1
|
Petrovic A, Igrec D, Rozac K, Bojanic K, Kuna L, Kolaric TO, Mihaljevic V, Sikora R, Smolic R, Glasnovic M, Wu GY, Smolic M. The Role of GLP1-RAs in Direct Modulation of Lipid Metabolism in Hepatic Tissue as Determined Using In Vitro Models of NAFLD. Curr Issues Mol Biol 2023; 45:4544-4556. [PMID: 37367037 PMCID: PMC10296833 DOI: 10.3390/cimb45060288] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been shown to improve glucose and lipid homeostasis, promote weight loss, and reduce cardiovascular risk factors. They are a promising therapeutic option for non-alcoholic fatty liver disease (NAFLD), the most common liver disease, associated with T2DM, obesity, and metabolic syndrome. GLP-1RAs have been approved for the treatment of T2DM and obesity, but not for NAFLD. Most recent clinical trials have suggested the importance of early pharmacologic intervention with GLP-1RAs in alleviating and limiting NAFLD, as well as highlighting the relative scarcity of in vitro studies on semaglutide, indicating the need for further research. However, extra-hepatic factors contribute to the GLP-1RA results of in vivo studies. Cell culture models of NAFLD can be helpful in eliminating extrahepatic effects on the alleviation of hepatic steatosis, modulation of lipid metabolism pathways, reduction of inflammation, and prevention of the progression of NAFLD to severe hepatic conditions. In this review article, we discuss the role of GLP-1 and GLP-1RA in the treatment of NAFLD using human hepatocyte models.
Collapse
Affiliation(s)
- Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dunja Igrec
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Karla Rozac
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Lucija Kuna
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tea Omanovic Kolaric
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vjera Mihaljevic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Renata Sikora
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Marija Glasnovic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - George Y. Wu
- Department of Medicine, Division of Gastrenterology/Hepatology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
2
|
Abstract
INTRODUCTION Obesity is a key target in the treatment and prevention of diabetes and independently to reduce the burden of cardiovascular disease. We reviewed the options now available and anticipated to deal with obesity. AREAS COVERED We considered the epidemiology, genetics, and causation of obesity and the relationship to diabetes, and the dietary, pharmaceutical, and surgical management of the condition. The literature search covered both popular media via Google Search and the academic literature as indexed on PubMed with search terms including obesity, childhood obesity, adipocytes, insulin resistance, mechanisms of satiety, bariatric surgery, GLP-1 receptor agonists, and SGLT2 inhibitors. EXPERT OPINION Although bariatric surgery has been the primary approach to treating obese individuals, the emergence of agents impacting the brain satiety centers now promises effective, non-invasive treatment of obesity for individuals with and without diabetes. The GLP-1 receptor agonists have assumed the primary role in treating obesity with significant weight loss. Long-term results with semaglutide and tirzepatide are now approaching the success seen with bariatric surgery. Future agents combining the benefits of satiety control and thermogenesis to dissipate caloric excess are under investigation.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, CA, USA
| |
Collapse
|
3
|
Flintoff J, Kesby JP, Siskind D, Burne TH. Treating cognitive impairment in schizophrenia with GLP-1RAs: an overview of their therapeutic potential. Expert Opin Investig Drugs 2021; 30:877-891. [PMID: 34213981 DOI: 10.1080/13543784.2021.1951702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Schizophrenia is a neuropsychiatric disorder that affects approximately 1% of individuals worldwide. There are no available medications to treat cognitive impairment in this patient population currently. Preclinical evidence suggests that glucagon-like peptide-1 receptor agonists (GLP-1 RAs) improve cognitive function. There is a need to evaluate how GLP-1 RAs alter specific domains of cognition and whether they will be of therapeutic benefit in individuals with schizophrenia. AREAS COVERED This paper summarizes the effects of GLP-1 RAs on metabolic processes in the brain and how these mechanisms relate to improved cognitive function. We provide an overview of preclinical studies that demonstrate GLP-1 RAs improve cognition and comment on their potential therapeutic benefit in individuals with schizophrenia. EXPERT OPINION To understand the benefits of GLP-1 RAs in individuals with schizophrenia, further preclinical research with rodent models relevant to schizophrenia symptomology are needed. Moreover, preclinical studies must focus on using a wider range of behavioral assays to understand whether important aspects of cognition such as executive function, attention, and goal-directed behavior are improved using GLP-1 RAs. Further research into the specific mechanisms of how GLP-1 RAs affect cognitive function and their interactions with antipsychotic medication commonly prescribed is necessary.
Collapse
Affiliation(s)
- Jonathan Flintoff
- Queensland Brain Institute, the University of Queensland, St Lucia, QLD, Australia
| | - James P Kesby
- Queensland Brain Institute, the University of Queensland, St Lucia, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Dan Siskind
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia.,Metro South Addiction and Mental Health Service, Woolloongabba, QLD, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, the University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| |
Collapse
|
4
|
Martins EB, Lima EG, Pitta FG, Carvalho LNS, Queiroz TDD, Serrano Júnior CV. Pharmacological therapy and cardiovascular risk reduction for type 2 diabetes. Rev Assoc Med Bras (1992) 2020; 66:1283-1288. [DOI: 10.1590/1806-9282.66.9.1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/14/2020] [Indexed: 11/22/2022] Open
Abstract
SUMMARY The pharmacological therapy for type 2 diabetes mellitus has presented important advances in recent years, which has impacted the treatment of patients with established cardiovascular disease or with high cardiovascular risk. In this scenario, two drug classes have emerged and demonstrated clear clinical benefits: SGLT-2 inhibitors and GLP-1 agonists. The present review discusses the pharmacology, adverse effects, and clinical trials that have demonstrated the benefits of these medications in reducing cardiovascular risk.
Collapse
|
5
|
Patoulias D, Stavropoulos K, Imprialos K, Katsimardou A, Kalogirou MS, Koutsampasopoulos K, Zografou I, Papadopoulos C, Karagiannis A, Doumas M. Glycemic efficacy and safety of glucagon-like peptide-1 receptor agonist on top of sodium-glucose co-transporter-2 inhibitor treatment compared to sodium-glucose co-transporter-2 inhibitor alone: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2019; 158:107927. [PMID: 31733280 DOI: 10.1016/j.diabres.2019.107927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Sodium-glucose co-transporter-2 inhibitors (SGLT-2i) and glucagon-like peptide-1 receptor agonists (GLP-1RAs) are now considered as key players in the treatment of type 2 diabetes mellitus (T2DM). The purpose of this meta-analysis was to provide precise effect estimates regarding the safety and efficacy of the addition of a GLP-1RA on top of SGLT-2i treatment. RESEARCH DESIGN AND METHODS PubMed and CENTRAL, along with grey literature sources, were searched from their inception to May 2019 for randomized controlled trials (RCTs) with a duration ≥ 12 weeks, evaluating the safety and efficacy of addition of a GLP-1RA on a SGLT-2i compared to SGLT-2i alone in patients with T2DM. We also used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach to assess the credibility of our summary estimates. RESULTS We identified three eligible RCTs, pooling data retrieved from 1,042 patients with T2DM in total. Administration of the maximum dose of a GLP-1RA on top of SGLT-2i treatment compared to SGLT-2i alone resulted in significant decrease in HbA1c by 0.91% (95% CI; -1.41 to -0.42) [GRADE: moderate], in body weight by 1.95 kg (95% CI; -3.83 to -0.07) [GRADE: moderate], in fasting plasma glucose by 1.53 mmol/L (95% CI; -2.17 to -0.88) [GRADE: moderate] and in systolic blood pressure levels by 3.64 mm Hg (95% CI -6.24 to -1.03). No significant effects on lipid profile and diastolic blood pressure were demonstrated. A significant increase in the risk for any hypoglycemia (RR: 2.62, 95% CI; 1.15-5.96, I2 = 33%) [GRADE: moderate] and for nausea (RR: 3.21, 95% CI; 1.36-7.54, I2 = 63%) [GRADE: moderate] and a non-significant increase in the risk for diarrhoea (RR: 1.64, 95% CI; 0.98-2.75, I2 = 0%) [GRADE: low] were documented. No other safety issues were identified. CONCLUSIONS This meta-analysis suggests that a GLP-1RA/SGLT-2i combination, if tolerated, exerts significant beneficial effects on glycemic control and body weight loss, however increasing the risk for any hypoglycemia and gastrointestinal adverse events.
Collapse
Affiliation(s)
- Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Stavropoulos
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Konstantinos Imprialos
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandra Katsimardou
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria-Styliani Kalogirou
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Koutsampasopoulos
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Zografou
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christodoulos Papadopoulos
- Third Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asterios Karagiannis
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece; VAMC and George Washington University, Washington, DC, USA
| |
Collapse
|
6
|
Bozzetto L, Alderisio A, Clemente G, Giorgini M, Barone F, Griffo E, Costabile G, Vetrani C, Cipriano P, Giacco A, Riccardi G, Rivellese AA, Annuzzi G. Gastrointestinal effects of extra-virgin olive oil associated with lower postprandial glycemia in type 1 diabetes. Clin Nutr 2018; 38:2645-2651. [PMID: 30567626 DOI: 10.1016/j.clnu.2018.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/21/2018] [Accepted: 11/25/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To explore the possible mechanisms behind the lower glycemic response observed when extra-virgin olive oil (EVOO) is added to a high-glycemic index meal in patients with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS According to a randomized cross-over design, eleven T1D patients (6 women, 5 men) on insulin pump consumed in the metabolic ward, one week apart, three high-glycemic index meals differing only for amount and quality of fat: high-monounsaturated fat (EVOO), high-saturated fat (Butter), and low-fat (LF). Before and after the meals, blood glucose (continuous glucose monitoring), gastric emptying rate (ultrasound technique), and plasma concentrations of glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide GIP (ELISA), glucagon (RIA), and lipids (colorimetric assays) were evaluated. RESULTS Blood glucose iAUC (mmol/lx360 min) was lower after the EVOO (690 ± 431) than after the Butter (1320 ± 600) and LF meals (1007 ± 990) (M ± SD, p = 0.041 by repeated measures ANOVA). Gastric antrum volume was significantly larger in the early (60-90 min) postprandial phase (106 ± 21 vs. 90 ± 16 ml, p = 0.048) and significantly smaller in the late phase (330-360 min) (46 ± 10 vs. 57 ± 22 ml, p = 0.045) after the EVOO than after Butter meal. EVOO significantly increased postprandial GLP-1 iAUC (261 ± 311) compared to Butter (189 ± 349) (pmol/Lx180 min, p = 0.009). Postprandial GIP and glucagon responses were not significantly different between EVOO and Butter. Postprandial triglyceride iAUC was significantly higher after EVOO (100 ± 53) than after Butter (65 ± 60) (mmol/l × 360 min, p = 0.048). CONCLUSIONS Changes in gastric emptying and GLP-1 secretion and reduced glucose absorption through glucose-lipid competition may contribute to lower glycemia after a high-glycemic index meal with EVOO in T1D patients. CLINICAL TRIALS NUMBER NCT02330939.
Collapse
Affiliation(s)
- Lutgarda Bozzetto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Antonio Alderisio
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gennaro Clemente
- Institute for Research on Population and Social Policies (IRPPS), National Research Council, Fisciano, SA, Italy
| | - Marisa Giorgini
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Francesca Barone
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ettore Griffo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Paola Cipriano
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Angela Giacco
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | | | - Giovanni Annuzzi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| |
Collapse
|
7
|
Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ. Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocr Rev 2018; 39:629-663. [PMID: 30060120 DOI: 10.1210/er.2017-00191] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
There has been an alarming increase in the prevalence of obesity in people with type 1 diabetes in recent years. Although obesity has long been recognized as a major risk factor for the development of type 2 diabetes and a catalyst for complications, much less is known about the role of obesity in the initiation and pathogenesis of type 1 diabetes. Emerging evidence suggests that obesity contributes to insulin resistance, dyslipidemia, and cardiometabolic complications in type 1 diabetes. Unique therapeutic strategies may be required to address these comorbidities within the context of intensive insulin therapy, which promotes weight gain. There is an urgent need for clinical guidelines for the prevention and management of obesity in type 1 diabetes. The development of these recommendations will require a transdisciplinary research strategy addressing metabolism, molecular mechanisms, lifestyle, neuropsychology, and novel therapeutics. In this review, the prevalence, clinical impact, energy balance physiology, and potential mechanisms of obesity in type 1 diabetes are described, with a special focus on the substantial gaps in knowledge in this field. Our goal is to provide a framework for the evidence base needed to develop type 1 diabetes-specific weight management recommendations that account for the competing outcomes of glycemic control and weight management.
Collapse
Affiliation(s)
- Karen D Corbin
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - Kimberly A Driscoll
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado.,Barbara Davis Center for Diabetes, Aurora, Colorado
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - David M Maahs
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
8
|
George PS, McCrimmon RJ. Saxagliptin co-therapy in C-peptide negative Type 1 diabetes does not improve counter-regulatory responses to hypoglycaemia. Diabet Med 2016; 33:1283-90. [PMID: 26642301 DOI: 10.1111/dme.13046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 01/14/2023]
Abstract
AIMS To test the hypothesis that dipeptidyl peptidase-4 inhibition in C-peptide negative Type 1 diabetes would reduce glucose variability and exposure to hypoglycaemia and therefore may indirectly enhance counter-regulatory responses to subsequent hypoglycaemia. METHODS We conducted a 12-week double-blind, randomized, placebo-controlled crossover study. The study was conducted in a tertiary hospital outpatient clinic, with additional studies performed in a clinical research centre. After obtaining informed consent, we recruited 14 subjects with moderately well controlled Type 1 diabetes (HbA1c 64 ± 2 mmol/mol) of long duration (20.5 ± 2.7 years). The subjects received 12 weeks' therapy with oral saxagliptin (5 mg) or placebo. Glucose variability, assessed via continuous glucose monitoring, together with frequency of hypoglycaemia, hypoglycaemia awareness and symptomatic, cognitive and counter-regulatory hormone responses to experimental hypoglycaemia, were assessed. Additional outcome measures included HbA1c level, weight, total daily insulin dose and adverse events. RESULTS Saxagliptin co-therapy did not reduce glucose variability (low blood glucose index, average daily risk range), hypoglycaemia frequency or awareness and did not improve counter-regulatory hormonal responses during experimental hypoglycaemia (area under the curve for adrenaline 25 775 vs. 24 454, for placebo vs saxagliptin, respectively; P = 0.76). CONCLUSIONS No additional benefit of dipeptidyl peptidase-4 inhibition co-therapy with saxagliptin in the management of Type 1 diabetes was observed.
Collapse
Affiliation(s)
- P S George
- Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - R J McCrimmon
- Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
9
|
de Laat MA, van Haeften JJ, Sillence MN. The effect of oral and intravenous dextrose on C-peptide secretion in ponies. J Anim Sci 2016; 94:574-80. [PMID: 27065127 DOI: 10.2527/jas.2015-9817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Managing equine hyperinsulinemia is crucial for preventing laminitis, but our understanding of the mechanisms involved in insulin dysregulation in this species is incomplete. C-peptide is co-secreted with insulin but is resistant to hepatic metabolism and can be used to study insulin dysregulation. This study examined C-peptide secretion in serial blood samples collected after oral and i.v. dextrose (0.75 g/kg) administration to 9 ponies (BCS, 7.1 ± 0.5). The ponies were designated as hyperinsulinemic (HI) or normoinsulinemic (NI) responders before the study, using oral glucose tests and fasted glucose-to-insulin ratios, and responses were compared between the 2 groups. C-peptide concentrations increased ( < 0.01) rapidly from fasted levels after both oral and i.v. dextrose, with similar area under the concentration-time curve (AUC) for both tests and a significant correlation with AUC. The AUC was similar in HI and NI ponies after i.v. dextrose, indicating similar pancreatic capacity for both groups. However, for oral dextrose, the AUC and the AUC were markedly higher ( < 0.05) in the HI ponies, indicating a greater secretion rate of these peptides. Slower insulin clearance might have also contributed to the larger AUC in HI ponies, but this hypothesis requires further investigation with specific measures of hepatic insulin clearance.
Collapse
|
10
|
Abstract
INTRODUCTION Dipeptidyl peptidase inhibitors (DPP-4-i) are highly selective inhibitors of the enzyme DPP-4. They act by increasing levels of incretin hormones, which have potent effects on insulin and glucagon release, gastric emptying, and satiety. Our goal is to review the safety issues related to DPP-4-i. AREAS COVERED This review is based upon a PubMed search of the literature using keywords alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin, DPP-4-i, glucagon-like polypeptide-1 agonists, as well as extensive personal clinical trial experience with each of these agents. The current DPP-4-i have very different chemical structures. Saxagliptin has significant cytochrome P450 metabolism and carries a risk of drug interactions. Linagliptin has primarily entero-hepatic excretion, a benefit in renally impaired patients. A concern arose related to congestive heart failure in the SAVOR TIMI trial of saxagliptin. Several major cardiac studies are underway, with two concluded. Despite lingering uncertainty related to pancreatitis and pancreatic cancer, large randomized trials have not shown an increased risk with DPP-4-i treatment. Cutaneous adverse effects occur with a low frequency with some of these agents. EXPERT OPINION DPP-4-i are an additional choice in the group of anti-hyperglycemics. Their principal advantage is a low incidence of hypoglycemia, making these agents desirable in patients such as the elderly and those with cardiac disease. Several large trials have hinted at less cardiac risk with DPP-4-i than with sulfonylureas. The CAROLINA Trial comparing linagliptin and glimepiride may provide a conclusive answer to this question.
Collapse
Affiliation(s)
- Sri Harsha Tella
- Creighton Diabetes Center , 601 North 30th Street, Omaha, NE 68131 , USA
| | | |
Collapse
|
11
|
Zibar K, Ćuća JK, Blaslov K, Bulum T, Smirčić-Duvnjak L. Difference in glucagon-like peptide-1 concentrations between C-peptide negative type 1 diabetes mellitus patients and healthy controls. Ann Clin Biochem 2014; 52:220-5. [DOI: 10.1177/0004563214544709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The role of glucagon-like peptide-1 (GLP-1) has become a new scientific interest in the field of pathophysiology of type 1 diabetes mellitus (T1DM), but the results of the published studies were contradictory. The aim of our study was therefore to measure fasting and postprandial GLP-1 concentrations in T1DM patients and in healthy controls and to examine the difference in those concentrations between the two groups of subjects. Methods The cross-sectional study included 30 C-peptide negative T1DM patients, median age 37 years (20–59), with disease duration 22 years (3–45), and 10 healthy controls, median age 30 years (27–47). Fasting and postprandial total and active GLP-1 concentrations were measured by ELISA (ALPCO, USA). The data were statistically analysed by SPSS, and significance level was accepted at P < 0.05. Results Both fasting total and active GLP-1 concentrations were significantly lower in T1DM patients (total 0.4 pmol/L, 0–6.4 and active 0.2 pmol/L, 0–1.9) compared with healthy controls (total 3.23 pmol/L, 0.2–5.5 and active 0.8 pmol/L, 0.2–3.6), P = 0.008 for total GLP-1 and P = 0.001 for active GLP-1. After adjustment for age, sex and body mass index, binary logistic regression showed that both fasting total and active GLP-1 remained significantly independently lower in T1DM patients (total GLP-1: OR 2.43, 95% CI 1.203–4.909 and active GLP-1: OR 8.73, 95% CI 1.472–51.787). Conclusions T1DM patients had independently lower total and active GLP-1 fasting concentrations in comparison with healthy people, which supports the potential therapeutic role of incretin therapy, along with insulin therapy, in T1DM patients.
Collapse
Affiliation(s)
- Karin Zibar
- Department of Endocrinology and Metabolic Diseases, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia
| | - Jadranka Knežević Ćuća
- Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Kristina Blaslov
- Department of Endocrinology and Metabolic Diseases, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia
| | - Tomislav Bulum
- Department of Endocrinology and Metabolic Diseases, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia
| | - Lea Smirčić-Duvnjak
- Department of Endocrinology and Metabolic Diseases, Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, Zagreb, Croatia
- Medical School University of Zagreb, Zagreb, Croatia
| |
Collapse
|
12
|
|
13
|
Guglielmi C, Palermo A, Pozzilli P. Latent autoimmune diabetes in the adults (LADA) in Asia: from pathogenesis and epidemiology to therapy. Diabetes Metab Res Rev 2012; 28 Suppl 2:40-6. [PMID: 23280865 DOI: 10.1002/dmrr.2345] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus is a metabolic disorder resulting from a defect in insulin secretion, insulin action or both. An effect of this process is chronic hyperglycaemia with disorder of carbohydrate, fat and protein metabolism and with long-term complications of diabetes including retinopathy, nephropathy and neuropathy. Latent autoimmune diabetes in adults (LADA) is a type of autoimmune diabetes that resembles Type 1 diabetes (T1D), however, it shows a later onset and slower progression towards insulin necessity. Epidemiological studies suggest that LADA may account for 2-12% of all cases of diabetes in adult population. The epidemiology and phenotypic characteristics of LADA may vary between Caucasian and Asian diabetic patients as lifestyle, food habits and body mass index differ between these two populations. Data on LADA from population-based studies in Asia are sparse and only few studies have looked at it. A number of attractive therapeutic interventions may be envisaged for prevention of beta-cell loss in LADA, including hypoglycaemic and immunomodulatory agents. Because the autoimmune process in LADA seems to be slower than in childhood T1D, there is a wider window of opportunities for intervention. In deciding the best therapeutic approach, features of LADA should guide therapy including presence of other comorbidities that may influence the therapeutic choice.
Collapse
Affiliation(s)
- Chiara Guglielmi
- Department of Endocrinology and Diabetes, University Campus Bio Medico, Via Alvaro del Portillo 21, Rome, Italy
| | | | | |
Collapse
|
14
|
Alogliptin-Pioglitazone Combination Therapy: A Rational Approach to Treating Type 2 Diabetes Mellitus. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13556-012-0004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Abstract
Type 1 diabetes (T1D) is a serious disease with increasing incidence worldwide, with fatal consequences if untreated. Traditional therapies require direct or indirect insulin replacement, which involves numerous limitations and complications. While insulin is the major regulator of blood glucose, recent reports demonstrate the ability of several extra-pancreatic hormones to decrease blood glucose and improve metabolic homeostasis. Such hormones mainly include adipokines originating from adipose tissue (AT), while specific factors from the gut and liver also contribute to glucose homeostasis. Correction of T1D with adipokines is progressively becoming a realistic option, with the potential to overcome many problems associated with insulin replacement. Several recent studies demonstrate insulin-independent reversal or amelioration of T1D through administration of specific adipokines. Our recent work demonstrates the ability of healthy AT to compensate for the function of endocrine pancreas in long-term correction of T1D. This review discusses the potential of AT-related therapies for T1D as viable alternatives to insulin replacement.
Collapse
Affiliation(s)
- Subhadra C Gunawardana
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
16
|
Rendell M, Drincic A, Andukuri R. Alogliptin benzoate for the treatment of type 2 diabetes. Expert Opin Pharmacother 2012; 13:553-63. [PMID: 22296609 DOI: 10.1517/14656566.2012.656088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Alogliptin is a highly selective inhibitor of the enzyme dipeptidyl peptidase-4 (DPP-4). It is one of several agents of this class now available for treatment of type 2 diabetes. AREAS COVERED This review is based upon a PubMed search and personal experience with alogliptin. The pharmacokinetics and pharmacodynamics of alogliptin are reviewed. The glucose-lowering effect of this agent is discussed as monotherapy and in combination with metformin, sulfonylurea, piogilitazone and insulin. The potential adverse effects of alogliptin are summarized. Alogliptin is compared with the other available DPP-4 inhibitors. EXPERT OPINION Alogliptin is an additional choice in the group of DPP-4 inhibitors. As a group, these agents have a relatively modest glucose-lowering effect, inferior to that of metformin, sulfonylureas, and insulin. They do not have the benefit of weight loss offered by the glucagon-like polypeptide (GLP)-1 agonists. The primary use of DPP-4 inhibitors is in combination with other hypoglycemic agents, mainly metformin. Their principal advantage is a low incidence of hypoglycemia, making these agents desirable in patients such as the elderly and those with cardiac disease. A greater use of alogliptin and other DPP-4 inhibitors will occur if long-term studies show reduced cardiac events or long-term retention of insulin secretory capacity. The Examine Trial, a large study of alogliptin in coronary disease patients, is now underway and could provide important supportive data.
Collapse
Affiliation(s)
- Marc Rendell
- Creighton Diabetes Center,601 North 30th Street, Omaha, NE 68131, USA.
| | | | | |
Collapse
|
17
|
Bianchi R, Cervellini I, Porretta-Serapiglia C, Oggioni N, Burkey B, Ghezzi P, Cavaletti G, Lauria G. Beneficial effects of PKF275-055, a novel, selective, orally bioavailable, long-acting dipeptidyl peptidase IV inhibitor in streptozotocin-induced diabetic peripheral neuropathy. J Pharmacol Exp Ther 2012; 340:64-72. [PMID: 21984837 DOI: 10.1124/jpet.111.181529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
1-[(2-adamantyl)amino]acetyl-2-cyano-(S)-pyrrolidine, monohydrochloride (PKF275-055), a vildagliptin analog, is a novel, selective, potent, orally bioavailable, and long-acting dipeptidyl peptidase IV inhibitor. We studied the effect of PKF275-055 administration on the prevention, protection, and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. PKF275-055 improved body and muscle weight. Oral glucose tolerance tests showed a marked improvement in glucose metabolism under all treatment schedules. When tested in prevention and protection experiments, PKF275-055 completely averted the decrease of Na⁺/K⁺-ATPase activity and partially counteracted the nerve conduction velocity (NCV) deficit observed in untreated diabetic rats but had no effects on abnormal mechanical and thermal sensitivity. When used in a therapeutic setting, PKF275-055 induced a significant correction in the alteration in Na⁺,K⁺-ATPase activity and NCV present in untreated diabetics. Diabetic rats developed mechanical hyperalgesia within 2 weeks after streptozotocin injection and exhibited significantly longer thermal response latencies. It is noteworthy that PKF275-055 treatment restored mechanical sensitivity thresholds by approximately 50% (p < 0.01) and progressively improved the alteration in thermal responsiveness. In conclusion, PKF275-055 showed an anabolic effect, improved oral glucose tolerance, and counteracted the alterations in Na⁺,K⁺-ATPase activity, NCV, and nociceptive thresholds in diabetic rats. The present data support a potential therapeutic effect of PKF275-055 in the treatment of rodent diabetic neuropathy.
Collapse
Affiliation(s)
- R Bianchi
- Neuromuscular Disease Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The discovery of incretins − glucagon-like peptide (GLP)-1 and glucose-dependent insulinotrop peptide (GIP) −, clarification of their physiological properties as well as therapeutic application of incretin-based blood glucose lowering drugs opened new perspectives in the medical management of type 2 diabetes. New results of basic research investigations led to revaluation of the role of GIP in metabolic processes and a more established use of GLP-1 action. The article overviews the most relevant data of production and effects of incretins, as well as future possibilities of their therapeutic use. Orv. Hetil., 2011, 152, 1922–1930.
Collapse
Affiliation(s)
- Gábor Winkler
- Fővárosi Szent János Kórház és Észak-budai Egyesített Intézményei II. Belgyógyászat-Diabetológia Budapest Diósárok út 1–3. 1125
- Miskolci Egyetem Egészségügyi Kar Elméleti Egészségtudományi Tanszék Miskolc
| |
Collapse
|
19
|
Assessment of glucagon-like peptide-1 analogue and renin inhibitor on the binding and regulation of GLP-1 receptor in type 1 diabetic rat hearts. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:489708. [PMID: 21747829 PMCID: PMC3124137 DOI: 10.1155/2011/489708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/11/2011] [Accepted: 03/21/2011] [Indexed: 11/18/2022]
Abstract
This study focuses on the effects of long-term renin-angiotensin system suppression and/or incretin mimetic therapies on the regulation and binding affinity of GLP-1 to its receptor in the coronary endothelium (CE) and cardiomyocytes (CMs) of type 1 diabetic male Sprague-Dawley rats. The groups assessed are normal (N), streptozotocin-induced diabetic (D), Insulin treated (DI), Exendin-4 treated (DE), Aliskiren treated (DA), cotreated with Insulin and Aliskiren (DIA) and cotreated with exendin-4 and Aliskiren (DEA). Heart perfusion with 125I-GLP-1 was performed to estimate GLP-1 binding affinity (τ = 1/k-n) to its receptor in the heart. Western Blotting was assessed to determine the expression variation of GLP-1 receptor in the heart. Plasma GLP-1 levels were measured using Enzyme-Linked Immunosorbent Assay (ELISA). Diabetes decreased the τ value on CE and increased it on CMs compared to normal. The combination of Exendin-4 with Aliskiren showed a normalizing effect on the binding affinity of GLP-1 at the coronary endothelium, while at the cardiomyocyte level Exendin-4 treatment alone was the most effective.
Collapse
|
20
|
Abstract
CD26 is a 110-kDa surface glycoprotein with intrinsic dipeptidyl peptidase IV (DPPIV) activity that is expressed on various cell types and has many biological functions. An important aspect of CD26 biology is its peptidase activity and its functional and physical association with molecules with key roles in human immunological programs. CD26 role in immune regulation has been extensively characterized, with recent findings elucidating its link age with signaling pathways and structures involved in T cell activation a well as antigen-presenting cell-T cell interaction, being a marker of diseas behavior clinically as well as playing an important role in autoimmune pathogenesis and development. Through the use of various experimental approaches and agents to influence CD26/DPPIV expression and activity, such as anti-CD26 antibodies, CD26/DPPIV chemical inhibitors, siRNAs to inhibit CD26 expression, overexpressing CD26 transfectants, soluble CD26 molecules and proteomic approach, we have shown that CD26 interacts with structures with essential cellular functions in T cell responses. We will review emerging data that suggest CD26 may be an appropriate therapeutic target for the treatment of selected immune disorders.
Collapse
Affiliation(s)
- Kei Ohnuma
- Division of Rheumatology and Allergy, Research Hospital, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
21
|
O’Connor SP, Wang Y, Simpkins LM, Brigance RP, Meng W, Wang A, Kirby MS, Weigelt CA, Hamann LG. Synthesis, SAR, and atropisomerism of imidazolopyrimidine DPP4 inhibitors. Bioorg Med Chem Lett 2010; 20:6273-6. [DOI: 10.1016/j.bmcl.2010.08.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
22
|
Riedel MJ, Kieffer TJ. Treatment of diabetes with glucagon-like peptide-1 gene therapy. Expert Opin Biol Ther 2010; 10:1681-92. [PMID: 21029027 DOI: 10.1517/14712598.2010.532786] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
IMPORTANCE OF THE FIELD Glucagon-like peptide (GLP)-1 receptor agonists are in widespread clinical use for the treatment of diabetes. While effective, these peptides require frequent injections to maintain efficacy. Therefore, alternative delivery methods including gene therapy are currently being evaluated. AREAS COVERED IN THIS REVIEW Here, we review the biology of GLP-1, evidence supporting the clinical use of the native peptide as well as synthetic GLP-1 receptor agonists, and the rationale for their delivery by gene therapy. We then review progress made in the field of GLP-1 gene therapy for both type 1 and type 2 diabetes. WHAT THE READER WILL GAIN Efforts to improve the biological half-life of GLP-1 receptor agonists are discussed. We focus on the development of both viral and non-viral gene delivery methods, highlighting vector designs and the strengths and weaknesses of these approaches. We also discuss the utility of targeting regulated GLP-1 production to tissues including the liver, muscle, islet and gut. TAKE HOME MESSAGE GLP-1 is a natural peptide possessing several actions that effectively combat diabetes. Current delivery methods for GLP-1-based drugs are cumbersome and do not recapitulate the normal secretion pattern of the native hormone. Gene therapy offers a useful method for directing long-term production and secretion of the native peptide. Targeted production of GLP-1 using tissue-specific promoters and delivery methods may improve therapeutic efficacy, while also eliminating the burden of frequent injections.
Collapse
Affiliation(s)
- Michael J Riedel
- University of British Columbia, Department of Cellular and Physiological Sciences, Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
23
|
Hadjiyanni I, Siminovitch KA, Danska JS, Drucker DJ. Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia 2010; 53:730-40. [PMID: 20225396 DOI: 10.1007/s00125-009-1643-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 receptor (GLP-1R) agonists improve glucose control in animals and humans with type 1 diabetes. However, there is little information on the role of the GLP-1R in the immune system. We studied the role of the GLP-1R in immune function in wild-type (WT) and nonobese diabetic (NOD) and Glp1r-/- mice. METHODS Glp1r mRNA expression was examined in sorted immune subpopulations by RT-PCR. The effects of GLP-1R activation were assessed on cAMP production and proliferation, migration and survival of primary immune cells from WT and NOD mice. The ability of primary cells from Glp1r-/- mice to proliferate, migrate or survive apoptosis was determined. Immunophenotyping studies were performed to assess the frequency of immune subpopulations in Glp1r-/- mice. RESULTS Ex vivo activation of the GLP-1R resulted in a modest but significant elevation of cAMP in primary thymocytes and splenocytes from both WT and NOD mice. GLP-1R activation did not increase proliferation of primary thymocytes, splenocytes or peripheral lymph node cells. In contrast, Glp1r-/- thymocytes exhibited a hypoproliferative response, whilst peripheral Glp1r-/- lymphocytes were hyperproliferative in response to mitogenic stimulation. Activation or loss of GLP-1R signalling did not modify apoptosis or chemotaxis in primary lymphocytes. Male Glp1r-/- mice exhibited a significantly lower percentage of peripheral regulatory T cells, although no differences were observed in the numbers of CD4+ and CD8+ T cells and B cells in the spleen and lymph nodes of Glp1r-/- mice. CONCLUSIONS/INTERPRETATION These studies establish that GLP-1R signalling may regulate lymphocyte proliferation and maintenance of peripheral regulatory T cells.
Collapse
Affiliation(s)
- I Hadjiyanni
- Department of Medicine, Samuel Lunenfeld Research Institute, Mt Sinai Hospital, 600 University Avenue TCP5-1004, Toronto, ON M5G 1X5, Canada
| | | | | | | |
Collapse
|
24
|
Abstract
Rates of type 2 diabetes, obesity and their associated detrimental cardiovascular effects are rapidly increasing. Despite the availability of several treatment options for type 2 diabetes and the use of intensive regimens combining several antidiabetic drugs, less than one-half of all patients reach a target glycosylated hemoglobin level of less than 7%. Disease progression due to ongoing deterioration of pancreatic islet cell health and beta-cell function is likely responsible. Therefore, there is a need to identify new pharmacological compounds that may not only treat hyperglycemia, but may also correct impaired glucose homeostasis and preserve endogenous beta-cell function. Identification and characterization of the incretin system and its effect on glucose homeostasis have resulted in the development of new antidiabetic agents that target these concerns. The current review examines the incretin effect and the pharmacological agents that have been developed based on the understanding of this physiological system. The influence of incretins on the cardiovascular system beyond the proatherogenic effect of type 2 diabetes will also be discussed.
Collapse
Affiliation(s)
- Paul E Szmitko
- Division of General Internal Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
25
|
Young-Hyman DL, Davis CL. Disordered eating behavior in individuals with diabetes: importance of context, evaluation, and classification. Diabetes Care 2010; 33:683-9. [PMID: 20190297 PMCID: PMC2827531 DOI: 10.2337/dc08-1077] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Deborah L Young-Hyman
- Department of Pediatrics, Georgia Prevention Institute, Medical College of Georgia, Augusta, Georgia, USA.
| | | |
Collapse
|
26
|
Cernea S, Buzzetti R, Pozzilli P. Beta-cell protection and therapy for latent autoimmune diabetes in adults. Diabetes Care 2009; 32 Suppl 2:S246-52. [PMID: 19875559 PMCID: PMC2811444 DOI: 10.2337/dc09-s317] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Simona Cernea
- Department of Endocrinology & Diabetes, University Campus Bio-Medico, Rome, Italy
| | | | | |
Collapse
|
27
|
DsAAV8-mediated expression of glucagon-like peptide-1 in pancreatic beta-cells ameliorates streptozotocin-induced diabetes. Gene Ther 2009; 17:171-80. [PMID: 19865180 DOI: 10.1038/gt.2009.143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that performs a wide array of well-characterized antidiabetic actions, including stimulation of glucose-dependent insulin secretion, upregulation of insulin gene expression and improvements in beta-cell survival. GLP-1-receptor agonists have been developed for treatment of diabetes; however, the short biological half-lives of these peptide-based therapeutics requires that frequent injections be administered to maintain sufficient circulating levels. Thus, novel methods of delivering GLP-1 remain an important avenue of active research. It has recently been demonstrated that self-complimentary, double-stranded, adeno-associated virus serotype-8 (DsAAV8) can efficiently transduce pancreatic beta-cells in vivo, resulting in long-term transgene expression. In this study, we engineered a DsAAV8 vector containing a GLP-1 transgene driven by the mouse insulin-II promoter (MIP). Biological activity of the GLP-1 produced from this transgene was assessed using a luciferase-based bioassay. DsAAV8-MIP-GLP-1 was delivered via intraperitoneal injection and beta-cell damage induced by multiple low dose streptozotocin (STZ) administration. Glucose tolerance was assessed following intraperitoneal glucose injections and beta-cell proliferation measured by PCNA expression. Expression of GLP-1 in Min6 beta-cells resulted in glucose-dependent secretion of biologically active GLP-1. Intraperitoneal delivery of DsAAV8-MIP-GLP-1 to mice led to localized GLP-1 expression in beta-cells and protection against development of diabetes induced by multiple low-dose STZ administration. This protection was associated with significant increase in beta-cell proliferation. Results from this study indicate that expression and secretion of GLP-1 from beta-cells in vivo via DsAAV8 represents a novel therapeutic strategy for treatment of diabetes.
Collapse
|
28
|
Selimoglu H, Duran C, Kiyici S, Guclu M, Ersoy C, Ozkaya G, Erturk E, Tuncel E, Imamoglu S. Comparison of composite whole body insulin sensitivity index derived from mixed meal test and oral glucose tolerance test in insulin resistant obese subjects. Endocrine 2009; 36:299-304. [PMID: 19598007 DOI: 10.1007/s12020-009-9213-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/01/2009] [Accepted: 06/18/2009] [Indexed: 01/23/2023]
Abstract
Apart from fasting blood glucose (FBG) and insulin (FBI), oral glucose tolerance test (OGTT) is also used in calculating insulin sensitivity. During OGTT, insulin secretion may not reflect normal physiological insulin secretion. Based on this idea, hepatic and whole body insulin sensitivity rates were tested during OGTT and mixed meal test (MMT) in obese subjects. Thirty-one women with Quantitative Insulin Sensitivity Check Index (QUICKI) values below 0.350 and body mass index (BMI) >or=30 were included into the study. OGTT with 75-g glucose and MMT 300 kcal were applied to all cases. Data obtained from OGTT and MMT were used in the assessment of insulin sensitivity with Hemostasis of Model Assessment-Insulin Resistance (HOMA-IR) and Matsuda's Composite Whole Body Insulin Sensitivity Index (Matsuda's ISI). Mean BMI, FBG, and FBI were 36.8 +/- 3.9 kg/m(2), 100.5 +/- 0.10 mg/dl, 16.2 +/- 5.3 microg/ml, respectively. QUICKI was 0.31 +/- 0.01 and HOMA-IR was 3.71 +/- 0.88. Matsuda's ISI derived from OGTT was 6.96 +/- 3.35 and from MMT was 11.32 +/- 6.61. In analysis, it was demonstrated that there was a correlation between HOMA-IR, QUICKI, and Matsuda's ISIs derived from OGTT and MMT. Comparing the time periods separately, it was detected that despite similar increment in insulin levels, glucose levels were higher in OGTT than MMT at 15 and 30 min. Consequently, Matsuda's ISI was demonstrated to be effectively used with the data of MMT, as used with OGTT. Moreover, MMT was shown to be in parallel to physiologic insulin secretion and reflect pancreatic functions better compared to OGTT.
Collapse
Affiliation(s)
- Hadi Selimoglu
- Division of Endocrinology, Malatya State Hospital, Malatya, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Insulin administration is the primary therapy for type 1 diabetes mellitus (T1DM). Current available insulin therapies do not successfully enable children with T1DM to reach glycemic goals without side effects such as hypoglycemia and weight gain. Pramlintide is a synthetic analog of human amylin that acts in conjunction with insulin to delay gastric emptying and inhibit the release of glucagon and is indicated for use in patients with type 1 and type 2 diabetes. Recent studies in adult patients have examined the role of glucagon-like peptide 1 (GLP-1) and agents that bind to its receptor in type 1 diabetes. It is hypothesized that a major component of the glycemic effect is attributable to the known action of GLP-1 to delay gastric emptying and to inhibit glucagon secretion. Further studies with the use of amylin analogs and long-acting GLP-1 agonists as congeners with insulin in T1DM are indicated in children. In recent years, our better understanding of the pathophysiology of diabetes has led to the development of new therapies for diabetes. This article reviews the potential use of these newer pharmacologic agents as adjunctive therapy in T1DM in children and adolescents.
Collapse
Affiliation(s)
- Vandana S Raman
- Department of Pediatrics, Division of Pediatric Endocrinology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Gabbay MDAL. [Adjunctive therapies to glycaemic control of type 1 diabetes mellitus]. ACTA ACUST UNITED AC 2009; 52:279-87. [PMID: 18438538 DOI: 10.1590/s0004-27302008000200015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/10/2007] [Indexed: 11/22/2022]
Abstract
Since Diabetes Control and Complications Trial (DCCT), intensive therapy has been directed at achieving glucose and glycosylated hemoglobin (HbA1c) values as close to normal as possible regarding safety issues. However, hyperglycemia (especially postprandial hyperglycemia) and hypoglicemia continue to be problematic in the management of type 1 diabetes. The objective of associating other drugs to insulin therapy is to achieve better metabolic control lowering postprandial blood glucose levels. Adjunctive therapies can be divided in four categories based on their mechanism of action: enhancement of insulin action (e.g. the biguanides and thiazolidinediones), alteration of gastrointestinal nutrient delivery (e.g. acarbose and amylin) and other targets of action (e.g. pirenzepine, insulin-like growth factor I and glucagon-like peptide-1). Many of these agents have been found to be effective in short-term studies with decreases in HbA1c of 0.5-1%, lowering postprandial blood glucose levels and decreasing daily insulin doses.
Collapse
Affiliation(s)
- Mônica de A Lima Gabbay
- Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil.
| |
Collapse
|
31
|
Kim SJ, Nian C, Doudet DJ, McIntosh CHS. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes 2009; 58:641-51. [PMID: 19073764 PMCID: PMC2646063 DOI: 10.2337/db08-1101] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The endopeptidase dipeptidyl peptidase-IV (DPP-IV) has been shown to NH2-terminally truncate incretin hormones, glucose-dependent insulinotropic polypeptide, and glucagon-like peptide-1, thus ablating their ability to potentiate glucose-stimulated insulin secretion. Increasing the circulating levels of incretins through administration of DPP-IV inhibitors has therefore been introduced as a therapeutic approach for the treatment of type 2 diabetes. DPP-IV inhibitor treatment has also been shown to preserve islet mass in rodent models of type 1 diabetes. The current study was initiated to define the effects of the DPP-IV inhibitor sitagliptin (MK0431) on transplanted islet survival in nonobese diabetic (NOD) mice, an autoimmune type 1 diabetes model. RESEARCH DESIGN AND METHODS Effects of MK0431 on islet graft survival in diabetic NOD mice were determined with metabolic studies and micropositron emission tomography imaging, and its underlying molecular mechanisms were assessed. RESULTS Treatment of NOD mice with MK0431 before and after islet transplantation resulted in prolongation of islet graft survival, whereas treatment after transplantation alone resulted in small beneficial effects compared with nontreated controls. Subsequent studies demonstrated that MK0431 pretreatment resulted in decreased insulitis in diabetic NOD mice and reduced in vitro migration of isolated splenic CD4+ T-cells. Furthermore, in vitro treatment of splenic CD4+ T-cells with DPP-IV resulted in increased migration and activation of protein kinase A (PKA) and Rac1. CONCLUSIONS Treatment with MK0431 therefore reduced the effect of autoimmunity on graft survival partially by decreasing the homing of CD4+ T-cells into pancreatic beta-cells through a pathway involving cAMP/PKA/Rac1 activation.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Cellular and Physiological Sciences and the Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
32
|
Akıncı A, Aydın Ö, Özerol Hİ. Glucagon-like peptide-1 and-2 levels in children with diabetic ketoacidosis. J Clin Res Pediatr Endocrinol 2009; 1:144-50. [PMID: 21274399 PMCID: PMC3005645 DOI: 10.4008/jcrpe.v1i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/27/2008] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate whether insulin deficiency and increased catabolism may have a role in the regulation of plasma glucagon-like peptide (GLP)-1 and GLP-2 levels in children with diabetic ketoacidosis (DKA) and whether insulin treatment may affect the levels of these polypeptides. METHODS Plasma GLP-1 and -2 levels were measured in 24 patients with DKA aged 8 to 14 years before insulin infusion (time 0), when ketonemia and acidosis disappeared (time 1), and when weight gain started (time 2). Eighteen healthy children aged 8 to 14 years constituted the control group. RESULTS At time 0, mean plasma GLP-1 and GLP-2 levels were significantly elevated in the patients compared with the control group (p<0.05 and p<0.01, respectively). At time 1 when ketonemia and acidosis disappeared, GLP-1 and GLP-2 levels decreased significantly from the initial levels (p<0.05 and p<0.01, respectively). At this time, while GLP-1 level was not different from that of the controls, GLP-2 level was higher than that of the controls (p<0.05). GLP-1 and-2 levels did not show any significant differences between the patients and controls when weight gain started (time 2). CONCLUSION Our results show that DKA is associated with increased plasma GLP-1 and -2 concentrations. Effective fluid and insulin treatment resulted in a significant decrease in plasma GLP-1 and -2 levels. This may be due to the negative feedback effect of insulin on the production of these polypeptides.
Collapse
Affiliation(s)
- Ayşehan Akıncı
- Pediatric Endocrinology Department, İnönü University, Turgut Özal Medical Center, Malatya, Turkey.
| | - Özgür Aydın
- Pediatric Endocrinology Department, İnönü University, Turgut Özal Medical Center, Malatya, Turkey
| | - Halil İbrahim Özerol
- Pediatric Endocrinology Department, İnönü University, Turgut Özal Medical Center, Malatya, Turkey
| |
Collapse
|
33
|
Zhang Y, Wang Q, Zhang J, Lei X, Xu GT, Ye W. Protection of exendin-4 analogue in early experimental diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2008; 247:699-706. [DOI: 10.1007/s00417-008-1004-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/30/2008] [Accepted: 11/05/2008] [Indexed: 12/13/2022] Open
|
34
|
Kim SJ, Nian C, Doudet DJ, McIntosh CHS. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes 2008; 57:1331-9. [PMID: 18299314 DOI: 10.2337/db07-1639] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Dipeptidyl peptidase-IV (DPP-IV) inhibitors have been introduced as therapeutics for type 2 diabetes. They partially act by blocking degradation of the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), thus increasing circulating levels of active hormones. In addition to their insulinotropic actions, GLP-1 and GIP also promote beta-cell proliferation and survival, and DPP-IV inhibitors exert similar effects in rodent type 2 diabetes models. The study objective was to establish whether DPP-IV inhibitor treatment prolonged survival of transplanted islets and to determine whether positron emission tomography (PET) was appropriate for quantifying the effect of inhibition on islet mass. RESEARCH DESIGN & METHODS Effects of the DPP-IV inhibitor MK0431 (sitagliptin) on glycemic control and functional islet mass in a streptozotocin (STZ)-induced type 1 diabetes mouse model were determined with metabolic studies and microPET imaging. RESULTS The type 1 diabetes mouse model exhibited elevated plasma DPP-IV levels that were substantially inhibited in mice on an MK0431 diet. Residual beta-cell mass was extremely low in STZ-induced diabetic mice, and although active GLP-1 levels were increased by the MK0431 diet, there were no significant effects on glycemic control. After islet transplantation, mice fed normal diet rapidly lost their ability to regulate blood glucose, reflecting the suboptimal islet transplant. By contrast, the MK0431 group fully regulated blood glucose throughout the study, and PET imaging demonstrated a profound protective effect of MK0431 on islet graft size. CONCLUSIONS Treatment with a DPP-IV inhibitor can prolong islet graft retention in an animal model of type 1 diabetes.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
35
|
Marchetti P, Dotta F, Lauro D, Purrello F. An overview of pancreatic beta-cell defects in human type 2 diabetes: Implications for treatment. ACTA ACUST UNITED AC 2008; 146:4-11. [PMID: 17889380 DOI: 10.1016/j.regpep.2007.08.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 08/07/2007] [Accepted: 08/09/2007] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes is the most common form of diabetes in humans. It results from a combination of factors that impair beta-cell function and tissue insulin sensitivity. However, growing evidence is showing that the beta-cell is central to the development and progression of this form of diabetes. Reduced islet and/or insulin-containing cell mass or volume in Type 2 diabetes has been reported by several authors. Furthermore, studies with isolated Type 2 diabetic islets have consistently shown both quantitative and qualitative defects of glucose-stimulated insulin secretion. The impact of genotype in affecting beta-cell function and survival is a very fast growing field or research, and several gene polymorphisms have been associated with this form of diabetes. Among acquired factors, glucotoxicity, lipotoxicity and altered IAPP processing are likely to play an important role. Interestingly, however, pharmacological intervention can improve several defects of Type 2 diabetes islet cells in vitro, suggesting that progression of the disease might not be relentless.
Collapse
Affiliation(s)
- Piero Marchetti
- Department of Endocrinology and Metabolism, Metabolic Unit, University of Pisa, Pisa, Italy.
| | | | | | | |
Collapse
|
36
|
Simpkins LM, Bolton S, Pi Z, Sutton JC, Kwon C, Zhao G, Magnin DR, Augeri DJ, Gungor T, Rotella DP, Sun Z, Liu Y, Slusarchyk WS, Marcinkeviciene J, Robertson JG, Wang A, Robl JA, Atwal KS, Zahler RL, Parker RA, Kirby MS, Hamann LG. Potent non-nitrile dipeptidic dipeptidyl peptidase IV inhibitors. Bioorg Med Chem Lett 2007; 17:6476-80. [DOI: 10.1016/j.bmcl.2007.09.090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
|
37
|
Sherry NA, Chen W, Kushner JA, Glandt M, Tang Q, Tsai S, Santamaria P, Bluestone JA, Brillantes AMB, Herold KC. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells. Endocrinology 2007; 148:5136-44. [PMID: 17673522 DOI: 10.1210/en.2007-0358] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Immune modulators can arrest loss of insulin secretion in type 1 diabetes mellitus (T1DM), but they have not caused permanent disease remission or restored normal insulin secretion. We tested whether exendin-4, a glucagon-like peptide-1 receptor agonist, would enhance remission of T1DM in NOD mice treated with anti-CD3 monoclonal antibody (mAb) and studied the effects of exendin-4 treatment on cellular and metabolic responses of beta-cells. Diabetic NOD mice treated with anti-CD3 mAb and exendin-4 had a higher rate of remission (44%) than mice treated with anti-CD3 mAb alone (37%) or exendin-4 (0%) or insulin or IgG alone (0%) (P < 0.01). The effect of exendin-4 on reversal of diabetes after anti-CD3 mAb was greatest in mice with a glucose level of less than 350 mg/dl at diagnosis (63 vs. 39%, P < 0.05). Exendin-4 did not affect beta-cell area, replication, or apoptosis or reduce the frequency of diabetogenic or regulatory T cells or modulate the antigenicity of islet cells. Reversal of T1DM with anti-CD3 mAb was associated with recovery of insulin in glucose transporter-2(+)/insulin(-) islet cells that were identified at diagnosis. Glucose tolerance and insulin responses improved in mice treated with combination therapy, and exendin-4 increased insulin content and insulin release from beta-cells. We conclude that treatment with glucagon-like peptide-1 receptor agonist enhances remission of T1DM in NOD mice treated with anti-CD3 mAb by enhancing the recovery of the residual islets. This combinatorial approach may be useful in treatment of patients with new-onset T1DM.
Collapse
Affiliation(s)
- Nicole A Sherry
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pörksen S, Nielsen LB, Kaas A, Kocova M, Chiarelli F, Orskov C, Holst JJ, Ploug KB, Hougaard P, Hansen L, Mortensen HB. Meal-stimulated glucagon release is associated with postprandial blood glucose level and does not interfere with glycemic control in children and adolescents with new-onset type 1 diabetes. J Clin Endocrinol Metab 2007; 92:2910-6. [PMID: 17519307 DOI: 10.1210/jc.2007-0244] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The role of glucagon in hyperglycemia in type 1 diabetes is unresolved, and in vitro studies suggest that increasing blood glucose might stimulate glucagon secretion. OBJECTIVE Our objective was to investigate the relationship between postprandial glucose and glucagon level during the first 12 months after diagnosis of childhood type 1 diabetes. DESIGN We conducted a prospective, noninterventional, 12-month follow-up study conducted in 22 centers in 18 countries. PATIENTS Patients included 257 children and adolescents less than 16 yr old with newly diagnosed type 1 diabetes; 204 completed the 12-month follow-up. SETTING The study was conducted at pediatric outpatient clinics. MAIN OUTCOME MEASURES We assessed residual beta-cell function (C-peptide), glycosylated hemoglobin (HbA(1c)), blood glucose, glucagon, and glucagon-like peptide-1 (GLP-1) release in response to a 90-min meal stimulation (Boost) at 1, 6, and 12 months after diagnosis. RESULTS Compound symmetric repeated-measurements models including all three visits showed that postprandial glucagon increased by 17% during follow-up (P = 0.001). Glucagon levels were highly associated with postprandial blood glucose levels because a 10 mmol/liter increase in blood glucose corresponded to a 20% increase in glucagon release (P = 0.0003). Glucagon levels were also associated with GLP-1 release because a 10% increase in GLP-1 corresponded to a 2% increase in glucagon release (P = 0.0003). Glucagon levels were not associated (coefficient -0.21, P = 0.07) with HbA(1c), adjusted for insulin dose. Immunohistochemical staining confirmed the presence of Kir6.2/SUR1 in human alpha-cells. CONCLUSION Our study supports the recent in vitro data showing a stimulation of glucagon secretion by high glucose levels. Postprandial glucagon levels were not associated with HbA(1c), adjusted for insulin dose, during the first year after onset of childhood type 1 diabetes.
Collapse
Affiliation(s)
- Sven Pörksen
- Department of Pediatrics, Forskerparken, Glostrup University Hospital, DK-2600 Glostrup, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gault VA, McClean PL, Irwin N, Power GJ, McCluskey JT, Flatt PR. Effects of subchronic treatment with the long-acting glucose-dependent insulinotropic polypeptide receptor agonist, N-AcGIP, on glucose homeostasis in streptozotocin-induced diabetes. Pancreas 2007; 35:73-9. [PMID: 17575548 DOI: 10.1097/mpa.0b013e31804fa19a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES N-AcGIP is a potent and dipeptidylpeptidase IV-resistant analogue of glucose-dependent insulinotropic polypeptide with significantly improved antidiabetic actions in type 2 diabetes. The present study investigated the effects of subchronic treatment with N-AcGIP on glucose homeostasis in a type 1 model, namely, streptozotocin (STZ)-induced diabetic mice. METHODS Swiss TO mice given a single intraperitoneal injection of STZ (150 mg/kg body weight) received once-daily injection of N-AcGIP (25 nmol/kg body weight) or saline for 20 days and effects on metabolic parameters and islet architecture assessed. RESULTS Daily injection of N-AcGIP for 20 days did not significantly alter the characteristic STZ-induced changes of pancreatic insulin content, body weight, food intake, glucose, and glycated hemoglobin levels. Glucose tolerance and insulin sensitivity were also unchanged by N-AcGIP treatment. Circulating insulin was undetectable, and the number of intact islets and insulin expression was greatly reduced in both groups. Some proliferative activity was identified by 5-bromo-2-deoxyuridine staining in the pancreas, but this and expression of glucagon and somatostatin were similar in the 2 groups. CONCLUSIONS These data indicate that subchronic treatment with the long-acting glucose-dependent insulinotropic polypeptide receptor agonist, N-AcGIP, does not have beneficial effects in insulin-deficient STZ-diabetic mice. This supports the primary antidiabetic action of this analogue in type 2 diabetes as stimulation of beta-cell function and insulin secretion.
Collapse
Affiliation(s)
- Victor A Gault
- Diabetes Research Group, School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Bokaei PB, Ma XZ, Sakac D, Branch DR. HIV-1 integration is inhibited by stimulation of the VPAC2 neuroendocrine receptor. Virology 2007; 362:38-49. [PMID: 17257640 DOI: 10.1016/j.virol.2006.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/11/2006] [Accepted: 12/08/2006] [Indexed: 11/30/2022]
Abstract
Successful HIV-1 infection requires a number of specific stages leading to integration of the provirus. We previously suggested that members of the VPAC neuroendocrine receptor family may play a role in HIV-1 infection. We now show that stimulation of the VPAC2 receptor with specific agonists provides strong resistance to HIV-1 infection. Daily stimulation of VPAC2, but not VPAC1 or PAC1, resulted in up to 90% inhibition of X4 or R5 productive infections in either cell lines or PBMCs. VPAC2 agonist stimulation had no effect on cell surface co-receptors, the rate of apoptotic cells, or HIV-1 entry or reverse transcription of viral RNA. However, we provide evidence that VPAC2-specific agonists inhibit HIV-1 infection through an inhibitory effect on the ability of the HIV-1 cDNA to integrate into the host DNA. These data reveal that VPAC2 agonists are appropriate candidates for further study as possible treatments aimed at the amelioration of HIV/AIDS.
Collapse
Affiliation(s)
- Payman Baradar Bokaei
- The Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5G 2M1
| | | | | | | |
Collapse
|
41
|
Abstract
There is a progressive deterioration in beta-cell function and mass in type 2 diabetics. It was found that islet function was about 50% of normal at the time of diagnosis, and a reduction in beta-cell mass of about 60% was shown at necropsy. The reduction of beta-cell mass is attributable to accelerated apoptosis. The major factors for progressive loss of beta-cell function and mass are glucotoxicity, lipotoxicity, proinflammatory cytokines, leptin, and islet cell amyloid. Impaired beta-cell function and possibly beta-cell mass appear to be reversible, particularly at early stages of the disease where the limiting threshold for reversibility of decreased beta-cell mass has probably not been passed. Among the interventions to preserve or "rejuvenate" beta-cells, short-term intensive insulin therapy of newly diagnosed type 2 diabetes will improve beta-cell function, usually leading to a temporary remission time. Another intervention is the induction of beta-cell "rest" by selective activation of ATP-sensitive K+ (K(ATP)) channels, using drugs such as diazoxide. A third type of intervention is the use of antiapoptotic drugs, such as the thiazolidinediones (TZDs), and incretin mimetics and enhancers, which have demonstrated significant clinical evidence of effects on human beta-cell function. The TZDs improve insulin secretory capacity, decrease beta-cell apoptosis, and reduce islet cell amyloid with maintenance of neogenesis. The TZDs have indirect effects on beta-cells by being insulin sensitizers. The direct effects are via peroxisome proliferator-activated receptor gamma activation in pancreatic islets, with TZDs consistently improving basal beta-cell function. These beneficial effects are sustained in some individuals with time. There are several trials on prevention of diabetes with TZDs. Incretin hormones, which are released from the gastrointestinal tract in response to nutrient ingestion to enhance glucose-dependent insulin secretion from the pancreas, aid the overall maintenance of glucose homeostasis through slowing of gastric emptying, inhibition of glucagon secretion, and control of body weight. From the two major incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), only the first one or its mimetics or enhancers can be used for treatment because the diabetic beta-cell is resistant to GIP action. Because of the rapid inactivation of GLP-1 by dipeptidyl peptidase (DPP)-IV, several incretin analogs were developed: GLP-1 receptor agonists (incretin mimetics) exenatide (synthetic exendin-4) and liraglutide, by conjugation of GLP-1 to circulating albumin. The acute effect of GLP-1 and GLP-1 receptor agonists on beta-cells is stimulation of glucose-dependent insulin release, followed by enhancement of insulin biosynthesis and stimulation of insulin gene transcription. The chronic action is stimulating beta-cell proliferation, induction of islet neogenesis, and inhibition of beta-cell apoptosis, thus promoting expansion of beta-cell mass, as observed in rodent diabetes and in cultured beta-cells. Exenatide and liraglutide enhanced postprandial beta-cell function. The inhibition of the activity of the DPP-IV enzyme enhances endogenous GLP-1 action in vivo, mediated not only by GLP-1 but also by other mediators. In preclinical studies, oral active DPP-IV inhibitors (sitagliptin and vildagliptin) also promoted beta-cell proliferation, neogenesis, and inhibition of apoptosis in rodents. Meal tolerance tests showed improvement in postprandial beta-cell function. Obviously, it is difficult to estimate the protective effects of incretin mimetics and enhancers on beta-cells in humans, and there is no clinical evidence that these drugs really have protective effects on beta-cells.
Collapse
Affiliation(s)
- Bernardo L Wajchenberg
- Endocrine Service and Diabetes and Heart Center of The Heart Institute, Hospital das Clinicas of The University of São Paulo Medical School, São Paulo, SP 05403-000, Brazil.
| |
Collapse
|
42
|
Abstract
Iatrogenic hypoglycemia is the main factor limiting aggressive and optimal diabetes management. Rather than being an inevitable consequence of optimal glycemic control, however, hypoglycemia is avoidable and generally straightforward to manage when it occurs. Professional caregivers, patients, and their families are often fearful of hypoglycemia, even though most episodes are minor and easily self-treated. Understanding the factors contributing to hypoglycemia risk and how to minimize its occurrence is an essential part of diabetes care. Building on the physiologic fundamentals presented in the accompanying review, the incidence, mortality/morbidity, clinical symptoms, severity classification, and psychosocial impact of hypoglycemia are described here. Appropriate selection and titration of therapeutic agents, including insulin analogs with more predictable time-action profiles than human insulin formulations, can reduce hypoglycemia risk. Patient education about hypoglycemia prevention, including symptom recognition and necessity of rapid treatment, behavioral modification, and the importance of frequent blood glucose monitoring should accompany all therapeutic interventions.
Collapse
Affiliation(s)
- Patrick J Boyle
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | | |
Collapse
|
43
|
Dupre J, Jeffrey L, Mahon. Preventive Interventions for Type 1 Diabetes: History, Appraisal and Prospects. Can J Diabetes 2007. [DOI: 10.1016/s1499-2671(07)14011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Abstract
In healthy individuals, blood glucose levels in the fasting state are maintained by the continuous basal-level insulin secretion. After a meal, the rise in postprandial glucose (PPG) is controlled by the rapid pancreatic release of insulin, stimulated by both glucose and the intestinal production of the incretins glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1. In diabetic individuals, postprandial insulin secretion is insufficient to suppress an excessive rise in PPG. There is increasing evidence that elevated PPG exerts a more deleterious effect on the vascular system than elevation of fasting plasma glucose. In particular, individuals with normal fasting plasma glucose but impaired glucose tolerance have significantly increased risk of cardiovascular events. With the recognition of the importance of PPG and the availability of new pharmacologic options, management of diabetes will shift to greater attention to PPG levels. The prototype for such an approach is in the treatment of gestational diabetes and diabetic pregnancies where PPG is the primary target of efforts at glycemic control. These efforts have been extremely successful in improving the outlook for diabetic pregnant women. There are many approaches to reduction of PPG; dietary management and promotion of exercise are very effective. Sulfonylureas, meglitinides, metformin, thiazolidinediones, and disaccharidase inhibitors all counteract PPG elevation. The development of glucagon-like peptide 1 agonists such as exendin and dipeptidyl peptidase IV inhibitors such as vildagliptin offers a new approach to suppression of PPG elevation. New semisynthetic insulin analogues permit a more aggressive response to postprandial glucose elevation, with lower risk of hypoglycemia, than with regular insulin. Inhaled insulin also has a rapid onset of action and offers benefits in PPG control. It is proposed that an aggressive treatment approach focusing on PPG, similar to the current standards for diabetic pregancies, be directed at individuals with diabetes and impaired glucose tolerance.
Collapse
|
45
|
McIntosh CHS, Demuth HU, Kim SJ, Pospisilik JA, Pederson RA. Applications of dipeptidyl peptidase IV inhibitors in diabetes mellitus. Int J Biochem Cell Biol 2006; 38:860-72. [PMID: 16442340 DOI: 10.1016/j.biocel.2005.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 12/13/2005] [Accepted: 12/14/2005] [Indexed: 11/30/2022]
Abstract
A number of alternative therapies for type 2 diabetes are currently under development that take advantage of the actions of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide on the pancreatic beta-cell. One such approach is based on the inhibition of dipeptidyl peptidase IV (DP IV), the major enzyme responsible for degrading the incretins in vivo. DP IV exhibits characteristics that have allowed the development of specific inhibitors with proven efficacy in improving glucose tolerance in animal models of diabetes and type 2 human diabetics. While enhancement of insulin secretion, resulting from blockade of incretin degradation, has been proposed to be the major mode of inhibitor action, there is also evidence that inhibition of gastric emptying, reduction in glucagon secretion and important effects on beta-cell differentiation, mitogenesis and survival, by the incretins and other DP IV-sensitive peptides, can potentially preserve beta-cell mass, and improve insulin secretory function and glucose handling in diabetics.
Collapse
Affiliation(s)
- Christopher H S McIntosh
- University of British Columbia, Department of Cellular and Physiological Sciences, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Ellen C Ebert
- Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, New Brunswick, USA
| |
Collapse
|
47
|
Magnin DR, Taunk PC, Robertson JG, Wang A, Marcinkeviciene J, Kirby MS, Hamann LG. Seco-prolinenitrile inhibitors of dipeptidyl peptidase IV define minimal pharmacophore requirements at P1. Bioorg Med Chem Lett 2006; 16:1731-4. [PMID: 16376077 DOI: 10.1016/j.bmcl.2005.11.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 11/29/2005] [Accepted: 11/30/2005] [Indexed: 11/23/2022]
Abstract
A series of seco-prolinenitrile-containing dipeptides were synthesized and assayed as inhibitors of the N-terminal sequence-specific serine protease dipeptidyl peptidase IV, a promising new target for treatment of type 2 diabetes. The inhibitors described herein assess the minimum structural requirements at P1 for this enzyme, resulting in the identification of inhibitors with low nM potency.
Collapse
Affiliation(s)
- David R Magnin
- Department of Discovery Chemistry, Bristol-Myers Squibb, Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Diabetes is the extreme manifestation of a spectrum conditions in which the balance of insulin secretion and insulin action (or insulin resistance) has been altered. Loss of euglycemia is caused by relative insulin deficiency in the presence of insulin resistance, or by absolute insulin deficiency. There are related conditions in which an alteration of insulin resistance or beta-cell dysfunction exists, but because of compensation glucose homeostasis has not been lost. The elucidation of the causes of insulin resistance and -cell failure and the attention to the different degrees of insulin deficiency and insulin resistance allow for better diagnosis, treatment, and prevention of diabetes and its related conditions.
Collapse
Affiliation(s)
- Diego Ize-Ludlow
- Division of Endocrinology, Diabetes, and Metabolism, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, 3705 Fifth Avenue, 4A-400, Pittsburgh, PA 15213-2583, USA
| | | |
Collapse
|
49
|
Fetner R, McGinty J, Russell C, Pi-Sunyer FX, Laferrère B. Incretins, diabetes, and bariatric surgery: a review. Surg Obes Relat Dis 2005; 1:589-97; discussion 597-8. [PMID: 16925299 DOI: 10.1016/j.soard.2005.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 08/05/2005] [Accepted: 09/02/2005] [Indexed: 01/16/2023]
Affiliation(s)
- Rachel Fetner
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | | | | | |
Collapse
|