1
|
Huang Y, Guo D, Qin L, Mo L, Zhao Y. Toxic effects of eight azole fungicides on the growth, photosynthetic activity, and oxidative stress of Raphidocelis subcapitata. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1259-1271. [PMID: 40044425 DOI: 10.1093/etojnl/vgaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/14/2024] [Accepted: 12/27/2024] [Indexed: 05/02/2025]
Abstract
This study investigates the 96 hr toxicity and physiological effects of eight azole fungicides on Raphidocelis subcapitata (R. subcapitata). The findings revealed significant differences in toxicity levels among these fungicides, with the hierarchy of toxicity as follows: difenoconazole ≈ tetraconazole ≈ fuberidazole > metconazole > terrazole ≈ triflumizole > flutriafol > hymexazol. Increased concentrations of azole fungicides corresponded with decreased cellular activity and inhibited algal growth, highlighting the concentration-dependent nature of toxicity. The toxicological mechanisms involved include reduced levels of chlorophyll (Chla, Chlb) and carotenoids, disrupting the photosynthetic process. Additionally, exposure to these fungicides resulted in decreased total protein levels, increased reactive oxygen species and malondialdehyde, and elevated activity of antioxidant enzymes such as superoxide dismutase and catalase. Consequently, there was a significant rise in apoptosis rates among algal cells. These findings provide important insights for assessing the ecological impact of azole fungicides on aquatic ecosystems and aquatic life.
Collapse
Affiliation(s)
- Yongxiang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Dijie Guo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Litang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
- Engineering Research Center of Watershed Protection and Green Development, University of Guangxi, Guilin University of Technology, Guilin, China
| | - Lingyun Mo
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China
| | - Yuqing Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
2
|
Wu X, Shen T, Liu X, Zhang G, Qian X, Yang W. Unveiling the mechanisms of ultrasonic radiation-induced free radical stress on algal communities: Insights into growth inhibition, photosynthetic disruption, and antioxidant defense responses. ULTRASONICS SONOCHEMISTRY 2025; 115:107297. [PMID: 40048989 PMCID: PMC11924934 DOI: 10.1016/j.ultsonch.2025.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Algal blooms pose a significant threat to global environmental health, compromising water quality and public safety. Ultrasonic radiation has emerged as a promising, eco-friendly strategy for controlling these blooms, but the underlying mechanisms remain unclearly understood. This study investigated the effects of ultrasonic radiation on the growth, photosynthetic performance, and antioxidant defense systems of an algal mixture over a 5-day period. Analysis techniques, including scanning electron microscopy (SEM), excitation-emission matrix (EEM) analysis, and transcriptomic profiling, were employed to elucidate the multifaceted responses of algal cells to ultrasonic treatment. Ultrasonic radiation induced significant free radical generation, primarily hydroxyl radicals (·OH), which played a critical role in cellular damage. Within 24 h, treatment led to a 50% reduction in algal cell counts, a 30% decline in chlorophyll-a levels, and a 25% decrease in photosynthetic efficiency. Phycocyanin, a vital pigment for cyanobacteria, exhibited heightened sensitivity to a single ultrasonic treatment, while subsequent treatments showed no additional reduction, suggesting that Microcystis aeruginosa is particularly susceptible to the ultrasonic damage. EEM analysis revealed significant changes in the fluorescence intensity of extracellular organic matter (EOM) and intracellular organic matter (IOM) peaks, indicative of oxidative stress and metabolic disruption. Transcriptomic analysis of Microcystis aeruginosa revealed a profound reprogramming of gene expression in response to sonication. Stress response genes, particularly those involved in antioxidant defense, were upregulated, while photosynthesis-related genes were downregulated. Our research indicates that short-term ultrasonic radiation has a long-term stress effect on algal cells, and this might be able to prevent the tendency of cyanobacteria blooms.
Collapse
Affiliation(s)
- Xiaoge Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Cultivated Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, China
| | - Tingting Shen
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaoyang Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Xiaoqing Qian
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Wenlan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Imran M, Umer M, Iqbal Raja N, Abasi F, Sardar N, Rahman U, Naqvi SAM, Baloch MYJ, Alrefaei AF. Antibacterial potential of silver-selenium nanocomposites in mitigating fire blight disease in Pyrus communis L. FRONTIERS IN PLANT SCIENCE 2025; 16:1541498. [PMID: 40144757 PMCID: PMC11936962 DOI: 10.3389/fpls.2025.1541498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Pyrus communis L. is a vital fruit tree known for its nutritional and economic importance. Thus, for humans, it is an essential element for their balanced nutritional diet, as it contains the major dietary fibers, vitamins, and minerals. All of these nutritionally important aspects decrease with the impact of disease fire blight. Erwinia amylovora is a causative agent of fire blight. This infection causes a considerable loss in the production of Pyrus communis L. Annually, approximately 50% of pear fruit in Pakistan is misplaced because of these illnesses. Therefore, we propose nanotechnology remediation to treat pear plants and obtain the desired yield. In this regard, an experiment was designed to treat infected plants with different concentrations of silver-selenium nanocomposites, which was based on a literature review that indicated the antimicrobial activities of silver and selenium nanoparticles. Silver-selenium nanocomposites were prepared using a green synthesis method, and their synthesis was confirmed using characterization techniques. The experiment was performed at a farmhouse in Chakwal district, Punjab, Pakistan. The experimental results showed increased morphological, physiological, and biochemical parameters. In this regard, the best treatment remained at 50 ppm for the Ag-Se nanocomposite, which improved the plant in different aspects. At the same time, they have improved fruit metrics, such as vitamin C, pH, and juice content. Thus, these results show a possible improvement in enhancing the resistance against fire blight by using green-synthesized Ag-Se NCs. Further studies are needed to understand fully the molecular mechanisms and actions of Pyrus communis L. in treating fire blight disease and to establish the optimal treatment plan.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Muhammad Umer
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Fozia Abasi
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Nimra Sardar
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Ubaidur Rahman
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | | | | | | |
Collapse
|
4
|
Christudoss AC, Kundu R, Dimkpa CO, Mukherjee A. Aging of disposable face masks in landfill leachate poses cyto-genotoxic risks to Allium cepa: Perils of uncontrolled disposal of medical waste. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109472. [PMID: 39755099 DOI: 10.1016/j.plaphy.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL). After exposure to UV radiation, all three layers of the DFMs displayed surface abrasions and fractures, becoming less stable with increased UV exposure duration, indicating an aging process. Changes in the surface morphology of the DFMs and carbonyl index after UV exposure confirmed this aging process. DFM aging in LL accelerated by 11% compared to deionized (DI) water after 28 days. Different analytical techniques, including microscopy, FT-IR, Raman spectroscopy, and ICP-MS were used to detect microplastics and metals in the leachates. The microfibers collected from the leachates were primarily made of polypropylene, and the abundance of smaller microfibers (<40 μm) increased with the aging time of DFMs in leachate. Additionally, this study examines the toxicity of UV-weathered DFM leachates collected at different periods on Allium cepa, a model terrestrial plant. Leachates from DFM aged in landfill caused 15% more harm to A. cepa root cells due to increased oxidative stress (66%) compared to leachates aged in DI water. Additionally, DFM leachates aged in landfills showed a 29% increase in heavy metal content over time compared to those aged in DI water, potentially leading to significant phytotoxicity. In summary, this report highlights the impact of disposing DFMs in landfills and their biological effects on a model plant.
Collapse
Affiliation(s)
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, United States
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Dadhich A, Jain R, Sharma MM. Bacopa monnieri (L.) Wettst. plant extract mediated synthesis of metallic nanoparticles and regulation of bacoside-A- memory enhancer compound and their application: A comprehensive review. PLANT NANO BIOLOGY 2025; 11:100133. [DOI: 10.1016/j.plana.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Pan R, Zhang Z, Li Y, Zhu S, Anwar S, Huang J, Zhang C, Yin L. Stage-Specific Effects of Silver Nanoparticles on Physiology During the Early Growth Stages of Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:3454. [PMID: 39683247 DOI: 10.3390/plants13233454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Silver nanoparticles (AgNPs), widely utilized nanomaterials, can negatively affect crop growth and development. However, it remains unclear whether crops exhibit similar responses to AgNPs stress at seed germination and seedling stages. In this study, rice seeds and seedlings were exposed to AgNPs, and their growth, photosynthetic efficiency, and antioxidant systems were recorded. demonstrated significant AgNPs accumulation in rice tissues, with notable higher accumulation in seedlings exposed to AgNPs after germination compared to AgNPs exposure during germination. The roots exhibited greater AgNPs accumulation than shoots across both stages. Exposure to AgNPs during the seed germination stage, even at concentrations up to 2 mg/L, did not significantly affect growth, physiological indices, or oxidative stress. In contrast, seedlings exposed to 1 and 2 mg/L AgNPs showed significant reductions in shoot length, biomass, nutrient content, and photosynthetic efficiency. At low AgNPs concentrations, the maximum relative electron transport rate (rETRmax) was significantly reduced, while the higher concentrations caused pronounced declines in the chlorophyll a fluorescence transient curves (OJIP) compared to the control group. Antioxidant enzyme activities increased in both leaves and roots in a dose-dependent manner, with roots exhibiting significantly higher activity, suggesting that roots are the primary site of AgNPs stress responses. In conclusion, rice responds differently to AgNPs exposure at distinct developmental stages, with the seedling stage being more susceptible to AgNPs-induced stress than the seed germination stage. These findings underscore the importance of considering growth stages when assessing the food safety and environmental risks associated with AgNPs exposure.
Collapse
Affiliation(s)
- Ruxue Pan
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Zailin Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Ya Li
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Sihong Zhu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Sumera Anwar
- Department of Botany, Government College Women University Faisalabad, Faisalabad 38000, Pakistan
| | - Jiaquan Huang
- School of Breeding and Multiplication, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572022, China
| | - Chuanling Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Liyan Yin
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
7
|
Djanaguiraman M, Anbazhagan V, Dhankher OP, Prasad PVV. Uptake, Translocation, Toxicity, and Impact of Nanoparticles on Plant Physiological Processes. PLANTS (BASEL, SWITZERLAND) 2024; 13:3137. [PMID: 39599346 PMCID: PMC11597231 DOI: 10.3390/plants13223137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The application of nanotechnology in agriculture has increased rapidly. However, the fate and effects of various nanoparticles on the soil, plants, and humans are not fully understood. Reports indicate that nanoparticles exhibit positive and negative impacts on biota due to their size, surface property, concentration within the system, and species or cell type under test. In plants, nanoparticles are translocated either by apoplast or symplast pathway or both. Also, it is not clear whether the nanoparticles entering the plant system remain as nanoparticles or are biotransformed into ionic forms or other organic compounds. Controversial results on the toxicity effects of nanomaterials on the plant system are available. In general, the nanomaterial toxicity was exerted by producing reactive oxygen species, leading to damage or denaturation of various biomolecules. The intensity of cyto- and geno-toxicity depends on the physical and chemical properties of nanoparticles. Based on the literature survey, it is observed that the effects of nanoparticles on the growth, photosynthesis, and primary and secondary metabolism of plants are both positive and negative; the response of these processes to the nanoparticle was associated with the type of nanoparticle, the concentration within the tissue, crop species, and stage of growth. Future studies should focus on addressing the key knowledge gaps in understanding the responses of plants to nanoparticles at all levels through global transcriptome, proteome, and metabolome assays and evaluating nanoparticles under field conditions at realistic exposure concentrations to determine the level of entry of nanoparticles into the food chain and assess the impact of nanoparticles on the ecosystem.
Collapse
Affiliation(s)
- Maduraimuthu Djanaguiraman
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Veerappan Anbazhagan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA;
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Haq IU, Cai X, Ali H, Akhtar MR, Ghafar MA, Hyder M, Hou Y. Interactions Between Nanoparticles and Tomato Plants: Influencing Host Physiology and the Tomato Leafminer's Molecular Response. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1788. [PMID: 39591030 PMCID: PMC11597545 DOI: 10.3390/nano14221788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Tomatoes are a crucial global crop, impacting economies and livelihoods worldwide. However, pests like the tomato leafminer (Tuta absoluta) significantly reduce their yield potential. Nanoparticles come as a solution to this context, promising innovative strategies for the protection of plants from pest infestation and management. Nanoparticles have shown great potential to improve tomato plant resistance against pests and diseases because of their unique properties. They enhance plant physiological processes like photosynthesis and nutrient uptake while activating defense-related molecular pathways. Nanoparticles also directly impact the life cycle and behavioral patterns of pests such as the tomato leafminer, reducing their destructive nature. The dual benefits of nanoparticles for enhancing plants' health and managing pests effectively provide a two-way innovative approach in agriculture. Gains made with such technology not only include increasing crop productivity and reducing crop losses but also reducing the heavy dependence on chemical pesticides, many of which have been attributed to environmental hazards. The current study illustrates the broader implications of nanoparticle use in agriculture, which is a sustainable pathway to increase crop resilience and productivity while reducing the impact of pests. Such novel approaches underline the need for continued interdisciplinary research to exploit the potential of nanotechnology in sustainable agricultural practices fully.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Xiangyun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan;
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Muhammad Adeel Ghafar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Moazam Hyder
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (I.U.H.); (X.C.); (M.R.A.)
| |
Collapse
|
9
|
Taj H, Noreen Z, Aslam M, Usman S, Shah AA, Rafique M, Raja V, El-Sheikh MA. Effects of SNP, MgSO 4, and MgO-NPs foliar application on Spinacia oleracea L. growth and physio-biochemical responses under cadmium stress. Sci Rep 2024; 14:26687. [PMID: 39496661 PMCID: PMC11535332 DOI: 10.1038/s41598-024-77221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
The effects of foliar application of sodium nitroprusside (SNP), magnesium sulfate (MgSO4) and magnesium oxide nanoparticles (MgO-NPs) on the growth, physiology, and gas exchange parameters of two varieties of spinach (Spinacia oleracea L.) under cadmium (Cd) stress were examined. The experiment was arranged in a completely randomized design with 72 pots. Two varieties of S. oleracea (Desi Palak & Lahori Palak) were used. Two concentrations of Cd (0 µM and 150 µM) in the form of cadmium chloride (CdCl2) were used. Two levels of SNP (0 ppm and 100 ppm) and two levels for each form of Mg i.e. MgSO4 and MgO-NPs (0 and 200 ppm) were foliar sprayed on plants in control and Cd stress. Both varieties behaved similarly under Cd stress and caused reductions in growth, physiology, gas exchange, water content parameters and inorganic ion uptake. However, the biochemical parameters like relative membrane permeability (RMP), malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents were increased. However, all foliar spray treatments increased growth, physiological and gas exchange parameters, water content and inorganic ion uptake. However, this reduced the MDA, RMP, and H2O2 contents. Desi Palak showed the more positive results under foliar application of MgO-NPs. However, Lahori palak showed more positive results under the SNP + MgO-NP treatment. It is concluded that foliar application of SNP, MgSO4 and MgO-NPs could be an innovative approach to alleviated the heavy metals (Cd) toxicity in crop plants.
Collapse
Affiliation(s)
- Hafsa Taj
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sheeraz Usman
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Maham Rafique
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Vaseem Raja
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Xu W, Shu M, Yuan C, Dumat C, Zhang J, Zhang H, Xiong T. Lettuce (Lactuca sativa L.) alters its metabolite accumulation to cope with CuO nanoparticles by promoting antioxidant production and carbon metabolism. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:371. [PMID: 39167279 DOI: 10.1007/s10653-024-02160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Copper-based nanoparticles (NPs) are gradually being introduced as sustainable agricultural nanopesticides. However, the effects of NPs on plants requires carefully evaluation to ensure their safe utilization. In this study, leaves of 2-week-old lettuce (Lactuca sativa L.) were exposed to copper oxide nanoparticles (CuO-NPs, 0 [CK], 100 [T1], and 1000 [T2] mg/L) for 15 days. A significant Cu accumulation (up to 1966 mg/kg) was detected in lettuce leaves. The metabolomics revealed a total of 474 metabolites in lettuce leaves, and clear differences were observed in the metabolite profiles of control and CuO-NPs treated leaves. Generally, phenolic acids and alkaloids, which are important antioxidants, were significantly increased (1.26-4.53 folds) under foliar exposure to NPs; meanwhile, all the significantly affected flavonoids were down-regulated after CuO-NP exposure, indicating these flavonoids were consumed under oxidative stress. Succinic and citric acids, which are key components of the tricarboxylic acid cycle, were especially increased under T2, suggesting the energy and carbohydrate metabolisms were enhanced under high-concentration CuO-NP treatment. There was also both up- and down-regulation of fatty acids, suggesting cell membrane fluidity and function responded to CuO-NPs. Galactinol, which is related to galactose metabolism, and xanthosine, which is crucial in purine and caffeine metabolism, were down-regulated under T2, indicating decreased stress resistance and disturbed nucleotide metabolism under the high CuO-NP dose. Moreover, the differentially accumulated metabolites were significantly associated with plant growth and its antioxidant ability. Future work should focus on controlling the overuse or excessive release of NPs into agricultural ecosystems to limit their adverse effects.
Collapse
Affiliation(s)
- Wenjing Xu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Man Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Can Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université Toulouse-Jean Jaurès, 5 allée Antonio Machado, 31058, Toulouse Cedex 9, France
| | - Jingying Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Hanbo Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Tiantian Xiong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
11
|
Shahraki SH, Javar FM, Jamali B, Sargazi F. Beneficial role of Coronatine on the morphological and physiological responses of Cress Plants (Lepidium sativum) exposed to Silver Nanoparticle. BOTANICAL STUDIES 2024; 65:17. [PMID: 38985236 PMCID: PMC11236835 DOI: 10.1186/s40529-024-00425-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/18/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Silver nanoparticles are widely used in various fields such as industry, medicine, biotechnology, and agriculture. However, the inevitable release of these nanoparticles into the environment poses potential risks to ecosystems and may affect plant productivity. Coronatine is one of the newly identified compounds known for its beneficial influence on enhancing plant resilience against various stress factors. To evaluate the effectiveness of coronatine pretreatment in mitigating the stress induced by silver nanoparticles on cress plants, the present study was carried out. RESULTS Our findings indicated a decrease in multiple growth parameters, proline content, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in cress plants exposed to silver nanoparticle treatment. This decline could be attributed to the oxidative stress induced by the presence of silver nanoparticles in the plants. Conversely, when coronatine treatment was applied, it effectively mitigated the reduction in growth parameters and pigments induced by the silver nanoparticles. Furthermore, we observed an increase in silver content in both the roots and shoot portions, along with elevated levels of malondialdehyde (MDA) content, hydrogen peroxide (H2O2), anthocyanins, glutathione (GSH), and antioxidant enzyme activities in plants exposed to silver nanoparticles. Concurrently, there was a decrease in total phenolic compounds, ascorbate, anthocyanins, and proline content. Pre-treatment of cress seeds with coronatine resulted in increased levels of GSH, total phenolic compounds, and proline content while reducing the silver content in both the root and shoot parts of the plant. CONCLUSIONS Coronatine pre-treatment appeared to enhance both enzymatic and non-enzymatic antioxidant activities, thereby alleviating oxidative stress and improving the response to stress induced by silver nanoparticles.
Collapse
Affiliation(s)
- Shahla Hashemi Shahraki
- Biology Department, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
| | | | - Babak Jamali
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
| | - Fatemeh Sargazi
- Biology Department, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
12
|
Jayaseelan C, Siva D, Kamaraj C, Thirugnanasambandam R, Ganesh Kumar V, Subashni B, Ashokkumar R, Saravanan D. Phytosynthesis of zinc oxide nanoparticles for enhanced antioxidant, antibacterial, and photocatalytic properties: A greener approach to environmental sustainability. ENVIRONMENTAL RESEARCH 2024; 251:118770. [PMID: 38518913 DOI: 10.1016/j.envres.2024.118770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Multifunctional nanoparticles (NPs) production from phytochemicals is a sustainable process and an eco-friendly method, and this technique has a variety of uses. To accomplish this, we developed zinc oxide nanoparticles (ZnONPs) using the medicinal plant Tinospora cordifolia (TC). Instruments such as UV-Vis, XRD, FTIR, FE-SEM with EDX, and high-resolution TEM were applied to characterize the biosynthesized TC-ZnONPs. According to the UV-vis spectra, the synthesized TC-ZnONPs absorb at a wavelength centered at 374 nm, which corresponds to a 3.2 eV band gap. HRTEM was used to observe the morphology of the particle surface and the actual size of the nanostructures. TC-ZnONPs mostly exhibit the shapes of rectangles and triangles with a median size of 21 nm. The XRD data of the synthesized ZnONPs exhibited a number of peaks in the 2θ range, implying their crystalline nature. TC-ZnONPs proved remarkable free radical scavenging capacity on DPPH (2,2-Diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), and NO (Nitric Oxide). TC-ZnONPs exhibited dynamic anti-bacterial activity through the formation of inhibition zones against Pseudomonas aeruginosa (18 ± 1.5 mm), Escherichia coli (18 ± 1.0 mm), Bacillus cereus (19 ± 0.5 mm), and Staphylococcus aureus (13 ± 1.1 mm). Additionally, when exposed to sunlight, TC-ZnONPs show excellent photocatalytic ability towards the degradation of methylene blue (MB) dye. These findings suggest that TC-ZnONPs are potential antioxidant, antibacterial, and photocatalytic agents.
Collapse
Affiliation(s)
- C Jayaseelan
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| | - D Siva
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| | - C Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, 603203, Tamil Nadu, India
| | - R Thirugnanasambandam
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - V Ganesh Kumar
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - B Subashni
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES - Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - R Ashokkumar
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - D Saravanan
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| |
Collapse
|
13
|
Biswas A, Pal S. Plant-nano interactions: A new insight of nano-phytotoxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108646. [PMID: 38657549 DOI: 10.1016/j.plaphy.2024.108646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Whether nanoparticles (NPs) are boon or bane for society has been a centre of in-depth debate and key consideration in recent times. Exclusive physicochemical properties like small size, large surface area-to-volume ratio, robust catalytic activity, immense surface energy, magnetism and superior biocompatibility make NPs obligatory in many scientific, biomedical and industrial ventures. Nano-enabled products are newer entrants in the present era. To attenuate environmental stress and maximize crop yields, scientists are tempted to introduce NPs as augmented supplements in agriculture. The feasible approaches for NPs delivery are irrigation, foliar spraying or seed priming. Internalization of excessive NPs to plants endorses negative implications at higher trophic levels via biomagnification. The characteristics of NPs (dimensions, type, solubility, surface charge), applied concentration and duration of exposure are prime factors conferring nanotoxicity in plants. Several reports approved NPs persuaded toxicity can precisely mimic abiotic stress effects. The signature effects of nanotoxicity include poor root outgrowth, biomass reduction, oxidative stress evolution, lipid peroxidation, biomolecular damage, perturbed antioxidants, genotoxicity and nutrient imbalance in plants. NPs stress impels mitogen-activated protein kinase signaling cascade and urges stress responsive defence gene expression to counteract stress in plants. Exogenous supplementation of nitric oxide (NO), arbuscular mycorrhizal fungus (AMF), phytohormones, and melatonin (ME) is novel strategy to circumvent nanotoxicity. Briefly, this review appraises plants' physio-biochemical responses and adaptation scenarios to endure NPs stress. As NPs stress represents large-scale contaminants, advanced research is indispensable to avert indiscriminate NPs usage for synchronizing nano-security in multinational markets.
Collapse
Affiliation(s)
- Ankita Biswas
- Department of Botany, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, West Bengal, 700017, India
| | - Suparna Pal
- Department of Botany, Lady Brabourne College, P-1/2, Suhrawardy Ave, Beniapukur, Kolkata, West Bengal, 700017, India.
| |
Collapse
|
14
|
Peng Y, Xiao X, Ren B, Zhang Z, Luo J, Yang X, Zhu G. Biological activity and molecular mechanism of inactivation of Microcystis aeruginosa by ultrasound irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133742. [PMID: 38367436 DOI: 10.1016/j.jhazmat.2024.133742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Harmful algal blooms (HABs) significantly impact on water quality and ecological balance. Ultrasound irradiation has proven to be an effective method for algal control. Nevertheless, the molecular mechanisms underlying the inactivation of M. aeruginosa by ultrasound are still unknown. In this study, the physiological activity and molecular mechanism of algal cells exposed to different frequencies of ultrasound were studied. The results indicated a pronounced inhibition of algal cell growth by high-frequency, high-dose ultrasound. Moreover, with increasing ultrasound dosage, there was a higher percentage of algal cell membrane ruptures. SEM and TEM observed obvious disruptions in membrane structure and internal matrix. Hydroxyl radicals generated by high-frequency ultrasound inflicted substantial cell membrane damage, while increased antioxidant enzyme activities fortified cells against oxidative stress. Following 2 min of ultrasound irradiation at 740 kHz, significant differential gene expression occurred in various aspects, including energy metabolism, carbohydrate metabolism, and environmental information processing pathways. Moreover, ultrasound irradiation influenced DNA repair and cellular apoptosis, suggesting that the algal cells underwent biological stress to counteract the damage caused by ultrasound. These findings reveal that ultrasound irradiation inactivates algae by destroying their cell structures and metabolic pathways, thereby achieving the purpose of algal suppression.
Collapse
Affiliation(s)
- Yazhou Peng
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiang Xiao
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Bozhi Ren
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jun Luo
- Changsha Economic and Technical Development Zone Water Purification Engineering Co., Ltd, Changsha 410100, China
| | - Xiuzhen Yang
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Guocheng Zhu
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
15
|
Li Z, Zheng Y, Ma H, Cui F. Microcystin-LR (MC-LR) inhibits green algae growth by regulating antioxidant and photosynthetic systems. HARMFUL ALGAE 2024; 134:102623. [PMID: 38705613 DOI: 10.1016/j.hal.2024.102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 μg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 μg/L) and the high (1,600 μg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.
Collapse
Affiliation(s)
- Zhe Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yun Zheng
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; CSCEC SCIMEE Sci. & Tech. Co., Ltd., Chengdu 610045, China
| | - Hua Ma
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Fuyi Cui
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| |
Collapse
|
16
|
Kannaujia R, Prasad V, Pandey V. Ozone-induced oxidative stress alleviation by biogenic silver nanoparticles and ethylenediurea in mung bean (Vigna radiata L.) under high ambient ozone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26997-27013. [PMID: 38503953 DOI: 10.1007/s11356-024-32917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Ground-level ozone (O3) is the most phytotoxic secondary air pollutant in the atmosphere, severely affecting crop yields worldwide. The role of nanoparticles (NP) in the alleviation of ozone-induced yield losses in crops is not known. Therefore, in the present study, we investigated the effects of biogenicB-AgNPs on the mitigation of ozone-induced phytotoxicity in mung bean and compared its results with ethylenediurea (EDU) for the first time. Two mung bean cultivars (Vigna radiata L., Cv. SML-668 and PDM-139) were foliar sprayed with weekly applications of B-AgNPs (0 = control, 10 and 25 ppm) and EDU (0 = control, 200 and 300 ppm) until maturation phase. Morphological, physiological, enzymatic, and non-enzymatic antioxidant data were collected 30 and 60 days after germination (DAG). The mean O3 and AOT40 values (8 h day-1) during the cultivation period were approximately 52 ppb and 4.4 ppm.h, respectively. More biomass was accumulated at the vegetative phase due to the impact of B-AgNPs and EDU, and more photosynthates were transported to the reproductive phase, increasing yield. We observed that the 10 ppm B-AgNPs treatment had a more noticeable impact on yield parameters and lower Ag accumulation in seeds for both cultivars. Specifically, SML-668 cultivar treated with 10 ppm B-AgNPs (SN1) showed greater increases in seed weight plant-1 (124.97%), hundred seed weight (33.45%), and harvest index (37.53%) in comparison to control. Our findings suggest that B-AgNPs can enhance growth, biomass, yield, and seed quality, and can improve mung bean ozone tolerance. Therefore, B-AgNPs may be a promising protectant for mung bean.
Collapse
Affiliation(s)
- Rekha Kannaujia
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Vivek Prasad
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, U.P, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, U.P, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
17
|
Thiruvengadam M, Chi HY, Kim SH. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108370. [PMID: 38271861 DOI: 10.1016/j.plaphy.2024.108370] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture.
Collapse
Affiliation(s)
- Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
18
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
19
|
Talib H, Mehmood A, Amjad MS, Mustafa A, Khan MAR, Raffi M, Khan RT, Ahmad KS, Qureshi H. Antibacterial, antioxidant, and anticancer potential of green fabricated silver nanoparticles made from Viburnum grandiflorum leaf extract. BOTANICAL STUDIES 2024; 65:4. [PMID: 38252177 PMCID: PMC10803688 DOI: 10.1186/s40529-024-00411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Recently, researchers are focusing on creating new tools to combat the antibiotic resistant bacteria and malignancy issues, which pose significant threats to humanity. Biosynthesized silver nanoparticles (AgNPs) are thought to be a potential solution to these issues. The biosynthesis method, known for its environmentally friendly and cost-effective characteristics, can produce small-sized AgNPs with antimicrobial and anticancer properties. In this study, AgNPs were bio-fabricated from the distilled water and methanolic extracts of Viburnum grandiflorum leaves. Physio-chemical characterization of the bio-fabricated AgNPs was conducted using UV-visible spectroscopy, scanning electron microscopy, energy dispersive X-ray, and X-ray diffraction analysis. RESULTS AgNPs produced from the methanol extract were smaller in size (12.28 nm) compared to those from the aqueous extract (17.77 nm). The bioengineered AgNPs exhibited a circular shape with a crystalline nature. These biosynthesized AgNPs demonstrated excellent bactericidal activity against both gram-negative (Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus) bacteria. Highest antibacterial activity was observed with the methanol extract against P. aeruginosa (14.66 ± 0.74 mm). AgNPs from the methanol extract also displayed the highest antioxidant activity, with an IC50 value of 188.00 ± 2.67 μg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH). Furthermore, AgNPs exhibited notable cytotoxic activity against Rhabdomyosarcoma cell line (RD cell) of human muscle cancer cell. The IC50 values calculated from the MTT assay were 26.28 ± 1.58 and 21.49 ± 1.44 μg/mL for AgNPs synthesized from aqueous and methanol extracts, respectively. CONCLUSION The methanol extract of V. grandiflorum leaves demonstrates significant potential for synthesizing AgNPs with effective antibacterial, antioxidant, and anticancer actions, making them applicable in various biomedical applications.
Collapse
Affiliation(s)
- Hina Talib
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan.
| | - Muhammad Shoaib Amjad
- Department of Botany, Women University of Azad Jammu and Kashmir Bagh, Bagh, 12500, Pakistan.
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Amna Mustafa
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | | | - Muhammad Raffi
- Department of Materials Engineering, National Institute of Lasers and Optronics (NILOP), Lehtrar Road, Nilore, Islamabad, 45650, Pakistan
| | - Rizwan Taj Khan
- Department of Botany, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, University of Poonch Rawalakot, Rawalakot, Azad Kashmir, 12350, Pakistan
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, 48800, Pakistan
| |
Collapse
|
20
|
Srinivasan Y, Arumugam P, Ali S. Green Synthesis of Bacopa monnieri-Mediated Magnesium Oxide Nanoparticles and Analysis of Their Antimicrobial, Antioxidant, and Cytotoxic Properties. Cureus 2024; 16:e52701. [PMID: 38384608 PMCID: PMC10879732 DOI: 10.7759/cureus.52701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/21/2024] [Indexed: 02/23/2024] Open
Abstract
Background The management of aggressive forms of periodontal disease has become an issue of concern due to the emergence of bacterial resistance. Nanoparticles (NPs) have emerged as a potential therapeutic agent with a multitude of biological functions. The green synthesis of these NPs is more eco-friendly than conventional methods. The present study aimed at the green synthesis of magnesium oxide nanoparticles using Bacopa monnieri (bMgO NPs) and its antibacterial, antioxidant, and cytotoxic analysis. Materials and methods Magnesium oxide NPs were green synthesized using B. monnieri extract using a wet chemical method. The resultant bMgO NPs were assessed for antibacterial activity against Staphylococcus aureus and Escherichia coli. Antioxidant activity was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and the hydrogen peroxide (H2O2) assay. Cytotoxicity was assessed using zebrafish viability on treatment with bMgO NPs. Results Compared to the antibiotic standard, the green synthesized bMgO NPs showed good antibacterial properties against S. aureus and E. coli. It also showed excellent antioxidant activity and biocompatibility. Conclusion The bMgO NPs have great potential as a local drug delivery agent and should be further explored for their antibacterial and antioxidant properties in vivo.
Collapse
Affiliation(s)
- Yashwini Srinivasan
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Parkavi Arumugam
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Saheb Ali
- Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
21
|
Bhaskar R, Pandey SP, Kumar U, Kim H, Jayakodi SK, Gupta MK, Han SS. Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests. OPENNANO 2024; 15:100198. [DOI: 10.1016/j.onano.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
22
|
Singh Y, Kumar U, Panigrahi S, Balyan P, Mehla S, Sihag P, Sagwal V, Singh KP, White JC, Dhankher OP. Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108004. [PMID: 37714027 DOI: 10.1016/j.plaphy.2023.108004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Plant tissue culture is the primary, fundamental, and applied aspect of plant biology. It is an indispensable and valuable technique for investigating morphogenesis, embryogenesis, clonal propagation, crop improvements, generation of pathogen-free plants, gene transfer and expression, and the production of secondary metabolites. The extensive use of various nanoparticles (NPs) in fields such as cosmetics, energy, medicine, pharmaceuticals, electronics, agriculture, and biotechnology have demonstrated positive impacts in microbial decontamination, callus differentiation, organogenesis, somatic variations, biotransformation, cryopreservation, and enhanced synthesis of bioactive compounds. This review summarizes the current state of knowledge with regard to the use of nanoparticles in plant tissue culture, with a particular focus on the beneficial outcomes. The positive (beneficial) and negative (toxic) effects of engineered NPs in tissue culture medium, delivery of transgenes, NPs toxicity concerns, safety issues, and potential hazards arising from utilization of nanomaterials in agriculture through plant tissue culture are discussed in detail, along with the future prospects for these applications. In addition, the potential use of novel nanomaterials such as graphene, graphite, dendrimers, quantum dots, and carbon nanotubes as well as unique metal or metalloid NPs are proposed. Further, the potential mechanisms underlying NPs elicitation of tissue culture response in different applications are critically evaluated. The potential of these approaches in plant nanobiotechnology is only now becoming understood and it is clear that the role of these strategies in sustainably increasing crop production to combat global food security and safety in a changing climate will be significant.
Collapse
Affiliation(s)
- Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India; Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India.
| | - Sourav Panigrahi
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Sheetal Mehla
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Pooja Sihag
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Vijeta Sagwal
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA.
| |
Collapse
|
23
|
Love EM, Hemalatha S. Toxicity Evaluation, Plant Growth Promotion, and Anti-fungal Activity of Endophytic Bacteria-Mediated Silver Nanoparticles. Appl Biochem Biotechnol 2023; 195:6309-6320. [PMID: 36862331 DOI: 10.1007/s12010-023-04383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
In recent years, the uses of silver nanoparticles have increased, which lead to nanoparticles discharge into aquatic bodies which may, if not well controlled, have harmful effect on different organisms. This calls for the need to constantly evaluate the toxicity level of nanoparticles. In this study, green biosynthesized silver nanoparticles mediated by endophytic bacteria Cronobacter sakazakii (CS-AgNPs) were subjected to toxicity evaluation by brine shrimp lethality assay. The ability of CS-AgNPs to improve plant growth by nanopriming of Vigna radiata L seeds treated with different concentrations (1ppm, 2.5ppm, 5ppm and 10ppm) in order to enhance biochemical constituents was investigated, also its inhibitory effect to growth of phytopathogenic fungi Mucor racemose was examined. Results showed that Artemia salina treated with CS-AgNPs exhibited good hatching percentage and LC50 value of 688.41 µg/ml when Artemia salina eggs were exposed to CS-AgNPs during hatching. Plant growth was enhanced at 2.5ppm CS-AgNPs, with increased photosynthetic pigments, protein, and carbohydrate content. This study suggests that silver nanoparticles synthesized via endophytic bacteria Cronobacter sakazakii are safe to use and can be utilized as means of combating plant fungal pathogens.
Collapse
Affiliation(s)
- E M Love
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - S Hemalatha
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
24
|
Muzammil S, Ashraf A, Siddique MH, Aslam B, Rasul I, Abbas R, Afzal M, Faisal M, Hayat S. A review on toxicity of nanomaterials in agriculture: Current scenario and future prospects. Sci Prog 2023; 106:368504231221672. [PMID: 38131108 DOI: 10.1177/00368504231221672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Phytonanotechnology plays a crucial part in the production of good quality and high-yield food. It can also alter the plant's production systems, hence permitting the efficient, controlled and stable release of agrochemicals such as fertilizers and pesticides. An advanced understanding of nanomaterials interaction with plant responses like localization and uptake, etc. could transfigure the production of crops with high disease resistance and efficient nutrients utilization. In agriculture, the use of nanomaterials has gained acceptance due to their wide-range applications. However, their toxicity and bioavailability are the major hurdles for their massive employment. Undoubtedly, nanoparticles positively influence seeds germination, growth and development, stress management and post-harvest handling of vegetables and fruits. These nanoparticles may also cause toxicity in plants through oxidative stress by generation of excessive reactive oxygen species thus affecting the cellular biomolecules and targeting different channels. Nanoparticles have shown to exert various effects on plants that are mainly affected by various attributes such as physicochemical features of nanomaterials, coating materials for nanoparticles, type of plant, growth stages and growth medium for plants. This article discusses the interaction, accretion and toxicity of nanomaterials in plants. The factors inducing nanotoxicity and the mechanisms followed by nanomaterials causing toxicity are also instructed. At the end, detoxification mechanism of plant is also presented.
Collapse
Affiliation(s)
- Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Rasti Abbas
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzal
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Faisal
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
25
|
Lam VP, Beomseon L, Anh VK, Loi DN, Kim S, Kwang-ya L, Park J. Effectiveness of silver nitrate application on plant growth and bioactive compounds in Agastache rugosa (Fisch. & C.A.Mey.) kuntze. Heliyon 2023; 9:e20205. [PMID: 37810151 PMCID: PMC10559964 DOI: 10.1016/j.heliyon.2023.e20205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The objective of this study was to determine the optimal dose of silver nitrate (AgNO3) for plant growth and to increase the main bioactive compounds in A. rugosa cultivated in a hydroponic system. The application of soaked diniconazole (120 μmol mol-1) to all plants at 7 days after transplanting (DAT) for dwarfing plant height, optimizing cultivation space in the plant factory. Subsequently, plants were soaked with 50, 100, 200, and 400 μmol mol-1 AgNO3 for 10 min at 25 DAT and harvested at 39 DAT. The results indicated that 200 and 400 μmol mol-1 treatments tended to severely decrease plant growth parameters compared to treatments with lower concentrations. The net photosynthetic rate was significantly reduced by the 200 and 400 μmol mol-1 treatments compared to treatments with other concentrations. The 400 μmol mol-1 treatment led to the lowest concentrations of chlorophyll a, chlorophyll a/b, total carotenoid, chlorophyll b, and the total chlorophyll. However, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity was considerably increased in 50, 100, 200, and 400 μmol mol-1 compared to that of the control plants. A higher rosmarinic acid (RA) concentration in the whole plant was noticed with the 400 μmol mol-1 treatment compared with that of the untreated plants. The 100 μmol mol-1 treatment exhibited the highest concentration and content of tilianin in the whole plant. Concentration of acacetin 1 significantly increased in the whole plant with 100 and 200 μmol mol-1 treatments compared with that of the untreated plants. Concentrations of acacetin 2 and 3 in the whole plant were the highest with 100 and 200 μmol mol-1 treatments, respectively. The results demonstrated that 100 μmol mol-1 treatments can be used to increase bioactive compounds without severely limiting the plant growth and reducing chlorophyll concentrations of A. rugosa. Implementing this optimal dose can enable growers and researchers to cultivate A. rugosa more efficiently, enhancing bioactive compound content and overall plant performance, thus harnessing the potential health benefits of this valuable plant species.
Collapse
Affiliation(s)
- Vu Phong Lam
- Department of Horticultural Science, Chungnam National University, Daejeon, 34134, South Korea
- Department of Agronomy, Tay Bac University, Son La, 360000, Viet Nam
| | - Lee Beomseon
- Naru Agricultural Consultancy Company, Jisanmaeul-gil 19, Buk-gu, Gwangju city, 61014, South Korea
| | - Vu Ky Anh
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| | - Dao Nhan Loi
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
- Department of Agronomy, Tay Bac University, Son La, 360000, Viet Nam
| | - Sunwoo Kim
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| | - Lee Kwang-ya
- Institude of Agriculture Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Jongseok Park
- Department of Horticultural Science, Chungnam National University, Daejeon, 34134, South Korea
- Department of Bio-AI Convergence, Chungnam National University, Daejeon, 34134, South Korea
| |
Collapse
|
26
|
Li L, Du L, Cao Q, Yang Z, Liu Y, Yang H, Duan X, Meng Z. Salt Tolerance Evaluation of Cucumber Germplasm under Sodium Chloride Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2927. [PMID: 37631139 PMCID: PMC10459999 DOI: 10.3390/plants12162927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop worldwide. Sodium (Na+) and chloride (Cl-) in the surface soil are the major limiting factors in coastal areas of Shandong Province in China. Therefore, to understand the mechanism used by cucumber to adapt to sodium chloride (NaCl), we analyzed the phenotypic and physiological indicators of eighteen cucumber germplasms after three days under 100 and 150 mM NaCl treatment. A cluster analysis revealed that eighteen germplasms could be divided into five groups based on their physiological indicators. The first three groups consisted of seven salt-tolerant and medium salt-tolerant germplasms, including HLT1128h, Zhenni, and MC2065. The two remaining groups consisted of five medium salt-sensitive germplasms, including DM26h and M1-2-h-10, and six salt-sensitive germplasms including M1XT and 228. A principal component analysis revealed that the trend of comprehensive scores was consistent with the segmental cluster analysis and survival rates of cucumber seedlings. Overall, the phenotype, comprehensive survival rate, cluster analysis, and principal component analysis revealed that the salt-tolerant and salt-sensitive germplasms were Zhenni, F11-15, MC2065, M1XT, M1-2-h-10, and DM26h. The results of this study will provide references to identify or screen salt-tolerant cucumber germplasms and lay a foundation for breeding salt-tolerant cucumber varieties.
Collapse
Affiliation(s)
- Libin Li
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Lianda Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Qiwei Cao
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Zonghui Yang
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| | - Yihan Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hua Yang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Duan
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Zhaojuan Meng
- Key Laboratory of Greenhouse Vegetable Biology of Shandong Province, Vegetable Science Observation and Experiment Station in Huang—Huai Region of Ministry of Agriculture (Shandong), Shandong Branch of National Vegetable Improvement Center, Vegetable Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China (Q.C.)
| |
Collapse
|
27
|
El-Ganainy SM, Soliman AM, Ismail AM, Sattar MN, Farroh KY, Shafie RM. Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus. Polymers (Basel) 2023; 15:2961. [PMID: 37447606 DOI: 10.3390/polym15132961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Plant viruses are a global concern for sustainable crop production. Among the currently available antiviral approaches, nanotechnology has been overwhelmingly playing an effective role in circumventing plant viruses. Alfalfa mosaic virus (AMV) was isolated and identified from symptomatic pepper plants in Egypt using symptomatology, serological tests using the direct ELISA technique, differential hosts and electron microscopy. The virus was biologically purified from a single local lesion that developed on Chenopodium amaranticolor. The AMV infection was further confirmed using an AMV coat protein-specific primer RT-PCR. We further evaluated the antiviral potential of chitosan nanoparticles (CS-NPs) and chitosan silver nanocomposites (CS-Ag NC) in different concentrations against AMV infections in pepper plants. All tested concentrations of CS-NPs and CS-Ag NC induced the inhibition of AMV systemically infected pepper plants when applied 24 h after virus inoculation. The foliar application of 400 ppm CS-NPs or 200 ppm CS-Ag NC produced the highest AMV inhibitory effect (90 and 91%) when applied 24 h after virus inoculation. Treatment with CS-NPs and CS-Ag NC considerably increased the phenol, proline and capsaicin contents compared to the infected plants. Moreover, the agronomic metrics (plant height, fresh and dry pod weights and number of pods per plant) were also significantly improved. According to our results, the potential applications of CS-NPs and CS-Ag NC may provide an effective therapeutic measure for better AMV and other related plant virus management.
Collapse
Affiliation(s)
- Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed M Soliman
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed Mahmoud Ismail
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | | | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab., Regional Center for Food and Feed, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Radwa M Shafie
- Virus and Phytoplasma Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| |
Collapse
|
28
|
Alhammad BA, Abdel-Aziz HMM, Seleiman MF, Tourky SMN. How Can Biological and Chemical Silver Nanoparticles Positively Impact Physio-Chemical and Chloroplast Ultrastructural Characteristics of Vicia faba Seedlings? PLANTS (BASEL, SWITZERLAND) 2023; 12:2509. [PMID: 37447073 DOI: 10.3390/plants12132509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Through interactions with plant cells, silver nanoparticles (AgNPs) with both biological and chemical origins can stimulate physiological and metabolic processes in plants. To ensure their safe application in the food chain, it is necessary to investigate their effects on plant systems. Therefore, the effects of chemical AgNPs (chem-AgNPs) and biologically synthesized AgNPs (bio-AgNPs) at different levels (i.e., 0, 10, and 50 ppm) on physiological and biochemical traits {i.e., root and shoot growth traits, photosynthetic pigments (Chl a, Chl b, carotenoids, and total pigments), soluble sugars, total carbohydrates, starch, H2O2, and antioxidant enzyme activities} of Vicia faba L. seedlings were investigated. AgNPs were biosynthesized from silver nitrate (AgNO3) by a green synthesis approach using Jatropha curcas seed extract. The synthesized AgNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), zeta potential, Fourier-transform infrared spectra (FT-IR), and X-ray diffraction (XRD). The results showed that bio-AgNPs at 10 ppm resulted in the highest growth, physiological, and biological traits of faba bean seedlings in comparison with those obtained from both AgNO3 and chem-AgNPs treatments. On the other hand, all AgNPs treatments adversely affected the chloroplast ultrastructure, however, fewer negative effects were obtained with the application of 10 ppm bio-AgNPs. In addition, the roots and shoots of seedlings contained the lowest Ag content under different treatments at 10 ppm AgNPs in comparison to the highest level of AgNPs (50 ppm), which indicates that additional studies should be incorporated to ensure safe use of lower concentrations of bio-AgNPs in seed priming. In conclusion, the application of biogenic nanoparticles at 10 ppm can be recommended to enhance plant growth and the productivity of strategic crops.
Collapse
Affiliation(s)
- Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
| | - Heba M M Abdel-Aziz
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| | - Shaimaa M N Tourky
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
29
|
Kumar S, Masurkar P, Sravani B, Bag D, Sharma KR, Singh P, Korra T, Meena M, Swapnil P, Rajput VD, Minkina T. A review on phytotoxicity and defense mechanism of silver nanoparticles (AgNPs) on plants. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:54. [DOI: 10.1007/s11051-023-05708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
|
30
|
Varga M, Žuna Pfeiffer T, Begović L, Mlinarić S, Horvatić J, Miloloža T, Štolfa Čamagajevac I. Physiological Response of Nutrient-Stressed Lemna gibba to Pulse Colloidal Silver Treatment. PLANTS (BASEL, SWITZERLAND) 2023; 12:1367. [PMID: 36987055 PMCID: PMC10055381 DOI: 10.3390/plants12061367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Wastewater is a source of many environmental pollutants and potentially high concentrations of essential plant nutrients. Site-specific nutrient levels may influence the response of exposed plants to a chemical stressor. In the present study, we focused on the responses of model aquatic macrophyte swollen duckweed (Lemna gibba L.) to a short pulse exposure and a commercially available colloidal silver product as a potential environmental chemical stressor, combined with two levels of total nitrogen and phosphorus nutrition. Treatment with the commercially available colloidal silver product caused oxidative stress in L. gibba plants under both high and low nutrient levels. Plants grown and treated under high nutrient levels showed lower levels of lipid peroxidation and hydrogen peroxide accumulation, as well as higher levels of photosynthetic pigment content in comparison to treated plants under low nutrient levels. Higher free radical scavenging activity for plants treated with silver in combination with high nutrient levels resulted in better overall protection from silver-induced oxidative stress. The results showed that external nutrient levels significantly affected the L. gibba plant's response to the colloidal silver presence in the environment and that nutrient levels should be considered in the assessment of potential environmental impact for contaminants.
Collapse
|
31
|
Jiao H, Yuan T, Wang X, Zhou X, Ming R, Cui H, Hu D, Lu P. Biochemical, histopathological and untargeted metabolomic analyses reveal hepatotoxic mechanism of acetamiprid to Xenopus laevis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120765. [PMID: 36455769 DOI: 10.1016/j.envpol.2022.120765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Acetamiprid, a commonly detected neonicotinoid in aquatic ecosystems, poses a threat to aquatic non-target organisms. However, limited information is available on the toxic effects of acetamiprid on nontarget aquatic organisms. This study assessed the toxic effects of acetamiprid on Xenopus laevis, a typical model organism. The acute toxicity for 96 h revealed that acetamiprid had detrimental effects with a median lethal concentration (LC50) value of 64.48 mg/L. Toxicity assays, including oxidative stress, histopathology and untargeted metabolomics of acetamiprid to X. laevis, were performed for 28 d at 1/10 and 1/100 LC50 by studying the liver, which is the most antioxidant and major metabolic organ. The results demonstrated that acetamiprid exposure significantly changed the oxidant status of and caused histological damage to the liver. Furthermore, the untargeted metabolomic analysis based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified the endogenous metabolites that were significantly altered. There were 89 differential metabolites compared to the controls: 64 in the 1/10 LC50 group, 47 in the 1/100 LC50 group, and 23 metabolites in the 1/10 LC50 group were the same as those in the 1/100 LC50 group. Sixteen pathways that were mainly associated with amino acid metabolism and lipid metabolism, such as sphingolipid metabolism, glycerophospholipid metabolism and histidine metabolism, were disrupted, revealing the hepatotoxic effects of acetamiprid on X. laevis at the molecular level. These findings provide crucial information for evaluating the aquatic risks of neonicotinoids.
Collapse
Affiliation(s)
- Hui Jiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Tingting Yuan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiaohuan Wang
- Guizhou Station of Plant Protection and Quarantine, China
| | - Xia Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Renyue Ming
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Honghao Cui
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
32
|
Husain S, Nandi A, Simnani FZ, Saha U, Ghosh A, Sinha A, Sahay A, Samal SK, Panda PK, Verma SK. Emerging Trends in Advanced Translational Applications of Silver Nanoparticles: A Progressing Dawn of Nanotechnology. J Funct Biomater 2023; 14:47. [PMID: 36662094 PMCID: PMC9863943 DOI: 10.3390/jfb14010047] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Nanoscience has emerged as a fascinating field of science, with its implementation in multiple applications in the form of nanotechnology. Nanotechnology has recently been more impactful in diverse sectors such as the pharmaceutical industry, agriculture sector, and food market. The peculiar properties which make nanoparticles as an asset are their large surface area and their size, which ranges between 1 and 100 nanometers (nm). Various technologies, such as chemical and biological processes, are being used to synthesize nanoparticles. The green chemistry route has become extremely popular due to its use in the synthesis of nanoparticles. Nanomaterials are versatile and impactful in different day to day applications, resulting in their increased utilization and distribution in human cells, tissues, and organs. Owing to the deployment of nanoparticles at a high demand, the need to produce nanoparticles has raised concerns regarding environmentally friendly processes. These processes are meant to produce nanomaterials with improved physiochemical properties that can have significant uses in the fields of medicine, physics, and biochemistry. Among a plethora of nanomaterials, silver nanoparticles have emerged as the most investigated and used nanoparticle. Silver nanoparticles (AgNPs) have become vital entities of study due to their distinctive properties which the scientific society aims to investigate the uses of. The current review addresses the modern expansion of AgNP synthesis, characterization, and mechanism, as well as global applications of AgNPs and their limitations.
Collapse
Affiliation(s)
- Shaheen Husain
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Sector 125, Noida 201313, India
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | | | - Utsa Saha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Aarya Sahay
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Suresh K. Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
33
|
In Vitro Antibacterial Activity of Green Synthesized Silver Nanoparticles Using Mangifera indica Aqueous Leaf Extract against Multidrug-Resistant Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11111503. [PMID: 36358157 PMCID: PMC9686697 DOI: 10.3390/antibiotics11111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
An estimated 35% of the world’s population depends on wheat as their primary crop. One fifth of the world’s wheat is utilized as animal feed, while more than two thirds are used for human consumption. Each year, 17–18% of the world’s wheat is consumed by China and India. In wheat, spot blotch caused by Bipolaris sorokiniana is one of the major diseases which affects the wheat crop growth and yield in warmer and humid regions of the world. The present work was conducted to evaluate the effect of green synthesized silver nanoparticles on the biochemical constituents of wheat crops infected with spot blotch disease. Silver nanoparticles (AgNPs) were synthesized using Mangifera indica leaf extract and their characterization was performed using UV-visible spectroscopy, SEM, XRD, and PSA. Characterization techniques confirm the presence of crystalline, spherical silver nanoparticles with an average size of 52 nm. The effect of green synthesized nanoparticles on antioxidative enzymes, e.g., Superoxide dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR), Peroxidase (POX), and phytochemical precursor enzyme Phenylalanine Ammonia-Lyase (PAL), and on primary and secondary metabolites, e.g., reducing sugar and total phenol, in Bipolaris sorokiniana infected wheat crop were studied. Inoculation of fungal spores was conducted after 40 days of sowing. Subsequently, diseased plants were treated with silver nanoparticles at different concentrations. Elevation in all biochemical constituents was recorded under silver nanoparticle application. The treatment with a concentration of nanoparticles at 50 pp min diseased plants showed the highest resistance towards the pathogen. The efficacy of the green synthesized AgNPs as antibacterial agents was evaluated against multi drug resistant (MDR) bacteria comprising Gram-negative bacteria Escherichia coli (n = 6) and Klebsiella pneumoniae (n = 7) and Gram-positive bacteria Methicillin resistant Staphylococcus aureus (n = 2). The results show promising antibacterial activity with significant inhibition zones observed with the disc diffusion method, thus indicating green synthesized M. indica AgNPs as an active antibacterial agent against MDR pathogens.
Collapse
|
34
|
Bora KA, Hashmi S, Zulfiqar F, Abideen Z, Ali H, Siddiqui ZS, Siddique KHM. Recent progress in bio-mediated synthesis and applications of engineered nanomaterials for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2022; 13:999505. [PMID: 36262650 PMCID: PMC9574372 DOI: 10.3389/fpls.2022.999505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The ever-increasing demand for agricultural food products, medicine, and other commercial sectors requires new technologies for agricultural practices and promoting the optimum utilization of natural resources. The application of engineered nanomaterials (ENMs) enhance the biomass production and yield of food crop while resisting harmful environmental stresses. Bio-mediated synthesis of ENMs are time-efficient, low-cost, environmentally friendly, green technology. The precedence of using a bio-mediated route over conventional precursors for ENM synthesis is non-toxic and readily available. It possesses many active agents that can facilitate the reduction and stabilization processes during nanoparticle formation. This review presents recent developments in bio-mediated ENMs and green synthesis techniques using plants, algae, fungi, and bacteria, including significant contributions to identifying major ENM applications in agriculture with potential impacts on sustainability, such as the role of different ENMs in agriculture and their impact on different plant species. The review also covers the advantages and disadvantages of different ENMs and potential future research in this field.
Collapse
Affiliation(s)
- Kainat Amin Bora
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
| | - Saud Hashmi
- Department of Chemical Engineering, Nadirshaw Eduljee Dinshaw (NED) University of Engineering and Technology, Karachi, Pakistan
- Department of Polymer and Petrochemical Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Haibat Ali
- Department of Environmental Sciences, Karakorum International University, Gilgit, Pakistan
| | | | | |
Collapse
|
35
|
Liu X, Wang X, Zhang F, Yao X, Qiao Z, Deng J, Jiao Q, Gong L, Jiang X. Toxic effects of fludioxonil on the growth, photosynthetic activity, oxidative stress, cell morphology, apoptosis, and metabolism of Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156069. [PMID: 35605851 DOI: 10.1016/j.scitotenv.2022.156069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Fludioxonil is widely used in the control of crop diseases because of its broad spectrum and high activity, but its presence is now common in waterways proximate to treated areas. This study examined the toxic effects and mechanisms of fludioxonil on the microalgal taxa Chlorella vulgaris. The results showed that fludioxonil limited the growth of C. vulgaris and the median inhibitory concentration at 96 h was 1.87 mg/L. Concentrations of 0.75 and 3 mg/L fludioxonil reduced the content of photosynthetic pigments in algal cells to different degrees. Fludioxonil induced oxidative damage by altering C. vulgaris antioxidant enzyme activities and increasing reactive oxygen species levels. Fludioxonil at 0.75 mg/L significantly increased the activity of antioxidant enzymes. The highest level of activity was 1.60 times that of the control group. Both fludioxonil treatment groups significantly increased ROS levels, with the highest increase being 1.90 times that of the control group. Transmission electron microscope showed that treatment with 3 mg/L fludioxonil for 96 h disrupted cell integrity and changed cell morphology, and flow cytometer analysis showed that fludioxonil induced apoptosis. Changes in endogenous substances indicated that fludioxonil negatively affects C. vulgaris via altered energy metabolism, biosynthesis of amino acids, and unsaturated fatty acids. This study elucidates the effects of fludioxonil on microalgae and the biological mechanisms of its toxicity, providing insights into the importance of the proper management of this fungicide.
Collapse
Affiliation(s)
- Xiang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xueting Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Zhihua Qiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jiahui Deng
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qin Jiao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Luo Gong
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
36
|
Sabra MA, Alaidaroos BA, Jastaniah SD, Heflish AI, Ghareeb RY, Mackled MI, El-Saadony MT, Abdelsalam NR, Conte-Junior CA. Comparative Effect of Commercially Available Nanoparticles on Soil Bacterial Community and “Botrytis fabae” Caused Brown Spot: In vitro and in vivo Experiment. Front Microbiol 2022. [DOI: 10.3389/fmicb.2022.934031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study revealed the possible effects of various levels of silver nanoparticle (AgNP) application on plant diseases and soil microbial diversity. It investigated the comparison between the application of AgNPs and two commercial nanoproducts (Zn and FeNPs) on the rhizobacterial population and Botrytis fabae. Two experiments were conducted. The first studied the influence of 13 AgNP concentration on soil bacterial diversity besides two other commercial nanoparticles, ZnNPs (2,000 ppm) and FeNPs (2,500 ppm), used for comparison and application on onion seedlings. The second experiment was designed to determine the antifungal activity of previous AgNP concentrations (150, 200, 250, 300, 400, and 500 ppm) against B. fabae, tested using commercial fungicide as control. The results obtained from both experiments revealed the positive impact of AgNPs on the microbial community, representing a decrease in both the soil microbial biomass and the growth of brown spot disease, affecting microbial community composition, including bacteria, fungi, and biological varieties. In contrast, the two commercial products displayed lower effects compared to AgNPs. This result clearly showed that the AgNPs strongly inhibited the plant pathogen B. fabae growth and development, decreasing the number of bacteria (cfu/ml) and reducing the rhizosphere. Using AgNPs as an antimicrobial agent in the agricultural domain is recommended.
Collapse
|
37
|
Kareem HA, Hassan MU, Zain M, Irshad A, Shakoor N, Saleem S, Niu J, Skalicky M, Chen Z, Guo Z, Wang Q. Nanosized zinc oxide (n-ZnO) particles pretreatment to alfalfa seedlings alleviate heat-induced morpho-physiological and ultrastructural damages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119069. [PMID: 35276246 DOI: 10.1016/j.envpol.2022.119069] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
Global efforts are in rapid progress to tackle the emerging conundrum of climate change-induced heat stress in grassland ecosystems. Zinc oxide nanoparticles (n-ZnO) are known to play a crucial role in plants' abiotic stress regulation, but its response in alfalfa against heat stress has not been explored. This study aimed at assessing the effects of n-ZnO on alfalfa under heat stress by various morpho-physiological and cellular approaches. Five-week-old alfalfa seedlings were subjected to foliar application of n-ZnO as a pretreatment before the onset of heat stress (BHS) to evaluate its effect on heat tolerance, and as a post-treatment after heat stress (AHS) to evaluate recovery efficiency. In vitro studies on Zn release from n-ZnO by Inductively coupled plasma mass spectroscopy (ICPMS) disclosed that the particle uptake and Zn release were concentration dependent. The uptake and translocation of n-ZnO examined by transmission electron microscope (TEM) reveling showed that n-ZnO was primarily localized in the vacuoles and chloroplasts. TEM images showed that ultrastructural modifications to chloroplast, mitochondria, and cell wall were reversible by highest dose of n-ZnO applied before heat stress, and damages to these organelles were not recoverable when n-ZnO was applied after heat stress. The results further enlightened that 90 mg L-1 n-ZnO better prevented the heat stress-mediated membrane damage, lipid peroxidation and oxidative stress by stimulating antioxidant systems and enhancing osmolyte contents in both BHS and AHS. Although, application of 90 mg L-1 n-ZnO in BHS was more effective in averting heat-induced damages and maintaining better plant growth and morpho-physiological attributes compared to AHS. Conclusively, foliar application of n-ZnO can be encouraged as an effective strategy to protect alfalfa from heat stress damages while minimizing the risk of nanoparticle transmission to environmental compartments, which could happen with soil application.
Collapse
Affiliation(s)
- Hafiz Abdul Kareem
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mahmood Ul Hassan
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Muhammad Zain
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs/Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, Henan, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Annie Irshad
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Sana Saleem
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague, Czech Republic
| | - Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
38
|
Kushwaha A, Hans N, Giri BS, Rene ER, Rani R. Uncovering the phytochemicals of root exudates and extracts of lead (Pb) tolerant Chrysopogon zizanioides (L.) Roberty in response to lead contamination and their effect on the chemotactic behavior of rhizospheric bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:44998-45012. [PMID: 35146608 DOI: 10.1007/s11356-022-18887-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The chemical composition of root exudates and root extracts from Chrysopogon zizanioides (L.) Roberty cv KS-1 was determined in the presence of lead [Pb(II)]. Hitherto, no information is available in the literature concerning the phytochemical components of root exudates of C. zizanioides. Significantly higher concentrations of total carbohydrates (26.75 and 42.62% in root exudates and root extract, respectively), reducing sugars (21.46 and 56.11% in root exudates and root extract, respectively), total proteins (9.22 and 23.70% in root exudates and root extract, respectively), total phenolic acids (14.69 and 8.33% in root exudates and root extract, respectively), total flavonoids (14.30 and 12.28% in root exudates and root extract, respectively), and total alkaloids (12.48 and 7.96% in root exudates and root extract, respectively) were observed in samples from plants growing under Pb(II) stress in comparison to the respective controls. GC-MS profiling showed the presence of a diverse group of compounds in root exudates and extracts, including terpenes, alkaloids, flavonoids, carotenoids, plant hormones, carboxylic/organic acids, and fatty acids. Among the detected compounds, many have an important role in plant development, regulating rhizosphere microbiota and allelopathy. Furthermore, the results indicated that C. zizanioides exudates possess a chemotactic response for rhizospheric bacterial strains Bacillus licheniformis, Bacillus subtilis, and Acinetobacter junii Pb1.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj-211004, Teliyarganj, India
| | - Nidhi Hans
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj-211004, Teliyarganj, India
| | - Balendu Shekher Giri
- Department of Chemical Engineering and Technology, Centre of Advanced Study, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, 2611AX, Delft, the Netherlands
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, Prayagraj-211004, Teliyarganj, India.
| |
Collapse
|
39
|
Biogenic Silver Nanoparticles as a Stress Alleviator in Plants: A Mechanistic Overview. Molecules 2022; 27:molecules27113378. [PMID: 35684312 PMCID: PMC9182038 DOI: 10.3390/molecules27113378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Currently, the growth and yield of crops are restrained due to an increase in the occurrence of ecological stresses globally. Biogenic generation of nanomaterials is an important step in the development of environmentally friendly procedures in the nanotechnology field. Silver-based nanomaterials are significant because of their physical, chemical, and biological features along with their plentiful applications. In addition to useful microbes, the green synthesized Ag nanomaterials are considered to be an ecologically friendly and environmentally biocompatible method for the enhancement of crop yield by easing stresses. In the recent decade, due to regular droughts, infrequent precipitation, salinity, and increased temperature, the climate alternation has changed certain ecological systems. As a result of these environmental changes, crop yield has decreased worldwide. The role of biogenic Ag nanomaterials in enhancing methylglyoxal detoxification, antioxidant defense mechanisms, and generating tolerance to stresses-induced ROS injury has been methodically explained in plants over the past ten years. However, certain studies regarding stress tolerance and metal-based nanomaterials have been directed, but the particulars of silver nanomaterials arbitrated stresses tolerance have not been well-reviewed. Henceforth, there is a need to have a good understanding of plant responses during stressful conditions and to practice the combined literature to enhance tolerance for crops by utilization of Ag nanoparticles. This review article illustrates the mechanistic approach that biogenic Ag nanomaterials in plants adopt to alleviate stresses. Moreover, we have appraised the most significant activities by exogenous use of Ag nanomaterials for improving plant tolerance to salt, low and high temperature, and drought stresses.
Collapse
|
40
|
Rajan R, Huo P, Chandran K, Manickam Dakshinamoorthi B, Yun SI, Liu B. A review on the toxicity of silver nanoparticles against different biosystems. CHEMOSPHERE 2022; 292:133397. [PMID: 34954197 DOI: 10.1016/j.chemosphere.2021.133397] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Despite significant progress made in the past two decades, silver nanoparticles (AgNPs) have not yet made it to the clinical trials. In addition, they showed both positive and negative effects in their toxicity from unicellular organism to well-developed multi-organ system, for example, rat. Although it is generally accepted that capped (bio)molecules have synergistic bioactivities and diminish the toxicity of metallic Ag core, convincing evidence is completely lacking. Therefore, in this review, we first highlight the recent in vivo toxicity studies of chemically manufactured AgNPs, biologically synthesized AgNPs and reference AgNPs of European Commission. Then, their toxic effects are compared with each other and the overlooked factors leading to the potential conflict of obtained toxicity results are discussed. Finally, suggestions are given to better design and conduct the future toxicity studies and to fast-track the successful clinical translation of AgNPs as well.
Collapse
Affiliation(s)
- Ramachandran Rajan
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, PR China
| | - PeiPei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, PR China
| | - Krishnaraj Chandran
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | | | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, PR China.
| |
Collapse
|
41
|
Krishnaraj C, Young GM, Yun SI. In vitro embryotoxicity and mode of antibacterial mechanistic study of gold and copper nanoparticles synthesized from Angelica keiskei (Miq.) Koidz. leaves extract. Saudi J Biol Sci 2022; 29:2552-2563. [PMID: 35531254 PMCID: PMC9072899 DOI: 10.1016/j.sjbs.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
The present study demonstrated the in vitro embryotoxicity assessment of gold nanoparticles (AuNPs) and copper nanoparticles (CuNPs) prepared from the leaves extract of Angelica keiskei (Miq.) Koidz. and addressed their mode of antibacterial mechanisms. Both AuNPs and CuNPs were rapidly synthesized and the formations were observed within 1 h and 24 h, respectively. Further the morphological images of the nanoparticles were confirmed through transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The high-resolution X-ray diffraction (HR-XRD) analysis of the biosynthesized AuNPs and CuNPs were matched with joint committee on powder diffraction standards (JCPDS) file no of 04-0784 and 89-5899, respectively. A strong prominent Au and Cu signals were observed through energy dispersive spectroscopy (EDS) analysis. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed the responsible phytochemicals for the synthesis of AuNPs and CuNPs. In order to assess the toxic effects of AuNPs and CuNPs, bactericidal activity was performed against few of the test pathogens in which the effective inhibition was observed against Gram-negative bacteria than the Gram-positive bacteria. The mode of action and interaction of nanoparticles were performed on the bacterial pathogens and the results concluded that the interaction of nanoparticles initially initiated on the surface of the cell wall adherence followed by ruptured the cells and caused the cell death. In addition to the antibacterial activity, in vitro embryotoxicity studies were performed against zebrafish embryos and the results confirmed that 200 µg/ml concentration of AuNPs showed the embryotoxicity, whereas 2 µg/ml of CuNPs resulted the embryotoxicity. Furthermore, the morphological anomalies of zebrafish embryos revealed the toxic nature of the synthesized nanoparticles.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Glenn M Young
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
42
|
Zhang F, Lv X, Jia H, Huang C, Wei J, Ding Z, Wang F, Wang J. Toxicity of the novel fungicide oxathiapiprolin to Chlorella vulgaris: Assessments at different levels of biological organization. CHEMOSPHERE 2022; 291:132752. [PMID: 34736937 DOI: 10.1016/j.chemosphere.2021.132752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Oxathiapiprolin (Otp) is the first successful oxysterol-binding protein (OSBP) inhibitor in oomycete control. It is regarded as a significant milestone in the history of fungicide discoveries and has vast application prospects. There is little available information on the ecotoxicity of Otp to aquatic organisms. In this study, we evaluated the toxic effects of Otp in the Chlorella vulgaris (C. vulgaris). The results revealed the acute toxicity of Otp to C. vulgaris, with a 96-h median effective concentration for growth inhibition of 0.74 mg/L. When algal cells were exposed to 0.5 and 1.5 mg/L Otp, their chlorophyll and carotenoid contents dropped dramatically. As suggested by the significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and the remarkable changes in the activity of a series of antioxidant enzymes, Otp induces production of ROS, resulting in oxidative damage. In addition, Otp can damage cell structures and could destroy membrane integrity. Finally, the changes in endogenous substances indicated that Otp can perturb energy metabolism and photosynthesis in C. vulgaris cells. The experimental results suggest that Otp can have toxic effects on algal cells by disturbing photosynthesis and causing oxidative damage and abnormal energy metabolism in C. vulgaris cells.
Collapse
Affiliation(s)
- Fengwen Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Xiaolin Lv
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Haijiang Jia
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, PR China
| | - Chongjun Huang
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, PR China
| | - Jianyu Wei
- China Tobacco Guangxi Industrial Co., Ltd., Nanning, 530001, PR China
| | - Zhonglin Ding
- Guizhou Tobacco Company Qiannan Prefecture Company, Qiannan, 558000, PR China
| | - Fenglong Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China
| | - Jie Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, 266101, PR China.
| |
Collapse
|
43
|
Su Q, Zheng J, Xi J, Yang J, Wang L, Xiong D. Evaluation of the acute toxic response induced by triazophos to the non-target green algae Chlorella pyrenoidosa. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105036. [PMID: 35249646 DOI: 10.1016/j.pestbp.2022.105036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/22/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Residues of triazophos in aquatic ecosystems due to extensive use for controlling pests in agriculture has became worldwide concern, while the toxic response of triazophos on the non-target green algae in aquatic environment is not well studied. Therefore, the acute (96 h) toxic effects of 1 and 10 mg/L triazophos on green algae Chlorella pyrenoidosa were evaluated in present study. The results showed that the growth was notably inhibited when treated with triazophos and the 96 h-EC50 (median inhibition concentration) were 12.79 mg/L. The content of photosynthetic pigments (including chl a, chl b, total-chl and carotinoids) clearly decreased under two treatments after 48 h and 96 h with exception for the values at 48 h exposure in 1 mg/L treatment. In addition, the transcript abundance of photosynthesis-related genes (psbA, psbC and rbcL) showed obvious decrease in above two treatments after exposure 96 h to triazophos. In response to 10 mg/L triazophos treatment, the morphology of thylakoid chloroplast of algal cells were obviously damaged. It was also found that starch granules increased with down-regulation of atpB gene expression in 10 mg/L treatment, which suggests that triazophos may inhibit the energy metabolism of C. pyrenoidosa. Moreover, the algal growth inhibition was along with the increase of intracellular reactive oxygen species (ROS), activity of antioxidant enzymes and malondialdehyde content indicating oxidative damage and lipid peroxidation in the algal cells. Our findings reveal that triazophos has potential toxicity and environmental risks to one of the primary producers green algae.
Collapse
Affiliation(s)
- Qi Su
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Zheng
- Shaanxi Environmental Investigation and Assessment Center, Xi'an, Shaanxi 710054, China
| | - Jiejun Xi
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Yang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dongmei Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Ahmad A, Hashmi SS, Palma JM, Corpas FJ. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. CHEMOSPHERE 2022; 290:133329. [PMID: 34922969 DOI: 10.1016/j.chemosphere.2021.133329] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 05/10/2023]
Abstract
Nanotechnology is a research area that has experienced tremendous development given the enormous potential of nanoparticles (NPs) to influence almost all industries and conventional processes. NPs have been extensively used in agriculture to improve plant physiology, production, and nutritional values of plant-based products. The large surface area and small size are some of the desired attributes for NPs that can substantially ameliorate plants' physiological processes, thereby improving crop production. Nevertheless, the results derived from such research have not always been positive as NPs have been shown, in some cases, to negatively affect plants due to their potentially toxic nature. These toxic effects depend upon the size, concentration, nature, zeta potential, and shape of nanoparticles, as well as the used plant species. The most common response of plants under NPs toxicity is the activation of antioxidant systems and the production of secondary metabolites. The mitigation of such NPs-induced stress highly varies depending on the amount of NPs applied to the plant growth stage and the environmental conditions. On the contrary, higher photosynthetic rates, higher chlorophyll, and proline content, improved homeostasis, hormonal balance, and nutrient assimilation are the favorable physiological changes after NPs applications. Alternatively, NPs do not always exhibit positive or negative impacts on plants, and no physiological influences are sometimes observed. Considering such diversity of responses after the use of NPs on plants, this review summarizes the progress made in nanotechnology on the influence of different NPs in plant physiology through the use of indexes like seed germination, root and shoot morphology, photosynthesis, and their impact when used as carriers of cell signaling molecules such as nitric oxide (NO). Understanding the intimate dynamics of nanoparticle toxicity in plants can prove to be fruitful for the development of areas like agronomy, horticulture, plant pathology, plant physiology, etc. That, in return, can assist to ensure agricultural sustainability. Similarly, this may also help to pave the way to combat the drastic climate change and satisfy growing food demands for the ever-increasing world population. Further studies on molecular and genetic levels can certainly broaden the current understanding of NPs-plant interactions and devise the respective mitigation strategies for environmental safety.
Collapse
Affiliation(s)
- Ali Ahmad
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain.
| | - Syed Salman Hashmi
- Department of Biotechnology, Quaid I Azam University, Islamabad, 45320, Pakistan.
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain.
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain.
| |
Collapse
|
45
|
Kailasam S, Sundaramanickam A, Tamilvanan R, Kanth SV. Macrophytic waste optimization by synthesis of silver nanoparticles and exploring their agro-fungicidal activity. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. CHEMOSPHERE 2022; 288:132533. [PMID: 34655646 DOI: 10.1016/j.chemosphere.2021.132533] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The unprecedented setbacks and environmental complications, faced by global agro-farming industry, have led to the advent of nanotechnology in agriculture, which has been recognized as a novel and innovative approach in development of sustainable farming practices. The agricultural regimen is the "head honcho" of the world, however presently certain approaches have been imposing grave danger to the environment and human civilization. The nano-farming paradigm has successfully elevated the growth and development of plants, parallel to the production, quality, germination/transpiration index, photosynthetic machinery, genetic progression, and so on. This has optimized the traditional farming into precision farming, utilising nano-based sensors and nanobionics, smart delivery tools, nanotech facets in plant disease management, nanofertilizers, enhancement of plant adaptive potential to external stress, role in bioenergy conservation and so on. These applications portray nanorevolution as "the big cheese" of global agriculture, mitigating the bottlenecks of conventional practices. Besides the applications of nanotechnology, the review identifies the limitations, like possible harmful impact on environment, mankind and plants, as the "Achilles heel" in agro-industry, aiming to establish its defined role in agriculture, while simultaneously considering the risks, in order to resolve them, thus abiding by "technology-yes, but safety-must". The authors aim to provide a significant opportunity to the nanotech researchers, Botanists and environmentalists, to promote judicial use of nanoparticles and establish a secure and safe environment.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| |
Collapse
|
47
|
Chahardoli A, Sharifan H, Karimi N, Kakavand SN. Uptake, translocation, phytotoxicity, and hormetic effects of titanium dioxide nanoparticles (TiO 2NPs) in Nigella arvensis L. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151222. [PMID: 34715233 DOI: 10.1016/j.scitotenv.2021.151222] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The extensive application of titanium dioxide nanoparticles (TiO2NPs) in agro-industrial practices leads to their high accumulation in the environment or agricultural soils. However, their threshold and ecotoxicological impacts on plants are still poorly understood. In this study, the hormetic effects of TiO2NPs at a concentration range of 0-2500 mg/L on the growth, and biochemical and physiological behaviors of Nigella arvensis in a hydroponic system were examined for three weeks. The translocation of TiO2NPs in plant tissues was characterized through scanning and transmission electron microscopy (SEM and TEM). The bioaccumulation of total titanium (Ti) was quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Briefly, the elongation of roots and shoots and the total biomass growth were significantly promoted at 100 mg/L TiO2NPs. As the results indicated, TiO2NPs had a hormesis effect on the proline content, i.e., a stimulating effect at the low concentrations of 50 and 100 mg/L and an inhibiting effect in the highest concentration of 2500 mg/L. A biphasic dose-response was observed against TiO2NPs in shoot soluble sugar and protein contents. The inhibitory effects were detected at ≥1000 mg/L TiO2NPs, where the synthesis of chlorophylls and carotenoid was reduced. At 1000 mg/ L, TiO2NPs significantly promoted the cellular H2O2 generation, and increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT). Furthermore, it enhanced the total antioxidant content (TAC), total iridoid content (TIC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. Overall, the study revealed the physiological and biochemical alterations in a medicinal plant affected by TiO2NPs, which can help to use these NPs beneficially by eliminating their harmful effects.
Collapse
Affiliation(s)
- Azam Chahardoli
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Hamidreza Sharifan
- Department of Natural Science, Albany State University, Albany, GA 31705, USA
| | - Naser Karimi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Shiva Najafi Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
48
|
Wang Y, Gao C, Qu Z, Li M. The combined toxicity of binary mixtures of antibiotics against the cyanobacterium Microcystis is dose-dependent: insight from a theoretical nonlinear combined toxicity assessment method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11612-11624. [PMID: 34537942 DOI: 10.1007/s11356-021-16594-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The entry of antibiotics into aquatic ecosystems has a serious impact. Antibiotics usually exist as mixtures in natural water bodies. Therefore, it is particularly important to evaluate the mixed toxicity of antibiotic mixtures. The study of the combined toxicity of binary mixtures of antibiotics is the basis for exploring the mixed toxicity of multiple antibiotics. In this investigation, Microcystis aeruginosa (M. aeruginosa) was used as the test organism, and a theoretical nonlinear combined toxicity assessment method was adopted to evaluate the effects of binary mixtures of antibiotics consisting of tetracycline (TC), sulfadiazine (SD), and sulfamethoxazole (SMX) on cell growth, enzymatic activity, and gene expression. The median lethal concentrations of TC, SD, and SMX to M. aeruginosa were 0.52 mg L-1, 1.65 mg L-1, and 0.71 mg L-1, respectively. The results from the theoretical nonlinear combined toxicity assessment method showed that SD + TC was synergistic at low concentrations and antagonistic at high concentrations, while the combinations of SMX + SD and SMX + TC were synergistic. The determination of enzymatic activity and gene expression indicated that the antibiotics could inhibit the growth of M. aeruginosa by destroying the cell membrane structure, inhibiting photosynthesis, impeding the cell division process and the electron transfer process, and destroying the molecular structure of proteins and DNA. Different combinations of antibiotics have different degrees of damage to the antioxidant system and cell membrane self-repair function of M. aeruginosa, which are the reasons for the different combined toxicity effects.
Collapse
Affiliation(s)
- Yeyong Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Cheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Zhi Qu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
49
|
Bapat MS, Singh H, Shukla SK, Singh PP, Vo DVN, Yadav A, Goyal A, Sharma A, Kumar D. Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint. CHEMOSPHERE 2022; 286:131761. [PMID: 34375828 DOI: 10.1016/j.chemosphere.2021.131761] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The current method of agriculture entails the usage of excessive amounts of pesticides and fertilizers. The blatant use of conventional pesticides and fertilizers over several decades has led to their bioaccumulation with adverse effects on soil biodiversity and the development of resistance by pests. With the decline in clinically useful antibiotics and increase in multi drug resistant microbes, it is imperative to develop new and effective antimicrobial therapies. Growing awareness and demand for efficacious biorational pesticides are on the rise. Silver nanoparticles are widely known antimicrobials and have been in use for several purposes for a long time. This work reviews the implications of applying silver nanoparticles in agriculture and their possible consequences. The physiological and biochemical changes in plants due to the uptake of silver nanoparticles as a consequence of its morphology, capping biomolecules and method of application are comprehensively discussed in this review article. Studies on tolerance levels or stress due to silver nanoparticles by variation in concentration/doses on diverse flora and fauna are also analyzed here. Further, phytotoxicity and genotoxicity due to the metal as well as its transformation in soil, water and sludge are taken into account. We also gauge the potential of biogenic silver nanoparticles-viable antimicrobial agents for enhanced applications in agriculture as biopesticides.
Collapse
Affiliation(s)
- Malini S Bapat
- Cummins College of Engineering for Women, Affiliated to Savitribai Phule Pune University, Pune, 411052, India.
| | - Hema Singh
- Defence Institute of Advanced Technology, Girinagar, Pune, 411025, India
| | - Sudheesh K Shukla
- Department of Biomedical Engineering, School of Biological Engineering and Life Sciences, Shobhit University, Meerut, 250110, India
| | | | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Alpa Yadav
- Department of Applied Chemistry, School of Vocational Studies & Applied Sciences, Gautam Budha University, Greater Noida, Uttar Pradesh, 201308, India
| | - Abhineet Goyal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ajit Sharma
- School of Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
50
|
Kannaujia R, Singh P, Prasad V, Pandey V. Evaluating impacts of biogenic silver nanoparticles and ethylenediurea on wheat (Triticum aestivum L.) against ozone-induced damages. ENVIRONMENTAL RESEARCH 2022; 203:111857. [PMID: 34400164 DOI: 10.1016/j.envres.2021.111857] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 05/11/2023]
Abstract
Tropospheric ozone (O3) is a phytotoxic pollutant that leads to a reduction in crop yield. Nanotechnology offers promising solutions to stem such yield losses against abiotic stresses. Silver nanoparticles are major nanomaterials used in consumer products however, their impact on crops under abiotic stress is limited. In this study, we evaluated the anti-ozonant efficacy of biogenic silver nanoparticles (B-AgNPs) and compared them with a model anti-ozonant ethylenediurea (EDU) against ozone phyto-toxicity. Growth, physiology, antioxidant defense, and yield parameters in two wheat cultivars (HD-2967 & DBW-17), treated with B-AgNPs (25 mg/L and 50 mg/L) and EDU (150 mg/L and 300 mg/L), were studied at both vegetative and reproductive stages. During the experimental period, the average ambient ozone concentration and accumulated dose of ozone over a threshold of 40 ppb (AOT40) (8 h day-1) were found to be 60 ppb and 6 ppm h, respectively, which were sufficient to cause ozone-induced phyto-toxicity in wheat. Growth and yield for B-AgNPs as well as EDU-treated plants were significantly higher in both the tested cultivars over control ones. However, 25 mg/L B-AgNPs treatment showed a more pronounced effect in terms of yield attributes and its lower accumulation in grains for both cultivars. DBW-17 cultivar responded better with B-AgNPs and EDU treatments as compared to HD-2967. Meanwhile, foliar exposure of B-AgNPs (dose; 25 mg/L) significantly enhanced grain weight plant-1, thousand-grain weight, and harvest index by 54.22 %, 29.46 %, and 14.21 %, respectively in DBW-17, when compared to control. B-AgNPs could enhance ozone tolerance in wheat by increasing biochemical and physiological responses. It is concluded that B-AgNPs at optimum concentrations were as effective as EDU, hence could be a promising ozone protectant for wheat.
Collapse
Affiliation(s)
- Rekha Kannaujia
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India; Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, UP, India
| | - Pratiksha Singh
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India
| | - Vivek Prasad
- Molecular Plant Virology Lab, Department of Botany, University of Lucknow, Lucknow, 226007, UP, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, UP, India.
| |
Collapse
|