickelsen
- Molecular Plant Science, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Mora-Godínez S, Senés-Guerrero C, Pacheco A. De novo transcriptome and lipidome analysis of Desmodesmus abundans under model flue gas reveals adaptive changes after ten years of acclimation to high CO2. PLoS One 2024; 19:e0299780. [PMID: 38758755 PMCID: PMC11101044 DOI: 10.1371/journal.pone.0299780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/14/2024] [Indexed: 05/19/2024] Open
Abstract
Microalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.
Collapse
Affiliation(s)
- Shirley Mora-Godínez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| | | | - Adriana Pacheco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
3
|
Kuntz M, Dimnet L, Pullara S, Moyet L, Rolland N. The Main Functions of Plastids. Methods Mol Biol 2024; 2776:89-106. [PMID: 38502499 DOI: 10.1007/978-1-0716-3726-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are semi-autonomous organelles like mitochondria and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.
Collapse
Affiliation(s)
- Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| | - Laura Dimnet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Sara Pullara
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| |
Collapse
|
4
|
Sun Y, Yao Z, Ye Y, Fang J, Chen H, Lyu Y, Broad W, Fournier M, Chen G, Hu Y, Mohammed S, Ling Q, Jarvis RP. Ubiquitin-based pathway acts inside chloroplasts to regulate photosynthesis. SCIENCE ADVANCES 2022; 8:eabq7352. [PMID: 36383657 PMCID: PMC9668298 DOI: 10.1126/sciadv.abq7352] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Photosynthesis is the energetic basis for most life on Earth, and in plants it operates inside double membrane-bound organelles called chloroplasts. The photosynthetic apparatus comprises numerous proteins encoded by the nuclear and organellar genomes. Maintenance of this apparatus requires the action of internal chloroplast proteases, but a role for the nucleocytosolic ubiquitin-proteasome system (UPS) was not expected, owing to the barrier presented by the double-membrane envelope. Here, we show that photosynthesis proteins (including those encoded internally by chloroplast genes) are ubiquitinated and processed via the CHLORAD pathway: They are degraded by the 26S proteasome following CDC48-dependent retrotranslocation to the cytosol. This demonstrates that the reach of the UPS extends to the interior of endosymbiotically derived chloroplasts, where it acts to regulate photosynthesis, arguably the most fundamental process of life.
Collapse
Affiliation(s)
- Yi Sun
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Zujie Yao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yiting Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Fang
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Honglin Chen
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Yuping Lyu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - William Broad
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Marjorie Fournier
- Advanced Proteomics Facility, University of Oxford, Oxford OX1 3QU, UK
| | - Genyun Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yonghong Hu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Rosalind Franklin Institute, Oxfordshire OX11 0FA, UK
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Corresponding author. (Q.L.); (R.P.J.)
| | - R. Paul Jarvis
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
- Corresponding author. (Q.L.); (R.P.J.)
| |
Collapse
|
5
|
Mora-Godínez S, Rodríguez-López CE, Senés-Guerrero C, Treviño V, Díaz de la Garza R, Pacheco A. Effect of high CO2 concentrations on Desmodesmus abundans RSM lipidome. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Clark TJ, Schwender J. Elucidation of Triacylglycerol Overproduction in the C 4 Bioenergy Crop Sorghum bicolor by Constraint-Based Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:787265. [PMID: 35251073 PMCID: PMC8892208 DOI: 10.3389/fpls.2022.787265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Upregulation of triacylglycerols (TAGs) in vegetative plant tissues such as leaves has the potential to drastically increase the energy density and biomass yield of bioenergy crops. In this context, constraint-based analysis has the promise to improve metabolic engineering strategies. Here we present a core metabolism model for the C4 biomass crop Sorghum bicolor (iTJC1414) along with a minimal model for photosynthetic CO2 assimilation, sucrose and TAG biosynthesis in C3 plants. Extending iTJC1414 to a four-cell diel model we simulate C4 photosynthesis in mature leaves with the principal photo-assimilatory product being replaced by TAG produced at different levels. Independent of specific pathways and per unit carbon assimilated, energy content and biosynthetic demands in reducing equivalents are about 1.3 to 1.4 times higher for TAG than for sucrose. For plant generic pathways, ATP- and NADPH-demands per CO2 assimilated are higher by 1.3- and 1.5-fold, respectively. If the photosynthetic supply in ATP and NADPH in iTJC1414 is adjusted to be balanced for sucrose as the sole photo-assimilatory product, overproduction of TAG is predicted to cause a substantial surplus in photosynthetic ATP. This means that if TAG synthesis was the sole photo-assimilatory process, there could be an energy imbalance that might impede the process. Adjusting iTJC1414 to a photo-assimilatory rate that approximates field conditions, we predict possible daily rates of TAG accumulation, dependent on varying ratios of carbon partitioning between exported assimilates and accumulated oil droplets (TAG, oleosin) and in dependence of activation of futile cycles of TAG synthesis and degradation. We find that, based on the capacity of leaves for photosynthetic synthesis of exported assimilates, mature leaves should be able to reach a 20% level of TAG per dry weight within one month if only 5% of the photosynthetic net assimilation can be allocated into oil droplets. From this we conclude that high TAG levels should be achievable if TAG synthesis is induced only during a final phase of the plant life cycle.
Collapse
Affiliation(s)
- Teresa J. Clark
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY, United States
| |
Collapse
|
7
|
Lundquist PK. Tracking subplastidic localization of carotenoid metabolic enzymes with proteomics. Methods Enzymol 2022; 671:327-350. [DOI: 10.1016/bs.mie.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Plant monounsaturated fatty acids: Diversity, biosynthesis, functions and uses. Prog Lipid Res 2021; 85:101138. [PMID: 34774919 DOI: 10.1016/j.plipres.2021.101138] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/22/2022]
Abstract
Monounsaturated fatty acids are straight-chain aliphatic monocarboxylic acids comprising a unique carbon‑carbon double bond, also termed unsaturation. More than 50 distinct molecular structures have been described in the plant kingdom, and more remain to be discovered. The evolution of land plants has apparently resulted in the convergent evolution of non-homologous enzymes catalyzing the dehydrogenation of saturated acyl chain substrates in a chemo-, regio- and stereoselective manner. Contrasted enzymatic characteristics and different subcellular localizations of these desaturases account for the diversity of existing fatty acid structures. Interestingly, the location and geometrical configuration of the unsaturation confer specific characteristics to these molecules found in a variety of membrane, storage, and surface lipids. An ongoing research effort aimed at exploring the links existing between fatty acid structures and their biological functions has already unraveled the importance of several monounsaturated fatty acids in various physiological and developmental contexts. What is more, the monounsaturated acyl chains found in the oils of seeds and fruits are widely and increasingly used in the food and chemical industries due to the physicochemical properties inherent in their structures. Breeders and plant biotechnologists therefore develop new crops with high monounsaturated contents for various agro-industrial purposes.
Collapse
|
9
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
10
|
Gloaguen P, Vandenbrouck Y, Joyard J, Curien G. ChloroKB, a cell metabolism reconstruction of the model plant Arabidopsis thaliana. C R Biol 2021; 344:157-163. [PMID: 34213853 DOI: 10.5802/crbiol.49] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Can we understand how plant cell metabolism really works? An integrated large-scale modelling of plant metabolism predictive model would make possible to analyse the impact of disturbances in environmental conditions on cellular functioning and diversity of plant-made molecules of interest. ChloroKB, a Web application initially developed for exploration of Arabidopsis chloroplast metabolic network now covers Arabidopsis mesophyll cell metabolism. Interconnected metabolic maps show subcellular compartments, metabolites, proteins, complexes, reactions, and transport. Data in ChloroKB have been structured to allow for mathematical modelling and will be used as a reference for modelling work dedicated to a particular issue.
Collapse
Affiliation(s)
- Pauline Gloaguen
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, UMR5168, 38000 Grenoble, France
| | - Yves Vandenbrouck
- Université Grenoble Alpes, Inserm, CEA, IRIG-BGE, U1038, 38000, Grenoble, France
| | - Jacques Joyard
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, UMR5168, 38000 Grenoble, France
| | - Gilles Curien
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, UMR5168, 38000 Grenoble, France
| |
Collapse
|
11
|
Membrane Profiling by Free Flow Electrophoresis and SWATH-MS to Characterize Subcellular Compartment Proteomes in Mesembryanthemum crystallinum. Int J Mol Sci 2021; 22:ijms22095020. [PMID: 34065142 PMCID: PMC8126025 DOI: 10.3390/ijms22095020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 01/11/2023] Open
Abstract
The study of subcellular membrane structure and function facilitates investigations into how biological processes are divided within the cell. However, work in this area has been hampered by the limited techniques available to fractionate the different membranes. Free Flow Electrophoresis (FFE) allows for the fractionation of membranes based on their different surface charges, a property made up primarily of their varied lipid and protein compositions. In this study, high-resolution plant membrane fractionation by FFE, combined with mass spectrometry-based proteomics, allowed the simultaneous profiling of multiple cellular membranes from the leaf tissue of the plant Mesembryanthemum crystallinum. Comparisons of the fractionated membranes’ protein profile to that of known markers for specific cellular compartments sheds light on the functions of proteins, as well as provides new evidence for multiple subcellular localization of several proteins, including those involved in lipid metabolism.
Collapse
|
12
|
Chen T, Cohen D, Itkin M, Malitsky S, Fluhr R. Lipoxygenase functions in 1O2 production during root responses to osmotic stress. PLANT PHYSIOLOGY 2021; 185:1638-1651. [PMID: 33793947 PMCID: PMC8133667 DOI: 10.1093/plphys/kiab025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/07/2021] [Indexed: 05/27/2023]
Abstract
Drought induces osmotic stress in roots, a condition simulated by the application of high-molecular-weight polyethylene glycol. Osmotic stress results in the reduction of Arabidopsis thaliana root growth and production of 1O2 from an unknown non-photosynthetic source. Reduced root growth can be alleviated by application of the 1O2 scavenger histidine (HIS). Here, we examined the possibility that 1O2 production involves Russell reactions occurring among the enzymatic products of lipoxygenases (LOXs), the fatty acid hydroperoxides. LOX activity was measured for purified soybean (Glycine max) LOX1 and in crude Arabidopsis root extracts using linoleic acid as substrate. Formation of the 13(S)-Hydroperoxy-9(Z),11(E)-octadecadienoic acid product was inhibited by salicylhdroxamic acid, which is a LOX inhibitor, but not by HIS, whereas 1O2 production was inhibited by both. D2O, which specifically extends the half-life of 1O2, augmented the LOX-dependent generation of 1O2, as expected from a Russell-type reaction. The addition of linoleic acid to roots stimulated 1O2 production and inhibited growth, suggesting that the availability of LOX substrate is a rate-limiting step. Indeed, water stress rapidly increased linoleic and linolenic acids by 2.5-fold in roots. Mutants with root-specific microRNA repression of LOXs showed downregulation of LOX protein and activity. The lines with downregulated LOX displayed significantly less 1O2 formation, improved root growth in osmotic stress, and an altered transcriptome response compared with wild type. The results show that LOXs can serve as an enzymatic source of "dark" 1O2 during osmotic stress and demonstrate a role for 1O2 in defining the physiological response.
Collapse
Affiliation(s)
- Tomer Chen
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Dekel Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel
| |
Collapse
|
13
|
Mohanta TK, Mishra AK, Khan A, Hashem A, Abd-Allah EF, Al-Harrasi A. Virtual 2-D map of the fungal proteome. Sci Rep 2021; 11:6676. [PMID: 33758316 PMCID: PMC7988114 DOI: 10.1038/s41598-021-86201-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
The molecular weight and isoelectric point (pI) of the proteins plays important role in the cell. Depending upon the shape, size, and charge, protein provides its functional role in different parts of the cell. Therefore, understanding to the knowledge of their molecular weight and charges is (pI) is very important. Therefore, we conducted a proteome-wide analysis of protein sequences of 689 fungal species (7.15 million protein sequences) and construct a virtual 2-D map of the fungal proteome. The analysis of the constructed map revealed the presence of a bimodal distribution of fungal proteomes. The molecular mass of individual fungal proteins ranged from 0.202 to 2546.166 kDa and the predicted isoelectric point (pI) ranged from 1.85 to 13.759 while average molecular weight of fungal proteome was 50.98 kDa. A non-ribosomal peptide synthase (RFU80400.1) found in Trichoderma arundinaceum was identified as the largest protein in the fungal kingdom. The collective fungal proteome is dominated by the presence of acidic rather than basic pI proteins and Leu is the most abundant amino acid while Cys is the least abundant amino acid. Aspergillus ustus encodes the highest percentage (76.62%) of acidic pI proteins while Nosema ceranae was found to encode the highest percentage (66.15%) of basic pI proteins. Selenocysteine and pyrrolysine amino acids were not found in any of the analysed fungal proteomes. Although the molecular weight and pI of the protein are of enormous important to understand their functional roles, the amino acid compositions of the fungal protein will enable us to understand the synonymous codon usage in the fungal kingdom. The small peptides identified during the study can provide additional biotechnological implication.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, 12511, Egypt
| | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
14
|
Sikorskaya TV, Efimova KV, Imbs AB. Lipidomes of phylogenetically different symbiotic dinoflagellates of corals. PHYTOCHEMISTRY 2021; 181:112579. [PMID: 33166751 DOI: 10.1016/j.phytochem.2020.112579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The structural base of all membranes of symbiotic dinoflagellates (SD) is composed of glycolipids and betaine lipids, whereas triacylglycerols (TG) constitute an energy reserve and are involved in biosynthesis of glycolipids. Since data on the SD lipidome and the host's influence on symbionts' lipidome are scanty, we analyzed and compared the lipidomes of SD isolated from the zoantharian Palythoa tuberculosa and the alcyonarian Sinularia heterospiculata. A sequencing of nuclear gene regions showed that both cnidarians hosted the dinoflagellates Cladocopium sp. (subclades C1 and C3), but the zoantharian also contained the dinoflagellates Durusdinium trenchii (clade D). The presence of the thermotolerant D. trenchii resulted in a higher unsaturation of mono- and digalactosyldiacylglycerols (MGDG and DGDG), but a lower unsaturation of sulfoquinovosyldiacylglycerol (SQDG). The same features were earlier described for same SD from a reef-building coral. Hence, the profile of glycolipid molecules, which form SD thylakoid membranes, seems to be species-specific and does not depend on the host's taxonomic position. In contrast, the betaine lipid molecular species profile of diacylglyceryl-3-O-carboxyhydroxymethylcholine (DGCC), which forms SD cell membranes, can be influenced by the host. The profiles of the TG molecular species from freshly isolated SD have been determined for the first time. These molecular species can be divided on the basis of the acyl group in sn-2 position. The TG with 16:0 acyl group in sn-2 position may enrich total TG of a cnidarian colony and originate from SD cytoplasm. In contrast, TG 18:3/18:4/18:3 may be biosynthetically related with DGDG and concentrated in SD plastoglobules. Our data may be useful for further investigations of natural and technogenic variations in microalgal lipids and symbiont-host interactions in marine ecosystems.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation.
| | - Kseniya V Efimova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation; Laboratory of Ecology and Evolutionary Biology of Aquatic Organisms, Far Eastern Federal University, 690091, Vladivostok, Russian Federation
| | - Andrey B Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
| |
Collapse
|
15
|
Li J, Liu LN, Meng Q, Fan H, Sui N. The roles of chloroplast membrane lipids in abiotic stress responses. PLANT SIGNALING & BEHAVIOR 2020; 15:1807152. [PMID: 32815751 PMCID: PMC7588187 DOI: 10.1080/15592324.2020.1807152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 05/11/2023]
Abstract
Plant chloroplasts have complex membrane systems. Among these, thylakoids serve as the sites for photosynthesis and photosynthesis-related adaptation. In addition to the photosynthetic membrane complexes and associated molecules, lipids in the thylakoid membranes, are predominantly composed of MGDG (monogalactosyldiacylglycerol), DGDG (digalactosyldiacylglycerol), SQDG (sulfoquinovosyldiacylglycerol) and PG (phosphatidylglycerol), play essential roles in shaping the thylakoid architecture, electron transfer, and photoregulation. In this review, we discuss the effect of abiotic stress on chloroplast structure, the changes in membrane lipid composition, and the degree of unsaturation of fatty acids. Advanced understanding of the mechanisms regulating chloroplast membrane lipids and unsaturated fatty acids in response to abiotic stresses is indispensable for improving plant resistance and may inform the strategies of crop breeding.
Collapse
Affiliation(s)
- Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Lu-Ning Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Lee BS, Koo KM, Ryu J, Hong MJ, Kim SH, Kwon SJ, Kim JB, Choi JI, Ahn JW. Overexpression of fructose-1,6-bisphosphate aldolase 1 enhances accumulation of fatty acids in Chlamydomonas reinhardtii. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Prinsi B, Failla O, Scienza A, Espen L. Root Proteomic Analysis of Two Grapevine Rootstock Genotypes Showing Different Susceptibility to Salt Stress. Int J Mol Sci 2020; 21:ijms21031076. [PMID: 32041176 PMCID: PMC7037071 DOI: 10.3390/ijms21031076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 11/23/2022] Open
Abstract
Salinity represents a very limiting factor that affects the fertility of agricultural soils. Although grapevine is moderately susceptible to salinity, both natural causes and agricultural practices could worsen the impact of this abiotic stress. A promising possibility to reduce this problem in vineyards is the use of appropriate graft combinations. The responses of grapevine rootstocks to this abiotic stress at the root level still remain poorly investigated. In order to obtain further information on the multifaceted responses induced by salt stress at the biochemical level, in the present work we analyzed the changes that occurred under control and salt conditions in the root proteomes of two grapevine rootstock genotypes, M4 and 101.14. Moreover, we compared the results considering that M4 and 101.14 were previously described to have lower and higher susceptibility to salt stress, respectively. This study highlighted the greater capability of M4 to maintain and adapt energy metabolism (i.e., synthesis of ATP and NAD(P)H) and to sustain the activation of salt-protective mechanisms (i.e., Na sequestration into the vacuole and synthesis of osmoprotectant compounds). Comparitively, in 101.14 the energy metabolism was deeply affected and there was an evident induction of the enzymatic antioxidant system that occurred, pointing to a metabolic scenario typical of a suffering tissue. Overall, this study describes for the first time in grapevine roots some of the more crucial events that characterize positive (M4) or negative (101.14) responses evoked by salt stress conditions.
Collapse
Affiliation(s)
| | | | | | - Luca Espen
- Correspondence: ; Tel.: +39-02-503-16610
| |
Collapse
|
18
|
Transcriptomic Analysis Reveals the High-Oleic Acid Feedback Regulating the Homologous Gene Expression of Stearoyl-ACP Desaturase 2 ( SAD2) in Peanuts. Int J Mol Sci 2019; 20:ijms20123091. [PMID: 31242553 PMCID: PMC6628111 DOI: 10.3390/ijms20123091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
Peanuts with high oleic acid content are usually considered to be beneficial for human health and edible oil storage. In breeding practice, peanut lines with high monounsaturated fatty acids are selected using fatty acid desaturase 2 (FAD2), which is responsible for the conversion of oleic acid (C18:1) to linoleic acid (C18:2). Here, comparative transcriptomics were used to analyze the global gene expression profile of high- and normal-oleic peanut cultivars at six time points during seed development. First, the mutant type of FAD2 was determined in the high-oleic peanut (H176). The result suggested that early translation termination occurred simultaneously in the coding sequence of FAD2-A and FAD2-B, and the cultivar H176 is capable of utilizing a potential germplasm resource for future high-oleic peanut breeding. Furthermore, transcriptomic analysis identified 74 differentially expressed genes (DEGs) involved in lipid metabolism in high-oleic peanut seed, of which five DEGs encoded the fatty acid desaturase. Aradu.XM2MR belonged to the homologous gene of stearoyl-ACP (acyl carrier protein) desaturase 2 (SAD2) that converted the C18:0 into C18:1. Further subcellular localization studies indicated that FAD2 was located at the endoplasmic reticulum (ER), and Aradu.XM2MR was targeted to the plastid in Arabidopsis protoplast cells. To examine the dynamic mechanism of this finding, we focused on the peroxidase (POD)-mediated fatty acid (FA) degradation pathway. The fad2 mutant significantly increased the POD activity and H2O2 concentration at the early stage of seed development, implying that redox signaling likely acted as a messenger to connect the signaling transduction between the high-oleic content and Aradu.XM2MR transcription level. Taken together, transcriptome analysis revealed the feedback mechanism of SAD2 (Aradu.XM2MR) associated with FAD2 mutation during the seed developmental stage, which could provide a potential peanut breeding strategy based on identified candidate genes to improve the content of oleic acid.
Collapse
|
19
|
Pinard D, Fierro AC, Marchal K, Myburg AA, Mizrachi E. Organellar carbon metabolism is coordinated with distinct developmental phases of secondary xylem. THE NEW PHYTOLOGIST 2019; 222:1832-1845. [PMID: 30742304 DOI: 10.1111/nph.15739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Subcellular compartmentation of plant biosynthetic pathways in the mitochondria and plastids requires coordinated regulation of nuclear encoded genes, and the role of these genes has been largely ignored by wood researchers. In this study, we constructed a targeted systems genetics coexpression network of xylogenesis in Eucalyptus using plastid and mitochondrial carbon metabolic genes and compared the resulting clusters to the aspen xylem developmental series. The constructed network clusters reveal the organization of transcriptional modules regulating subcellular metabolic functions in plastids and mitochondria. Overlapping genes between the plastid and mitochondrial networks implicate the common transcriptional regulation of carbon metabolism during xylem secondary growth. We show that the central processes of organellar carbon metabolism are distinctly coordinated across the developmental stages of wood formation and are specifically associated with primary growth and secondary cell wall deposition. We also demonstrate that, during xylogenesis, plastid-targeted carbon metabolism is partially regulated by the central clock for carbon allocation towards primary and secondary xylem growth, and we discuss these networks in the context of previously established associations with wood-related complex traits. This study provides a new resolution into the integration and transcriptional regulation of plastid- and mitochondrial-localized carbon metabolism during xylogenesis.
Collapse
Affiliation(s)
- Desré Pinard
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Ana Carolina Fierro
- Department of Information Technology, Ghent University - iMinds, Technologiepark 15, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - Kathleen Marchal
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Department of Information Technology, Ghent University - iMinds, Technologiepark 15, Ghent, B-9052, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, Ghent, B-9052, Belgium
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| |
Collapse
|
20
|
Pollmann S, Springer A, Rustgi S, von Wettstein D, Kang C, Reinbothe C, Reinbothe S. Substrate channeling in oxylipin biosynthesis through a protein complex in the plastid envelope of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1483-1495. [PMID: 30690555 PMCID: PMC6411374 DOI: 10.1093/jxb/erz015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/06/2019] [Indexed: 05/20/2023]
Abstract
Oxygenated membrane fatty acid derivatives termed oxylipins play important roles in plant defense against biotic and abiotic cues. Plants challenged by insect pests, for example, synthesize a blend of different defense compounds that include volatile aldehydes and jasmonic acid (JA), among others. Because all oxylipins are derived from the same pathway, we investigated how their synthesis might be regulated, focusing on two closely related atypical cytochrome P450 enzymes designated CYP74A and CYP74B, respectively, allene oxide synthase (AOS) and hydroperoxide lyase (HPL). These enzymes compete for the same substrate but give rise to different products: the final product of the AOS branch of the oxylipin pathway is JA, while those of the HPL branch comprise volatile aldehydes and alcohols. AOS and HPL are plastid envelope enzymes in Arabidopsis thaliana but accumulate at different locations. Biochemical experiments identified AOS as a constituent of complexes also containing lipoxygenase 2 (LOX2) and allene oxide cyclase (AOC), which catalyze consecutive steps in JA precursor biosynthesis, while excluding the concurrent HPL reaction. Based on published X-ray data, the structure of this complex was modelled and amino acids involved in catalysis and subunit interactions predicted. Genetic studies identified the microRNA 319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes and CORONATINE INSENSITIVE 1 (COI1) as controlling JA production through the LOX2-AOS-AOC2 complex. Together, our results define a molecular branch point in oxylipin biosynthesis that allows fine-tuning of the plant's defense machinery in response to biotic and abiotic stimuli.
Collapse
Affiliation(s)
- Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Correspondence: or
| | - Armin Springer
- Medizinische Biologie und Elektronenmikroskopisches Zentrum (EMZ), Universitätsmedizin Rostock, Rostock, Germany
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
- Biomolecular Crystallography Center, Washington State University, Pullman, WA, USA
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, CEDEX, France
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, CEDEX, France
- Correspondence: or
| |
Collapse
|
21
|
Salvi D, Bournais S, Moyet L, Bouchnak I, Kuntz M, Bruley C, Rolland N. AT_CHLORO: The First Step When Looking for Information About Subplastidial Localization of Proteins. Methods Mol Biol 2019; 1829:395-406. [PMID: 29987736 DOI: 10.1007/978-1-4939-8654-5_26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Plastids contain several key subcompartments. The two limiting envelope membranes (inner and outer membrane of the plastid envelope with an intermembrane space between), an aqueous phase (stroma), and an internal membrane system terms (thylakoids) formed of flat compressed vesicles (grana) and more light structures (lamellae). The thylakoid vesicles delimit another discrete soluble compartment, the thylakoid lumen. AT_CHLORO ( http://at-chloro.prabi.fr/at_chloro/ ) is a unique database supplying information about the subplastidial localization of proteins. It was created from simultaneous proteomic analyses targeted to the main subcompartments of the chloroplast from Arabidopsis thaliana (i.e., envelope, stroma, thylakoid) and to the two subdomains of thylakoid membranes (i.e., grana and stroma lamellae). AT_CHLORO assembles several complementary information (MS-based experimental data, curated functional annotations and subplastidial localization, links to other public databases and references) which give a comprehensive overview of the current knowledge about the subplastidial localization and the function of chloroplast proteins, with a specific attention given to chloroplast envelope proteins.
Collapse
Affiliation(s)
- Daniel Salvi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Sylvain Bournais
- Laboratoire de Biologie à Grande Echelle, Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Imen Bouchnak
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Christophe Bruley
- Laboratoire de Biologie à Grande Echelle, Université Grenoble Alpes, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Santé et de la Recherche Médicale, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France.
| |
Collapse
|
22
|
Gorelova O, Baulina O, Ismagulova T, Kokabi K, Lobakova E, Selyakh I, Semenova L, Chivkunova O, Karpova O, Scherbakov P, Khozin-Goldberg I, Solovchenko A. Stress-induced changes in the ultrastructure of the photosynthetic apparatus of green microalgae. PROTOPLASMA 2019; 256:261-277. [PMID: 30083788 DOI: 10.1007/s00709-018-1294-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/25/2018] [Indexed: 05/08/2023]
Abstract
In photosynthetic organisms including unicellular algae, acclimation to and damage by environmental stresses are readily apparent at the level of the photosynthetic apparatus. Phenotypic manifestations of the stress responses include rapid and dramatic reduction of photosynthetic activity and pigment content aimed at mitigating the risk of photooxidative damage. Although the physiological and molecular mechanisms of these events are well known, the ultrastructural picture of the stress responses is often elusive and frequently controversial. We analyzed an extensive set of transmission electron microscopy images of the microalgal cells obtained across species of Chlorophyta and in a wide range of growth conditions. The results of the analysis allowed us to pinpoint distinct ultrastructural changes typical of normal functioning and emergency reduction of the chloroplast membrane system under high light exposure and/or mineral nutrient starvation. We demonstrate the patterns of the stress-related ultrastructural changes including peculiar thylakoid rearrangements and autophagy-like processes and provide an outlook on their significance for implementation of the stress responses.
Collapse
Affiliation(s)
- Olga Gorelova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Olga Baulina
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Tatiana Ismagulova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Kamilya Kokabi
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology for Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 8499000, Midreshet Ben Gurion, Israel
| | - Elena Lobakova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Irina Selyakh
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Larisa Semenova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Olga Chivkunova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Olga Karpova
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Pavel Scherbakov
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology for Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 8499000, Midreshet Ben Gurion, Israel
| | - Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Moscow State University, GSP-1, Moscow, 119234, Russia.
- Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| |
Collapse
|
23
|
Ye F, Ma P, Zhang YY, Li P, Yang F, Fu Y. Herbicidal Activity and Molecular Docking Study of Novel ACCase Inhibitors. FRONTIERS IN PLANT SCIENCE 2018; 9:1850. [PMID: 30619418 PMCID: PMC6305411 DOI: 10.3389/fpls.2018.01850] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/29/2018] [Indexed: 05/29/2023]
Abstract
Acetyl-CoA carboxylase (ACCase) is an important target enzyme for the development of new bleaching herbicides. On the basis of structure-activity relationships and active subunit combinations, a series of novel 2-phenyl-3-cyclohexanedione enol ester derivatives was designed and synthesized by coupling and acylation reactions. The preliminary biological tests indicated good post-emergent herbicidal activity at a dosage of 150-300 g ai/ha, superior to that of clethodim against barnyard grass. Compound 3d was safe with respect to maize, even at a dosage of 300 g ai/ha. Compound 3d showed the best ACCase inhibitory activity in vitro, with a value of 0.061 nmol h-1 mg-1 protein, superior to that of clethodim. Molecular docking modeling showed that compound 3d and clethodim had the same interactions with surrounding residues, leading to an excellent combination with the active pocket of ACCase. That may have been the mechanism responsible for the death of the barnyard grass. The present work suggests compound 3d as a potential lead structure for further development of novel ACCase inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
LaBrant E, Barnes AC, Roston RL. Lipid transport required to make lipids of photosynthetic membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:345-360. [PMID: 29961189 DOI: 10.1007/s11120-018-0545-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.
Collapse
Affiliation(s)
- Evan LaBrant
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA.
| |
Collapse
|
25
|
Venkateshwari V, Vijayakumar A, Vijayakumar AK, Reddy LPA, Srinivasan M, Rajasekharan R. Leaf lipidome and transcriptome profiling of Portulaca oleracea: characterization of lysophosphatidylcholine acyltransferase. PLANTA 2018; 248:347-367. [PMID: 29736624 DOI: 10.1007/s00425-018-2908-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Portulaca leaves serve as an alternative bioresource for edible PUFAs. Transcriptome data provide information to explore Portulaca as a model system for galactolipids, leaf lipid metabolism, and PUFA-rich designer lipids. Poly-unsaturated fatty acids (PUFAs) are gaining importance due to their innumerable health benefits, and hence, understanding their biosynthesis in plants has attained prominence in recent years. The most common source of PUFAs is of marine origin. Although reports have identified Portulaca oleracea (purslane) as a leaf source of omega-3 fatty acids in the form of alpha-linolenic acid (ALA), the mechanism of ALA accumulation and its distribution into various lipids has not been elucidated. Here, we present the lipid profiles of leaves and seeds of several accessions of P. oleracea. Among the nineteen distinct accessions, the RR04 accession has the highest amount of ALA and is primarily associated with galactolipids. In addition, we report the transcriptome of RR04, and we have mapped the potential genes involved in lipid metabolism. Phosphatidylcholine (PC) is the major site of acyl editing, which is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), an integral membrane protein that plays a major role in supplying oleate to the PC pool for further unsaturation. Our investigations using mass spectrometric analysis of leaf microsomal fractions identified LPCAT as part of a membrane protein complex. Both native and recombinant LPCAT showed strong acyltransferase activity with various acyl-CoA substrates. Altogether, the results suggest that ALA-rich glycerolipid biosynthetic machinery is highly active in nutritionally important Portulaca leaves. Furthermore, lipidome, transcriptome, and mass spectrometric analyses of RR04 provide novel information for exploring Portulaca as a potential resource and a model system for studying leaf lipid metabolism.
Collapse
Affiliation(s)
- Varadarajan Venkateshwari
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Anitha Vijayakumar
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - Arun Kumar Vijayakumar
- Food Safety and Analytical Quality Control Department, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - L Prasanna Anjaneya Reddy
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
| | - Malathi Srinivasan
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Ram Rajasekharan
- Department of Lipid Science, Central Food Technological Research Institute, Mysore, 570020, Karnataka, India.
- Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
26
|
Li HM, Yu CW. Chloroplast Galactolipids: The Link Between Photosynthesis, Chloroplast Shape, Jasmonates, Phosphate Starvation and Freezing Tolerance. PLANT & CELL PHYSIOLOGY 2018; 59:1128-1134. [PMID: 29727004 DOI: 10.1093/pcp/pcy088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/26/2018] [Indexed: 05/23/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) together constitute approximately 80% of chloroplast lipids. Apart from facilitating the photosynthesis light reaction in the thylakoid membrane, these two lipids are important for maintaining chloroplast morphology and for plant survival under abiotic stresses such as phosphate starvation and freezing. Recently it was shown that severe growth retardation phenotypes of the DGDG-deficient mutant dgd1 were due to jasmonate overproduction, linking MGDG and DGDG homeostasis with phytohormone production and suggesting MGDG as a major substrate for jasmonate biosynthesis. Induction of jasmonate synthesis and jasmonic acid (JA) signaling was also observed under conditions of phosphate starvation. We hypothesize that when DGDG is recruited to substitute for phospholipids in extraplastidic membranes during phosphate deficiency, the altered MGDG to DGDG ratio in the chloroplast envelope triggers the conversion of galactolipids into jasmonates. The conversion may contribute to rebalancing the MGDG to DGDG ratio rapidly to maintain chloroplast shape, and jasmonate production can reduce the growth rate and enhance predator deterrence. We also hypothesize that other conditions, such as suppression of dgd1 phenotypes by trigalactosyldiacylglycerol (tgd) mutations, may all be linked to altered jasmonate production, indicating that caution should be exercised when interpreting phenotypes caused by conditions that may alter the MGDG to DGDG ratio at the chloroplast envelope.
Collapse
Affiliation(s)
- Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Chun-Wei Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
27
|
Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I. Current trends to comprehend lipid metabolism in diatoms. Prog Lipid Res 2018. [DOI: 10.1016/j.plipres.2018.03.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Zhan Y, Marchand CH, Maes A, Mauries A, Sun Y, Dhaliwal JS, Uniacke J, Arragain S, Jiang H, Gold ND, Martin VJJ, Lemaire SD, Zerges W. Pyrenoid functions revealed by proteomics in Chlamydomonas reinhardtii. PLoS One 2018; 13:e0185039. [PMID: 29481573 PMCID: PMC5826530 DOI: 10.1371/journal.pone.0185039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/29/2018] [Indexed: 01/19/2023] Open
Abstract
Organelles are intracellular compartments which are themselves compartmentalized. Biogenic and metabolic processes are localized to specialized domains or microcompartments to enhance their efficiency and suppress deleterious side reactions. An example of intra-organellar compartmentalization is the pyrenoid in the chloroplasts of algae and hornworts. This microcompartment enhances the photosynthetic CO2-fixing activity of the Calvin-Benson cycle enzyme Rubisco, suppresses an energetically wasteful oxygenase activity of Rubisco, and mitigates limiting CO2 availability in aquatic environments. Hence, the pyrenoid is functionally analogous to the carboxysomes in cyanobacteria. However, a comprehensive analysis of pyrenoid functions based on its protein composition is lacking. Here we report a proteomic characterization of the pyrenoid in the green alga Chlamydomonas reinhardtii. Pyrenoid-enriched fractions were analyzed by quantitative mass spectrometry. Contaminant proteins were identified by parallel analyses of pyrenoid-deficient mutants. This pyrenoid proteome contains 190 proteins, many of which function in processes that are known or proposed to occur in pyrenoids: e.g. the carbon concentrating mechanism, starch metabolism or RNA metabolism and translation. Using radioisotope pulse labeling experiments, we show that pyrenoid-associated ribosomes could be engaged in the localized synthesis of the large subunit of Rubisco. New pyrenoid functions are supported by proteins in tetrapyrrole and chlorophyll synthesis, carotenoid metabolism or amino acid metabolism. Hence, our results support the long-standing hypothesis that the pyrenoid is a hub for metabolism. The 81 proteins of unknown function reveal candidates for new participants in these processes. Our results provide biochemical evidence of pyrenoid functions and a resource for future research on pyrenoids and their use to enhance agricultural plant productivity. Data are available via ProteomeXchange with identifier PXD004509.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Christophe H. Marchand
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Alexandre Maes
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Adeline Mauries
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
| | - Yi Sun
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James S. Dhaliwal
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - James Uniacke
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Simon Arragain
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Heng Jiang
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Nicholas D. Gold
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Vincent J. J. Martin
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Stéphane D. Lemaire
- Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Universités, UPMC Univ Paris 06, 13 rue Pierre et Marie Curie, Paris, France
- * E-mail: (SDL); (WZ)
| | - William Zerges
- Department of Biology & Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
- * E-mail: (SDL); (WZ)
| |
Collapse
|
29
|
Chen Y, Zhou B, Li J, Tang H, Tang J, Yang Z. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions. Int J Mol Sci 2018; 19:E654. [PMID: 29495387 PMCID: PMC5877515 DOI: 10.3390/ijms19030654] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
Abstract
Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.
Collapse
Affiliation(s)
- Yiyong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Hao Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
30
|
Moyet L, Salvi D, Tomizioli M, Seigneurin-Berny D, Rolland N. Preparation of Membrane Fractions (Envelope, Thylakoids, Grana, and Stroma Lamellae) from Arabidopsis Chloroplasts for Quantitative Proteomic Investigations and Other Studies. Methods Mol Biol 2018; 1696:117-136. [PMID: 29086400 DOI: 10.1007/978-1-4939-7411-5_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chloroplasts are semiautonomous organelles found in plants and protists. They are surrounded by a double membrane system, or envelope. These envelope membranes contain machineries to import nuclear-encoded proteins, and transporters for ions or metabolites, but are also essential for a range of plastid-specific metabolisms. The inner membrane surrounds a stroma, which is the site of the carbon chemistry of photosynthesis. Chloroplasts also contain an internal membrane system, or thylakoids, where the light phase of photosynthesis occurs. The thylakoid membranes themselves have a bipartite structure, consisting of grana stacks interconnected by stroma lamellae. These thylakoid membranes however form a continuous network that encloses a single lumenal space. Chloroplast-encoded or targeted proteins are thus addressed to various sub-compartments that turn out to be flexible systems and whose main functions can be modulated by alterations in the relative levels of their components. This article describes procedures developed to recover highly purified chloroplast membrane fractions (i.e., envelope, crude thylakoid membranes, as well as the two main thylakoid subdomains, grana and stroma lamellae), starting from Percoll-purified Arabidopsis chloroplasts. Immunological markers are also listed that can be used to assess the purity of these fractions and reveal specific contaminations by other plastid membrane compartments. The methods described here are compatible with chloroplast proteome dynamic studies relying on targeted quantitative proteomic investigations.
Collapse
Affiliation(s)
- Lucas Moyet
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France
| | - Daniel Salvi
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France
| | - Martino Tomizioli
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, CNRS, Univ. Grenoble Alpes, CEA, INRA, 17 rue des martyrs, 38054, Grenoble cedex 9, France.
| |
Collapse
|
31
|
Abstract
Plastids are semiautonomous organelles like mitochondria, and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.
Collapse
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France.
| | - Imen Bouchnak
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Daniel Salvi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France
| |
Collapse
|
32
|
Pick U, Avidan O. Triacylglycerol is produced from starch and polar lipids in the green alga Dunaliella tertiolecta. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4939-4950. [PMID: 28992231 PMCID: PMC5853294 DOI: 10.1093/jxb/erx280] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The halotolerant green alga Dunaliella tertiolecta accumulates starch and triacylglycerol (TAG) amounting to 70% and 10-15% of total cellular carbon, respectively, when exposed to nitrogen (N) deprivation. The purpose of this study was to clarify the inter-relationships between the biosynthesis of TAG, starch, and polar lipids (PLs) in this alga. Pulse labeling with [14C]bicarbonate was utilized to label starch and [14C]palmitic acid (PlA) to label lipids. Transfer of 14C into TAG was measured and used to calculate rates of synthesis. About two-thirds of the carbon in TAG originates from starch, and one-third is made de novo by direct CO2 assimilation. The level made from degradation of pre-formed PLs is estimated to be very small. Most of the de novo synthesis involves fatty acid transfer through PLs made during the first day of N deprivation. The results suggest that starch made by photosynthetic carbon assimilation at the early stages of N deprivation is utilized for synthesis of TAG. Trans-acylation from PLs is the second major contributor to TAG biosynthesis. The utilization of starch for TAG biosynthesis may have biotechnological applications to optimize TAG biosynthesis in algae.
Collapse
Affiliation(s)
- Uri Pick
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Correspondence:
| | - Omri Avidan
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
33
|
Chen HH, Jiang JG. Lipid Accumulation Mechanisms in Auto- and Heterotrophic Microalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8099-8110. [PMID: 28838232 DOI: 10.1021/acs.jafc.7b03495] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microalgae lipids have attracted great attention in the world as a result of their potential use for biodiesel productions. Microalgae are cultivated in photoautotrophic conditions in most cases, but several species are able to grow under heterotrophic conditions, in which microalgae are cultivated in the dark where the cell growth and reproduction are supported by organic carbons. This perspective is covering the related studies concerning the difference between hetero- and autotrophic cultivation of microalgae. The auto- and heterotrophic central carbon metabolic pathways in microalgae are described, and the catalyzing reactions of several key metabolic enzymes and their corresponding changes in the protein level are summarized. Under adverse environmental conditions, such as nutrient deprivation, microalgae have the ability to highly store energy by forming triacylglycerol (TAG), the reason for which is analyzed. In addition, the biosynthesis of fatty acids and TAGs and their difference between auto- and heterotrophic conditions are compared at the molecular level. The positive regulatory enzymes, such as glucose transporter protein, fructose-1,6-bisphosphate aldolase, and glycerol-3-phosphate dehydrogenase, and the negative regulation enzymes, such as triose phosphate isomerase, played a crucial role in the lipid accumulation auto- and heterotrophic conditions.
Collapse
Affiliation(s)
- Hao-Hong Chen
- College of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510640, People's Republic of China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology , Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
34
|
Jouhet J, Lupette J, Clerc O, Magneschi L, Bedhomme M, Collin S, Roy S, Maréchal E, Rébeillé F. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLoS One 2017; 12:e0182423. [PMID: 28771624 PMCID: PMC5542700 DOI: 10.1371/journal.pone.0182423] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022] Open
Abstract
Methods to analyze lipidomes have considerably evolved, more and more based on mass spectrometry technics (LC-MS/MS). However, accurate quantifications using these methods require 13C-labeled standards for each lipid, which is not feasible because of the very large number of molecules. Thus, quantifications rely on standard molecules representative of a whole class of lipids, which might lead to false estimations of some molecular species. Here, we determined and compared glycerolipid distributions from three different types of cells, two microalgae (Phaeodactylum tricornutum, Nannochloropsis gaditana) and one higher plant (Arabidopsis thaliana), using either LC-MS/MS or Thin Layer Chromatography coupled with Gas Chromatography (TLC-GC), this last approach relying on the precise quantification of the fatty acids present in each glycerolipid class. Our results showed that the glycerolipid distribution was significantly different depending on the method used. How can one reconcile these two analytical methods? Here we propose that the possible bias with MS data can be circumvented by systematically running in tandem with the sample to be analyzed a lipid extract from a qualified control (QC) of each type of cells, previously analyzed by TLC-GC, and used as an external standard to quantify the MS results. As a case study, we applied this method to compare the impact of a nitrogen deficiency on the three types of cells.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Josselin Lupette
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Olivier Clerc
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Leonardo Magneschi
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Mariette Bedhomme
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Séverine Collin
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Sylvaine Roy
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Unité mixte de recherche 5168 CNRS - CEA - INRA - Université Grenoble Alpes, Bioscience and Biotechnologies Institute of Grenoble, CEA Grenoble, Grenoble, France
- * E-mail:
| |
Collapse
|
35
|
Bravo A, Brands M, Wewer V, Dörmann P, Harrison MJ. Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. THE NEW PHYTOLOGIST 2017; 214:1631-1645. [PMID: 28380681 DOI: 10.1111/nph.14533] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/16/2017] [Indexed: 05/04/2023]
Abstract
During arbuscular mycorrhizal symbiosis (AMS), considerable amounts of lipids are generated, modified and moved within the cell to accommodate the fungus in the root, and it has also been suggested that lipids are delivered to the fungus. To determine the mechanisms by which root cells redirect lipid biosynthesis during AMS we analyzed the roles of two lipid biosynthetic enzymes (FatM and RAM2) and an ABC transporter (STR) that are required for symbiosis and conserved uniquely in plants that engage in AMS. Complementation analyses indicated that the biochemical function of FatM overlaps with that of other Fat thioesterases, in particular FatB. The essential role of FatM in AMS was a consequence of timing and magnitude of its expression. Lipid profiles of fatm and ram2 suggested that FatM increases the outflow of 16:0 fatty acids from the plastid, for subsequent use by RAM2 to produce 16:0 β-monoacylglycerol. Thus, during AMS, high-level, specific expression of key lipid biosynthetic enzymes located in the plastid and the endoplasmic reticulum enables the root cell to fine-tune lipid biosynthesis to increase the production of β-monoacylglycerols. We propose a model in which β-monoacylglycerols, or a derivative thereof, are exported out of the root cell across the periarbuscular membrane for ultimate use by the fungus.
Collapse
Affiliation(s)
- Armando Bravo
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Mathias Brands
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Vera Wewer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
36
|
Huttanus HM, Feng X. Compartmentalized metabolic engineering for biochemical and biofuel production. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Herbert M. Huttanus
- Biological Systems Engineering; Virginia Polytechnic Institute and State University; Blacksburg VA USA
| | - Xueyang Feng
- Biological Systems Engineering; Virginia Polytechnic Institute and State University; Blacksburg VA USA
| |
Collapse
|
37
|
Sui N, Tian S, Wang W, Wang M, Fan H. Overexpression of Glycerol-3-Phosphate Acyltransferase from Suaeda salsa Improves Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1337. [PMID: 28824673 PMCID: PMC5539759 DOI: 10.3389/fpls.2017.01337] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
Glycerol-3-phosphate acyltransferase is the first acyl esterifying enzyme in phosphatidylglycerol (PG) synthesis process. In this study, we isolated and characterized the glycerol-3-phosphate acyltransferase (GPAT) gene from Suaeda salsa (S. salsa) and obtained the full length of the GPAT gene from S. salsa (SsGPAT) by 5' and 3' RACE. The clone contained an open reading frame (ORF) of 1167 bp nucleotides that comprised of 388 amino acid residues. Real-time PCR revealed that the mRNA accumulation of GPAT in S. salsa was induced by salt stress. The highest expression levels were observed when S. salsa leaves were exposed to 300 mM NaCl treatment. At the germination stage, the germination rate and root length of overexpressed Arabidopsis strains were significantly higher than WT under different concentrations of NaCl treatments, while the inhibitory effect was significantly severe in T-DNA insertion mutant strains. In the seedling stage, chlorophyll content, the photochemical efficiency of PSII, PSI oxidoreductive activity (ΔI/Io), and the unsaturated fatty acid content of PG decreased less in overexpressed strains and more in mutant strains than that in WT under salt stress. These results suggest that the overexpression of SsGPAT in Arabidopsis enhances salt tolerance and alleviates the photoinhibition of PSII and PSI under salt stress by improving the unsaturated fatty acid content of PG.
Collapse
Affiliation(s)
- Na Sui
- *Correspondence: Na Sui, Hai Fan,
| | | | | | | | - Hai Fan
- *Correspondence: Na Sui, Hai Fan,
| |
Collapse
|
38
|
Mas y mas S, Curien G, Giustini C, Rolland N, Ferrer JL, Cobessi D. Crystal Structure of the Chloroplastic Oxoene Reductase ceQORH from Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:329. [PMID: 28337214 PMCID: PMC5343027 DOI: 10.3389/fpls.2017.00329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/24/2017] [Indexed: 05/17/2023]
Abstract
Enzymatic and non-enzymatic peroxidation of polyunsaturated fatty acids give rise to accumulation of aldehydes, ketones, and α,β-unsaturated carbonyls of various lengths, known as oxylipins. Oxylipins with α,β-unsaturated carbonyls are reactive electrophile species and are toxic. Cells have evolved several mechanisms to scavenge reactive electrophile oxylipins and decrease their reactivity such as by coupling with glutathione, or by reduction using NAD(P)H-dependent reductases and dehydrogenases of various substrate specificities. Plant cell chloroplasts produce reactive electrophile oxylipins named γ-ketols downstream of enzymatic lipid peroxidation. The chloroplast envelope quinone oxidoreductase homolog (ceQORH) from Arabidopsis thaliana was previously shown to reduce the reactive double bond of γ-ketols. In marked difference with its cytosolic homolog alkenal reductase (AtAER) that displays a high activity toward the ketodiene 13-oxo-9(Z),11(E)-octadecadienoic acid (13-KODE) and the ketotriene 13-oxo-9(Z), 11(E), 15(Z)-octadecatrienoic acid (13-KOTE), ceQORH binds, but does not reduce, 13-KODE and 13-KOTE. Crystal structures of apo-ceQORH and ceQORH bound to 13-KOTE or to NADP+ and 13-KOTE have been solved showing a large ligand binding site, also observed in the structure of the cytosolic alkenal/one reductase. Positioning of the α,β-unsaturated carbonyl of 13-KOTE in ceQORH-NADP+-13-KOTE, far away from the NADP+ nicotinamide ring, provides a rational for the absence of activity with the ketodienes and ketotrienes. ceQORH is a monomeric enzyme in solution whereas other enzymes from the quinone oxidoreductase family are stable dimers and a structural explanation of this difference is proposed. A possible in vivo role of ketodienes and ketotrienes binding to ceQORH is also discussed.
Collapse
Affiliation(s)
- Sarah Mas y mas
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS), INRAGrenoble, France
| | - Cécile Giustini
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS), INRAGrenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire & Végétale, BIG, Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS), INRAGrenoble, France
| | - Jean-Luc Ferrer
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
| | - David Cobessi
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, Centre National de la Recherche Scientifique (CNRS)Grenoble, France
- *Correspondence: David Cobessi
| |
Collapse
|
39
|
Sui N, Tian S, Wang W, Wang M, Fan H. Overexpression of Glycerol-3-Phosphate Acyltransferase from Suaeda salsa Improves Salt Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1337. [PMID: 28824673 DOI: 10.3389/fpls.2017.01337/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
Glycerol-3-phosphate acyltransferase is the first acyl esterifying enzyme in phosphatidylglycerol (PG) synthesis process. In this study, we isolated and characterized the glycerol-3-phosphate acyltransferase (GPAT) gene from Suaeda salsa (S. salsa) and obtained the full length of the GPAT gene from S. salsa (SsGPAT) by 5' and 3' RACE. The clone contained an open reading frame (ORF) of 1167 bp nucleotides that comprised of 388 amino acid residues. Real-time PCR revealed that the mRNA accumulation of GPAT in S. salsa was induced by salt stress. The highest expression levels were observed when S. salsa leaves were exposed to 300 mM NaCl treatment. At the germination stage, the germination rate and root length of overexpressed Arabidopsis strains were significantly higher than WT under different concentrations of NaCl treatments, while the inhibitory effect was significantly severe in T-DNA insertion mutant strains. In the seedling stage, chlorophyll content, the photochemical efficiency of PSII, PSI oxidoreductive activity (ΔI/Io), and the unsaturated fatty acid content of PG decreased less in overexpressed strains and more in mutant strains than that in WT under salt stress. These results suggest that the overexpression of SsGPAT in Arabidopsis enhances salt tolerance and alleviates the photoinhibition of PSII and PSI under salt stress by improving the unsaturated fatty acid content of PG.
Collapse
Affiliation(s)
- Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal UniversityJinan, China
| | - Shanshan Tian
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal UniversityJinan, China
| | - Wenqing Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal UniversityJinan, China
| | - Mingjie Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal UniversityJinan, China
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal UniversityJinan, China
| |
Collapse
|
40
|
Botella C, Jouhet J, Block MA. Importance of phosphatidylcholine on the chloroplast surface. Prog Lipid Res 2017; 65:12-23. [DOI: 10.1016/j.plipres.2016.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/04/2016] [Accepted: 11/06/2016] [Indexed: 12/11/2022]
|
41
|
Lee KR, Lee Y, Kim EH, Lee SB, Roh KH, Kim JB, Kang HC, Kim HU. Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens. PLANT CELL REPORTS 2016; 35:2523-2537. [PMID: 27637203 DOI: 10.1007/s00299-016-2053-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 05/26/2023]
Abstract
We described identification, expression, subcellular localization, and functions of genes that encode fatty acid desaturase enzymes in Perilla frutescens var. frutescens. Perilla (Perilla frutescens var. frutescens) seeds contain approximately 40 % of oil, of which α-linolenic acid (18:3) comprise more than 60 % in seed oil and 56 % of total fatty acids (FAs) in leaf, respectively. In perilla, endoplasmic reticulum (ER)-localized and chloroplast-localized ω-3 FA desaturase genes (PfrFAD3 and PfrFAD7, respectively) have already been reported, however, microsomal oleate 12-desaturase gene (PfrFAD2) has not yet. Here, four perilla FA desaturase genes, PfrFAD2-1, PfrFAD2-2, PfrFAD3-2 and PfrFAD7-2, were newly identified and characterized using random amplification of complementary DNA ends and sequence data from RNAseq analysis, respectively. According to the data of transcriptome and gene cloning, perilla expresses two PfrFAD2 and PfrFAD3 genes, respectively, coding for proteins that possess three histidine boxes, transmembrane domains, and an ER retrieval motif at its C-terminal, and two chloroplast-localized ω-3 FA desaturase genes, PfrFAD7-1 and PfrFAD7-2. Arabidopsis protoplasts transformed with perilla genes fused to green fluorescence protein gene demonstrated that PfrFAD2-1 and PfrFAD3-2 were localized in the ER, and PfrFAD7-1 and PfrFAD7-2 were localized in the chloroplasts. PfrFAD2 and perilla ω-3 FA desaturases were functional in budding yeast (Saccharomyces cerevisiae) indicated by the presence of 18:2 and 16:2 in yeast harboring the PfrFAD2 gene. 18:2 supplementation of yeast harboring ω-3 FA desaturase gene led to the production of 18:3. Therefore, perilla expresses two functional FAD2 and FAD3 genes, and two chloroplast-localized ω-3 FA desaturase genes, which support an evidence that P. frutescens cultivar is allotetraploid plant.
Collapse
Affiliation(s)
- Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Yongjik Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Eun-Ha Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Seul-Bee Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Kyung Hee Roh
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jong-Bum Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Han-Chul Kang
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
42
|
Amiar S, MacRae JI, Callahan DL, Dubois D, van Dooren GG, Shears MJ, Cesbron-Delauw MF, Maréchal E, McConville MJ, McFadden GI, Yamaryo-Botté Y, Botté CY. Apicoplast-Localized Lysophosphatidic Acid Precursor Assembly Is Required for Bulk Phospholipid Synthesis in Toxoplasma gondii and Relies on an Algal/Plant-Like Glycerol 3-Phosphate Acyltransferase. PLoS Pathog 2016; 12:e1005765. [PMID: 27490259 PMCID: PMC4973916 DOI: 10.1371/journal.ppat.1005765] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 06/22/2016] [Indexed: 12/18/2022] Open
Abstract
Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii.
Collapse
Affiliation(s)
- Souad Amiar
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
| | - James I. MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London, United Kingdom
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Damien L. Callahan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - David Dubois
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Melanie J. Shears
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Eric Maréchal
- Unité de recherche (UMR) 5168, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Yoshiki Yamaryo-Botté
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
| | - Cyrille Y. Botté
- ApicoLipid group, Institute for Advanced Biosciences UMR5309, CNRS, Université Grenoble Alpes, INSERM, Grenoble, France
| |
Collapse
|
43
|
Wang X, Komatsu S. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. J Proteomics 2016; 143:45-56. [PMID: 26808589 DOI: 10.1016/j.jprot.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. BIOLOGICAL SIGNIFICANCE Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
44
|
Sedeek KEM, Whittle E, Guthörl D, Grossniklaus U, Shanklin J, Schlüter PM. Amino Acid Change in an Orchid Desaturase Enables Mimicry of the Pollinator's Sex Pheromone. Curr Biol 2016; 26:1505-11. [PMID: 27212404 DOI: 10.1016/j.cub.2016.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022]
Abstract
Mimicry illustrates the power of selection to produce phenotypic convergence in biology [1]. A striking example is the imitation of female insects by plants that are pollinated by sexual deception of males of the same insect species [2-4]. This involves mimicry of visual, tactile, and chemical signals of females [2-7], especially their sex pheromones [8-11]. The Mediterranean orchid Ophrys exaltata employs chemical mimicry of cuticular hydrocarbons, particularly the 7-alkenes, in an insect sex pheromone to attract and elicit mating behavior in its pollinators, males of the cellophane bee Colletes cunicularius [11-13]. A difference in alkene double-bond positions is responsible for reproductive isolation between O. exaltata and closely related species, such as O. sphegodes [13-16]. We show that these 7-alkenes are likely determined by the action of the stearoyl-acyl-carrier-protein desaturase (SAD) homolog SAD5. After gene duplication, changes in subcellular localization relative to the ancestral housekeeping desaturase may have allowed proto-SAD5's reaction products to undergo further biosynthesis to both 7- and 9-alkenes. Such ancestral coproduction of two alkene classes may have led to pollinator-mediated deleterious pleiotropy. Despite possible evolutionary intermediates with reduced activity, amino acid changes at the bottom of the substrate-binding cavity have conferred enzyme specificity for 7-alkene biosynthesis by preventing the binding of longer-chained fatty acid (FA) precursors by the enzyme. This change in desaturase function enabled the orchid to perfect its chemical mimicry of pollinator sex pheromones by escape from deleterious pleiotropy, supporting a role of pleiotropy in determining the possible trajectories of adaptive evolution.
Collapse
Affiliation(s)
- Khalid E M Sedeek
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Edward Whittle
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA
| | - Daniela Guthörl
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, NY 11973, USA
| | - Philipp M Schlüter
- Department of Systematic and Evolutionary Botany and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| |
Collapse
|
45
|
Salie MJ, Thelen JJ. Regulation and structure of the heteromeric acetyl-CoA carboxylase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1207-1213. [PMID: 27091637 DOI: 10.1016/j.bbalip.2016.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/16/2022]
Abstract
The enzyme acetyl-CoA carboxylase (ACCase) catalyzes the committed step of the de novo fatty acid biosynthesis (FAS) pathway by converting acetyl-CoA to malonyl-CoA. Two forms of ACCase exist in nature, a homomeric and heteromic form. The heteromeric form of this enzyme requires four different subunits for activity: biotin carboxylase; biotin carboxyl carrier protein; and α- and β-carboxyltransferases. Heteromeric ACCases (htACCase) can be found in prokaryotes and the plastids of most plants. The plant htACCase is regulated by diverse mechanisms reflected by the biochemical and genetic complexity of this multienzyme complex and the plastid stroma where it resides. In this review we summarize the regulation of the plant htACCase and also describe the structural characteristics of this complex from both prokaryotes and plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Matthew J Salie
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, 1201 E. Rollins, Columbia, MO 65201, USA.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, 1201 E. Rollins, Columbia, MO 65201, USA.
| |
Collapse
|
46
|
Fürtauer L, Nägele T. Approximating the stabilization of cellular metabolism by compartmentalization. Theory Biosci 2016; 135:73-87. [PMID: 27048513 PMCID: PMC4870308 DOI: 10.1007/s12064-016-0225-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/21/2016] [Indexed: 01/13/2023]
Abstract
Biochemical regulation in compartmentalized metabolic networks is highly complex and non-intuitive. This is particularly true for cells of higher plants showing one of the most compartmentalized cellular structures across all kingdoms of life. The interpretation and testable hypothesis generation from experimental data on such complex systems is a challenging step in biological research and biotechnological applications. While it is known that subcellular compartments provide defined reaction spaces within a cell allowing for the tight coordination of complex biochemical reaction sequences, its role in the coordination of metabolic signals during metabolic reprogramming due to environmental fluctuations is less clear. In the present study, we numerically analysed the effects of environmental fluctuations in a subcellular metabolic network with regard to the stability of an experimentally observed steady state in the genetic model plant Arabidopsis thaliana. Applying a method for kinetic parameter normalization, several millions of probable enzyme kinetic parameter constellations were simulated and evaluated with regard to the stability information of the metabolic homeostasis. Information about the stability of the metabolic steady state was derived from real parts of eigenvalues of Jacobian matrices. Our results provide evidence for a differential stabilizing contribution of different subcellular compartments. We could identify stabilizing and destabilizing network components which we could classify according to their subcellular localization. The findings prove that a highly dynamic interplay between intracellular compartments is preliminary for an efficient stabilization of a metabolic homeostasis after environmental perturbation. Further, our results provide evidence that feedback-inhibition originating from the cytosol and plastid seem to stabilize the sucrose homeostasis more efficiently than vacuolar control. In summary, our results indicate stabilizing and destabilizing network components in context of their subcellular organization.
Collapse
Affiliation(s)
- Lisa Fürtauer
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | - Thomas Nägele
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14, 1090, Vienna, Austria.
| |
Collapse
|
47
|
Ma XN, Chen TP, Yang B, Liu J, Chen F. Lipid Production from Nannochloropsis. Mar Drugs 2016; 14:md14040061. [PMID: 27023568 PMCID: PMC4849066 DOI: 10.3390/md14040061] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/01/2016] [Accepted: 03/11/2016] [Indexed: 12/18/2022] Open
Abstract
Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed.
Collapse
Affiliation(s)
- Xiao-Nian Ma
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Tian-Peng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Bo Yang
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Feng Chen
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX). Proc Natl Acad Sci U S A 2016; 113:3383-8. [PMID: 26969728 DOI: 10.1073/pnas.1525747113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.
Collapse
|
49
|
Klasek L, Inoue K. Dual Protein Localization to the Envelope and Thylakoid Membranes Within the Chloroplast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:231-63. [PMID: 26944623 DOI: 10.1016/bs.ircmb.2015.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chloroplast houses various metabolic processes essential for plant viability. This organelle originated from an ancestral cyanobacterium via endosymbiosis and maintains the three membranes of its progenitor. Among them, the outer envelope membrane functions mainly in communication with cytoplasmic components while the inner envelope membrane houses selective transport of various metabolites and the biosynthesis of several compounds, including membrane lipids. These two envelope membranes also play essential roles in import of nuclear-encoded proteins and in organelle division. The third membrane, the internal membrane system known as the thylakoid, houses photosynthetic electron transport and chemiosmotic phosphorylation. The inner envelope and thylakoid membranes share similar lipid composition. Specific targeting pathways determine their defined proteomes and, thus, their distinct functions. Nonetheless, several proteins have been shown to exist in both the envelope and thylakoid membranes. These proteins include those that play roles in protein transport, tetrapyrrole biosynthesis, membrane dynamics, or transport of nucleotides or inorganic phosphate. In this review, we summarize the current knowledge about proteins localized to both the envelope and thylakoid membranes in the chloroplast, discussing their roles in each membrane and potential mechanisms of their dual localization. Addressing the unanswered questions about these dual-localized proteins should help advance our understanding of chloroplast development, protein transport, and metabolic regulation.
Collapse
Affiliation(s)
- Laura Klasek
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America
| | - Kentaro Inoue
- Department of Plant Sciences, University of California at Davis, Davis, CA, United States of America.
| |
Collapse
|
50
|
Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP, Swan JW, Blankschtein D, Strano MS. Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism. NANO LETTERS 2016; 16:1161-72. [PMID: 26760228 DOI: 10.1021/acs.nanolett.5b04467] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoparticles offer clear advantages for both passive and active penetration into biologically important membranes. However, the uptake and localization mechanism of nanoparticles within living plants, plant cells, and organelles has yet to be elucidated.1 Here, we examine the subcellular uptake and kinetic trapping of a wide range of nanoparticles for the first time, using the plant chloroplast as a model system, but validated in vivo in living plants. Confocal visible and near-infrared fluorescent microscopy and single particle tracking of gold-cysteine-AF405 (GNP-Cys-AF405), streptavidin-quantum dot (SA-QD), dextran and poly(acrylic acid) nanoceria, and various polymer-wrapped single-walled carbon nanotubes (SWCNTs), including lipid-PEG-SWCNT, chitosan-SWCNT and 30-base (dAdT) sequence of ssDNA (AT)15 wrapped SWCNTs (hereafter referred to as ss(AT)15-SWCNT), are used to demonstrate that particle size and the magnitude, but not the sign, of the zeta potential are key in determining whether a particle is spontaneously and kinetically trapped within the organelle, despite the negative zeta potential of the envelope. We develop a mathematical model of this lipid exchange envelope and penetration (LEEP) mechanism, which agrees well with observations of this size and zeta potential dependence. The theory predicts a critical particle size below which the mechanism fails at all zeta potentials, explaining why nanoparticles are critical for this process. LEEP constitutes a powerful particulate transport and localization mechanism for nanoparticles within the plant system.
Collapse
Affiliation(s)
- Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Rahul P Misra
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Juan P Giraldo
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Department of Botany and Plant Sciences, University of California , Riverside, California 92521, United States
| | - Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Youngwoo Son
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Markita P Landry
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
- Department of Chemical and Biomolecular Engineering, University of California , Berkeley, California 94720
| | - James W Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel Blankschtein
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|