1
|
Narciso A, Grenni P, Spataro F, De Carolis C, Rauseo J, Patrolecco L, Garbini GL, Rolando L, Iannelli MA, Bustamante MA, Alvarez-Alonso C, Barra Caracciolo A. Effects of sulfamethoxazole and copper on the natural microbial community from a fertilized soil. Appl Microbiol Biotechnol 2024; 108:516. [PMID: 39540947 PMCID: PMC11564247 DOI: 10.1007/s00253-024-13324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Cattle manure or its digestate, which often contains antibiotic residues, can be used as an organic fertilizer and copper (Cu) as a fungicide in agriculture. Consequently, both antibiotics and Cu are considered soil contaminants. In this work, microcosms were performed with soil amended with either manure or digestate with Cu and an antibiotic (sulfamethoxazole, SMX) co-presence and the planting of Lactuca sativa. After the addition of the organic amendments, a prompt increase in the microbial activity and at the same time of the sul1 and intI1 genes was observed, although ARGs generally decreased over time. In the amended and spiked microcosms, the microbial community was able to remove more than 99% of SMX in 36 days and the antibiotic did not bioaccumulate in the lettuce. Interestingly, where Cu and SMX were co-present, ARGs (particularly sul2) increased, showing how copper had a strong effect on resistance persistence in the soil. Copper also had a detrimental effect on the plant-microbiome system, affecting plant biomass and microbial activity in all conditions except in a digestate presence. When adding digestate microbial activity, biodiversity and lettuce biomass increased, with or without copper present. Not only did the microbial community favour plant growth, but lettuce also positively influenced its composition by increasing bacterial diversity and classes (e.g., Alphaproteobacteria) and genera (e.g., Bacillus), thus indicating a good-quality soil. KEY POINTS: • Cattle digestate promoted the highest microbial activity, diversity, and plant growth • Cattle digestate counteracted detrimental contaminant effects • Cu presence promoted antibiotic cross-resistance in soil.
Collapse
Affiliation(s)
- Alessandra Narciso
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
- Department of Ecological and Biological Sciences, Tuscia University, 01100, Viterbo, Italy
| | - Paola Grenni
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesca Spataro
- National Biodiversity Future Center (NBFC), Palermo, Italy.
- Institute of Polar Sciences-National Research Council (ISP-CNR), Montelibretti, 00010, Rome, Italy.
| | - Chiara De Carolis
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
- Department of Environmental Biology, Sapienza University of Rome, 00185, Rome, Italy
- Institute of Agricultural Biology and Biotechnology, National Research Council (IBBA-CNR), Montelibretti, 00010, Rome, Italy
| | - Jasmin Rauseo
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute of Polar Sciences-National Research Council (ISP-CNR), Montelibretti, 00010, Rome, Italy
| | - Luisa Patrolecco
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Institute of Polar Sciences-National Research Council (ISP-CNR), Montelibretti, 00010, Rome, Italy
| | - Gian Luigi Garbini
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
| | - Ludovica Rolando
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
| | | | - Maria Angeles Bustamante
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Orihuela, 03312, Alicante, Spain
| | - Cristina Alvarez-Alonso
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Orihuela, 03312, Alicante, Spain
| | - Anna Barra Caracciolo
- Water Research Institute, National Research Council (IRSA-CNR), Montelibretti, 00010, Rome, Italy
| |
Collapse
|
2
|
Khairy T, Amin DH, Salama HM, Elkholy IMA, Elnakib M, Gebreel HM, Sayed HAE. Antibacterial activity of green synthesized copper oxide nanoparticles against multidrug-resistant bacteria. Sci Rep 2024; 14:25020. [PMID: 39443504 PMCID: PMC11499942 DOI: 10.1038/s41598-024-75147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Using plant extracts in the green synthesis of nanoparticles has become an environmentally acceptable approach. In our study, copper oxide nanoparticles (CuO NPs) were synthesized using ethanolic extracts of Azadirachta indica and Simmondsia chinensis. CuO NP formation was confirmed by the change in color and by UV‒visible spectroscopy (CuO NPs peaked at a wavelength of 344 nm). TEM images confirmed the semispherical shape of the CuO NPs, with particle sizes ranging from 30.9 to 10.7 nm. The antibacterial activity of these NPs was evaluated by using the agar diffusion method against clinical isolates, including methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Pseudomonas aeruginosa, Acinetobacter spp., Klebsiella pneumoniae, and Stenotrophomonas maltophilia. The minimum inhibitory concentration (MIC) of CuO NPs ranged from 62.5 to 125 µg/ml. In contrast, the antioxidant activity and antibiofilm activity of CuO NPs ranged from 31.1 to 92.2% at 125-500 µg/ml and 62.2-95%, respectively, at 125 -62.5 µg/ml. Our results confirmed that CuO NPs had IC50s of 383.41 ± 3.4 and 402.73 ± 1.86 at 250 µg/mL against the HBF4 cell line. Molecular docking studies with CuO NPs suggested that penicillin-binding protein 4 (PBP4) and beta-lactamase proteins (OXA-48) strongly bind to S. aureus and K. pneumoniae, respectively, with CuO NPs. Our study confirms the promising use of CuO NPs in treating pathogenic bacteria and that CuO NPs could be possible alternative antibiotics. This study supports the pharmaceutical and healthcare sectors in Egypt and worldwide.
Collapse
Affiliation(s)
- Toka Khairy
- Department of Microbiology, Faculty of Science, Ain Shams University, El- Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt.
| | - Dina Hatem Amin
- Department of Microbiology, Faculty of Science, Ain Shams University, El- Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Hanaa Mohamed Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egypt
| | - Iman Mohamed Amin Elkholy
- Ain Shams Specialized Hospital, Ain Shams University, El-Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Mostafa Elnakib
- Medical Microbiology and Immunology, Military Medical Academy, Ehsan Abdelkodos Street, Manshyt Elbakry, Ciro, Egypt
| | - Hassan Mahmoud Gebreel
- Department of Microbiology, Faculty of Science, Ain Shams University, El- Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| | - Hayam Abd Elnabi Sayed
- Department of Microbiology, Faculty of Science, Ain Shams University, El- Khalyfa El-Mamoun Street, Abbasya, Cairo, Egypt
| |
Collapse
|
3
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. A Review on Bioflocculant-Synthesized Copper Nanoparticles: Characterization and Application in Wastewater Treatment. Bioengineering (Basel) 2024; 11:1007. [PMID: 39451384 PMCID: PMC11504074 DOI: 10.3390/bioengineering11101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Copper nanoparticles (CuNPs) are tiny materials with special features such as high electric conductivity, catalytic activity, antimicrobial activity, and optical activity. Published reports demonstrate their utilization in various fields, including biomedical, agricultural, environmental, wastewater treatment, and sensor fields. CuNPs can be produced utilizing traditional procedures; nevertheless, such procedures have restrictions like excessive consumption of energy, low production yields, and the utilization of detrimental substances. Thus, the adoption of environmentally approachable "green" approaches for copper nanoparticle synthesis is gaining popularity. These approaches involve employing plants, bacteria, and fungi. Nonetheless, there is a scarcity of data regarding the application of microbial bioflocculants in the synthesis of copper NPs. Therefore, this review emphasizes copper NP production using microbial flocculants, which offer economic benefits and are sustainable and harmless. The review also provides a characterization of the synthesized copper nanoparticles, employing numerous analytical tools to determine their compositional, morphological, and topographical features. It focuses on scientific advances from January 2015 to December 2023 and emphasizes the use of synthesized copper NPs in wastewater treatment.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| |
Collapse
|
4
|
Mohamed SH, Othman BA, Abd-Elhalim BT, Seada MNA. Copper nanoparticles biosynthesis by Priestia megaterium and its application as antibacterial and antitumor agents. Sci Rep 2024; 14:23615. [PMID: 39384865 PMCID: PMC11464900 DOI: 10.1038/s41598-024-72598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/09/2024] [Indexed: 10/11/2024] Open
Abstract
The growth of material science and technology places high importance on creating better processes for synthesizing copper nanoparticles. Thus, an easy, ecological, and benign process for producing copper nanoparticles (CuNPs) has been developed using Priestia sp. bacteria utilizing a variety of low-cost agro-industrial wastes and byproducts. The biosynthesis of CuNPs was conducted using glucose medium and copper ions salt solution, then it was replaced by utilizing low-cost agro-industrial wastes. UV-visible spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), High-resolution transmission electron microscope (HR-TEM), Attenuated Total Reflectance and Fourier transform infrared (ATR-FTIR), and zeta potential were used to characterize the biosynthesized CuNPs. The cytotoxicity of CuNPs using Vero -CCL-81 cell lines, and antibacterial and antitumor properties using human colon epithelial colorectal adenocarcinoma Caco-2-HTB-37 cell lines were assessed. The UV-visible and DLS studies revealed CuNPs formation, with a maximum concentration of 6.19 ppm after 48 h, as indicated by a 0.58 Surface plasmon resonance (SPR) within 450 nm and 57.73 nm particle size. The 16S rRNA gene analysis revealed that Priestia sp. isolate is closely related to Priestia megaterium and has been deposited in the NCBI GenBank with accession number AMD 2024. The biosynthesis with various agro-industrial wastes indicated blackstrap sugar cane molasses being the most effective for reducing CuNPs size to 3.12 nm owing to various reducing and stabilizing active compounds. The CuNPs were free of contaminants, with a sphere-shaped structure and a cytotoxicity assessment with an IC50 of 367.27 μg/mL. The antibacterial activity exhibited by the most susceptible bacteria were Bacillus cereus ATCC 11788 and Staphylococcus aureus ATCC 6538 with inhibition zones of 26.0 mm and 28.0 mm, respectively. The antitumor effect showed an IC50 dose of 175.36 μg/mL. Based on the findings, the current work sought to lower product costs and provide a practical solution to the environmental contamination issues brought on by the buildup of agricultural wastes. In addition, the obtained CuNPs could be applied in many fields such as pharmaceuticals, water purification, and agricultural applications as future aspects.
Collapse
Affiliation(s)
- Salma H Mohamed
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, PO Box 68, Cairo, 11241, Egypt
| | - Badawi A Othman
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, PO Box 68, Cairo, 11241, Egypt
| | - Basma T Abd-Elhalim
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, PO Box 68, Cairo, 11241, Egypt.
| | - Mohammed N Abou Seada
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, PO Box 68, Cairo, 11241, Egypt
| |
Collapse
|
5
|
Devaraji M, Thanikachalam PV, Elumalai K. The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:80-99. [PMID: 39416693 PMCID: PMC11446360 DOI: 10.1016/j.biotno.2024.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology is a modern scientific discipline that uses nanoparticles of metals like copper, silver, gold, platinum, and zinc for various applications. Copper oxide nanoparticles (CuONPs) are effective in biomedical settings, such as killing bacteria, speeding up reactions, stopping cancer cells, and coating surfaces. These inorganic nanostructures have a longer shelf life than their organic counterparts and are chemically inert and thermally stable. However, commercial synthesis of NPs often involves harmful byproducts and hazardous chemicals. Green synthesis for CuONPs offers numerous benefits, including being clean, harmless, economical, and environmentally friendly. Using naturally occurring organisms like bacteria, yeast, fungi, algae, and plants can make CuONPs more environmentally friendly. CuONPs are expected to be used in nanomedicine due to their potent antimicrobial properties and disinfecting agents for infectious diseases. This comprehensive review looks to evaluate research articles published in the last ten years that investigate the antioxidant, anticancer, antibacterial, wound healing, dental application and catalytic properties of copper nanoparticles generated using biological processes. Utilising the scientific approach of large-scale data analytics. However, their toxic effects on vertebrates and invertebrates raise concerns about their use for diagnostic and therapeutic purposes. Therefore, biocompatibility and non-toxicity are crucial for selecting nanoparticles for clinical research.
Collapse
Affiliation(s)
- Mahalakshmi Devaraji
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Punniyakoti V. Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthikeyan Elumalai
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
6
|
Thatyana M, Dube NP, Kemboi D, Manicum ALE, Mokgalaka-Fleischmann NS, Tembu JV. Advances in Phytonanotechnology: A Plant-Mediated Green Synthesis of Metal Nanoparticles Using Phyllanthus Plant Extracts and Their Antimicrobial and Anticancer Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2616. [PMID: 37836257 PMCID: PMC10574544 DOI: 10.3390/nano13192616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
Nanoparticles and nanotechnology developments continue to advance the livelihood of humankind. However, health challenges due to microorganisms and cancerous cells continue to threaten many people's lives globally. Therefore, new technological interventions are of great importance. The phytochemicals present in medicinal plants are suggested as biocompatible, cost-effective, and regenerative sources that can be utilized for the green synthesis of nanoparticles. Different plant extracts with various phytochemical constituents can form nanoparticles with specific shapes, sizes, and optical properties. This review focuses on advances in green nanotechnology and provides details on reliable synthetic routes toward medically and biocompatible relevant metallic nanoparticles. We cover a wide range of applications that use phytonanoparticles with an in-depth look at what makes these materials interesting. The study also provides details of the literature on the interventions made in phytonanotechnology for the production of plant-mediated synthesis and capped metallic nanoparticles and their applications in various industries. It was observed that a variety of plants have been well studied, and detailed findings have been reported; however, the study of Phyllanthus is still in its early stages, and more needs to be uncovered.
Collapse
Affiliation(s)
- Maxwell Thatyana
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Arcadia, Pretoria 0001, South Africa; (M.T.); (N.P.D.); (D.K.); (A.-L.E.M.)
| | - Nondumiso P. Dube
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Arcadia, Pretoria 0001, South Africa; (M.T.); (N.P.D.); (D.K.); (A.-L.E.M.)
| | - Douglas Kemboi
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Arcadia, Pretoria 0001, South Africa; (M.T.); (N.P.D.); (D.K.); (A.-L.E.M.)
- Department of Chemistry, University of Kabianga, Kericho 2030, Kenya
| | - Amanda-Lee E. Manicum
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Arcadia, Pretoria 0001, South Africa; (M.T.); (N.P.D.); (D.K.); (A.-L.E.M.)
| | | | - Jacqueline V. Tembu
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Arcadia, Pretoria 0001, South Africa; (M.T.); (N.P.D.); (D.K.); (A.-L.E.M.)
| |
Collapse
|
7
|
Haidri I, Shahid M, Hussain S, Shahzad T, Mahmood F, Hassan MU, Al-Khayri JM, Aldaej MI, Sattar MN, Rezk AAS, Almaghasla MI, Shehata WF. Efficacy of Biogenic Zinc Oxide Nanoparticles in Treating Wastewater for Sustainable Wheat Cultivation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3058. [PMID: 37687305 PMCID: PMC10489834 DOI: 10.3390/plants12173058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity due to overuse and growing water pollution has led to the need for upgrading of conventional methods of wastewater treatment. The biological synthesis of zinc oxide nanoparticles (ZnO-NPs) and their photocatalytic capacity to degrade contaminants offer a promising and environment-friendly approach to municipal wastewater treatment. This technique is advantageous due to its cost-effectiveness, sustainability, and reduction in toxic residual substances. In this study, microbial-synthesized ZnO-NPs were used for the treatment of municipal wastewater. The objective of this study was to evaluate the potential of treated wastewater for wheat crop cultivation. Zinc oxide nanoparticles were synthesized from a pre-isolated bacterial strain, namely Shewanela sp., and characterized using UV-VIS, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) analyses. The results showed that after the treatment of wastewater, the concentration of total dissolve solids (TDS), the chemical oxygen demand (COD), and sulfate and phosphate levels decreased by 76.5%, 57.1%, 81.1%, and 67.4%, respectively. However, the application of treated wastewater increased chlorophyll, carotenoids, and antioxidants by 45%, 40.8%, and 10.5 to 30.6%, respectively. Further, the application of treated wastewater also significantly decreased oxidative stress induced by hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 8.1% and 30.1%, respectively. In conclusion, biosynthesized ZnO-NPs could be an important choice to treat municipal wastewater and to improve wheat productivity.
Collapse
Affiliation(s)
- Irfan Haidri
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan; (I.H.); (S.H.); (T.S.)
| | - Muhammad Shahid
- Department of Bioinformatics & Biotechnology, Government College University, Faisalabad 38040, Pakistan;
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan; (I.H.); (S.H.); (T.S.)
| | - Tanvir Shahzad
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan; (I.H.); (S.H.); (T.S.)
| | - Faisal Mahmood
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan; (I.H.); (S.H.); (T.S.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Jameel Mohammed Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (A.A.-S.R.); (W.F.S.)
| | - Mohammed Ibrahim Aldaej
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (A.A.-S.R.); (W.F.S.)
| | - Muhammad Naeem Sattar
- Central Laboratories, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia;
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (A.A.-S.R.); (W.F.S.)
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.I.A.); (A.A.-S.R.); (W.F.S.)
- Plant Production Department, College of Environmental Agricultural Sciences, Arish University, North Sinai P.O. Box 45511, Egypt
| |
Collapse
|
8
|
El-Shenawy FA, El-Sherbeny EME, Kassem S. Efficacy of zinc oxide and copper oxide nanoparticles on virulence genes of avian pathogenic E. coli (APEC) in broilers. BMC Vet Res 2023; 19:108. [PMID: 37542317 PMCID: PMC10401765 DOI: 10.1186/s12917-023-03643-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 07/12/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Colibacillosis is one of the broilers' most dominant bacterial diseases, either as a primary or a secondary infection. As E. coli antimicrobial drug resistance is rising; there is a need to develop new approaches to its control. In light of this, a comparative study of the in-vitro antibacterial activity of Arabic gum stabilized zinc and copper nanoparticles (AG-ZnNPs and AG-CuNPs) against PCR-identified field avian pathogenic E. coli (APEC) strains and virulence genes (ibeA, hlyA, iss, pap C and ompA) was applied to study the therapeutic effect of zinc and copper nanoparticles to be used as an antibiotic alternative (Nanobiotic). Furthermore, the in-vivo effects of CuNPs were evaluated. Additionally, the CuNPs liver and muscle residues with or without infection were examined. The eighty broilers were divided into four groups; G1: negative control, G2: infected control with E. coli O17, G3: non-infected treated (AG-CuNPs 50 mg/kg body weight), and G4: infected treated (AG-CuNPs 50 mg/kg body weight). AG-CuNPs treatment was given to broilers for five days in drinking water. RESULTS E. coli was isolated from diseased broilers at an average incidence rate of 20% from intestinal and liver samples. All identified serotypes (O17, O78, O91, O121, and O159) were resistant to AG-ZnNPs and sensitive to AG-CuNPs. AG-CuNPs minimal inhibitory and bactericidal concentrations (MIC and MBC) for O17 were 7.5 and 60 mg/ml, respectively. Conventional uniplex PCR results showed that strain O17 contained virulence genes (ibeA, hlyA, iss, and papC), where AG-CuNPs significantly reduced the expression of all target genes when examined by Real-time quantitative PCR. Additionally, the bactericidal activity of AG-CuNPs on O17 was 100% at 20 minutes and 40 mg/ml and confirmed by transmission electron microscopy. Furthermore, no mortality was recorded in treated groups compared to G2. Subsequently, no E. coli was re-isolated from the liver in the G4 after treatment. The total protein, albumin, globulin, and lysozyme activity were significantly increased in G4 compared to G2, while the activities of liver enzymes (alanine aminotransferase (ALT), Gamma-glutamyl transferase (GGT), and alkaline phosphatase (ALP)) were markedly decreased in G4 compared to G2. Additionally, uric acid, creatinine, and C-reactive protein levels were decreased in G4 compared to G2. However, the liver enzymes, kidney functions, C-reactive protein levels, and Cu residues were non-significantly changed in G4 compared to G1. CONCLUSION Green synthesized AG-CuNPs are recommended as an effective antimicrobial alternative against APEC strains.
Collapse
Affiliation(s)
- Fawzia A El-Shenawy
- Bacteriology unit, Tanta lab. (AHRI), Animal Health Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Eman M El El-Sherbeny
- Pharmacology unit, Tanta lab. (AHRI), Animal Health Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Samr Kassem
- Nanomaterials research and Synthesis unit, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza, Egypt.
| |
Collapse
|
9
|
das Neves Vasconcellos Brandão IY, Ferreira de Macedo E, Barboza de Souza Silva PH, Fontana Batista A, Graciano Petroni SL, Gonçalves M, Conceição K, de Sousa Trichês E, Batista Tada D, Maass D. Bionanomining of copper-based nanoparticles using pre-processed mine tailings as the precursor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117804. [PMID: 36996570 DOI: 10.1016/j.jenvman.2023.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The bacterial synthesis of copper nanoparticles emerges as an eco-friendly alternative to conventional techniques since it comprises a single-step and bottom-up approach, which leads to stable metal nanoparticles. In this paper, we studied the biosynthesis of Cu-based nanoparticles by Rhodococcus erythropolis ATCC4277 using a pre-processed mining tailing as a precursor. The influence of pulp density and stirring rate on particle size was evaluated using a factor-at-time experimental design. The experiments were carried out in a stirred tank bioreactor for 24 h at 25 °C, wherein 5% (v/v) of bacterial inoculum was employed. The O2 flow rate was maintained at 1.0 L min-1 and the pH at 7.0. Copper nanoparticles (CuNPs), with an average hydrodynamic diameter of 21 ± 1 nm, were synthesized using 25 g.L-1 of mining tailing and a stirring rate of 250 rpm. Aiming to visualize some possible biomedical applications of the as-synthesized CuNPs, their antibacterial activity was evaluated against Escherichia coli and their cytotoxicity was evaluated against Murine Embryonic Fibroblast (MEF) cells. The 7-day extract of CuNPs at 0.1 mg mL-1 resulted in 75% of MEF cell viability. In the direct method, the suspension of CuNPs at 0.1 mg mL-1 resulted in 70% of MEF cell viability. Moreover, the CuNPs at 0.1 mg mL-1 inhibited 60% of E. coli growth. Furthermore, the NPs were evaluated regarding their photocatalytic activity by monitoring the oxidation of methylene blue (MB) dye. The CuNPs synthesized showed rapid oxidation of MB dye, with the degradation of approximately 65% of dye content in 4 h. These results show that the biosynthesis of CuNPs by R. erythropolis using pre-processed mine tailing can be a suitable method to obtain CuNPs from environmental and economical perspectives, resulting in NPs useful for biomedical and photocatalytic applications.
Collapse
Affiliation(s)
| | - Erenilda Ferreira de Macedo
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | | | - Aline Fontana Batista
- Instituto de Aeronáutica e Espaço (IAE), Departamento de Ciência e Tecnologia Aeroespacial (DCTA), Zip-code 12228-904, São José dos Campos, SP, Brazil
| | - Sérgio Luis Graciano Petroni
- Instituto de Aeronáutica e Espaço (IAE), Departamento de Ciência e Tecnologia Aeroespacial (DCTA), Zip-code 12228-904, São José dos Campos, SP, Brazil
| | - Maraisa Gonçalves
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | - Katia Conceição
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | - Eliandra de Sousa Trichês
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | - Dayane Batista Tada
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | - Danielle Maass
- Universidade Federal de São Paulo. Instituto de Ciência e Tecnologia; Departamento de Ciência e Tecnologia, São José dos Campos, SP, Brazil.
| |
Collapse
|
10
|
Luque-Jacobo CM, Cespedes-Loayza AL, Echegaray-Ugarte TS, Cruz-Loayza JL, Cruz I, de Carvalho JC, Goyzueta-Mamani LD. Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications. Molecules 2023; 28:4838. [PMID: 37375393 DOI: 10.3390/molecules28124838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is an innovative field of study that has made significant progress due to its potential versatility and wide range of applications, precisely because of the development of metal nanoparticles such as copper. Nanoparticles are bodies composed of a nanometric cluster of atoms (1-100 nm). Biogenic alternatives have replaced their chemical synthesis due to their environmental friendliness, dependability, sustainability, and low energy demand. This ecofriendly option has medical, pharmaceutical, food, and agricultural applications. When compared to their chemical counterparts, using biological agents, such as micro-organisms and plant extracts, as reducing and stabilizing agents has shown viability and acceptance. Therefore, it is a feasible alternative for rapid synthesis and scaling-up processes. Several research articles on the biogenic synthesis of copper nanoparticles have been published over the past decade. Still, none provided an organized, comprehensive overview of their properties and potential applications. Thus, this systematic review aims to assess research articles published over the past decade regarding the antioxidant, antitumor, antimicrobial, dye removal, and catalytic activities of biogenically synthesized copper nanoparticles using the scientific methodology of big data analytics. Plant extract and micro-organisms (bacteria and fungi) are addressed as biological agents. We intend to assist the scientific community in comprehending and locating helpful information for future research or application development.
Collapse
Affiliation(s)
- Cristina M Luque-Jacobo
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | | | | | | | - Isemar Cruz
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | - Júlio Cesar de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná-Polytechnic Center, Curitiba 81531-980, Brazil
| | - Luis Daniel Goyzueta-Mamani
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n-Umacollo, Arequipa 04000, Peru
| |
Collapse
|
11
|
Talebian S, Shahnavaz B, Nejabat M, Abolhassani Y, Rassouli FB. Bacterial-mediated synthesis and characterization of copper oxide nanoparticles with antibacterial, antioxidant, and anticancer potentials. Front Bioeng Biotechnol 2023; 11:1140010. [PMID: 36949885 PMCID: PMC10025390 DOI: 10.3389/fbioe.2023.1140010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
The application of novel bacterial strains for effective biosynthesis of nanoparticles minimizes negative environmental impact and eliminates challenges of available approaches. In the present study, cell-free extract of Stenotrophomonas sp. BS95. was used for synthesis of copper oxide nanoparticles (CuONPs). Characterization of crude and calcined CuONPs was carried out by UV-vis spectroscopy, X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, zeta potential, dynamic light scattering, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. Afterward, biogenic CuONPs were evaluated for antibacterial, antioxidant, and cytotoxic effects using broth micro-dilution method, DPPH assay and alamarBlue assay, respectively. Finally, molecular mechanisms behind anticancer effects of CuONPs was ascertained by real time PCR. UV-vis absorbance spectra registered surface plasmon resonance peaks at 286 nm and 420 nm for crude and calcined CuONPs, respectively. FTIR spectra exhibited bands associated with organic functional groups of bacterial proteins, confirming capping and functionalization of CuONPs. The average crystallite size of crude and calcined CuONPs was determined as 18.24 and 21.3 nm by XRD, respectively. The average zeta potentials of crude and calcined CuONPs were as -28.57 ± 5.13 and -29.47 ± 4.78 mV, respectively, indicating their high stability. Electron microscopy revealed that crude and calcined CuONPs were roughly spherical particles with an average size of 35.24 ± 4.64 and 43.68 ± 2.31 nm, respectively. Biogenic CuONPs induced antibacterial effects with minimal inhibitory concentrations ranging from 62.5 to 1,000 μg/ml against Gram-negative and Gram-positive strains. The antioxidant activity of crude and calcined CuONPs was found to be 83% ± 2.64% and 78% ± 1.73%, respectively. More intriguingly, CuONPs exerted considerable cytotoxic effects on human colon and gastric adenocarcinoma cells, while induced low toxicity on normal cells. Anticancer effects of biogenic CuONPs were confirmed by significant changes induced in the expression of apoptosis-related genes, including P53, BAX, BCL2 and CCND1. Hence, biosynthesized CuONPs could be considered as potential antimicrobial, antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Seyedehsaba Talebian
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Bahar Shahnavaz
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Nejabat
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Yasaman Abolhassani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Sharma B, Tiwari S, Kumawat KC, Cardinale M. Nano-biofertilizers as bio-emerging strategies for sustainable agriculture development: Potentiality and their limitations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160476. [PMID: 36436627 DOI: 10.1016/j.scitotenv.2022.160476] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/04/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology is a burgeoning revolutionary technology in the 21st century. Climate emergencies caused by natural or anthropogenic activities have tragically consequential repercussions on agricultural output worldwide. Modern cropping systems profoundly rely on synthetic fertilizers to deliver necessary nutrients, yet their prolonged and persistent administration is hazardous to the environment, soil fertility, and nutritional dynamics of the rhizospheric microbiome. By addressing the drawback of physico-chemically synthesized nano-dimensioned fertilizer, this review emphasizes on integrating nanoparticles and biofertilizers conjointly as nano-biofertilizers (NBF) which can safeguard global food security, in light of the population surge. Inoculation with nanoparticles and biofertilizers strengthens plant growth and stress tolerance. However, combined together (NBF), they have emerged as a more economically and environmentally sustainable, highly versatile, and long-lasting agriculture tool. Microbe-based green synthesis using the encapsulation of inorganic nanoparticles of Si, Zn, Cu, Fe, Ni, Ti, and Ag as well as organic materials, including chitosan, cellulose, and starch, to formulate NBFs can eliminate the constraints of conventional fertilizer contamination. The application of NBFs is in its infancy in agriculture, yet it has promising potential for transforming traditional farming techniques into smart agriculture, compared to any of the existing strategies. From this perspective, this review is an attempt to provide a comprehensive understanding of the formulations, fabrication, and characterization of NBFs while unraveling the underlying mechanisms of plant-NBF interactions along with their contribution to climate change-induced biotic and abiotic stress tolerance. We substantially summarize the latest advancements of field applications of NBFs for precision farming. Moreover, we critically revised their applications in agro-ecosystems according to the current literature, while also discussing the bottlenecks and future trends for developing potent NBFs.
Collapse
Affiliation(s)
- Barkha Sharma
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Shalini Tiwari
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Kailash Chand Kumawat
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh 211007, India.
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies - DiSTeBA, University of Salento, SP6 Lecce-Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
13
|
Singh D, Jain D, Rajpurohit D, Jat G, Kushwaha HS, Singh A, Mohanty SR, Al-Sadoon MK, Zaman W, Upadhyay SK. Bacteria assisted green synthesis of copper oxide nanoparticles and their potential applications as antimicrobial agents and plant growth stimulants. Front Chem 2023; 11:1154128. [PMID: 37090246 PMCID: PMC10119401 DOI: 10.3389/fchem.2023.1154128] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) have piqued the interest of agricultural researchers due to their potential application as fungicides, insecticides, and fertilizers. The Serratia sp. ZTB29 strain, which has the NCBI accession number MK773873, was a novel isolate used in this investigation that produced CuO-NPs. This strain can survive concentrations of copper as high as 22.5 mM and can also remove copper by synthesizing pure CuO-NPs. UV-VIS spectroscopy, DLS, Zeta potential, FTIR, TEM, and XRD techniques were used to investigate the pure form of CuO-NPs. The synthesized CuO-NPs were crystalline in nature (average size of 22 nm) with a monoclinic phase according to the XRD pattern. CuO-NPs were found to be polydisperse, spherical, and agglomeration-free. According to TEM and DLS inspection, they ranged in size from 20 to 40 nm, with a typical particle size of 28 nm. CuO-NPs were extremely stable, as demonstrated by their zeta potential of -15.4 mV. The ester (C=O), carboxyl (C=O), amine (NH), thiol (S-H), hydroxyl (OH), alkyne (C-H), and aromatic amine (C-N) groups from bacterial secretion were primarily responsible for reduction and stabilization of CuO-NPs revealed in an FTIR analysis. CuO-NPs at concentrations of 50 μg mL-1 and 200 μg mL-1 displayed antibacterial and antifungal activity against the plant pathogenic bacteria Xanthomonas sp. and pathogenic fungus Alternaria sp., respectively. The results of this investigation support the claims that CuO-NPs can be used as an efficient antimicrobial agent and nano-fertilizer, since, compared to the control and higher concentrations of CuO-NPs (100 mg L-1) considerably improved the growth characteristics of maize plants.
Collapse
Affiliation(s)
- Deepak Singh
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
- *Correspondence: Devendra Jain, ,
| | - Deepak Rajpurohit
- Department of Molecular Biology and Biotechnology, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | - Gajanand Jat
- Department of Soil Science and Agricultural Chemistry, Maharana Pratap University of Agriculture and Technology, Udaipur, India
| | | | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Santosh Ranjan Mohanty
- All India Network Project on Soil Biodiversity-Biofertilizers, ICAR-Indian Institute of Soil Science, Bhopal, India
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sudhir K. Upadhyay
- Department of Environmental Science, V. B. S. Purvanchal University, Jaunpur, India
| |
Collapse
|
14
|
Chand Mali S, Dhaka A, Sharma S, Trivedi R. Review on biogenic synthesis of copper nanoparticles and its potential applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
15
|
Gaba S, Rai AK, Varma A, Prasad R, Goel A. Biocontrol potential of mycogenic copper oxide nanoparticles against Alternaria brassicae. Front Chem 2022; 10:966396. [PMID: 36110132 PMCID: PMC9468977 DOI: 10.3389/fchem.2022.966396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The biological synthesis of nanoparticles using fungal cultures is a promising and novel tool in nano-biotechnology. The potential culture of Trichoderma asperellum (T. asperellum) has been used to synthesize copper oxide nanoparticles (CuO NPs) in the current study. The necrotrophic infection in Brassica species is caused due to a foliar pathogen Alternaria brassicae (A. brassicae). Mycogenic copper oxide nanoparticles (M-CuO NPs) were characterized by spectroscopic and microscopic techniques such as UV-visible spectrophotometry (UV-vis), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antifungal potential of CuO NPs was studied against A. brassicae. M-CuO NPs exhibited a surface plasmon resonance (SPR) at 303 nm, and XRD confirmed the crystalline phase of NPs. FTIR spectra confirmed the stretching of amide bonds, and the carbonyl bond indicated the presence of enzymes in T. asperellum filtrate. SEM and TEM confirmed the spherical shape of M-CuO NPs with an average size of 22 nm. Significant antifungal potential of M-CuO NPs was recorded, as it inhibited the growth of A. brassicae up to 92.9% and 80.3% in supplemented media with C-CuO NPs at 200 ppm dose. Mancozeb and propiconazole inhibited the radial growth up to 38.7% and 44.2%. SEM confirmed the morphological changes in hyphae and affected the sporulation pattern. TEM revealed hardly recognizable organelles, abnormal cytoplasmic distribution, and increased vacuolization, and light microscopy confirmed the conidia with reduced diameter and fewer septa after treatment with both types of NPs. Thus, M-CuO NPs served as a promising alternative to fungicides.
Collapse
Affiliation(s)
- Swati Gaba
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, BR, India
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
16
|
Zeshan A, Abdullah M, Adil MF, Wei D, Noman M, Ahmed T, Sehar S, Ouyang Y, Shamsi IH. Improvement of morpho-physiological, ultrastructural and nutritional profiles in wheat seedlings through astaxanthin nanoparticles alleviating the cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126511. [PMID: 34246522 DOI: 10.1016/j.jhazmat.2021.126511] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/07/2021] [Accepted: 06/22/2021] [Indexed: 05/13/2023]
Abstract
Heavy metal accumulation in arable lands and water bodies has become one of the serious global issues among multitude of food security challenges. In particular, cadmium (Cd) concentration has been increasing substantially in the environment that negatively affects the growth and yield of important agricultural crops, especially wheat (Triticum aestivum L.). No doubt, nanotechnology is a revolutionary science but the comprehension of nanoparticle-plants interaction and its potential alleviatory role against metal stress is still elusive. Here, we investigated the mechanistic role of astaxanthin nanoparticles (AstNPs) in Cd stress amelioration and their interaction with wheat under Cd-spiked conditions. The AstNPs fabrication was confirmed through ultraviolet visible spectroscopy, where the particles showed characteristic peak at 423 nm. However, Fourier transform infrared, X-ray diffraction, scanning electron microscopy and transmission electron microscopy analyses confirmed the presence of stabilized spherical-shaped nanocrystals of AstNPs within the size range of 12.03-30.37 nm. The hydroponic application of AstNPs (100 mg L-1) to Cd-affected wheat plants increased shoot height (59%), shoot dry weight (31%), nitrogen concentration (42%), and phosphorus concentration (26%) as compared to non-treated Cd affected seedlings. Moreover, AstNPs-treated plants showed reduction in acropetal Cd translocation (29%) in contrast to plants treated with Cd only. Under Cd-spiked conditions, AstNPs-treated plants displayed an improved nutrient profile (P, N, K+ and Ca2+) with a relative decrease in Na+ content in comparison with non-treated plants. Interestingly, it was found that AstNPs restricted the translocation of Cd to aerial plant parts by negatively regulating Cd transporter genes (TaHMA2 and TaHMA3), and relieved plants from oxidative burst by activating antioxidant machinery via triggering expressions of TaSOD and TaPOD genes. Consequently, it was observed that the application of AstNPs helped in maintaining the nutrient acquisition and ionic homeostasis in Cd-affected wheat plants, which subsequently improved the physiochemical profiles of plants under Cd-stress. This study suggests that AstNPs plausibly serve as stress stabilizers for plants under heavy metal-polluted environment.
Collapse
Affiliation(s)
- Ali Zeshan
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Abdullah
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Faheem Adil
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Dongming Wei
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, PR China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, PR China
| | - Shafaque Sehar
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China
| | - Younan Ouyang
- China National Rice Research Institute (CNRRI), Fuyang 311400, PR China
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Key Laboratory of Crop Germplasm Resource, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
Mahapatra DM, Satapathy KC, Panda B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149990. [PMID: 34492488 DOI: 10.1016/j.scitotenv.2021.149990] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 05/21/2023]
Abstract
Increased food demands and ceasing nutrient deposits have resulted in a great shortfall between the food supply and demand and would be worse in the years to come. Higher inputs of synthetic fertilizers on lands have resulted in environmental pollution, persistent changes in the soil ecology, and physicochemical conditions. This has greatly decreased the natural soil fertility thereby hindering agricultural productivity, human health, and hygiene. Bio-based resilient nutrient sources as wastewater-derived algae are promising as a complete nutrient for agriculture and have the potential to be used in soilless cultivations. Innovations in nano-fortification and nano-sizing of minerals and algae have the potential to facilitate nutrients bioavailability and efficacy for a multifold increase in productivity. In this context, various options on minerals nanofertilizer application in agricultural food production besides efficient biofertilizer have been investigated. Algal biofertilizer with the nanoscale application has huge prospects for further agriculture productivities and fosters suitable development.
Collapse
Affiliation(s)
- Durga Madhab Mahapatra
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Biological and Ecological Engineering Department, Oregon State University, Corvallis, OR, USA.
| | - Kanhu Charan Satapathy
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Anthropology, Utkal University, Bhubaneswar 751004, Odisha, India.
| | - Bhabatarini Panda
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
18
|
Hesham Fawzy M, Mohamed Mahmoud S, Ahmed Hanafy M, Hassan Bakr M, Mohamed Mahmoud AE, Abdel-Alim Ali M, Sayed Barakat O. Production of Zinc and Copper as Nanoparticles by Green Synthesis Using Pseudomonas fluorescens. Pak J Biol Sci 2021; 24:445-453. [PMID: 34486303 DOI: 10.3923/pjbs.2021.445.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Nanoparticles with a little size to an enormous surface (1-100 nm) have expected clinical, mechanical and agricultural applications. This study aimed to produce nano Zinc Oxide (ZnO) and nano Copper Oxide (CuO) particles by green synthesis. <b>Materials and Methods:</b> Two strains of <i>Pseudomonas fluorescens</i> i.e., PSI and PSII, both cell culture supernatants and cell pellets from the two strains were examined separately in CuSO<sub>4</sub> or ZnSO<sub>4</sub> solutions. The supernatants from both strains produced color changes in both solutions referring to the formation of nano CuO or ZnO particles. The solutions were examined for nano-particle characteristics using UV-spectroscopy, particle size and morphology were tested using a scanning electron microscope and transmission electron microscopy. <b>Results:</b> UV-Vis absorption spectrum of solutions at a wavelength range 200-800 nm exhibits a distinct absorption peak in the region of 238-331 and at 303-366 nm for CuO or ZnO NPs, respectively. Absorption bands and the characteristic Surface Plasmon Resonance (SPR) spectra confirm the existence of CuO and ZnO NPs. SEM analysis micrographs indicated that CuO NPs were formed as spherical particles, while the exact shape of ZnO NPs could be identified as oval aggregates. <b>Conclusion:</b> Changes of color occurred in both solutions of two strains referring to the formation of nano CuO or ZnO particles.
Collapse
|
19
|
Noman M, Ahmed T, Shahid M, Niazi MBK, Qasim M, Kouadri F, Abdulmajeed AM, Alghanem SM, Ahmad N, Zafar M, Ali S. Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112264. [PMID: 33915453 DOI: 10.1016/j.ecoenv.2021.112264] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The negative effects of salinity on plant growth and physiology are well-established, which is one of the major threats to food security in semi-arid and arid regions of the world. The current research focuses on biosynthesis of copper nanoparticles (CuNPs) from a bacterial strain NST2, which was genetically identified as Klebsiella pneumoniae based on taxonomic identity of 16S rRNA gene. The strain was selected for bioprospecting of CuNPs owing to its Cu tolerance potential. The biologically-synthesized CuNPs were confirmed in culture by using ultraviolet visible spectroscopy. The material characteristics of green CuNPs were further investigated by using Fourier transform infrared spectroscopy, X-ray diffractometer, scanning electron microscopy and transmission electron microscopy, where crystallite size was ranged from 22.44 nm to 44.26 nm and particles were stabilized by various functional groups, such as carbonyl and amine groups. When 100 mg kg-1 of green CuNPs were mixed in saline soil in a pot experiment, the maize plants showed increased root and shoot length (43.52% and 44.06%, respectively), fresh weight (46.05% and 51.82%, respectively) and dry weight (47.69% and 30.63%, respectively) in comparison to control maize plants without CuNPs application. Moreover, green CuNPs at their highest treatment level (100 mg kg-1 of soil) counteracted the lipid peroxidation and oxidative damage in maize plants by promoting the activities of antioxidants and demoting the cellular levels of reactive oxygen species and ionic contents of Na+ and Cl-. Conclusively, biogenic CuNPs is an emerging and promising technique, which could replace traditional methods of salinity management in agricultural soils.
Collapse
Affiliation(s)
- Muhammad Noman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Temoor Ahmed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Bilal Khan Niazi
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Fayza Kouadri
- Biology Department, Faculty of Science, Taibah University, AL-Madina AL-Munawarah, Saudi Arabia
| | - Awatif M Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | | | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Mohsin Zafar
- Department of Soil and Environmental Sciences, University of Poonch, Rawalakot, Azad Jammu & Kashmir, Pakistan
| | - Shehbaz Ali
- Department of Bioscience and Technology, Khwaja Farid University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| |
Collapse
|
20
|
Eltarahony M, Abu-Serie M, Hamad H, Zaki S, Abd-El-Haleem D. Unveiling the role of novel biogenic functionalized CuFe hybrid nanocomposites in boosting anticancer, antimicrobial and biosorption activities. Sci Rep 2021; 11:7790. [PMID: 33833365 PMCID: PMC8032780 DOI: 10.1038/s41598-021-87363-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/23/2021] [Indexed: 02/01/2023] Open
Abstract
The quest for eco-friendly and biocompatible nanoparticles (NPs) is an urgent issue in the agenda of the scientific community and applied technology, which compressing synthesis routes. For the first time, a simple route for the biosynthesis of functionalized CuFe-hybrid nanocomposites (FCFNCs) was achieved using Streptomyces cyaneofuscatus through a simultaneous bioreduction strategy of Cu and Fe salts. The suitability of FCFNCs was evaluated medically and environmentally as an anticancer agent, antimicrobial agent and dye bio-sorbent. The physicochemical characteristics of FCFNCs using XRD, EDX, elemental mapping, FTIR, UV-Vis., TEM and ζ-potential confirmed the formation of spheres agglomerated into chains (37 ± 2.2 nm), self-functionalized nanocomposite by proteinaceous moieties with considerable stability (- 26.2 mV). As an anticancer agent, FCFNCs displayed the highest apoptotic impact (> 77.7%) on Caco-2, HepG-2, MCF-7 and PC-3 cancer cells at IC50 ≤ 17.21 μg/mL with the maximum up regulation of p53 and caspase 3 expression and the lowest Ki-67 level, relative to both functionalized CuNPs (FCNPs) and FeNPs (FFNPs). Meanwhile, it maintained the viability of normal human cells by EC100 up to 1999.7 μg/mL. Regarding the antimicrobial activity, FCFNCs offered > 70% growth reduction among wide spectrum prokaryotic and eukaryotic pathogens. Additionally, the synergistic feature of FCFNCs disintegrated the pre-established biofilm and algal growth in a dose-dependent manner. However, as a bio-sorbent, FCFNCs decolorized > 68% of malachite green and congo red dyes (200 mg/L), reflecting considerable remediation efficiency, confirmed by FTIR of FCFNCs- adsorbed dyes and microtoxicity/cytotoxicity of solutions after remediation. This study offers new insights into promising CuFe-hybrid nanocomposites for recruitment in several applications.
Collapse
Affiliation(s)
- Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Marwa Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Sahar Zaki
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Desouky Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
21
|
Gracioso LH, Peña-Bahamonde J, Karolski B, Borrego BB, Perpetuo EA, do Nascimento CAO, Hashiguchi H, Juliano MA, Robles Hernandez FC, Rodrigues DF. Copper mining bacteria: Converting toxic copper ions into a stable single-atom copper. SCIENCE ADVANCES 2021; 7:7/17/eabd9210. [PMID: 33893098 PMCID: PMC8064636 DOI: 10.1126/sciadv.abd9210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The chemical synthesis of monoatomic metallic copper is unfavorable and requires inert or reductive conditions and the use of toxic reagents. Here, we report the environmental extraction and conversion of CuSO4 ions into single-atom zero-valent copper (Cu0) by a copper-resistant bacterium isolated from a copper mine in Brazil. Furthermore, the biosynthetic mechanism of Cu0 production is proposed via proteomics analysis. This microbial conversion is carried out naturally under aerobic conditions eliminating toxic solvents. One of the most advanced commercially available transmission electron microscopy systems on the market (NeoArm) was used to demonstrate the abundant intracellular synthesis of single-atom zero-valent copper by this bacterium. This finding shows that microbes in acid mine drainages can naturally extract metal ions, such as copper, and transform them into a valuable commodity.
Collapse
Affiliation(s)
- Louise Hase Gracioso
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd., 270 km, Cubatão-SP, Brazil
- The Interunits Graduate Program in Biotechnology, University of São Paulo, Lineu Prestes Ave., 2415. São Paulo-SP, Brazil
| | - Janire Peña-Bahamonde
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, USA
| | - Bruno Karolski
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd., 270 km, Cubatão-SP, Brazil
| | - Bruna Bacaro Borrego
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd., 270 km, Cubatão-SP, Brazil
- The Interunits Graduate Program in Biotechnology, University of São Paulo, Lineu Prestes Ave., 2415. São Paulo-SP, Brazil
| | - Elen Aquino Perpetuo
- Environmental Research and Education Center, University of São Paulo, CEPEMA-POLI-USP, Cônego Domênico Rangoni Rd., 270 km, Cubatão-SP, Brazil.
- Institute of Marine Sciences, Federal University of São Paulo, Imar-Unifesp, Carvalho de Mendonça Ave., 144, Santos, São Paulo, Brazil
| | | | | | | | - Francisco C Robles Hernandez
- Mechanical Engineering Technology, Advanced Manufacturing Institute, Materials Science and Engineering, University of Houston, Houston, TX, USA.
| | - Debora Frigi Rodrigues
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
22
|
Bioinspired green synthesis of silver nanoparticles by using a native Bacillus sp. strain AW1-2: Characterization and antifungal activity against Colletotrichum falcatum Went. Enzyme Microb Technol 2021; 144:109745. [PMID: 33541578 DOI: 10.1016/j.enzmictec.2021.109745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
Zero-valent silver nanoparticles (ZV-AgNPs) are known as potential antimicrobials and here we report antifungal activity of ZV-AgNPs against Colletotrichum falcatum Went for the first time. ZV-AgNPs were synthesized by using a native Bacillus sp. strain AW1-2, which was identified through 16S rRNA gene sequence analysis. Biogenic ZV-AgNPs were confirmed by monitoring a characteristic absorption peak of UV-vis spectroscopy that was measured at 447 nm. Further, it was found through FTIR and XRD analysis that ZV-Ag nanocrystals were capped with proteins of bacterial origin and their size ranged from 22.33-41.95 nm. The ultrastructure imaging through scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the morphology of ZV-AgNPs as mono-dispersed spheres and energy dispersive X-ray spectroscopy (EDX) revealed the dominance of silver (84.21 %) in the nano-powder. The ZV-AgNPs significantly inhibited the hyphal growth of Colletotrichum falcatum Went as compared to non-treated control and commercial fungicide both in solid and broth media. The ultrastructure SEM and TEM studies revealed the disrupted hyphal structure and damage to the internal cellular organelles of Colletotrichum falcatum Went treated with 20 μg mL-1 ZV-AgNPs, respectively. It was concluded that green ZV-AgNPs of bacterial origin could be used to formulate a nano-based fungicide to effectively control Colletotrichum falcatum Went, the causal agent of red rot of sugarcane.
Collapse
|
23
|
Ahmed T, Noman M, Luo J, Muhammad S, Shahid M, Ali MA, Zhang M, Li B. Bioengineered chitosan-magnesium nanocomposite: A novel agricultural antimicrobial agent against Acidovorax oryzae and Rhizoctonia solani for sustainable rice production. Int J Biol Macromol 2020; 168:834-845. [PMID: 33242551 DOI: 10.1016/j.ijbiomac.2020.11.148] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
Abstract
Chitosan is a potent biopolymer having promising antimicrobial properties against phytopathogens. Recently, engineered nanomaterials (ENMs) have gained much attention due to their potential application in the plant disease management. In this study, we reported the green synthesis of chitosan-magnesium (CS-Mg) nanocomposite and its antimicrobial activity against two rice pathogens namely Acidovorax oryzae and Rhizoctonia solani for the first time. The green MgO nanoparticles synthesized by using a native Bacillus sp. strain RNT3, were used to fabricate CS-Mg nanocomposite utilizing one-pot synthesis method. The synthesis of CS-Mg nanocomposite was further confirmed by using UV-vis spectroscopy, whereas, FTIR and XRD analysis showed the capping of CS-Mg nanocomposites by different functional groups together with their crystalline structure, respectively. Besides, SEM and TEM images revealed the spherical shape along with the particles size ranging from 29 to 60 nm. Moreover, EDS analysis confirmed the elemental purity of nanocomposite. The CS-Mg nanocomposite showed remarkable antimicrobial activity against A. oryzae and R. solani and significantly inhibited the growth as compared to non-treated control. The ultrastructure studies showed damaged structure of cell wall and internal cellular organelles after treatment with 100 μg mL-1 CS-Mg nanocomposite. The results of this study indicated that CS-Mg nanocomposite-based antimicrobial agents could be considered as promising nanopesticides against phytopathogens in plant disease management.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Sher Muhammad
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Md Arshad Ali
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Muchen Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
24
|
Noman M, Ahmed T, Hussain S, Niazi MBK, Shahid M, Song F. Biogenic copper nanoparticles synthesized by using a copper-resistant strain Shigella flexneri SNT22 reduced the translocation of cadmium from soil to wheat plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123175. [PMID: 32768848 DOI: 10.1016/j.jhazmat.2020.123175] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 05/02/2023]
Abstract
The mechanistic role of green copper nanoparticles (CuNPs) in cadmium (Cd) toxicity alleviation in plants is poorly understood. Here, the CuNPs, synthesized by using a bacterium Shigella flexneri SNT22, were confirmed through UV-vis spectroscopy with a characteristic peak at 334.50 nm. Moreover, FT-IR, XRD, SEM, and TEM techniques revealed that the spherical shaped crystals of CuNPs with a size range of 17.24 nm to 38.03 nm were stabilized by coating proteins. Diff ;erent levels of CuNPs (e.g., 25, 50, and 100 mg kg-1 of soil) were examined in pots having Cd-mixed soil to evaluate their effect on wheat plants in a growth chamber under optimal environmental conditions. Treatment of soil with 100 mg kg-1 of CuNPs increased plant length by 44.4 %, shoot dry weight by 28.26 %, nitrogen contents by 41.60 %, and phosphorus contents by 58.79 %, whereas decreased the acropetal Cd translocation by 49.62 %. An increase in the N, P, K+, Ca2+, K+/Na+, and Ca2+/Na+ contents and decrease in the Na+ concentration in wheat plants treated with CuNPs was also recorded. Overall, the results are valuable to establish a green CuNPs-based approach for sustainable wheat growth in metal-contaminated soils.
Collapse
Affiliation(s)
- Muhammad Noman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Temoor Ahmed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Bilal Khan Niazi
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
25
|
Copper metallic nanoparticles capped with PEGylated PAMAM-G3 dendrimers for the catalytic reduction of low solubility nitroarenes of pharmaceutical interest. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Siddiqi KS, Husen A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review. Biomater Res 2020; 24:11. [PMID: 32514371 PMCID: PMC7268245 DOI: 10.1186/s40824-020-00188-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Since green mode of nanoparticles (NPs) synthesis is simple, advantageous and environment friendly relative to chemical and physical procedures, various plant species have been used to fabricate copper and copper oxide nanoparticles (Cu/CuO-NPs) owing to the presence of phytochemicals which often act as capping as well as stabilizing agent. These Cu/CuO-NPs are highly stable and used in the degradation of organic dyes like methylene blue and reduction of organic compounds such as phenols. They are also used as antibacterial, antioxidant and antifungal agent due to their cytotoxicity. They are also examined for agricultural crops growth and productivity. Cu-NPs increased the root and shoot growth of mung bean. In wheat plants, these particles reduced shoot growth; and enhanced the grain yield and stress tolerance through starch degradation. Similarly, CuO-NPs treated seedlings have shown reduced chlorophyll, carotenoid and sugar content, whereas proline and anthocyanins were increased in Brassica rapa seedlings. Overall, this review presents the recent understanding of plant-mediated Cu and CuO-NPs fabrication and their application in biomedicine, environmental remediation and agricultural practices. A comparison of the traditional/conventional method of fabrication of NPs with those of green protocols has also been made. Some misconception of copper chemistry has also been critically discussed in terms of oxidation and reduction reactions.
Collapse
Affiliation(s)
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia
| |
Collapse
|
27
|
Pryjmaková J, Kaimlová M, Hubáček T, Švorčík V, Siegel J. Nanostructured Materials for Artificial Tissue Replacements. Int J Mol Sci 2020; 21:E2521. [PMID: 32260477 PMCID: PMC7178059 DOI: 10.3390/ijms21072521] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023] Open
Abstract
This paper review current trends in applications of nanomaterials in tissue engineering. Nanomaterials applicable in this area can be divided into two groups: organic and inorganic. Organic nanomaterials are especially used for the preparation of highly porous scaffolds for cell cultivation and are represented by polymeric nanofibers. Inorganic nanomaterials are implemented as they stand or dispersed in matrices promoting their functional properties while preserving high level of biocompatibility. They are used in various forms (e.g., nano- particles, -tubes and -fibers)-and when forming the composites with organic matrices-are able to enhance many resulting properties (biologic, mechanical, electrical and/or antibacterial). For this reason, this contribution points especially to such type of composite nanomaterials. Basic information on classification, properties and application potential of single nanostructures, as well as complex scaffolds suitable for 3D tissues reconstruction is provided. Examples of practical usage of these structures are demonstrated on cartilage, bone, neural, cardiac and skin tissue regeneration and replacements. Nanomaterials open up new ways of treatments in almost all areas of current tissue regeneration, especially in tissue support or cell proliferation and growth. They significantly promote tissue rebuilding by direct replacement of damaged tissues.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Markéta Kaimlová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Tomáš Hubáček
- Soil & Water Research Infrastructure, Biology Centre CAS, Na Sádkách 7, 370 05 České Budějovice, Czech Republic;
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| |
Collapse
|
28
|
Noman M, Shahid M, Ahmed T, Tahir M, Naqqash T, Muhammad S, Song F, Abid HMA, Aslam Z. Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110303. [PMID: 32061991 DOI: 10.1016/j.ecoenv.2020.110303] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 05/02/2023]
Abstract
Chromium (Cr) concentration has been increasing substantially in the environment due to industrial and anthropogenic factors. Plants can absorb Cr and undergo unrestrained oxidation cascades, resulting in cell injury. The ameliorative role of biogenic copper nanoparticles to relieve wheat plants from Cr stress by supporting their growth is still unclear. The present work aims at the biosynthesis and characterization of copper nanoparticles (CuNPs) from a native Klebsiella pneumoniae strain, followed by assessment of wheat growth and physiological responses to CuNPs mixed in Cr-rich soil. The taxonomic rank of K. pneumoniae SN35 was established by the 16 S rRNA gene sequence analysis. The properties of biogenic CuNPs were elucidated by using UV-vis spectroscopy, FTIR, XRD, SEM, and TEM. It was found that 19.01-47.47 nm spherical shaped CuNPs were stabilized by different functional groups produced extracellularly by the strain SN35. The XRD data revealed the crystalline nature of CuNPs as a face-centered cubic structure. Different concentrations of CuNPs (0, 25, 50 and 100 mg kg-1 of soil) were added into the soil mixed with 3.5 mg kg-1 K2Cr2O7 and the pots were placed in a growth chamber for 30 days. The results revealed that the CuNPs, at 25 and 50 mg kg-1 of soil, augmented plant growth, biomass, and cellular antioxidants contents, whereas decreased the reactive oxygen species and Cr translocation from soil to roots and shoots as compared to control plants. Overall, the results revealed that the soil amendment of CuNPs could immobilize the Cr in the soil to prevent its translocation to the upper plant parts and support wheat growth by relieving cellular oxidative stress.
Collapse
Affiliation(s)
- Muhammad Noman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan.
| | - Temoor Ahmed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Tahir
- Department of Environmental Sciences, COMSATS University, Islamabad, Vehari Campus, Pakistan
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sher Muhammad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Hafiz Muhammad Arslan Abid
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Zahra Aslam
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| |
Collapse
|
29
|
Gum arabic capped copper nanoparticles: Synthesis, characterization, and applications. Int J Biol Macromol 2020; 146:232-242. [DOI: 10.1016/j.ijbiomac.2019.12.260] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 11/20/2022]
|
30
|
Noman M, Shahid M, Ahmed T, Niazi MBK, Hussain S, Song F, Manzoor I. Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113514. [PMID: 31706778 DOI: 10.1016/j.envpol.2019.113514] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 05/02/2023]
Abstract
Textile wastewater contains a huge amount of azo dyes and heavy metals and catastrophically deteriorates the agricultural field by affecting its phyisco-chemical/biological and nutritional properties when directly drained to agricultural lands without any treatment. Recently, biogenic copper nanoparticles (CuNPs) have gained considerable attention for photocatalytic degradation of wastewater pollutants owing to their unique physico-chemical and biological properties, low cost and environmental sustainability. The current study reports the synthesis of CuNPs by a native copper-resistant bacterial strain Escherichia sp. SINT7 and evaluation of the photocatalytic activity of the biogenic CuNPs for azo dye degradation and treatment of textile effluents. Scanning electron microscopy and transmission electron microscopy revealed the spherical shape of biogenic CuNPs with particle size ranging from 22.33 to 39 nm. Moreover, X-ray diffraction data revealed that the CuNPs have spherical crystalline shapes with an average particle size of 28.55 nm. FTIR spectra showed the presence of coating proteins involved in the stabilization of nanomaterial. Azo dye degradation assays indicated that CuNPs decolorized congo red (97.07%), malachite green (90.55%), direct blue-1 (88.42%) and reactive black-5 (83.61%) at a dye concentration of 25 mg L-1 after 5 h of sunlight exposure. However, at 100 mg L-1 dye concentration, the degradation percentage was found to be 83.90%, 31.08%, 62.32% and 76.84% for congo red, malachite green, direct blue-1 and reactive black-5, respectively. Treatment of textile effluents with CuNPs resulted in a significant reduction in pH, electrical conductivity, turbidity, total suspended solids, total dissolved solids, hardness, chlorides and sulfates as compared to the non-treated samples. Thus, the promising dye detoxification and textile effluent recycling efficiency of biogenic CuNPs may lead to the development of eco-friendly and cost-efficient process for large-scale wastewater treatment.
Collapse
Affiliation(s)
- Muhammad Noman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| | - Temoor Ahmed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan; National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Bilal Khan Niazi
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Irfan Manzoor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
31
|
Rajeshkumar S, Menon S, Venkat Kumar S, Tambuwala MM, Bakshi HA, Mehta M, Satija S, Gupta G, Chellappan DK, Thangavelu L, Dua K. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111531. [PMID: 31212244 DOI: 10.1016/j.jphotobiol.2019.111531] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
Abstract
Environment friendly methods for the synthesis of copper nanoparticles have become a valuable trend in the current scenario. The utilization of phytochemicals from plant extracts has become a unique technology for the synthesis of nanoparticles, as they possess dual nature of reducing and capping agents to the nanoparticles. In the present investigation we have synthesized copper nanoparticles (CuNPs) using a rare medicinal plant Cissus arnotiana and evaluated their antibacterial activity against gram negative and gram positive bacteria. The morphology and characterization of the synthesized CuNPs were studied and done using UV-Visible spectroscopy at a wavelength range of 350-380 nm. XRD studies were performed for analyzing the crystalline nature; SEM and TEM for evaluating the spherical shape within the size range of 60-90 nm and AFM was performed to check the surface roughness. The biosynthesized CuNPs showed better antibacterial activity against the gram-negative bacteria, E. coli with an inhibition zone of 22.20 ± 0.16 mm at 75 μg/ml. The antioxidant property observed was comparatively equal with the standard antioxidant agent ascorbic acid at a maximum concentration of 40 μg/ ml. This is the first study reported on C. arnotiana mediated biosynthesis of copper nanoparticles, where we believe that the findings can pave way for a new direction in the field of nanotechnology and nanomedicine where there is a significant potential for antibacterial and antioxidant activities. We predict that, these could lead to an exponential increase in the field of biomedical applications, with the utilization of green synthesized CuNPs, due to its remarkable properties. The highest antibacterial property was observed with gram-negative strains mainly, E. coli, due to its thin peptidoglycan layer and electrostatic interactions between the bacterial cell wall and CuNPs surfaces. Hence, CuNPs can be potent therapeutic agents in several biomedical applications, which are yet to be explored in the near future.
Collapse
Affiliation(s)
- S Rajeshkumar
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, TN, India.
| | - Soumya Menon
- School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India
| | - S Venkat Kumar
- School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, TN, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara 144411, Punjab, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, TN, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Biomedical Sciences & Pharmacy, University of Newcastle, Newcastle, NSW 2308, Australia.
| |
Collapse
|
32
|
Barabadi H, Alizadeh A, Ovais M, Ahmadi A, Shinwari ZK, Saravanan M. Efficacy of green nanoparticles against cancerous and normal cell lines: a systematic review and meta-analysis. IET Nanobiotechnol 2018; 12:377-391. [PMID: 29768219 PMCID: PMC8676322 DOI: 10.1049/iet-nbt.2017.0120] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 08/07/2023] Open
Abstract
This study aimed to perform a systematic review and meta-analysis of papers discussing the efficacy of microbial synthesised metallic nanoparticles (MNPs) against cancerous and normal cell lines by exploiting Bayesian generalised linear (BGL) model. Data was systematically collected from published papers via Cochrane library, Web of Science, PubMed, Science Direct, ProQuest, Scopus, and Embase. Impressively, most of the studies were carried out on HeLa and A549 cancer cell lines. Specifically, a hefty 65.67% of studies employed bacteria to biofabricate MNPs. Significantly, BGL meta-analysis represented highly valuable information. Hence, based on adjusted analysis, the MNPs with the size of 25-50 nm were found to be far less cytotoxic than the MNPs with the size of ≤25 nm (OR = 0.233, P ˂ 0.05) against either cancerous or normal cell lines. Interestingly, it was found that the odds of cytotoxicity in cancerous cell lines were practically nine times more than normal cell lines, representing the substantially more cytotoxicity of MNPs in cancerous cell lines (OR = 9.004, P ˂ 0.001). Green MNPs mentioned here may be developed as novel anti-cancer agents, which could lead to a revolution in the treatment of cancer.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahad Alizadeh
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zabta Khan Shinwari
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Institute of Biomedical Sciences, College of Health Sciences, Mekelle University, 1871 Mekelle, Ethiopia.
| |
Collapse
|
33
|
Facile preparation of Copper nanaoparticles using Coccinia grandis fruit extract and its application towards the reduction of toxic nitro compound. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2017.09.206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Rajeshkumar S, Rinitha G. Nanostructural characterization of antimicrobial and antioxidant copper nanoparticles synthesized using novel Persea americana seeds. OPENNANO 2018. [DOI: 10.1016/j.onano.2018.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|