1
|
Liu H, Li M, Deng Y, Hou Y, Hou L, Zhang X, Zheng Z, Guo F, Sun K. The Roles of DMT1 in Inflammatory and Degenerative Diseases. Mol Neurobiol 2025; 62:6317-6332. [PMID: 39775481 DOI: 10.1007/s12035-025-04687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Iron homeostasis is critical for multiple physiological and pathological processes. DMT1, a core iron transporter, is expressed in almost all cells and organs and altered in response to various conditions, whereas, there is few reviews focusing on DMT1 in diseases associated with aberrant iron metabolism. Based on available knowledge, this review described a full view of DMT1 and summarized the roles of DMT1 and DMT1-mediated iron metabolism in the onset and development of inflammatory and degenerative diseases. This review also provided an overview of DMT1-related treatment in these disorders, highlighting its therapeutic potential in chronic inflammatory and degenerative diseases.
Collapse
Affiliation(s)
- Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Deng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
2
|
Xiu M, Liu Y, Wang Z, Zhang J, Shi Y, Xie J, Shi L. Abnormal iron metabolism in the zona incerta in Parkinson's disease mice. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02913-3. [PMID: 40119221 DOI: 10.1007/s00702-025-02913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/09/2025] [Indexed: 03/24/2025]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra (SN) and abnormal iron metabolism. While most of the current studies have focused on nigral iron deposition, there is still limited research into the role of iron in other brain regions. The zona incerta (ZI) is a heterogeneous subthalamic region and has extensive connections with the basal ganglia nucleus. Clinically, the ZI has been recognized as a new therapeutic target for PD. Deep brain stimulation of the ZI has been reported to relieve motor symptoms and experimental heat pain in patients with PD. The aim of the present study is to evaluate changes in iron levels in the ZI. Two neurotoxins, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), were used to prepare PD mice. By immunostaining, we first measured the success of MPTP or 6-OHDA injury. We found that the expressions of tyrosine hydroxylase were decreased after MPTP or 6-OHDA treatment. Secondly, we observed the changes of iron metabolism using Perls' iron staining and western blots. Our results showed that the numbers of iron-positive cells were significantly increased in the SN and ZI of MPTP/6-OHDA-treated mice. Moreover, the expression levels of ferritin and divalent metal transporter 1 (DMT1) in the ZI were also increased in the PD group. Glutathione peroxidase 4 (GPX4), a marker of ferroptosis, was also detected. Western blots revealed that MPTP significantly down-regulated the level of GPX4 in the ZI. As glial cells activation and neuroinflammation play important roles in the ion deposition, we finally investigated the microglial and astrocyte activation and inflammatory factors. These results suggested increased iron levels and inflammation may be present in the ZI in PD mice.
Collapse
Affiliation(s)
- Minxia Xiu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Yanhong Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Zhaobo Wang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Jing Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Yaying Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
Ruggiero M, Cianciulli A, Calvello R, Lofrumento DD, Saponaro C, Filannino FM, Porro C, Panaro MA. Lactoferrin Attenuates Pro-Inflammatory Response and Promotes the Conversion into Neuronal Lineages in the Astrocytes. Int J Mol Sci 2025; 26:405. [PMID: 39796258 PMCID: PMC11720426 DOI: 10.3390/ijms26010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits. To date, many anti-inflammatory agents have been shown to reduce neuroinflammation; however, their potential to restore neuronal loss was poorly investigated. This study investigates the anti-inflammatory effects of lactoferrin on DI-TNC1 astrocyte cell line and its ability to induce astrocyte reprogramming in a context of sustained inflammation. For this purpose, astrocytes were pre-treated with lactoferrin (4 μg/mL) for 24 h, then with lipopolysaccharide (LPS) (400 ng/mL), and examined 2, 9 and 16 days from treatment. The results demonstrate that lactoferrin attenuates astrocyte reactivity by reducing Toll-like receptor 4 (TLR4), Glial fibrillary acidic protein (GFAP) and IL-6 expression, as well as by upregulating Interleukin-10 (IL-10) cytokine and NRF2 expression. Moreover, lactoferrin promotes the reprogramming of reactive astrocytes into proliferative neuroblasts by inducing the overexpression of the Sex determining region Y/SRY-box 2 (SOX2) reprogramming transcription factor. Overall, this study highlights the potential effects of lactoferrin to attenuate neuroinflammation and improve neurogenesis, suggesting a future strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, 73100 Lecce, Italy;
| | - Concetta Saponaro
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy;
| | - Francesca Martina Filannino
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| |
Collapse
|
4
|
Rascón-Cruz Q, Siqueiros-Cendón TS, Siañez-Estrada LI, Villaseñor-Rivera CM, Ángel-Lerma LE, Olivas-Espino JA, León-Flores DB, Espinoza-Sánchez EA, Arévalo-Gallegos S, Iglesias-Figueroa BF. Antioxidant Potential of Lactoferrin and Its Protective Effect on Health: An Overview. Int J Mol Sci 2024; 26:125. [PMID: 39795983 PMCID: PMC11719613 DOI: 10.3390/ijms26010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic diseases, including cardiovascular and neurodegenerative diseases and cancer, are significant global health challenges. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, is a critical factor in the progression of these pathologies. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, has emerged as a promising therapeutic agent due to its potent antioxidant, anti-inflammatory, and iron-regulating properties. Lf plays a pivotal role in iron homeostasis by chelating iron, modulating its cellular uptake, and reducing ROS production, thereby mitigating oxidative stress-related tissue damage. Lf also demonstrates neuroprotective potential in diseases like Parkinson's and Alzheimer's, where it alleviates oxidative damage, regulates iron metabolism, and enhances antioxidant defenses. Furthermore, its ability to enhance endogenous antioxidant mechanisms, such as superoxide dismutase and glutathione peroxidase, underscores its systemic protective effects. Lf's anti-inflammatory and antimicrobial activities also contribute to its broad-spectrum protective role in chronic diseases. This review consolidates evidence of Lf's mechanisms in mitigating oxidative stress and highlights its therapeutic potential as a versatile molecule for preventing and managing chronic conditions linked to oxidative damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (Q.R.-C.); (T.S.S.-C.); (L.I.S.-E.); (C.M.V.-R.); (L.E.Á.-L.); (J.A.O.-E.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
5
|
Xu SF, Cui JH, Liu X, Pang ZQ, Bai CY, Jiang C, Luan C, Li YP, Zhao Y, You YM, Guo C. Astrocytic lactoferrin deficiency augments MPTP-induced dopaminergic neuron loss by disturbing glutamate/calcium and ER-mitochondria signaling. Free Radic Biol Med 2024; 225:374-387. [PMID: 39406276 DOI: 10.1016/j.freeradbiomed.2024.10.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 10/20/2024]
Abstract
Increased levels of lactoferrin (Lf) are present in the aged brain and in the lesions of various neurodegenerative diseases, including Parkinson's disease (PD), and may contribute to the cascade of events involved in neurodevelopment and neuroprotection. However, whether Lf originates from astrocytes and functions within either the normal or pathological brain are unknown. Here, we employed mice with specific knockout of the astrocyte lactoferrin gene (named Lf-cKO) to explore its specific roles in the pathological process of PD. We observed a decrease in tyrosine hydroxylase-positive cells, mitochondrial dysfunction of residual dopaminergic neurons, and motor deficits in Lf-cKO mice, which were significantly aggravated after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. To further explore how astrocytic lactoferrin deficiency exacerbated PD-like manifestation in MPTP-treated mice, the critical molecules involved in endoplasmic reticulum (ER)-mitochondria contacts and signaling pathways were investigated. In vitro and in vivo models, we found an aberrant level of effects implicated in glutamate and calcium homeostasis, mitochondrial morphology and functions, mitochondrial dynamics, and mitochondria-associated ER membranes, accompanied by signs of oxidative stress and ER stress, which increase the fragility of dopaminergic neurons. These findings confirm the existence of astrocytic Lf and its influence on the fate of dopaminergic neurons by regulating glutamate/calcium metabolism and ER-mitochondria signaling. Our findings may be a promising target for the treatment of PD.
Collapse
Affiliation(s)
- Shuang-Feng Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Jun-He Cui
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xin Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Zhong-Qiu Pang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chen-Yang Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chao Jiang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Luan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yun-Peng Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yan Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Yi-Ming You
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Chuang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
6
|
Qian ZM, Li W, Guo Q. Lactoferrin/lactoferrin receptor: Neurodegenerative or neuroprotective in Parkinson's disease? Ageing Res Rev 2024; 101:102474. [PMID: 39197711 DOI: 10.1016/j.arr.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Lactoferrin (Lf) is a multifunctional protein in the transferrin family. It is involved in many physiological functions, including the regulation of iron absorption and immune response. It also has antibacterial, antiviral, anti-inflammatory, anticancer and antioxidant capabilities under pathophysiological conditions. The mammalian lactoferrin receptor (LfR) plays a key role in mediating multiple functions of Lf. Studies have shown that Lf/LfR is abnormally expressed in the brain of Parkinson's disease, and the excessive accumulation of iron in the brain caused by the overexpression of Lf and LfR is considered to be one of the initial causes of the degeneration of dopaminergic neurons in Parkinson's disease. On the other hand, a number of recent studies have reported that Lf/LfR has a significant neuroprotective effect on Parkinson's disease. In other words, it seems paradoxical that Lf/LfR has both neurodegenerative and neuroprotective effects in Parkinson's disease. This article focuses on recent advances in the possible mechanisms of the neurodegenerative and neuroprotective effects of Lf/LfR in Parkinson's disease and discusses why Lf/LfR has a seemingly contradictory role in the development of Parkinson's disease. Based on the evidence obtained so far, we believed that Lf/LfR has a neuroprotective effect on Parkinson's disease, while as to whether the overexpressed Lf/LfR is the cause of the development of Parkinson's disease, the current evidence is insufficient and further investigation needed.
Collapse
Affiliation(s)
- Zhong-Ming Qian
- Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co.Ltd. / 411 Hospital, Shanghai University, Shanghai, China; Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wei Li
- Institute of Translational and Precision Medicine, Nantong University, 19 Qi Xiu Road, Nantong 226001, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qian Guo
- Shanghai 411 Hospital, China RongTong Medical Healthcare Group Co.Ltd. / 411 Hospital, Shanghai University, Shanghai, China; Laboratory of Drug Delivery, School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
7
|
Cai X, Huang Y, Wang T, Wang Z, Jiao L, Liao J, Zhou L, Zhu C, Rong S. A biocompatible polydopamine platform for targeted delivery of nicotinamide mononucleotide and boosting NAD+ levels in the brain. NANOSCALE 2024; 16:19335-19343. [PMID: 39324237 DOI: 10.1039/d4nr02934h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Nicotinamide mononucleotide (NMN), a precursor of the coenzyme nicotinamide adenine dinucleotide (NAD+), has gained wide attention as an anti-aging agent, which plays a significant role in intracellular redox reactions. However, its effectiveness is limited by easy metabolism in the liver and subsequent excretion as nicotinamide, resulting in low bioavailability, particularly in the brain. Additionally, the blood-brain barrier (BBB) further hinders NMN supply to the brain, compromising its potential anti-aging effects. Herein, we developed a biocompatible polydopamine (PDA) platform to deliver NMN for boosting NAD+ levels in the brain for the first time. The lactoferrin (Lf) ligand was covalently attached to the PDA spheres to improve BBB transport efficiency. The resultant PDA-based system, referred to as PDA-Lf-NMN, not only exhibited superior BBB penetration ability but also improved the utilization rate of brain NMN in elevating NAD+ levels compared to NMN alone for both young (3 months) and old (21 months) mice. Moreover, after the old mice were treated with low-dose PDA-Lf-NMN (8 mg kg-1 day-1), they exhibited improved spatial cognition. Importantly, these nanomedicines did not induce any cellular necrosis or apoptosis. It provides a promising avenue for delivering NMN specifically to the brain, boosting NAD+ levels for promoting longevity and treating brain aging-related diseases.
Collapse
Affiliation(s)
- Xiaoli Cai
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yuteng Huang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ting Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Ziping Wang
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Lei Jiao
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jingling Liao
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Li Zhou
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Shuang Rong
- Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
8
|
Yong SJ, Veerakumarasivam A, Teoh SL, Lim WL, Chew J. Lactoferrin Protects Against Rotenone-Induced Toxicity in Dopaminergic SH-SY5Y Cells through the Modulation of Apoptotic-Associated Pathways. J Mol Neurosci 2024; 74:88. [PMID: 39297981 DOI: 10.1007/s12031-024-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
Parkinson's disease (PD) is a common motor neurodegenerative disease that still lacks effective therapeutic options. Previous studies have reported that lactoferrin exhibited neuroprotective effects in cellular and animal models of PD, typically induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium (MPP+) synthetic toxin. However, the neuroprotective capacity of lactoferrin in the rotenone-induced cellular model of PD remains relatively less established. Unlike MPTP/MPP+, rotenone is a naturally occurring environmental toxin known to induce chronic toxicity and increase the risk of PD in humans. In this study, we constructed a cellular model of PD by differentiating SH-SY5Y neuroblastoma cells with retinoic acid into mature dopaminergic neurons with increased β-tubulin III and tyrosine hydroxylase expression, followed by 24 h of rotenone exposure. Using this cellular model of PD, we showed that lactoferrin (1-10 µg/ml) pre-treatment for 48 h decreased loss of cell viability, mitochondrial membrane potential impairment, reactive oxygen species generation and pro-apoptotic activities (pan-caspase activation and nuclear condensation) in cells exposed to rotenone (1 and 5 µM) using biochemical assays, Hoechst 33342 staining and immunocytochemical techniques. We further demonstrated that 48 h of lactoferrin (10 µg/ml) pre-treatment decreased Bax:Bcl2 ratio and p42/44 mitogen-activated protein kinase expression but increased pAkt expression in 5 µM rotenone-exposed cells. Our study demonstrates that lactoferrin neuroprotective capacity is present in the rotenone-induced cellular model of PD, further supporting lactoferrin as a potential PD therapeutic that warrants further studies.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, 47500, Bandar Sunway, Malaysia.
| |
Collapse
|
9
|
Wang J, Xiu M, Wang J, Gao Y, Li Y. METTL16-SENP3-LTF axis confers ferroptosis resistance and facilitates tumorigenesis in hepatocellular carcinoma. J Hematol Oncol 2024; 17:78. [PMID: 39218945 PMCID: PMC11367782 DOI: 10.1186/s13045-024-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Ferroptosis, characterized by iron-dependent lipid peroxidation, emerges as a promising avenue for hepatocellular carcinoma (HCC) intervention due to its tumor susceptibility. RNA N6-methyladenosine (m6A) modification has been involved in several types of regulated cell death. However, the roles and molecular mechanisms of m6A-related regulators in HCC cell ferroptosis remain unclear. METHODS By examining a series of m6A modification enzymes upon ferroptosis induction or inhibition, we identified METTL16 as a novel ferroptotic repressor in HCC cells. The roles of METTL16 on ferroptosis and HCC development were investigated in multiple cell lines, human HCC organoids, subcutaneous xenografts and MYC/Trp53-/- HCC model in hepatocyte-specific Mettl16 knockout and overexpression mice. The underlying mechanism was elucidated with MeRIP/RIP-qPCR, luciferase assay, Co-IP assay and Mass Spectrometry. The clinical significance and relevance were evaluated in human samples. RESULTS High METTL16 expression confers ferroptosis resistance in HCC cells and mouse models, and promotes cell viability and tumor progression. Mechanistically, METTL16 collaborates with IGF2BP2 to modulate SENP3 mRNA stability in an m6A-dependent manner, and the latter impedes the proteasome-mediated ubiquitination degradation of Lactotransferrin (LTF) via de-SUMOylation. Elevated LTF expression facilitates the chelation of free iron and reduces liable iron pool level. SENP3 and LTF are implicated in METTL16-mediated HCC progression and anti-ferroptotic effects both in vivo and in vitro. Clinically, METTL16 and SENP3 expression were positively correlated, and high METTL16 and SENP3 expression predicts poor prognosis in human HCC samples. CONCLUSIONS Our study reveals a new METTL16-SENP3-LTF signaling axis regulating ferroptosis and driving HCC development. Targeting this axis is a promising strategy for sensitizing ferroptosis and against HCC.
Collapse
Affiliation(s)
- Jialin Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Pudong New District, Shanghai, 200120, China
| | - Mengxi Xiu
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Pudong New District, Shanghai, 200120, China
| | - Jin Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Pudong New District, Shanghai, 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Pudong New District, Shanghai, 200120, China.
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, 150 Ji-Mo Rd., Pudong New District, Shanghai, 200120, China.
| |
Collapse
|
10
|
Chen X, Zhang X, Wu Y, Wang Z, Yu T, Chen P, Tong P, Gao J, Chen H. The Iron Binding Ability Maps the Fate of Food-Derived Transferrins: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17771-17781. [PMID: 39087686 DOI: 10.1021/acs.jafc.4c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
As the demand for lactoferrin increases, the search for cost-effective alternative proteins becomes increasingly important. Attention naturally turns to other members of the transferrin family such as ovotransferrin. The iron-binding abilities of these proteins influence their characteristics, although the underlying mechanisms remain unclear. This overview systematically summarizes the effects of the iron-binding ability on the fate of food-derived transferrins (lactoferrin and ovotransferrin) and their potential applications. The findings indicate that iron-binding ability significantly influences the structure of food-derived transferrins, particularly their tertiary structure. Changes in structure influence their physicochemical properties, which, in turn, lead to different behaviors in response to environmental variations. Thus, these proteins exhibit distinct digestive characteristics by the time they reach the small intestine, ultimately performing varied physiological functions in vivo. Consequently, food-derived transferrins with different iron-binding states may find diverse applications. Understanding this capability is essential for developing food-derived transferrins and driving innovation in lactoferrin-related industries.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Tian Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Pingduo Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
11
|
Liu T, Wang Y, Qian B, Li P. Potential Metabolic Pathways Involved in Osteoporosis and Evaluation of Fracture Risk in Individuals with Diabetes. BIOMED RESEARCH INTERNATIONAL 2024; 2024:6640796. [PMID: 38884020 PMCID: PMC11178402 DOI: 10.1155/2024/6640796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Diabetes has a significant global prevalence. Chronic hyperglycemia affects multiple organs and tissues, including bones. A large number of diabetic patients develop osteoporosis; however, the precise relationship between diabetes and osteoporosis remains incompletely elucidated. The activation of the AGE-RAGE signaling pathway hinders the differentiation of osteoblasts and weakens the process of bone formation due to the presence of advanced glycation end products. High glucose environment can induce ferroptosis of osteoblasts and then develop osteoporosis. Hyperglycemia also suppresses the secretion of sex hormones, and the reduction of testosterone is difficult to effectively maintain bone mineral density. As diabetes therapy, thiazolidinediones control blood glucose by activating PPAR-γ. Activated PPAR-γ can promote osteoclast differentiation and regulate osteoblast function, triggering osteoporosis. The effects of metformin and insulin on bone are currently controversial. Currently, there are no appropriate tools available for assessing the risk of fractures in diabetic patients, despite the fact that the occurrence of osteoporotic fractures is considerably greater in diabetic individuals compared to those without diabetes. Further improving the inclusion criteria of FRAX risk factors and clarifying the early occurrence of osteoporosis sites unique to diabetic patients may be an effective way to diagnose and treat diabetic osteoporosis and reduce the risk of fracture occurrence.
Collapse
Affiliation(s)
- Tong Liu
- Emergency DepartmentHonghui HospitalXi'an Jiaotong UniversitySchool of Medicine, Xi'an, China
| | - Yanjun Wang
- Emergency DepartmentHonghui HospitalXi'an Jiaotong UniversitySchool of Medicine, Xi'an, China
| | - Bing Qian
- Emergency DepartmentHonghui HospitalXi'an Jiaotong UniversitySchool of Medicine, Xi'an, China
| | - Pan Li
- Emergency DepartmentHonghui HospitalXi'an Jiaotong UniversitySchool of Medicine, Xi'an, China
| |
Collapse
|
12
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
13
|
Mitroshina EV, Vedunova MV. The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration. Int J Mol Sci 2024; 25:4581. [PMID: 38731800 PMCID: PMC11083463 DOI: 10.3390/ijms25094581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia;
| | | |
Collapse
|
14
|
Gao J, Zou Y, Lv XY, Chen L, Hou XG. Novel insights into immune-related genes associated with type 2 diabetes mellitus-related cognitive impairment. World J Diabetes 2024; 15:735-757. [PMID: 38680704 PMCID: PMC11045412 DOI: 10.4239/wjd.v15.i4.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The cognitive impairment in type 2 diabetes mellitus (T2DM) is a multifaceted and advancing state that requires further exploration to fully comprehend. Neuroinflammation is considered to be one of the main mechanisms and the immune system has played a vital role in the progression of the disease. AIM To identify and validate the immune-related genes in the hippocampus associated with T2DM-related cognitive impairment. METHODS To identify differentially expressed genes (DEGs) between T2DM and controls, we used data from the Gene Expression Omnibus database GSE125387. To identify T2DM module genes, we used Weighted Gene Co-Expression Network Analysis. All the genes were subject to Gene Set Enrichment Analysis. Protein-protein interaction network construction and machine learning were utilized to identify three hub genes. Immune cell infiltration analysis was performed. The three hub genes were validated in GSE152539 via receiver operating characteristic curve analysis. Validation experiments including reverse transcription quantitative real-time PCR, Western blotting and immunohistochemistry were conducted both in vivo and in vitro. To identify potential drugs associated with hub genes, we used the Comparative Toxicogenomics Database (CTD). RESULTS A total of 576 DEGs were identified using GSE125387. By taking the intersection of DEGs, T2DM module genes, and immune-related genes, a total of 59 genes associated with the immune system were identified. Afterward, machine learning was utilized to identify three hub genes (H2-T24, Rac3, and Tfrc). The hub genes were associated with a variety of immune cells. The three hub genes were validated in GSE152539. Validation experiments were conducted at the mRNA and protein levels both in vivo and in vitro, consistent with the bioinformatics analysis. Additionally, 11 potential drugs associated with RAC3 and TFRC were identified based on the CTD. CONCLUSION Immune-related genes that differ in expression in the hippocampus are closely linked to microglia. We validated the expression of three hub genes both in vivo and in vitro, consistent with our bioinformatics results. We discovered 11 compounds associated with RAC3 and TFRC. These findings suggest that they are co-regulatory molecules of immunometabolism in diabetic cognitive impairment.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan 250012, Shandong Province, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan 250012, Shandong Province, China
- Department of Endocrinology, Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong Province, China
| |
Collapse
|
15
|
Niu B, Zhao M, Gao X, Xu J, Yu L. TMT-based quantitative proteomics analysis of neuroprotective effects of Forsythoside A on the MPTP-induced Parkinson's disease mouse model. Exp Neurol 2024; 373:114642. [PMID: 38056584 DOI: 10.1016/j.expneurol.2023.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characteristized by the presence of dyskinesia and the progressive loss of dopaminergic neurons. Although certain drugs can mitigate the symptoms of PD, they are unable to delay the disease progression, and their prolonged use may result in complications. Therefore, there exists an urgent necessity to identify potential agents that can effectively delay PD progression with fewer side effects. Recent research has unveiled that several traditional Chinese medicines (TCM) exhibit neuroprotective properties in various models pertinent to PD. Forsythoside A (FSA), the primary bioactive compound derived from TCM Lianqiao, has undergone extensive research in animal models of Alzheimer's disease and cerebral ischemia. However, the investigation into the impact of FSA on PD is limited in existing research. In this study, we aimed to evaluate the neuroprotective effects of FSA on MPTP-induced PD mouse model. FSA demonstrated significant improvements in the behavioral and neuropathological changes triggered by MPTP in mice. Furthermore, it exerted a suppressive effect on the activations of astrocyte and microglia. Meanwhile, Tandem mass tag (TMT)-based quantitative proteomics of striatal tissue and bioinformatics analysis were performed to elucidate the underlying mechanisms of FSA on PD mouse model. Proteomics demonstrated a total of 68 differentially expressed proteins (DEPs) were identified between HFSA and MPTP groups including 26 upregulated and 42 downregulated. Systematic bioinformatics analysis of the 68 DEPs illustrated that they were predominantly related to estrogen signaling pathway and calcium signaling pathway. The related DEPs (PLCβ4, Grm2, HPAC and Cox4i1) expression levels were verified by Western blot. FSA effectively restored the altered expression of the four DEPs induced by MPTP. Summarily, FSA exerted remarkable neuroprotective effects in MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of FSA as a potential treatment for PD.
Collapse
Affiliation(s)
- Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Minhong Zhao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Xiu'an Gao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou 510515, China.
| | - Linzhong Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
16
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Kopaeva MY, Cherepov AB, Zaraiskaya IY. Lactoferrin Has a Protective Effect on Mouse Brain Cells after Acute Gamma Irradiation of the Head. Bull Exp Biol Med 2023; 176:246-252. [PMID: 38194066 DOI: 10.1007/s10517-024-06004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 01/10/2024]
Abstract
We studied the effect of human lactoferrin on cells of the hippocampal dentate gyrus of 2-2.5-month-old male C57BL/6 mice after acute gamma irradiation of the head in a dose of 8 Gy from a 60Co source. Immediately after irradiation some animals received an intraperitoneal injection of human lactoferrin (4 mg/mouse). The appearance of TUNEL+ cells in the subgranular zone 6 h after irradiation was accompanied by a corresponding decrease in the number of Ki-67- and DCX-immunoreactive cells. Administration of lactoferrin had a protective effect on mouse brain cells, which manifested in a decrease in the number of TUNEL+ cells (by 77% relative to the irradiation alone) and an increase in the number of proliferating cells (from 16 to 61% relative to control animals) and immature neurons (from 14 to 22% relative to control animals) in the dentate gyrus of the hippocampus.
Collapse
Affiliation(s)
- M Yu Kopaeva
- National Research Centre "Kurchatov Institute", Moscow, Russia.
| | - A B Cherepov
- National Research Centre "Kurchatov Institute", Moscow, Russia
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - I Yu Zaraiskaya
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
18
|
Xie Z, Zhang M, Luo Y, Jin D, Guo X, Yang W, Zheng J, Zhang H, Zhang L, Deng C, Zheng W, Tan EK, Jin K, Zhu S, Wang Q. Healthy Human Fecal Microbiota Transplantation into Mice Attenuates MPTP-Induced Neurotoxicity via AMPK/SOD2 Pathway. Aging Dis 2023; 14:2193-2214. [PMID: 37199590 PMCID: PMC10676800 DOI: 10.14336/ad.2023.0309] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 05/19/2023] Open
Abstract
Increasing evidence has shown that gut dysbacteriosis may play a crucial role in neuroinflammation in Parkinson's disease (PD). However, the specific mechanisms that link gut microbiota to PD remain unexplored. Given the critical roles of blood-brain barrier (BBB) dysfunction and mitochondrial dysfunction in the development of PD, we aimed to evaluate the interactions among the gut microbiota, BBB, and mitochondrial resistance to oxidation and inflammation in PD. We investigated the effects of fecal microbiota transplantation (FMT) on the physiopathology of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. The aim was to explore the role of fecal microbiota from PD patients and healthy human controls in neuroinflammation, BBB components, and mitochondrial antioxidative capacity via the AMPK/SOD2 pathway. Compared to control mice, MPTP-treated mice exhibited elevated levels of Desulfovibrio, whereas mice given FMT from PD patients exhibited enriched levels of Akkermansia and mice given FMT from healthy humans showed no significant alterations in gut microbiota. Strikingly, FMT from PD patients to MPTP-treated mice significantly aggravated motor impairments, dopaminergic neurodegeneration, nigrostriatal glial activation and colonic inflammation, and inhibited the AMPK/SOD2 signaling pathway. However, FMT from healthy human controls greatly improved the aforementioned MPTP-caused effects. Surprisingly, the MPTP-treated mice displayed a significant loss in nigrostriatal pericytes, which was restored by FMT from healthy human controls. Our findings demonstrate that FMT from healthy human controls can correct gut dysbacteriosis and ameliorate neurodegeneration in the MPTP-induced PD mouse model by suppressing microgliosis and astrogliosis, ameliorating mitochondrial impairments via the AMPK/SOD2 pathway, and restoring the loss of nigrostriatal pericytes and BBB integrity. These findings raise the possibility that the alteration in the human gut microbiota may be a risk factor for PD and provide evidence for potential application of FMT in PD preclinical treatment.
Collapse
Affiliation(s)
- Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Mahui Zhang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Dana Jin
- College of Biological Science, University of California, Davis, CA 95616, USA.
| | - Xingfang Guo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Wanlin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Jialing Zheng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Hongfei Zhang
- Department of Anaesthesiology, Zhujiang Hospital of Southern Medical University, Guangdong, China.
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, Australia.
| | - Wenhua Zheng
- Centre of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau, China.
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore.
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Pintado-Grima C, Bárcenas O, Iglesias V, Santos J, Manglano-Artuñedo Z, Pallarès I, Burdukiewicz M, Ventura S. aSynPEP-DB: a database of biogenic peptides for inhibiting α-synuclein aggregation. Database (Oxford) 2023; 2023:baad084. [PMID: 38011719 PMCID: PMC10681447 DOI: 10.1093/database/baad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder, yet effective treatments able to stop or delay disease progression remain elusive. The aggregation of a presynaptic protein, α-synuclein (aSyn), is the primary neurological hallmark of PD and, thus, a promising target for therapeutic intervention. However, the lack of consensus on the molecular properties required to specifically bind the toxic species formed during aSyn aggregation has hindered the development of therapeutic molecules. Recently, we defined and experimentally validated a peptide architecture that demonstrated high affinity and selectivity in binding to aSyn toxic oligomers and fibrils, effectively preventing aSyn pathogenic aggregation. Human peptides with such properties may have neuroprotective activities and hold a huge therapeutic interest. Driven by this idea, here, we developed a discriminative algorithm for the screening of human endogenous neuropeptides, antimicrobial peptides and diet-derived bioactive peptides with the potential to inhibit aSyn aggregation. We identified over 100 unique biogenic peptide candidates and ensembled a comprehensive database (aSynPEP-DB) that collects their physicochemical features, source datasets and additional therapeutic-relevant information, including their sites of expression and associated pathways. Besides, we provide access to the discriminative algorithm to extend its application to the screening of artificial peptides or new peptide datasets. aSynPEP-DB is a unique repository of peptides with the potential to modulate aSyn aggregation, serving as a platform for the identification of previously unexplored therapeutic agents. Database URL: https://asynpepdb.ppmclab.com/.
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Valentín Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Jaime Santos
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Zoe Manglano-Artuñedo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Michał Burdukiewicz
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, Białystok 15-369, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
20
|
Kongsui R, Promsrisuk T, Klimaschewski L, Sriraksa N, Jittiwat J, Thongrong S. Pinostrobin mitigates neurodegeneration through an up-regulation of antioxidants and GDNF in a rat model of Parkinson's disease. F1000Res 2023; 12:846. [PMID: 38434672 PMCID: PMC10904945 DOI: 10.12688/f1000research.134891.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 03/05/2024] Open
Abstract
Background: One of the most common neurodegenerative diseases is Parkinson's disease (PD); PD is characterized by a reduction of neurons containing dopamine in the substantia nigra (SN), which leads to a lack of dopamine (DA) in nigrostriatal pathways, resulting in motor function disorders. Oxidative stress is considered as one of the etiologies involved in dopaminergic neuronal loss. Thus, we aimed to investigate the neuroprotective effects of pinostrobin (PB), a bioflavonoid extracted from Boesenbergia rotunda with antioxidative activity in PD. Methods: Rats were treated with 40 mg/kg of PB for seven consecutive days before and after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. After completing the experiment, the brains including SN and striatum were used for histological studies and biochemical assays. Results: PB treatment demonstrated a reduction of free radicals in the SN as indicated by significantly decreased MDA levels, whereas the antioxidative enzymes (SOD and GSH) were significantly increased. Furthermore, PB treatment significantly increased glial cell line-derived neurotrophic factor (GDNF) immunolabelling which has neurotrophic and neuroprotective effects on the survival of dopaminergic neurons. Furthermore, PB treatment was shown to protect CA1 and CA3 neurons in the hippocampus and dopaminergic neurons in the SN. DA levels in the SN were increased after PB treatment, leading to the improvement of motor function of PD rats. Conclusions: These results imply that PB prevents MPTP-induced neurotoxicity via its antioxidant activities and increases GDNF levels, which may contribute to the therapeutic strategy for PD.
Collapse
Affiliation(s)
- Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Mueang Phayao District, Phayao, 56000, Thailand
| | - Tichanon Promsrisuk
- Division of Physiology, School of Medical Sciences, University of Phayao, Mueang Phayao District, Phayao, 56000, Thailand
| | - Lars Klimaschewski
- Division of Neuroanatomy, Department of Anatomy Histology and Embryology, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Napatr Sriraksa
- Division of Physiology, School of Medical Sciences, University of Phayao, Mueang Phayao District, Phayao, 56000, Thailand
| | - Jinatta Jittiwat
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Maha Sarakham, 44000, Thailand
| | - Sitthisak Thongrong
- Division of Anatomy, School of Medical Sciences, University of Phayao, Mueang Phayao District, Phayao, 56000, Thailand
| |
Collapse
|
21
|
Dong L, Gao L. JMJD3 and SNAI2 synergistically protect against Parkinson's disease by mediating the YAP/HIF1α signaling pathway in a mouse model. Hum Mol Genet 2023; 32:3040-3052. [PMID: 37453035 DOI: 10.1093/hmg/ddad115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
This study aimed to characterize the functional relevance and mechanistic basis of the histone demethylase Jumonji domain-containing protein-3 (JMJD3) in preserving dopaminergic neuron survival in Parkinson's disease (PD). Mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced lesions and MN9D dopaminergic neuronal cell lines exposed to 6-OHDA, respectively, were used to simulate in vivo and in vitro PD-like environments. PD-related genes with differential expressions were identified using RNA sequencing of hippocampal tissues collected from MPTP-lesioned mice. A specific lentiviral shRNA vector was used to investigate the effects of JMJD3 on neuron activities in vitro and PD-like phenotypes in vivo. JMJD3 was found to up-regulate the expression of Snail family transcriptional repressor 2 (SNAI2) through the inhibition of H3 on lysine 27 (H3K27me3) enrichment in the SNAI2 promoter region. As a result, the viability of 6-OHDA-exposed MN9D cells was stimulated, and cell apoptosis was diminished. Knockdown of SNAI2 decreased the expression of yes-associated protein (YAP) and HIF1α while also reducing the viability of 6-OHDA-exposed MN9D cells and increasing cell apoptosis. The in vivo experiments demonstrated that JMJD3 activated the SNAI2/YAP/HIF1α signaling pathway, inhibiting PD-like phenotypes in MPTP-lesioned mice. Thus, the findings provide evidence that JMJD3 inhibits the enrichment of H3K27me3 at the SNAI2 promoter, leading to the upregulation of SNAI2 expression and activation of the YAP/HIF1α signaling pathway, ultimately exerting a protective effect on PD mice. This finding suggests that targeting the JMJD3-SNAI2 pathway could be a promising therapeutic strategy for PD. Further in-depth studies are needed to elucidate the underlying mechanisms and identify potential downstream targets of this pathway.
Collapse
Affiliation(s)
- Li Dong
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
22
|
Eker F, Bolat E, Pekdemir B, Duman H, Karav S. Lactoferrin: neuroprotection against Parkinson's disease and secondary molecule for potential treatment. Front Aging Neurosci 2023; 15:1204149. [PMID: 37731953 PMCID: PMC10508234 DOI: 10.3389/fnagi.2023.1204149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease and is largely caused by the death of dopaminergic (DA) cells. Dopamine loss occurs in the substantia nigra pars compacta and leads to dysfunctions in motor functions. Death of DA cells can occur with oxidative stress and dysfunction of glial cells caused by Parkinson-related gene mutations. Lactoferrin (Lf) is a multifunctional glycoprotein that is usually known for its presence in milk, but recent research shows that Lf is also found in the brain regions. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a known mitochondrial toxin that disturbs the mitochondrial electron transport chain (ETC) system and increases the rate of reactive oxygen species. Lf's high affinity for metals decreases the required iron for the Fenton reaction, reduces the oxidative damage to DA cells caused by MPTP, and increases their surveillance rate. Several studies also investigated Lf's effect on neurons that are treated with MPTP. The results pointed out that Lf's protective effect can also be observed without the presence of oxidative stress; thus, several potential mechanisms are currently being researched, starting with a potential HSPG-Lf interaction in the cellular membrane of DA cells. The presence of Lf activity in the brain region also showed that lactoferrin initiates receptor-mediated transcytosis in the blood-brain barrier (BBB) with the existence of lactoferrin receptors in the endothelial cells. The existence of Lf receptors both in endothelial cells and DA cells created the idea of using Lf as a secondary molecule in the transport of therapeutic agents across the BBB, especially in nanoparticle development.
Collapse
Affiliation(s)
| | | | | | | | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| |
Collapse
|
23
|
He Q, Zhang LL, Li D, Wu J, Guo YX, Fan J, Wu Q, Wang HP, Wan Z, Xu JY, Qin LQ. Lactoferrin alleviates Western diet-induced cognitive impairment through the microbiome-gut-brain axis. Curr Res Food Sci 2023; 7:100533. [PMID: 37351541 PMCID: PMC10282426 DOI: 10.1016/j.crfs.2023.100533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Lactoferrin (Lf) has been shown to benefit cognitive function in several animal models. To elucidate the underlying mechanisms, male C57BL/6J mice were randomly divided into the control (CON), Western-style diets (WD), lactoferrin (Lf), and Lf + antibiotics (AB) groups. The Lf group was intragastrically administered with Lf, and the Lf + AB group additionally drank a solution with antibiotics. After 16 weeks of intervention, Lf improved the cognitive function as indicated by behavioral tests. Lf also increased the length and curvature of postsynaptic density and upregulated the related protein expression, suggesting improved hippocampal neurons and synapses. Lf suppressed microglia activation and proliferation as revealed by immunofluorescence analysis. Lf decreased the serum levels of pro-inflammatory cytokines and downregulated their protein expressions in the hippocampus region. Lf also inhibited the activation of NF-κB/NLRP3 inflammasomes in the hippocampus. Meanwhile, Lf upregulated the expression of tight junction proteins, and increased the abundance of Bacteroidetes at phylum and Roseburia at genus, which are beneficial for gut barrier and cognitive function. The antibiotics eliminated the effects of long-term Lf intervention on cognitive impairment in the Lf + AB group, suggesting that gut microbiota participated in Lf action. Short-term Lf intervention (2 weeks) prevented WD-induced gut microbiota alteration without inducing behavioral changes, supporting the timing sequence of gut microbiota to the brain. Thus, Lf intervention alleviated cognitive impairment by inhibiting microglial activation and neuroinflammation through the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Deming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jiangxue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Ya-Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jingbo Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- Laboratory Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Qingyang Wu
- School of Life Science, Chinese University of Hong Kong, 7th Floor, Yasumoto International Academic Park, 999077, China
| | - Hai-Peng Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- Department of Cardiovascular, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
24
|
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci 2023; 13:911. [PMID: 37371389 DOI: 10.3390/brainsci13060911] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Recent data on the distribution and influence of copper, zinc and cadmium in glial cells are summarized. This review also examines the relationship between those metals and their role in neurodegenerative diseases like Alzheimer disease, multiple sclerosis, Parkinson disease and Amyotrophic lateral sclerosis, which have become a great challenge for today's physicians. The studies suggest that among glial cells, iron has the highest concentration in oligodendrocytes, copper in astrocytes and zinc in the glia of hippocampus and cortex. Previous studies have shown neurotoxic effects of copper, iron and manganese, while zinc can have a bidirectional effect, i.e., neurotoxic but also neuroprotective effects depending on the dose and disease state. Recent data point to the association of metals with neurodegeneration through their role in the modulation of protein aggregation. Metals can accumulate in the brain with aging and may be associated with age-related diseases.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | | | - Renata Markiewicz
- Department of Psychiatric Nursing, Medical University of Lublin, 18 Szkolna St., 20-124 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Student Scientific Group at the Department of Family Medicine, 6a (SPSK1) Langiewicza St., 20-032 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
| |
Collapse
|
25
|
Ianiro G, Rosa L, Bonaccorsi di Patti MC, Valenti P, Musci G, Cutone A. Lactoferrin: from the structure to the functional orchestration of iron homeostasis. Biometals 2023; 36:391-416. [PMID: 36214975 DOI: 10.1007/s10534-022-00453-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/25/2022] [Indexed: 11/02/2022]
Abstract
Iron is by far the most widespread and essential transition metal, possessing crucial biological functions for living systems. Despite chemical advantages, iron biology has forced organisms to face with some issues: ferric iron insolubility and ferrous-driven formation of toxic radicals. For these reasons, acquisition and transport of iron constitutes a formidable challenge for cells and organisms, which need to maintain adequate iron concentrations within a narrow range, allowing biological processes without triggering toxic effects. Higher organisms have evolved extracellular carrier proteins to acquire, transport and manage iron. In recent years, a renewed interest in iron biology has highlighted the role of iron-proteins dysregulation in the onset and/or exacerbation of different pathological conditions. However, to date, no resolutive therapy for iron disorders has been found. In this review, we outline the efficacy of Lactoferrin, a member of the transferrin family mainly secreted by exocrine glands and neutrophils, as a new emerging orchestrator of iron metabolism and homeostasis, able to counteract iron disorders associated to different pathologies, including iron deficiency and anemia of inflammation in blood, Parkinson and Alzheimer diseases in the brain and cystic fibrosis in the lung.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy.
| |
Collapse
|
26
|
Essam RM, Saadawy MA, Gamal M, Abdelsalam RM, El-Sahar AE. Lactoferrin averts neurological and behavioral impairments of thioacetamide-induced hepatic encephalopathy in rats via modulating HGMB1/TLR-4/MyD88/Nrf2 pathway. Neuropharmacology 2023; 236:109575. [PMID: 37201650 DOI: 10.1016/j.neuropharm.2023.109575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Hepatic encephalopathy (HE) is a life-threatening disease caused by acute or chronic liver failure manifested by aberrant CNS changes. In the present study, we aimed to explore the neuroprotective effect of lactoferrin (LF) against thioacetamide (TAA)-induced HE in rats. Animals were divided into four groups, control, LF control, TAA-induced HE, and LF treatment, where LF was administered (300 mg/kg, p.o.) for 15 days in groups 2 and 4 meanwhile, TAA (200 mg/kg, i.p.) was given as two injections on days 13 and 15 for the 3rd and 4th groups. Pretreatment with LF significantly improved liver function observed as a marked decline in serum AST, ALT, and ammonia, together with lowering brain ammonia and enhancing motor coordination as well as cognitive performance. Restoration of brain oxidative status was also noted in the LF-treated group, where lipid peroxidation was hampered, and antioxidant parameters, Nrf2, HO-1, and GSH, were increased. Additionally, LF downregulated HMGB1, TLR-4, MyD88, and NF-κB signaling pathways, together with reducing inflammatory cytokine, TNF-α, and enhancing brain BDNF levels. Moreover, the histopathology of brain and liver tissues revealed that LF alleviated TAA-induced liver and brain deficits. In conclusion, the promising results of LF in attenuating HMGB1/TLR-4/MyD88 signaling highlight its neuroprotective role against HE associated with acute liver injury via ameliorating neuroinflammation, oxidative stress, and stimulating neurogenesis.
Collapse
Affiliation(s)
- Reham M Essam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mariam A Saadawy
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mahitab Gamal
- Clinical Pharmacy Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
27
|
Kopaeva MY, Azieva AM, Cherepov AB, Zarayskaya IY. Lactoferrin Modulates Induction of Transcription Factor c-Fos in Neuronal Cultures. Int J Mol Sci 2023; 24:ijms24098373. [PMID: 37176079 PMCID: PMC10179438 DOI: 10.3390/ijms24098373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Lactoferrin (Lf) is a multifunctional protein from the transferrin family. Of particular interest is the ability of Lf to affect a wide range of neuronal processes by modulating the expression of genes involved in long-term neuroplasticity. The expression of the immediate early gene c-fos that is rapidly activated in response to external influences, and its product, transcription factor c-Fos, is widely used as a marker of long-term neuronal plasticity. The present study aims to examine the effect of human Lf on the induction of transcription factor c-Fos in the primary mouse neuronal cultures after stimulation and to determine the cellular localization of human Lf and its colocalization with induced c-Fos protein. Primary dissociated cultures of hippocampal cells were obtained from the brains of newborn C57BL/6 mice (P0-P1). On day 7 of culturing, human Lf was added to the medium. After 24 h (day 8 in culture), c-Fos protein was induced in cells by triple application of 50 mM KCl. c-Fos content was analyzed using the immunofluorescent method 2 h after stimulation. Stimulation promoted exogenous Lf translocation into the nuclei of cultured neuronal cells, which correlated with increased induction of transcription factor c-Fos and was accompanied by nuclear colocalization of these proteins. These results attest to the potential of Lf as a modulator of neuronal processes and open up new prospects in studying the mechanisms of the regulatory effects of lactoferrin on cell function.
Collapse
Affiliation(s)
- Marina Yu Kopaeva
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
| | - Asya M Azieva
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
| | - Anton B Cherepov
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Sq., 123182 Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Irina Yu Zarayskaya
- Research Institute of Normal Physiology Named after P.K. Anokhin, 8 Baltiyskaya St., 125315 Moscow, Russia
| |
Collapse
|
28
|
Jin X, Jiang C, Zou Z, Huang H, Li X, Xu S, Tan R. Ferritinophagy in the etiopathogenic mechanism of related diseases. J Nutr Biochem 2023; 117:109339. [PMID: 37061010 DOI: 10.1016/j.jnutbio.2023.109339] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/17/2023]
Abstract
Iron is an essential trace element that is involved in a variety of physiological processes. Ferritinophagy is selective autophagy mediated by nuclear receptor coactivator 4 (NCOA4), which regulates iron homeostasis in the body. Upon iron depletion or starvation, ferritinophagy is activated, releasing large amounts of Fe2+ and increasing reactive oxygen species (ROS), leading to ferroptosis. This plays a significant role in the etiopathogenesis of many diseases, such as metabolic diseases, neurodegenerative diseases, infectious diseases, tumors, cardiomyopathy, and ischemia-reperfusion ischemia-reperfusion injury. Here, we first review the regulation and functions of ferritinophagy and then describe its involvement in different diseases, with hopes of providing new understanding and insights into iron metabolism and iron disorder-related diseases and the therapeutic opportunity for targeting ferritinophagy.
Collapse
Affiliation(s)
- Xuemei Jin
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Chunjie Jiang
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Zhizhou Zou
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - He Huang
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China; Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Xiaojian Li
- Department of Burn, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Songji Xu
- Department of Preventive Medicine, School of Medicine, Yanbian University, Yanji, China
| | - Rongshao Tan
- Department of Clinical Nutrition, Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
29
|
The BDNF-TrkB signaling pathway is partially involved in the neuroprotective effects of hydrogen sulfide in Parkinson's disease. Eur J Pharmacol 2023; 944:175595. [PMID: 36804547 DOI: 10.1016/j.ejphar.2023.175595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Recent studies have demonstrated that hydrogen sulfide (H2S) has a neuroprotective effect in neurodegenerative diseases. It is possible that this effect is supported by brain-derived neurotrophic factor (BDNF). Our aim is to examine the effects of H2S on neural damage in Parkinson's disease (PD) and to reveal the role of the BDNF-TrkB pathway in its possible effect. PD model was created with 1-methyl-phenyl-1,2,3,6-tetrahydropyridine (MPTP). C57BL/6 breed male mice were randomly divided into six groups: control, K252a, MPTP, MPTP + K252a, MPTP + NaHS, and MPTP + NaHS + K252a. TrkB receptor antagonist K252a and sodium hydrosulfide (NaHS) as a H2S donor were administered intraperitoneally. An increase was observed in the motor behavior tests in MPTP group, but NaHS treatment shortened the time spent on the balance beam and pole tests. It was also noticed that the BDNF-pathway played a role in the shortening of this period. Mice that received NaHS were found to have less MPTP-induced cellular damage. A positive effect of BDNF was also detected in the protection of these neurons. BDNF levels in the SN were significantly increased in MPTP group, compared to control group. Tissue CBS levels decreased in the groups that received K252a, compared to MPTP group. The findings of the present study display that the BDNF-TrkB pathway partially plays a role in the protective effect of H2S in the experimental mouse model of PD. This effect is probably due to changes in intracellular signaling pathways, rather than TrkB receptor expression.
Collapse
|
30
|
Xie J, Lv H, Liu X, Xia Z, Li J, Hong E, Ding B, Zhang W, Chen Y. Nox4-and Tf/TfR-mediated peroxidation and iron overload exacerbate neuronal ferroptosis after intracerebral hemorrhage: Involvement of EAAT3 dysfunction. Free Radic Biol Med 2023; 199:67-80. [PMID: 36805044 DOI: 10.1016/j.freeradbiomed.2023.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Intracerebral hemorrhage (ICH) induces high mortality and disability. Neuronal death is the principal factor to unfavourable prognosis in ICH. However, the mechanisms underlying this association remain unclear. In this study, we investigated the molecular mechanisms by which neuronal ferroptosis occurs after ICH and whether the use of corresponding modulators can inhibit neuronal death and improve early outcomes in a rat ICH model. Our findings indicated that Nox4 and TF/TfR were upregulated in the perihematomal tissues of ICH rats. Oxidative stress and iron overload induced by Nox4 and TF/TfR promoted neuronal ferroptosis post-ICH. In contrast, application of Nox4-siRNA and the deferoxamine (DFO) attenuated peroxidation and iron deposition in the hemorrhagic brain, alleviated neuronal ferroptosis, and improved sensorimotor function in ICH rats. Additionally, our findings indicated that the post-ICH neuronal reduced glutathione (GSH) depletion were not related to dysfunctional glutamine delivery in astrocytes but rather to downregulation of EAAT3 due to lipid peroxidation-induced dysfunction in the neuronal membrane. These findings indicate that ferroptosis is involved in neuronal death in model rats with collagenase-induced ICH. Oxidative stress and iron overload induced by Nox4 and TF/TfR exacerbate ferroptosis after ICH, while Nox4 downregulation and iron chelation exert neuroprotective effects. The present results highlight the cysteine importer EAAT3 as a potential biomarker of ferroptosis and provide insight into the neuronal death process that occurs following ICH, which may aid in the development of translational treatment strategies for ICH.
Collapse
Affiliation(s)
- Jiayu Xie
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China; Department of Neurosurgery, The First People's Hospital of Changde City of Xiangya Medical College of South Central University, Changde, 415000, China
| | - Hongzhu Lv
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China; Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, 116089, China
| | - Xuanbei Liu
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Zhennan Xia
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiangwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Enhui Hong
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Boyun Ding
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Wenying Zhang
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China
| | - Yizhao Chen
- Department of Neurosurgery, Zhujiang Hospital of Southern Medical University, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, 510282, China; Department of Neurosurgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
31
|
Jin C, Tan K, Yao Z, Lin BH, Zhang DP, Chen WK, Mao SM, Zhang W, Chen L, Lin Z, Weng SJ, Bai BL, Zheng WH, Zheng G, Wu ZY, Yang L. A Novel Anti-Osteoporosis Mechanism of VK2: Interfering with Ferroptosis via AMPK/SIRT1 Pathway in Type 2 Diabetic Osteoporosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2745-2761. [PMID: 36719855 DOI: 10.1021/acs.jafc.2c05632] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Type 2 diabetic osteoporosis (T2DOP) is a chronic bone metabolic disease. Compared with traditional menopausal osteoporosis, the long-term high glucose (HG) microenvironment increases patients' risk of fracture and osteonecrosis. We were accumulating evidence that implicated ferroptosis as a pivotal mechanism of glucolipotoxicity-mediated death of osteocytes and osteoblast, a novel form of programmed cell death resulting from uncontrolled lipid peroxidation depending on iron. Vitamin K2 (VK2), a fat-soluble vitamin, is clinically applied to prevent osteoporosis and improve coagulation. This study aimed to clarify the role and mechanism of VK2 in HG-mediated ferroptosis. We established the mouse T2DOP model by intraperitoneal injection of streptozotocin solution and a high-fat and high-sugar diet. We also cultured bone marrow mesenchymal stem cells (BMSCs) in HG to simulate the diabetic environment in vitro. Based on our data, VK2 inhibited HG-mediated bone loss and ferroptosis, the latter manifested by decreased levels of mitochondrial reactive oxygen species, lipid peroxidation, and malondialdehyde and increased glutathione in vitro. In addition, VK2 treatment was capable of restoring bone mass and strengthening the expression of SIRT1, GPX4, and osteogenic markers in the distal femurs. As for further mechanism exploration, we found that VK2 could activate AMPK/SIRT1 signaling, and knockdown of SIRT1 by siRNA prevented the VK2-mediated positive effect in HG-cultured BMSCs. Summarily, VK2 could ameliorate T2DOP through the activation of the AMPK/SIRT1 signaling pathway to inhibit ferroptosis.
Collapse
Affiliation(s)
- Chen Jin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Kai Tan
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Zhe Yao
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- Department of Burn and Wound Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bing-Hao Lin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Du-Piao Zhang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Wei-Kai Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Shu-Ming Mao
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Wei Zhang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Liang Chen
- Orthopaedic Oncology Services, Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhen Lin
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - She-Ji Weng
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Bing-Li Bai
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Wen-Hao Zheng
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Gang Zheng
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Zong-Yi Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
| | - Lei Yang
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou 325000, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
32
|
Li Y, Li P, Zhang W, Zheng X, Gu Q. New Wine in Old Bottle: Caenorhabditis Elegans in Food Science. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| | - Weixi Zhang
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People’s Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, People’s Republic of China
| |
Collapse
|
33
|
Li J, Zhao J, Chen L, Gao H, Zhang J, Wang D, Zou Y, Qin Q, Qu Y, Li J, Xiong Y, Min Z, Yan M, Mao Z, Xue Z. α-Synuclein induces Th17 differentiation and impairs the function and stability of Tregs by promoting RORC transcription in Parkinson's disease. Brain Behav Immun 2023; 108:32-44. [PMID: 36343753 DOI: 10.1016/j.bbi.2022.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons (DA) and the accumulation of Lewy body deposits composed of alpha-Synuclein (α-Syn), which act as antigenic epitopes to drive cytotoxic T-cell responses in PD. Increased T helper 17 (Th17) cells and dysfunctional regulatory T cells (Tregs) have been reported to be associated with the loss of DA in PD. However, the mechanism underlying the Th17/Treg imbalance remains unknown. METHODS Here, we examined the percentage of Th17 cells, the percentage of Tregs and the α-Syn level and analysed their correlations in the peripheral blood of PD patients and in the substantia nigra pars compacta (SNpc) and spleen of MPTP-treated mice and A53 transgenic mice. We assessed the effect of α-Syn on the stability and function of Tregs and the differentiation of Th17 cells and evaluated the role of retinoid-related orphan nuclear receptor (RORγt) upregulation in α-Syn stimulation in vivo and in vitro. RESULTS We found that the α-Syn level and severity of motor symptoms were positively correlated with the increase in Th17 cells and decrease in Tregs in PD patients. Moreover, α-Syn stimulation led to the loss of Forkhead box protein P3 (FOXP3) expression in Tregs, accompanied by the acquisition of IL-17A expression. Increased Th17 differentiation was detected upon α-Syn stimulation when naïve CD4+ T cells were cultured under Th17-polarizing conditions. Mechanistically, α-Syn promotes the transcription of RORC, encoding RORγt, in Tregs and Th17 cells, leading to increased Th17 differentiation and loss of Treg function. Intriguingly, the increase in Th17 cells, decrease in Tregs and apoptosis of DA were suppressed by a RORγt inhibitor (GSK805) in MPTP-treated mice. CONCLUSION Together, our data suggest that α-Syn promotes the transcription of RORC in circulating CD4+ T cells, including Tregs and Th17 cells, to impair the stability of Tregs and promote the differentiation of Th17 cells in PD. Inhibition of RORγt attenuated the apoptosis of DA and alleviated the increase in Th17 cells and decrease in Tregs in PD.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jing Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuan Zou
- The Center for Biomedical Research, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Manli Yan
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji College of Medicine, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
34
|
Liu WC, Chiu HW, Chou CL, Chiu YJ, Lee YH. Lactoferrin attenuated urban particulate matter-induced nephrotoxicity by regulating the CSF2/CENPE axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120871. [PMID: 36528199 DOI: 10.1016/j.envpol.2022.120871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Several epidemiological studies regarding the adverse effect of air pollution have notably accelerated in recent years. Urban particulate matter (PM) gains access to the respiratory system and translocates into the circulation to affect several tissues, such as the liver and kidneys. Lactoferrin is a substance belonging to the non-heme iron-binding glycoprotein which is present in breast milk and other exocrine fluids. Lactoferrin is protective against many pathophysiological conditions. In the present study, we explored the potential influence of lactoferrin on PM-induced nephrotoxicity. We found that lactoferrin rescued PM-induced cell death but did not affect apoptosis in human kidney cells. Lactoferrin decreased necroptosis and fibrosis but increased autophagy in human kidney cells. Furthermore, the gene expression profiles of PM and lactoferrin were analyzed by RNA sequencing. The transcriptional profiles were uploaded and analyzed by ingenuity pathway analysis software and gene set enrichment analysis. The results showed that the crucial role of the CSF2/CENPE pathway was involved in human kidney cells treated with PM and lactoferrin. In a mouse model, lactoferrin ameliorates PM-induced nephrotoxicity by regulating necroptosis, fibrosis, autophagy and the CSF2/CENPE axis. In summary, these findings showed that lactoferrin could be a novel therapeutic or preventive agent for renal disorders caused by airborne PM pollution.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Chu-Lin Chou
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yu-Jhe Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan.
| |
Collapse
|
35
|
Gonzalez-Alcocer A, Duarte-Jurado AP, Soto-Dominguez A, Loera-Arias MDJ, Villarreal-Silva EE, Saucedo-Cardenas O, de Oca-Luna RM, Garcia-Garcia A, Rodriguez-Rocha H. Unscrambling the Role of Redox-Active Biometals in Dopaminergic Neuronal Death and Promising Metal Chelation-Based Therapy for Parkinson's Disease. Int J Mol Sci 2023; 24:1256. [PMID: 36674772 PMCID: PMC9867532 DOI: 10.3390/ijms24021256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Biometals are all metal ions that are essential for all living organisms. About 40% of all enzymes with known structures require biometals to function correctly. The main target of damage by biometals is the central nervous system (CNS). Biometal dysregulation (metal deficiency or overload) is related to pathological processes. Chronic occupational and environmental exposure to biometals, including iron and copper, is related to an increased risk of developing Parkinson's disease (PD). Indeed, biometals have been shown to induce a dopaminergic neuronal loss in the substantia nigra. Although the etiology of PD is still unknown, oxidative stress dysregulation, mitochondrial dysfunction, and inhibition of both the ubiquitin-proteasome system (UPS) and autophagy are related to dopaminergic neuronal death. Herein, we addressed the involvement of redox-active biometals, iron, and copper, as oxidative stress and neuronal death inducers, as well as the current metal chelation-based therapy in PD.
Collapse
Affiliation(s)
- Alfredo Gonzalez-Alcocer
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Ana Patricia Duarte-Jurado
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Adolfo Soto-Dominguez
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Maria de Jesus Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Eliud Enrique Villarreal-Silva
- Servicio de Neurocirugía y Terapia Endovascular Neurológica, Hospital Universitario, Dr. Jose Eleuterio Gonzalez, Monterrey 64460, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, Monterrey 64460, Mexico
| |
Collapse
|
36
|
Shen LH, Luo QQ, Hu CB, Jiang H, Yang Y, Wang GH, Ji QH, Jia ZZ. DL-3-n-butylphthalide alleviates motor disturbance by suppressing ferroptosis in a rat model of Parkinson’s disease. Neural Regen Res 2023; 18:194-199. [PMID: 35799542 PMCID: PMC9241398 DOI: 10.4103/1673-5374.343892] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Naidu SAG, Wallace TC, Davies KJA, Naidu AS. Lactoferrin for Mental Health: Neuro-Redox Regulation and Neuroprotective Effects across the Blood-Brain Barrier with Special Reference to Neuro-COVID-19. J Diet Suppl 2023; 20:218-253. [PMID: 33977807 DOI: 10.1080/19390211.2021.1922567] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Overall mental health depends in part on the blood-brain barrier, which regulates nutrient transfer in-and-out of the brain and its central nervous system. Lactoferrin, an innate metal-transport protein, synthesized in the substantia nigra, particularly in dopaminergic neurons and activated microglia is vital for brain physiology. Lactoferrin rapidly crosses the blood-brain barrier via receptor-mediated transcytosis and accumulates in the brain capillary endothelial cells. Lactoferrin receptors are additionally present on glioma cells, brain micro-vessels, and neurons. As a regulator of neuro-redox, microglial lactoferrin is critical for protection/repair of neurons and healthy brain function. Iron imbalance and oxidative stress are common among patients with neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, dementia, depression, and multiple sclerosis. As an endogenous iron-chelator, lactoferrin prevents iron accumulation and dopamine depletion in Parkinson's disease patients. Oral lactoferrin supplementation could modulate the p-Akt/PTEN pathway, reduce Aβ deposition, and ameliorate cognitive decline in Alzheimer's disease. Novel lactoferrin-based nano-therapeutics have emerged as effective drug-delivery systems for clinical management of neurodegenerative disorders. Recent emergence of the Coronavirus disease-2019 (COVID-19) pandemic, initially considered a respiratory illness, demonstrated a broader virulence spectrum with the ability to cross the blood-brain barrier and inflict a plethora of neuropathological manifestations in the brain - the Neuro-COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are widely reported in Parkinson's disease, Alzheimer's disease, dementia, and multiple sclerosis patients with aggravated clinical outcomes. Lactoferrin, credited with several neuroprotective benefits in the brain could serve as a potential adjuvant in the clinical management of Neuro-COVID-19.
Collapse
Affiliation(s)
- Sreus A G Naidu
- N-terminus Research Laboratory, Yorba Linda, California, USA
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, Virginia, USA
- Think Healthy Group, Washington, District of Columbia, USA
| | - Kelvin J A Davies
- Division of Biogerontology, Leonard Davis School of Gerontology, The University of Southern California, Los Angeles, California, USA
- Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California, USA
- Department Biochemistry & Molecular Medicine, Keck School of Medicine of USC, The University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
38
|
Li LB, Fan YG, Wu WX, Bai CY, Jia MY, Hu JP, Gao HL, Wang T, Zhong ML, Huang XS, Guo C. Novel melatonin-trientine conjugate as potential therapeutic agents for Alzheimer's disease. Bioorg Chem 2022; 128:106100. [PMID: 35988518 DOI: 10.1016/j.bioorg.2022.106100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022]
Abstract
Researchers continue to explore drug targets to treat the characteristic pathologies of Alzheimer's disease (AD). Some drugs relieve the pathological processes of AD to some extent, but the failed clinical trials indicate that multifunctional agents seem more likely to achieve the therapy goals for this neurodegenerative disease. Herein, a novel compound named melatonin-trientine (TM) has been covalently synthesized with the natural antioxidant compounds melatonin and the metal ion chelator trientine. After toxicological and pharmacokinetic verification, we elucidated the effects of intraperitoneal administration of TM on AD-like pathology in 6-month-old mice that express both the β-amyloid (Aβ) precursor protein and presenilin-1 (APP/PS1). We found that TM significantly decreased Aβ deposition and neuronal degeneration in the brains of the APP/PS1 double transgenic mice. This result may be due to the upregulation of iron regulatory protein-2 (IRP2), insulin degrading enzyme (IDE), and low density lipoprotein receptor related protein 1 (LRP1), which leads to decreases in APP and Aβ levels. Additionally, TM may promote APP non-amyloidogenic processing by activating the melatonin receptor-2 (MT2)-dependent signaling pathways, but not MT1. In addition, TM plays an important role in blocking γ-secretase, tau hyperphosphorylation, neuroinflammation, oxidative stress, and metal ion dyshomeostasis. Our results suggest that TM may effectively maximize the therapeutic efficacy of targeting multiple mechanisms associated with AD pathology.
Collapse
Affiliation(s)
- Lin-Bo Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Gang Fan
- Institute of Health Sciences, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wen-Xi Wu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Chen-Yang Bai
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Meng-Yu Jia
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Jiang-Ping Hu
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Hui-Ling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Man-Li Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
39
|
Xu SF, Pang ZQ, Fan YG, Zhang YH, Meng YH, Bai CY, Jia MY, Chen YH, Wang ZY, Guo C. Astrocyte-specific loss of lactoferrin influences neuronal structure and function by interfering with cholesterol synthesis. Glia 2022; 70:2392-2408. [PMID: 35946355 DOI: 10.1002/glia.24259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/07/2022]
Abstract
Growing evidence indicates that circulating lactoferrin (Lf) is implicated in peripheral cholesterol metabolism disorders. It has emerged that the distribution of Lf changes in astrocytes of aging brains and those exhibiting neurodegeneration; however, its physiological and/or pathological role remains unknown. Here, we demonstrate that astrocyte-specific knockout of Lf (designated cKO) led to decreased body weight and cognitive abnormalities during early life in mice. Accordingly, there was a reduction in neuronal outgrowth and synaptic structure in cKO mice. Importantly, Lf deficiency in the primary astrocytes led to decreased sterol regulatory element binding protein 2 (Srebp2) activation and cholesterol production, and cholesterol content in cKO mice and/or in astrocytes was restored by exogenous Lf or a Srebp2 agonist. Moreover, neuronal dendritic complexity and total dendritic length were decreased after culture with the culture medium of the primary astrocytes derived from cKO mice and that this decrease was reversed after cholesterol supplementation. Alternatively, these alterations were associated with an activation of AMP-activated protein kinase (AMPK) and inhibition of SREBP2 nuclear translocation. These data suggest that astrocytic Lf might directly or indirectly control in situ cholesterol synthesis, which may be implicated in neurodevelopment and several neurological diseases.
Collapse
Affiliation(s)
- Shuang-Feng Xu
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Zhong-Qiu Pang
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Yong-Gang Fan
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System, China Medical University, Shenyang, China
| | - Yan-Hui Zhang
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System, China Medical University, Shenyang, China
| | - Yu-Han Meng
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Chen-Yang Bai
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Meng-Yu Jia
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Yan-Hong Chen
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Zhan-You Wang
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System, China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| |
Collapse
|
40
|
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022; 14:2923. [PMID: 35889882 PMCID: PMC9322498 DOI: 10.3390/nu14142923] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Biochemistry Post-Graduate Program, Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
41
|
Yang S, Zhu G. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr Neuropharmacol 2022; 20:1479-1497. [PMID: 34525922 PMCID: PMC9881092 DOI: 10.2174/1570159x19666210915122820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoid with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in neuropsychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors, or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases, and learning and memory functions. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide a reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China,Address correspondence to this author at the Anhui University of Chinese Medicine, Meishan Road 103, Hefei 230038, China; E-mail:
| |
Collapse
|
42
|
Farhoudi M, Sadigh-Eteghad S, Mahmoudi J, Farjami A, Farjami A, Mahmoudian M, Salatin S. The therapeutic benefits of intravenously administrated nanoparticles in stroke and age-related neurodegenerative diseases. Curr Pharm Des 2022; 28:1985-2000. [PMID: 35676838 DOI: 10.2174/1381612828666220608093639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
The mean global lifetime risk of neurological disorders such as stroke, Alzheimer's disease (AD), and Parkinson's disease (PD) has shown a large effect on economy and society.Researchersare stillstruggling to find effective drugs to treatneurological disordersand drug delivery through the blood-brain barrier (BBB) is a major challenge to be overcome. The BBB is a specialized multicellular barrier between the peripheral blood circulation and the neural tissue. Unique and selective features of the BBB allow it to tightly control brain homeostasis as well as the movement of ions and molecules. Failure in maintaining any of these substances causes BBB breakdown and subsequently enhances neuroinflammation and neurodegeneration.BBB disruption is evident in many neurologicalconditions.Nevertheless, the majority of currently available therapies have tremendous problems for drug delivery into the impaired brain. Nanoparticle (NP)-mediated drug delivery has been considered as a profound substitute to solve this problem. NPs are colloidal systems with a size range of 1-1000 nm whichcan encapsulate therapeutic payloads, improve drug passage across the BBB, and target specific brain areas in neurodegenerative/ischemic diseases. A wide variety of NPs has been displayed for the efficient brain delivery of therapeutics via intravenous administration, especially when their surfaces are coated with targeting moieties. Here, we discuss recent advances in the development of NP-based therapeutics for the treatment of stroke, PD, and AD as well as the factors affecting their efficacy after systemic administration.
Collapse
Affiliation(s)
- Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Salatin
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
43
|
Kowalczyk P, Kaczyńska K, Kleczkowska P, Bukowska-Ośko I, Kramkowski K, Sulejczak D. The Lactoferrin Phenomenon-A Miracle Molecule. Molecules 2022; 27:2941. [PMID: 35566292 PMCID: PMC9104648 DOI: 10.3390/molecules27092941] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023] Open
Abstract
Numerous harmful factors that affect the human body from birth to old age cause many disturbances, e.g., in the structure of the genome, inducing cell apoptosis and their degeneration, which leads to the development of many diseases, including cancer. Among the factors leading to pathological processes, microbes, viruses, gene dysregulation and immune system disorders have been described. The function of a protective agent may be played by lactoferrin as a "miracle molecule", an endogenous protein with a number of favorable antimicrobial, antiviral, antioxidant, immunostimulatory and binding DNA properties. The purpose of this article is to present the broad spectrum of properties and the role that lactoferrin plays in protecting human cells at all stages of life.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarności 12 St., 03-411 Warsaw, Poland
- Military Institute of Hygiene and Epidemiology, 4 Kozielska St., 01-163 Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Pawinskiego 3c St., 02-106 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 St., 15-089 Bialystok, Poland;
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
44
|
Cai J, Liang J, Zhang Y, Shen L, Lin H, Hu T, Zhan S, Xie M, Liang S, Xian M, Wang S. Cyclo-(Phe-Tyr) as a novel cyclic dipeptide compound alleviated ischemic stroke reperfusion brain injury via JUNB/JNK/NF-κB and SOX5/PI3K/AKT pathways. Pharmacol Res 2022; 180:106230. [PMID: 35483515 DOI: 10.1016/j.phrs.2022.106230] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022]
Abstract
Ischemic stroke reperfusion (IR) can cause adverse reactions including apoptosis, oxidative stress, and inflammation, but the existing therapeutic strategies have been limited. Moreover, the regulation of microglia plays an important role in brain injury after reperfusion. Hence, it is imperative to find new and effective drugs for modulating microglia to treat IR brain injury. Cyclic peptide compound cyclo-(Phe-Tyr) (Sparganin C, SC) is a compound isolated from Sparganii Rhizoma. However, the protective effects of SC on the central nervous system are rather unclear. In an attempt to elucidate the protective effects and mechanism of SC on cerebral damage induced by the IR, we used a middle cerebral artery occlusion reperfusion (MCAO/R) model in rats and discovered that SC significantly decreased the size of cerebral infarcts, improved neurological scores, and blocked inflammatory and oxidative factor release. Using RNA-Seq and metabolomics association analyses, SC was shown to have a protective impact through the JUNB and SOX5-related pathways. Metabolomic analysis revealed twenty-eight differentially expressed biomarkers. In addition, the detection of SC content in brain tissue using LC/MS revealed that SC had blood-brain barrier penetration. To investigate the mechanism, we established an in vitro BV2 cell oxygen-glucose deprived re-oxygenation (OGD/R) model and used siRNA as well as an inhibitor. The protective effects of SC were dependent on the JUNB and SOX5 to inhibit inflammation and apoptosis in microglia. Our findings revealed for the first that SC against IR injury by reducing inflammation and apoptosis while simultaneously acting as potential therapeutic lead compound for ischemic stroke.
Collapse
Key Words
- 1-Deoxy-1-(N6-lysino)-D-fructose (PubChem CID: 433981164)
- 10Z
- 13Z
- 16Z)/16:0) (PubChem CID: 52923621)
- 2-O-(5,8,11,14,17-Eicosapentaenoyl)-1-O-hexadecylglycero-3-phosphocholine (PubChem CID: 10485310)
- Alanyl-Arginine (PubChem CID: 446132), PC (16:0/15:0) (PubChem CID: 24778680)
- Cyclo(Tyr-Phe) (PubChem CID: 44198062)
- Cyclo-(Phe-Tyr)
- Diacetone alcohol (PubChem CID: 31256)
- Homoanserine (PubChem CID: 20849429)
- Ischemic stroke reperfusion
- JUNB
- Methyl jasmonate (PubChem CID: 5281929)
- PC(22:4(7Z
- PC(P-18:1(11Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) (PubChem CID: 53480781)
- RNA-sequence
- SOX5
- metabolomics
Collapse
Affiliation(s)
- Jiale Cai
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Jiayin Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Yutong Zhang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lin Shen
- Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China
| | - Tao Hu
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Sikai Zhan
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Meixia Xie
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Shengwang Liang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China
| | - Minghua Xian
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China.
| | - Shumei Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou 510006, China.
| |
Collapse
|
45
|
Yang L, Jiang L, Sun X, Li J, Wang N, Liu X, Yao X, Zhang C, Deng H, Wang S, Yang G. DEHP induces ferroptosis in testes via p38α-lipid ROS circulation and destroys the BTB integrity. Food Chem Toxicol 2022; 164:113046. [PMID: 35447293 DOI: 10.1016/j.fct.2022.113046] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/16/2023]
Abstract
Exposure to Di (2-ethylhexyl) phthalate (DEHP) has been associated with toxic effects of the reproductive system. However, the exact mechanism remains to be elucidated. In this study we explored the testicular toxicity induced by DEHP, and the probable molecular mechanism in the process. In vivo, the results demonstrated that DEHP affected testosterone levels and blood-testosterone barrier (BTB) integrity and caused ferroptosis. We further demonstrated that DEHP up-regulated the expression of p38α, p-p38α, p53, p-p53, SAT1, ALOX15. This view has also been confirmed in TM4 cells. After pre-treatment with fer-1 or si-MAPK14, the expression of either p53, p-p53, SAT1 and ALOX15 up-regulated by MEHP was inhibited in vitro. Interestingly, p38α can prevent the accumulation of lipid ROS, and the production of lipid ROS in turn promoted the expression of p38α, thus forming a feedback loop during the ferroptosis. In this process, a vicious cycle consisting of p38α, p53, SAT1, ALOX15, lipid ROS was involved. This study provides new mechanistic insights into DEHP-induced toxicity of the reproductive system.
Collapse
Affiliation(s)
- Ling Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Liping Jiang
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Xiance Sun
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xiaofang Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Xiaofeng Yao
- Liaoning Anti-degenerative Diseases Natural Products Engineering Technology Research Center, Dalian Medical University, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
46
|
Zhang J, Sun B, Yang J, Chen Z, Li Z, Zhang N, Li H, Shen L. Comparison of the effect of rotenone and 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyridine on inducing chronic Parkinson's disease in mouse models. Mol Med Rep 2022; 25:91. [PMID: 35039876 PMCID: PMC8809117 DOI: 10.3892/mmr.2022.12607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Animal models for Parkinson's disease (PD) are very useful in understanding the pathogenesis of PD and screening for new therapeutic approaches. The present study compared two commonly used neurotoxin‑induced mouse models of chronic PD to guide model selection, explore the pathogenesis and mechanisms underlying PD and develop effective treatments. The chronic PD mouse models were established via treatment with rotenone or 1‑methyl‑4‑phenyl‑1,2,3,6-tetrahydropyridine (MPTP) for 6 weeks. The effects of rotenone and MPTP in the mice were compared by assessing neurobehavior, neuropathology and mitochondrial function through the use of the pole, rotarod and open field tests, immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), ionized calcium‑binding adapter molecule 1 (Iba‑1), neuronal nuclear antigen (NeuN) and (p)S129 α‑synuclein, immunofluorescence for GFAP, Iba‑1 and NeuN, western blotting for TH, oxygen consumption, complex I enzyme activity. The locomotor activity, motor coordination and exploratory behavior in both rotenone and MPTP groups were significantly lower compared with the control group. However, behavioral tests were no significant differences between the two groups. In the MPTP group, the loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta, the reduction of the tyrosine hydroxylase content in the SN and striatum and the astrocyte proliferation and microglial activation in the SN were more significant compared with the rotenone group. Notably, mitochondrial‑dependent oxygen consumption and complex I enzyme activity in the SN were significantly reduced in the rotenone group compared with the MPTP group. In addition, Lewy bodies were present only in SN neurons in the rotenone group. Although no significant differences in neurobehavior were observed between the two mouse models, the MPTP model reproduced the pathological features of PD more precisely in terms of the loss of DA neurons, decreased dopamine levels and neuroinflammation in the SN. On the other hand, the rotenone model was more suitable for studying the role of mitochondrial dysfunction (deficient complex I activity) and Lewy body formation in the SN, which is a characteristic pathological feature of PD. The results indicated that MPTP and rotenone PD models have advantages and disadvantages, therefore one or both should be selected based on the purpose of the study.
Collapse
Affiliation(s)
- Jing Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bohao Sun
- Department of Pathology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jifeng Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhuo Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhengzheng Li
- Department of Internal Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Nan Zhang
- Department of Internal Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Hongzhi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Luxi Shen
- Department of Internal Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
47
|
Wang N, Feng BN, Hu B, Cheng YL, Guo YH, Qian H. Neuroprotection of chicoric acid in a mouse model of Parkinson's disease involves gut microbiota and TLR4 signaling pathway. Food Funct 2022; 13:2019-2032. [PMID: 35103734 DOI: 10.1039/d1fo02216d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chicoric acid (CA), a polyphenolic acid obtained from chicory and purple coneflower (Echinacea purpurea), has been regarded as a nutraceutical to combat inflammation, viruses and obesity. Parkinson's disease (PD) is a common neurodegenerative disorder, and the microbiota-gut-brain axis might be the potential mechanism in the pathogenesis and development of PD. The results obtained in this study demonstrated that oral pretreatments of CA significantly prevented the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced motor dysfunctions and death of nigrostriatal dopaminergic neurons along with the inhibition of glial hyperactivation and the increment in striatal neurotrophins. 16S rRNA sequence results showed that CA significantly reduced MPTP-induced microbial dysbiosis and partially restored the composition of the gut microbiota to normal, including decreased phylum Bacteroidetes and genera Parabacteroide, as well as increased phylum Firmicutes, genera Lactobacillus and Ruminiclostridium. Besides, CA promoted colonic epithelial integrity and restored normal SCFA production. We also observed that proinflammatory cytokines such as TNF-α and IL-1β in the serum, striatum and colon were reduced by CA, indicating that CA prevented neuroinflammation and gut inflammation, in which the suppression of the TLR4/MyD88/NF-κB signaling pathway might be the underlying molecular mechanism. These findings demonstrated that CA had neuroprotective effects on MPTP-induced PD mice possibly via modulating the gut microbiota and inhibiting inflammation throughout the brain-gut axis.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Bai-Nian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Bin Hu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu-Liang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ya-Hui Guo
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
48
|
Sun Z, Gu P, Xu H, Zhao W, Zhou Y, Zhou L, Zhang Z, Wang W, Han R, Chai X, An S. Human Umbilical Cord Mesenchymal Stem Cells Improve Locomotor Function in Parkinson's Disease Mouse Model Through Regulating Intestinal Microorganisms. Front Cell Dev Biol 2022; 9:808905. [PMID: 35127723 PMCID: PMC8810651 DOI: 10.3389/fcell.2021.808905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder characterized by loss of neurons that synthesize dopamine, and subsequent impaired movement. Umbilical cord mesenchymal stem cells (UC-MSCs) exerted neuroprotection effects in a rodent model of PD. However, the mechanism underlying UC-MSC-generated neuroprotection was not fully elucidated. In the present study, we found that intranasal administration of UC-MSCs significantly alleviated locomotor deficits and rescued dopaminergic neurons by inhibiting neuroinflammation in a PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, a toxic agent which selectively destroys nigrostriatal neurons but does not affect dopaminergic neurons elsewhere). Furthermore, UC-MSC treatment altered gut microbiota composition characterized by decreased phylum Proteobacteria, class Gammaproteobacteria, family Enterobacteriaceae, and genus Escherichia-Shigella. In addition, the neurotransmitter dopamine in the striatum and 5-hydroxytryptamine in the colon were also modulated by UC-MSCs. Meanwhile, UC-MSCs significantly maintained intestinal goblet cells, which secrete mucus as a mechanical barrier against pathogens. Furthermore, UC-MSCs alleviate the level of TNF-α and IL-6 as well as the conversion of NF-κB expression in the colon, indicating that inflammatory responses were blocked by UC-MSCs. PICRUSt showed that some pathways including bacterial invasion of epithelial cells, fluorobenzoate degradation, and pathogenic Escherichia coli infection were significantly reversed by UC-MSCs. These data suggest that the beneficial effects were detected following UC-MSC intranasal transplantation in MPTP-treated mice. There is a possible neuroprotective role of UC-MSCs in MPTP-induced PD mice by cross talk between the brain and gut.
Collapse
Affiliation(s)
- Zhengqin Sun
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
| | - Ping Gu
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjun Xu
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei Zhao
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Yongjie Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Luyang Zhou
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhongxia Zhang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
| | - Wenting Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Han
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiqing Chai
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Shijiazhuang, China
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, China
- College of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
49
|
Li B, Zhang B, Liu X, Zheng Y, Han K, Liu H, Wu C, Li J, Fan S, Peng W, Zhang F, Liu X. The effect of lactoferrin in aging: role and potential. Food Funct 2021; 13:501-513. [PMID: 34928288 DOI: 10.1039/d1fo02750f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging is frequently accompanied by various types of physiological deterioration, which increases the risk of human pathologies. Global public health efforts to increase human lifespan have increasingly focused on lowering the risk of aging-related diseases, such as diabetes, neurodegenerative diseases, cardiovascular disease, and cancers. Dietary intervention is a promising approach to maintaining human health during aging. Lactoferrin (LF) is known for its physiologically pleiotropic properties. Anti-aging interventions of LF have proven to be safe and effective for various pharmacological activities, such as anti-oxidation, anti-cellular senescence, anti-inflammation, and anti-carcinogenic. Moreover, LF has a pivotal role in modulating the major signaling pathways that influence the longevity of organisms. Thus, LF is expected to be able to attenuate the process of aging and greatly ameliorate its effects.
Collapse
Affiliation(s)
- Bing Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Bo Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xudong Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Yidan Zheng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Kuntong Han
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Henan Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Jin Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Shuhua Fan
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Weifeng Peng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Fuli Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| |
Collapse
|
50
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|