1
|
Qian M, Sun W, Cheng L, Wu Y, Wang L, Liu H. Transcriptome-based analysis reveals the toxic effects of perfluorononanoic acid by affecting the development of the cardiovascular system and lipid metabolism in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110108. [PMID: 39647647 DOI: 10.1016/j.cbpc.2024.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Perfluorononanoic acid (PFNA) is a perfluoroalkyl acid containing nine carbon chains, with an additional carbon‑fluorine bond that makes it more stable and toxic. Studies have shown that PFNA can harm the reproductive, immune, and nervous systems, as well as many organs, which can increase the risk of cancer. In this study, zebrafish embryos were treated with 0 and 100 μM PFNA for 72 and 96 hpf, and their angiogenesis and haematopoiesis were observed under laser confocal microscopy using Tg (fli1:EGFP) and Tg (gata1:DsRed) transgenic zebrafish. The data showed that PFNA exposure decreased heart rate and slowed blood flow in zebrafish. PFNA was found to inhibit erythropoiesis by O-dianisidine staining. RNA-seq analysis was used to compare gene expression changes in zebrafish from control and 100 μM PFNA-exposed groups at 72 hpf. KEGG results showed significant enrichment of PPAR signaling pathway, fatty acid metabolism, steroid biosynthesis and apoptosis. The RNA-seq results were validated by real-time fluorescence quantitative PCR (RT-qPCR). Oil red O staining and Filipin staining showed increased lipid accumulation after PFNA exposure, and TUNEL staining showed that PFNA exposure led to apoptosis. In conclusion, exposure to PFNA may cause toxic effects in zebrafish by affecting cardiovascular development, causing lipid accumulation and promoting apoptosis.
Collapse
Affiliation(s)
- Mingqing Qian
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Weiqiang Sun
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yuanyuan Wu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| | - Hui Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu 233030, PR China.
| |
Collapse
|
2
|
González N, Domingo JL. PFC/PFAS concentrations in human milk and infant exposure through lactation: a comprehensive review of the scientific literature. Arch Toxicol 2025:10.1007/s00204-025-03980-x. [PMID: 39985683 DOI: 10.1007/s00204-025-03980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), previously known as perfluorinated compounds (PFC), are a group of synthetic chemicals widely used over the past decades. Their extensive application, combined with their environmental persistence, has contributed to their ubiquitous presence in the environment and the associated toxicological risks. Regarding humans, blood serum testing remains the primary method for biomonitoring PFAS exposure, while breast milk has also been used due to the transfer of these substances from mothers to infants during lactation. This paper aims to review the scientific literature (using PubMed and Scopus databases) on PFAS concentrations in the breast milk of non-occupationally exposed women. Where available, the estimated daily intake of these compounds by breastfeeding infants is also examined. The reviewed studies are categorized by continent and country/region, revealing a significant lack of data for many countries, including both developed and developing nations. The findings indicate substantial variability in PFAS concentrations, influenced by factors such as geographic location, sampling year, and the specific PFAS analyzed. Among the identified compounds, perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are most commonly detected, along with perfluorohexanesulfonic acid (PFHxS) and perfluorononanoic acid (PFNA), being the only PFAS with regulated maximum levels in certain foodstuffs. Most studies were conducted before the implementation of the current (updated) tolerable weekly intake (TWI) values for these substances. Consequently, the majority reported a low health risk for breastfeeding infants, even in high-intake scenarios. Nevertheless, biomonitoring studies are urgently needed in countries with limited or no data, and new investigations should assess whether current estimated intakes exceed the updated TWI. Special focus should be given to rural and industrial areas where exposure levels remain poorly understood.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, San Llorens 21, 43201, Reus, Catalonia, Spain
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira I Virgili, San Llorens 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
3
|
Wang W, Liang M, Ou Y, Wang X, Song Y, Chen H, Hong J, Liang Y, Lu Y. Toxicological effects of the environmental pollutant perfluoronanoic acid on the ground-dwelling arthropod Solenopsis invicta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117769. [PMID: 39842172 DOI: 10.1016/j.ecoenv.2025.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Perfluorononanoic acid (PFNA), widely employed in surfactants, coatings, plastics, corrosion inhibitors, and fire-extinguishing agents, is less regulated than PFOS or PFOA but displays higher bioaccumulation and potential toxicity. Most toxicity assessments have focused on mammals, fish, and algae, with limited research on ground-dwelling arthropods, especially ants. Here, we examined PFNA's toxic effects on red imported fire ants (RIFAs), a prevalent ground-dwelling species in South China. Stomach and contact toxicity experiments revealed that PFNA significantly reduced RIFA viability, with poisoning severity correlating positively with both dose and exposure duration. PFNA inhibited key behaviors-including aggregation, climbing, grasping, crawling, and excavation-and impacted survival. For instance, after 12 hours at 0.12 mg/g PFNA, large and medium workers excavated only 0.136 g and 0.064 g of quartz sand, respectively, significantly less than controls. Lethal concentrations (LC50) decreased over time, falling to 53.089 mg/L by day 7. Moreover, PFNA exhibited sublethal effects by curtailing feeding and raising mortality rates; in 100 mg/L and 500 mg/L treatments, cumulative mortality reached 30.70 % and 53.60 %, respectively, by day 15. The 500 mg/L group also showed reduced consumption of sugar water and locusts from day 12-20. Elevated superoxide dismutase (SOD) and catalase (CAT) activities at higher PFNA concentrations indicated oxidative stress in RIFAs. Collectively, these findings demonstrate PFNA's concentration-dependent toxic and repellent effects on RIFAs, emphasizing the need for further research on PFNA toxicity in ground-dwelling arthropods and the potential of RIFAs as a bioassay species for pollutant assessment.
Collapse
Affiliation(s)
- Wenxuan Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Mingrong Liang
- Insect Biodiversity and Biogeography Laboratory, School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Yangting Ou
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xiangrui Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yunbo Song
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Huimei Chen
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jingxin Hong
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yuling Liang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China.
| | - Yongyue Lu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Mann M, Kartseva V, Stanley C, Blumenthal M, Silliboy R, Berger B. Direct measurement of PFAS levels in surface water using an engineered biosensor. RSC SUSTAINABILITY 2024; 2:3967-3972. [PMID: 39493805 PMCID: PMC11525949 DOI: 10.1039/d4su00349g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large set of emerging contaminants pervasive in the environment due to amphiphilic properties and strong carbon-fluorine bonds resistant to biodegradation. With an ever-increasing prevalence, the need for precise detection of these chemicals at low levels in drinking water is clear. However, ground and surface water as well as soil and other biosolids have become reservoirs for PFAS at extremely high levels. In fact, PFAS concentrations at part per billion and part per million levels are found in environmental samples taken near high contamination sites including industrial facilities and military bases. In this work, we demonstrate the application of a biosensor based on human liver fatty acid binding protein to detect perfluorooctanoic acid (PFOA) in surface water samples taken near Loring Airforce Base. We show this sensor can detect the high levels of PFOA found in the samples quickly and easily without the use of extensive sample pre-treatment or analytical methods. Therefore, we hope the future of this technology will better assess PFAS detection needs for a multitude of end point users.
Collapse
Affiliation(s)
- Madison Mann
- Department of Chemical Engineering, University of Virginia Charlottesville VA USA
| | - Victoria Kartseva
- Department of Chemical Engineering, University of Virginia Charlottesville VA USA
- Department of Chemistry, University of Virginia Charlottesville VA USA
| | | | | | | | - Bryan Berger
- Department of Chemical Engineering, University of Virginia Charlottesville VA USA
- Department of Biomedical Engineering, University of Virginia Charlottesville VA USA
| |
Collapse
|
5
|
Jackson TW, Lambright CS, Evans N, Wehmas LC, MacMillan DK, Bangma J, Gray LE, Conley JM. Exploring maternal and developmental toxicity of perfluoroalkyl ether acids PFO4DA and PFO5DoA using hepatic transcriptomics and serum metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175978. [PMID: 39226966 PMCID: PMC11466241 DOI: 10.1016/j.scitotenv.2024.175978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Production of per- and polyfluoroalkyl substances (PFAS) has shifted from long-chain perfluoroalkyl acids to short-chain compounds and those with ether bonds in the carbon chain. Next-generation perfluoroalkylether PFAS include HFPO-DA ("GenX chemicals"), Nafion Byproducts, and the PFOx homologous series that includes perfluoro-3,5,7,9-butaoxadecanoic acid (PFO4DA) and perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoA). PFO4DA and PFO5DoA have been detected in serum and/or tissues from humans and wildlife proximal to contamination point sources. However, toxicity data are extremely limited, with no in vivo developmental toxicology data. To address these data gaps, pregnant Sprague-Dawley rats were exposed via oral gavage to vehicle, PFO4DA, or PFO5DoA across a series of doses (0.1 to 62.5 mg/kg/day) from gestation day (GD) 18-22. Hepatic transcriptomics were assayed in dams and fetuses, and serum metabolomics in dams. These data were overlaid with serum PFO4DA and PFO5DoA concentrations to perform dose-response modeling. Both dams and fetuses exhibited dose-responsive disruption of hepatic gene expression in response to PFO4DA or PFO5DoA, with fetal expression disrupted at lower doses than dams. Several differentially expressed genes were upregulated by every dose of PFO5DoA in both maternal and fetal samples, including genes encoding enzymes that hydrolyze acyl-coA to free fatty acids. Maternal serum metabolomics revealed PFO4DA exposure did not induce significant changes at any tested dose, whereas PFO5DoA exposure resulted in dose-dependent differential metabolite abundance for 149 unique metabolites. Multi-omics pathway analyses of integrated maternal liver transcriptomics and serum metabolomics revealed significant convergent changes as low as 3 mg/kg/d PFO4DA and 0.3 mg/kg/d PFO5DoA exposure. Overall, transcriptomic and metabolomic effects of PFO4DA and PFO5DoA appear consistent with other carboxylic acid PFAS, with primary changes related to lipid metabolism, bile acids, cholesterol, and cellular stress. Importantly, PFO5DoA exposure more potently induced changes in maternal and fetal hepatic gene expression and maternal circulating metabolites, despite high structural similarity. Further, we report in vitro PPARα and PPARγ receptor activation for both compounds as putative molecular mechanisms. This work demonstrates the potential developmental toxicity of alternative moiety perfluoroethers and highlights the developing liver as particularly vulnerable to transcriptomic disruption. Synopsis: Developmental exposure to fluoroether carboxylic acids PFO4DA and PFO5DoA result in differential impacts on hepatic transcriptome in dams and offspring and circulating metabolome in dams, with PFO5DoA exhibiting higher potency than PFO4DA.
Collapse
Affiliation(s)
- Thomas W Jackson
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Christy S Lambright
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Nicola Evans
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Leah C Wehmas
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Denise K MacMillan
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jacqueline Bangma
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - L Earl Gray
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Justin M Conley
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
6
|
Elgarahy AM, Eloffy MG, Saber AN, Abouzid M, Rashad E, Ghorab MA, El-Sherif DM, Elwakeel KZ. Exploring the sources, occurrence, transformation, toxicity, monitoring, and remediation strategies of per- and polyfluoroalkyl substances: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1209. [PMID: 39556161 DOI: 10.1007/s10661-024-13334-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), a class of man-made chemicals, possess unique properties that have rendered them indispensable in various industries and consumer goods. However, their extensive use and persistence in the environment have raised concerns about their potential repercussions on human health and the ecosystem. This review provides insights into the sources, occurrence, transformation, impacts, fate, monitoring, and remediation strategies for PFAS. Once released into the environment, these chemicals undergo intricate transformation processes, such as degradation, bioaccumulation, and biomagnification, which result in their far-reaching distribution and persistence. Their chemical stability results in persistent pollution, with far-reaching ecological and human health implications. Remediation strategies for PFAS are still in their infancy, and researchers are exploring innovative and sustainable methods for treating contaminated environments. Promising technologies such as adsorption, biodegradation, and electrochemical oxidation have shown the potential to remove PFAS from contaminated sites, yet the search for more efficient and sustainable solutions continues. In conclusion, this review emphasizes the urgent need for continued research and innovation to address the global environmental challenge posed by PFAS. As we move forward, it is imperative to prioritize sustainable solutions that minimize the detrimental consequences of these substances on human health and the environment.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Ayman N Saber
- Pesticide Residues and Environmental Pollution Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, 12618, Giza, Egypt
- Department of Analytical Chemistry, Institute of Chemistry for Energy and the Environment, University of Córdoba, 14071, Cordoba, Spain
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781, Poznan, Poland
| | - Emanne Rashad
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A Ghorab
- Wildlife Toxicology Laboratory, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Environmental Science, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| |
Collapse
|
7
|
Su J, Yang X, Xu H, Pei Y, Liu QS, Zhou Q, Jiang G. Screening (ant)agonistic activities of xenobiotics on the retinoic acid receptor alpha (RARα) using in vitro and in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174717. [PMID: 38997027 DOI: 10.1016/j.scitotenv.2024.174717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Retinoic acid receptors (RARs) are known as crucial endocrine receptors that could mediate a broad diversity of biological processes. However, the data on endocrine disrupting effects of emerging chemicals by targeting RAR (ant)agonism are far from sufficient. Herein, we investigated the RARα agonistic or antagonistic activities for 75 emerging chemicals of concern, and explored their interactions with this receptor. A recombinant two-hybrid yeast assay was used to examine the RARα activities of the test chemicals, wherein 7 showed effects of RARα agonism and 54 exerted potentials of RARα antagonism. The representative chemicals with RARα agonistic activities, i.e. 4-hydroxylphenol (4-HP) and bisphenol AF (BPAF), significantly increased the mRNA levels of CRABP2 and CYP26A1, while 4 select chemicals with RARα antagonistic potentials, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-t-OP), and 4-n-nonylphenol (4-n-NP), conversely decreased the transcriptional levels of the test genes. The in silico molecular docking analysis using 3 different approaches further confirmed the substantial binding between the chemicals with RARα activities and this nuclear receptor protein. This work highlights the promising strategy for screening endocrine-disrupting effects of emerging chemicals of concern by targeting RARα (ant)agonism.
Collapse
Affiliation(s)
- Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Narizzano AM, Lent EM, East AG, Bohannon ME, Quinn MJ. Threshold for increased liver weight is protective of other effects in Peromyscus exposed to PFNA. Toxicol Sci 2024; 201:38-47. [PMID: 38876971 DOI: 10.1093/toxsci/kfae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
Perfluorononanoic acid (PFNA) is a commercially relevant, long-chain (8 fully fluorinated carbon) perfluorinated carboxylic acid. PFNA has limited terrestrial ecotoxicity data and is detected in humans, animals, and the environment. This study is the fourth in a series with the objective of investigating the toxicity of a suite of per- and polyfluoroalkyl substances (PFAS) detected on military installations in a mammal indigenous to North America. Peromyscus leucopus (white-footed mice, ∼25/sex/dose) were exposed via oral gavage to either 0, 0.03, 0.14, 1, or 3 mg PFNA/kg-d for 112 consecutive days (4 wk premating exposure followed by an additional 12 wk of exposure after onset of mating). Parental generation animals were assessed for potential reproductive and developmental effects, organ weight changes, thyroid modulation, and immunotoxicity. Pup weight and survival were assessed at postnatal days 0, 1, 4, 7, and 10. Change in liver weight was determined to yield the most sensitive dose response according to benchmark dose analysis, and serves as the most protective point of departure (BMDL = 0.37 mg/kg-d PFNA). Other effects of PFNA exposure included reduced formation of plaque-forming cells, which are indicative of functional immune deficits (BMDL = 2.31 mg/kg-d); decreased serum thyroxine (BMDL = 0.93 mg/kg-d) without changes in some other hormones; and increased stillbirths (BMDL = 0.61 mg/kg-d PFNA). Pup weight and survival were not affected by PFNA exposure. Combined with data from previous studies, data from Peromyscus provide a One Health perspective on health effects of PFAS.
Collapse
Affiliation(s)
- Allison M Narizzano
- Toxicology Directorate, Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, MD 21010, United States
| | - Emily May Lent
- Toxicology Directorate, Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, MD 21010, United States
| | - Andrew G East
- Toxicology Directorate, Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, MD 21010, United States
| | - Meredith E Bohannon
- Toxicology Directorate, Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, MD 21010, United States
| | - Michael J Quinn
- Toxicology Directorate, Defense Centers for Public Health-Aberdeen, Aberdeen Proving Ground, MD 21010, United States
| |
Collapse
|
9
|
Marumure J, Simbanegavi TT, Makuvara Z, Karidzagundi R, Alufasi R, Goredema M, Gufe C, Chaukura N, Halabowski D, Gwenzi W. Emerging organic contaminants in drinking water systems: Human intake, emerging health risks, and future research directions. CHEMOSPHERE 2024; 356:141699. [PMID: 38554874 DOI: 10.1016/j.chemosphere.2024.141699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Few earlier reviews on emerging organic contaminants (EOCs) in drinking water systems (DWS) focused on their detection, behaviour, removal and fate. Reviews on multiple exposure pathways, human intake estimates, and health risks including toxicokinetics, and toxicodynamics of EOCs in DWS are scarce. This review presents recent advances in human intake and health risks of EOCs in DWS. First, an overview of the evidence showing that DWS harbours a wide range of EOCs is presented. Multiple human exposure to EOCs occurs via ingestion of drinking water and beverages, inhalation and dermal pathways are discussed. A potential novel exposure may occur via the intravenous route in dialysis fluids. Analysis of global data on pharmaceutical pollution in rivers showed that the cumulative concentrations (μg L-1) of pharmaceuticals (mean ± standard error of the mean) were statistically more than two times significantly higher (p = 0.011) in South America (11.68 ± 5.29), Asia (9.97 ± 3.33), Africa (9.48 ± 2.81) and East Europe (8.09 ± 4.35) than in high-income regions (2.58 ± 0.48). Maximum cumulative concentrations of pharmaceuticals (μg L-1) decreased in the order; Asia (70.7) had the highest value followed by South America (68.8), Africa (51.3), East Europe (32.0) and high-income regions (17.1) had the least concentration. The corresponding human intake via ingestion of untreated river water was also significantly higher in low- and middle-income regions than in their high-income counterparts. For each region, the daily intake of pharmaceuticals was highest in infants, followed by children and then adults. A critique of the human health hazards, including toxicokinetics and toxicodynamics of EOCs is presented. Emerging health hazards of EOCs in DWS include; (1) long-term latent and intergenerational effects, (2) the interactive health effects of EOC mixtures, (3) the challenges of multifinality and equifinality, and (4) the Developmental Origins of Health and Disease hypothesis. Finally, research needs on human health hazards of EOCs in DWS are presented.
Collapse
Affiliation(s)
- Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, South Africa
| | - Rangarirayi Karidzagundi
- Materials Development Unit, Zimbabwe Open University, P.O. Box MP1119 Mount Pleasant, Harare, Zimbabwe
| | - Richwell Alufasi
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Marvelous Goredema
- Biological Sciences Department, Bindura University of Science Education, 741 Chimurenga Road, Off Trojan Road, P. Bag 1020, Bindura, Zimbabwe
| | - Claudious Gufe
- Department of Veterinary Technical Services, Central Veterinary Laboratories, Box CY55, 18A Borrowdale Road, Harare, Zimbabwe
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Dariusz Halabowski
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, Lodz, Poland
| | - Willis Gwenzi
- Currently: Biosystems and Environmental Engineering Research Group, 380, New Adylin, Westgate, Harare, Zimbabwe; Formerly: Alexander von Humboldt Fellow & Guest/Visiting Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213, Witzenhausen, Germany; Formerly: Alexander von Humboldt Fellow and Guest Professor, Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| |
Collapse
|
10
|
Azhagiya Singam E, Durkin KA, La Merrill MA, Furlow JD, Wang JC, Smith MT. Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4487-4499. [PMID: 38422483 PMCID: PMC10938639 DOI: 10.1021/acs.est.3c05974] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.
Collapse
Affiliation(s)
| | - Kathleen A. Durkin
- Molecular
Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michele A. La Merrill
- Department
of Environmental Toxicology, University
of California, Davis, California 95616, United States
| | - J. David Furlow
- Department
of Neurobiology, Physiology and Behavior, University of California, Davis California 95616, United States
| | - Jen-Chywan Wang
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, United States
| | - Martyn T. Smith
- Division
of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Cox B, Wauters N, Rodríguez-Carrillo A, Portengen L, Gerofke A, Kolossa-Gehring M, Lignell S, Lindroos AK, Fabelova L, Murinova LP, Desalegn A, Iszatt N, Schillemans T, Åkesson A, Colles A, Den Hond E, Koppen G, Van Larebeke N, Schoeters G, Govarts E, Remy S. PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies. TOXICS 2023; 11:711. [PMID: 37624216 PMCID: PMC10459167 DOI: 10.3390/toxics11080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016-2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from -0.34 to -0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality.
Collapse
Affiliation(s)
- Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610 Wilrijk, Belgium
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Antje Gerofke
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Marike Kolossa-Gehring
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Sanna Lignell
- Swedish Food Agency, 751 26 Uppsala, Sweden; (S.L.); (A.K.L.)
| | | | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Anteneh Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Elly Den Hond
- Provincial Institute of Hygiene, Provincial Research Centre for Environment and Health, 2023 Antwerp, Belgium;
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Nicolas Van Larebeke
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| |
Collapse
|
12
|
Guo M, Yu Y, Liu H, Zhu C. Associations between exposure to a mixture of perfluoroalkyl and polyfluoroalkyl substances and age at menarche in adolescent girls utilizing three statistical models. CHEMOSPHERE 2023:139054. [PMID: 37247673 DOI: 10.1016/j.chemosphere.2023.139054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Exposure to perfluoroalkyl and polyfluoroalkyl substances (PFAS) is suggested to interfere with endocrine function and may affect female pubertal development. However, the epidemiological evidence on age at menarche associated with PFAS exposure is still inconsistent. Our objective was to investigate association of serum PFAS concentrations with age at menarche among 12-19 years old girls. We used data on 432 girls from National Health and Nutrition Examination Survey (NHANES) 2007-2012 cycles. NHANES reported serum concentrations of perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) as quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Age at menarche was self-reported by girls or their guardians. Multivariable linear regression models were applied to estimate the association of individual PFAS exposure with age at menarche. The combined effects of PFAS mixture exposures on age at menarche were assessed using three statistical methods, including Bayesian kernel machine regression (BKMR), weighted quantile sum regression (WQS), and elastic net regression (ENR). In the single-chemical model, girls in the middle tertile of serum PFOA concentration had a lower age at menarche [regression coefficient (β) = -0.73 years, 95% confidence interval (CI): 1.44, -0.01; P = 0.047], compared with those in the lower tertile. Girls in the higher tertile of PFNA exposure were associated with older age at menarche (β = 0.36 years, 95% CI: 0.03, 0.80; P = 0.027), compared with those in the lower tertile. In the multiple-chemical models using BKMR and ENR approaches, higher PFNA exposure was significantly associated with older age at menarche among girls, after adjusting for other PFAS. We found suggestive evidence that higher PFAS mixture exposures may be related to an increase in age at menarche using the BKMR model. In conclusion, exposure to PFNA was associated with the later timing of menarche among girls.
Collapse
Affiliation(s)
- Menglu Guo
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yamei Yu
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Han Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changlin Zhu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Shi S, Ding Y, Wu B, Hu P, Chen M, Dong N, Vinturache A, Gu H, Dong X, Ding G. Association of perfluoroalkyl substances with pulmonary function in adolescents (NHANES 2007-2012). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53948-53961. [PMID: 36869952 DOI: 10.1007/s11356-023-26119-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Perfluoroalkyl substances (PFASs) constitute an environmentally persistent and widespread class of anthropogenic chemicals that have been used in industrial and commercial applications in the USA and around the world. Animal studies suggested its toxic impact on lung development, but the adverse effect of PFAS exposure on childhood pulmonary function has not been clearly determined. We investigated the potential cross-sectional association of environmental PFAS exposures with pulmonary function in 765 adolescents aged 12-19 years from the US National Health and Nutrition Examination Survey (NHANES) 2007-2012. Exposure to PFASs was estimated by measuring serum concentrations, and pulmonary function was assessed by spirometry. Linear regression and weighted quantile sum (WQS) regression were performed to estimate the associations of individual chemicals and chemical mixtures with pulmonary function. Median concentrations of PFOA, PFOS, PFNA, and PFHxS (detection frequencies > 90%) were 2.70, 6.40, 0.98, and 1.51 ng/mL, respectively. No associations were found between the four individual congeners and Σ4PFASs and the pulmonary function measures in total adolescents. Sensitive analyses were further conducted stratified by age (12-15 and 16-19 years) and sex (boys and girls). In adolescents aged 12-15 years, PFNA was negatively associated with FEV1:FVC (p-trend = 0.007) and FEF25-75% (p-trend = 0.03) among girls, while PFNA was positively associated with FEV1: FVC (p-trend = 0.018) among boys. No associations were found among adolescents aged 16-19 years, either boys or girls. The aforementioned associations were confirmed when further applying WQS models, and PFNA was identified to be the most heavily weighing chemical. Our results suggested that environmental exposure to PFNA may affect pulmonary function among adolescents aged 12-15 years. Given the cross-sectional analysis and less consistent results, further replications of the association in large prospective cohort studies are warranted.
Collapse
Affiliation(s)
- Shuang Shi
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beirong Wu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peipei Hu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Chen
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Dong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Grande Prairie General Hospital, Grande Prairie, Alberta, Canada
- Department of Obstetrics & Gynecology, University of Alberta, Alberta, Canada
| | - Haoxiang Gu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Nie L, Yang Z, Qin X, Lai KP, Qin J, Yang B, Su M. Vitamin C protects the spleen against PFOA-induced immunotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161266. [PMID: 36592905 DOI: 10.1016/j.scitotenv.2022.161266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) is widely used in industrial and consumer products of our daily life. It is well-documented that PFOA is closely associated with fatty liver disease. Recently, cumulating studies demonstrated the immunotoxicity of PFOA, but its harmful effect on the largest immune organ, spleen is still largely unknown. In the present study, we used PFOA-exposed mouse model together with comparative transcriptomic analysis to understand the molecular mechanisms underlying the immunotoxicity of PFOA. Furthermore, we investigated the possible use of vitamin C to reverse the PFOA-induced immunotoxicity in spleen. Our result showed that the PFOA exposure could reduce the spleen weight and plasma lymphocytes, and the splenic comparative transcriptomic analysis highlighted the alteration of cell proliferation, metabolism and immune response through the regulation of gene clusters including nicotinamide nucleotide transhydrogenases (NNT) and lymphocyte antigen 6 family member D and K (LY6D and LY6K). More importantly, the supplementation of vitamin C would relieve the PFOA-reduced spleen index and white blood cells. The bioinformatic analysis of transcriptome suggested its involvement in the spleen cell proliferation and immune response. For the first time, our study delineated the molecular mechanisms underlying the PFOA-induced immunotoxicity in the spleen. Furthermore, our results suggested that the supplementation of vitamin C had beneficial effect on the PFOA-altered spleen functions.
Collapse
Affiliation(s)
- Litao Nie
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Zhiwen Yang
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR China
| | - Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China
| | - Jingru Qin
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, PR China.
| | - Min Su
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
15
|
LaKind JS, Naiman J, Verner MA, Lévêque L, Fenton S. Per- and polyfluoroalkyl substances (PFAS) in breast milk and infant formula: A global issue. ENVIRONMENTAL RESEARCH 2023; 219:115042. [PMID: 36529330 PMCID: PMC9872587 DOI: 10.1016/j.envres.2022.115042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are transferred from mother to infants through breastfeeding, a time when children may be particularly vulnerable to PFAS-mediated adverse health effects. Infants can also be exposed to PFAS from infant formula consumption. Our recent literature-based scoping of breast milk levels reported that four PFAS often exceeded the United States Agency for Toxic Substances and Disease Registry (ATSDR) children's drinking water screening levels in both the general population and highly impacted communities in the U.S. and Canada. This work presents a comparison of global breast milk and infant formula PFAS measurements with the only reported health-based drinking water screening values specific to children. METHODS We focused on four PFAS for which ATSDR has developed children's drinking water screening values: PFOA (perfluorooctanoic acid), PFOS (perfluorooctanesulfonic acid), PFHxS (perfluorohexanesulfonic acid), and PFNA (perfluorononanoic acid). Published literature on PFAS levels in breast milk and infant formula were identified via PubMed searches. Data were compared to children's drinking water screening values. DISCUSSION Breast milk concentrations of PFOA and PFOS often exceed children's drinking water screening values, regardless of geographic location. The limited information on infant formula suggests its use does not necessarily result in lower PFAS exposures, especially for formulas reconstituted with drinking water containing PFAS. Unfortunately, individuals generally cannot know whether their infant's exposures exceed children's drinking water screening values. Thus, it is essential that pregnant and lactating women and others, especially those having lived in PFAS-contaminated communities, have data required to make informed decisions on infant nutrition. An international monitoring effort and access to affordable testing are needed for breast milk, drinking water and infant formula to fully understand infant PFAS exposures. Currently, our understanding of demonstrable methods for reducing exposures to emerging PFAS is limited, making this research and the communications surrounding it even more important.
Collapse
Affiliation(s)
- Judy S LaKind
- LaKind Associates, LLC, 106 Oakdale Avenue, Catonsville, MD 21228, USA; Department of Epidemiology and Public Health, University of Maryland School of Medicine, 655 W Baltimore St, Baltimore, MD, 21201, USA.
| | - Josh Naiman
- Naiman Associates, LLC, 504 S 44th St, Philadelphia, PA, 19104, USA.
| | - Marc-Andre Verner
- Departement of Occuptional and Environmental Health, Université de Montréal School of Public Health, 2375 Chemin de la Côte-Sainte-Catherine, Office 4105, Montreal (Québec) H3T 1A8 Canada; Centre de Recherche en Santé Publique (CReSP), Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, CP 6128, Succursale Centre-Ville, Montreal (Québec) H3C 3J7 Canada.
| | - Laura Lévêque
- Departement of Occuptional and Environmental Health, Université de Montréal School of Public Health, 2375 Chemin de la Côte-Sainte-Catherine, Office 4105, Montreal (Québec) H3T 1A8 Canada; Centre de Recherche en Santé Publique (CReSP), Université de Montréal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, CP 6128, Succursale Centre-Ville, Montreal (Québec) H3C 3J7 Canada.
| | - Suzanne Fenton
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, 111 TW Alexander Dr, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
16
|
Ni H, Yuan J, Ji J, Guo Y, Zhong S, Lin Y, Zheng Y, Jiang Q. Long term toxicities following developmental exposure to perfluorooctanoic acid: Roles of peroxisome proliferation activated receptor alpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120722. [PMID: 36436667 DOI: 10.1016/j.envpol.2022.120722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a widespread persistent organic pollutant. Fertile chicken eggs were exposed to PFOA and incubated to hatch. At three time points post hatch (0-, 1- and 3-months old), chickens were subjected to electrocardiography and sacrificed. Serum was subjected to LC-MS/MS for PFOA concentration, and organs were subjected to histopathological assessments. Additionally, PPARα-silencing lentivirus was co-applied with PFOA exposure, and the corresponding phenotypes were evaluated. Western blotting was performed to assess expressions of FABPs and pSMAD2 in heart and liver samples. Considerable amount of PFOA were detected in hatchling chicken serum, but not in one-month-old or three-month-old chicken serum. PFOA exposure resulted in developmental cardiotoxicity and hepatotoxicity in hatchling chickens. Meanwhile, one-month-old chickens still exhibited elevated heart rate, but classical cardiac remodeling (thicker right ventricular wall) were observed in exposed animals. Three-month-old chickens exhibited similar results as one-month-old ones. PPARα silencing only had partial protective effects in hatchling chickens, but the protective effects seemed to increase as chickens aged. Western blotting results indicated that L-FABP was involved in PFOA-induced hepatotoxicity, while pSMAD2 was involved in PFOA-induced cardiotoxicity. In summary, developmental exposure to PFOA resulted in persistent cardiotoxicity, but not hepatotoxicity. PPARα participates in both cardiotoxicity and hepatotoxicity.
Collapse
Affiliation(s)
- Hao Ni
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yajie Guo
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Shuping Zhong
- Department of Toxicology, School of Public Health, Qingdao University, China
| | - Yongfeng Lin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, China.
| |
Collapse
|
17
|
Conley JM, Lambright CS, Evans N, Medlock-Kakaley E, Dixon A, Hill D, McCord J, Strynar MJ, Ford J, Gray LE. Cumulative maternal and neonatal effects of combined exposure to a mixture of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) during pregnancy in the Sprague-Dawley rat. ENVIRONMENT INTERNATIONAL 2022; 170:107631. [PMID: 36402036 PMCID: PMC9944680 DOI: 10.1016/j.envint.2022.107631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 05/10/2023]
Abstract
Globally, biomonitoring data demonstrate virtually all humans carry residues of multiple per- and polyfluoroalkyl substances (PFAS). Despite pervasive co-exposure, limited mixtures-based in vivo PFAS toxicity research has been conducted. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are commonly detected PFAS in human and environmental samples and both produce adverse effects in laboratory animal studies, including maternal and offspring effects when orally administered during pregnancy and lactation. To evaluate the effects of combined exposure to PFOA and PFOS, we orally exposed pregnant Sprague-Dawley rats from gestation day 8 (GD8) to postnatal day 2 (PND2) to PFOA (10-250 mg/kg/d) or PFOS (0.1-5 mg/kg/d) individually to characterize effects and dose response curve parameters, followed by a variable-ratio mixture experiment with a constant dose of PFOS (2 mg/kg/d) mixed with increasing doses of PFOA (3-80 mg/kg/d). The mixture study design was intended to: 1) shift the PFOA dose response curves for endpoints shared with PFOS, 2) allow comparison of dose addition (DA) and response addition (RA) model predictions, 3) conduct relative potency factor (RPF) analysis for multiple endpoints, and 4) avoid overt maternal toxicity. Maternal serum and liver concentrations of PFOA and PFOS were consistent between the individual chemical and mixture experiments. Combined exposure with PFOS significantly shifted the PFOA dose response curves towards effects at lower doses compared to PFOA-only exposure for multiple endpoints and these effects were well predicted by dose addition. For endpoints amenable to mixture model analyses, DA produced equivalent or better estimates of observed data than RA. All endpoints evaluated were accurately predicted by RPF and DA approaches except for maternal gestational weight gain, which produced less-than-additive results in the mixture. Data support the hypothesis of cumulative effects on shared endpoints from PFOA and PFOS co-exposure and dose additive approaches for predictive estimates of mixture effects.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Donna Hill
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Jermaine Ford
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
18
|
Peskett ST, Rand AA. The human fecal microbiome contributes to the biotransformation of the PFAS surfactant 8:2 monosubstituted polyfluoroalkyl phosphate ester. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1758-1768. [PMID: 35979739 DOI: 10.1039/d2em00225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polyfluoroalkyl phosphate esters (PAPs) can be found throughout society due to their numerous commercial applications. However, they also pose an environmental and health concern given their ability to undergo hydrolysis and oxidation to several bioactive and persistent products, including the perfluorocarboxylic acids (PFCAs). The metabolism of PAPs has been shown to occur in mammalian liver and intestine, however metabolism by the gut microbiome has not yet been investigated. In this study, human fecal samples were used to model the microbial population of the colon, to test whether these anaerobic microbes could facilitate 8:2 monosubstituted PAP (monoPAP) transformation. In vitro testing was completed by incubating the fecal samples with 8:2 monoPAP (400-10,000 nM) up to 120 minutes in an anaerobic chamber. Reactions were then terminated and the samples prepared for GC- and LC-MS/MS analysis. Metabolites of interest were the immediate hydrolysis product, the 8:2 fluorotelomer alcohol (FTOH), and 11 additional metabolites previously shown to form from 8:2 FTOH in both oxic and anoxic environments. The kinetics of 8:2 monoPAP transformation by gut microbiota were compared to those in human S9 liver and intestine fractions, both of which have active levels of hydrolyzing and oxidative enzymes that transform 8:2 monoPAP. Transformation rates from 8:2 monoPAP to 8:2 FTOH were highest in liver S9 > intestine S9 > fecal suspensions. The gut microbiome also produced a unique composition of oxidative metabolites, where the following intermediate metabolites were more abundant than terminal PFCAs: 8:2 fluorotelomer unsaturated carboxylic acid (FTUCA) > 8:2 fluorotelomer carboxylic acid (FTCA) > 7:2 Ketone ≈ perfluorohexanoic acid (PFHxA). Hydrolytic and oxidative metabolites contributed up to 30% of the molar balance after microbial 8:2 monoPAP transformation. Together, the results suggest that the gut microbiome can play a notable role in PAP biotransformation.
Collapse
Affiliation(s)
- Sierra T Peskett
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, USA.
| | - Amy A Rand
- Department of Chemistry and Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, USA.
| |
Collapse
|
19
|
Crute CE, Hall SM, Landon CD, Garner A, Everitt JI, Zhang S, Blake B, Olofsson D, Chen H, Murphy SK, Stapleton HM, Feng L. Evaluating maternal exposure to an environmental per and polyfluoroalkyl substances (PFAS) mixture during pregnancy: Adverse maternal and fetoplacental effects in a New Zealand White (NZW) rabbit model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156499. [PMID: 35679923 PMCID: PMC9374364 DOI: 10.1016/j.scitotenv.2022.156499] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 05/06/2023]
Abstract
Mixtures of per- and polyfluoroalkyl substances (PFAS) are often found in drinking water, and serum PFAS are detected in up to 99% of the population. However, very little is known about how exposure to mixtures of PFAS affects maternal and fetal health. The aim of this study was to investigate maternal, fetal, and placental outcomes after preconceptional and gestational exposure to an environmentally relevant PFAS mixture in a New Zealand White (NZW) rabbit model. Dams were exposed via drinking water to control (no detectable PFAS) or a PFAS mixture for 32 days. This mixture was formulated with PFAS to resemble levels measured in tap water from Pittsboro, NC (10 PFAS compounds; total PFAS load = 758.6 ng/L). Maternal, fetal, and placental outcomes were evaluated at necropsy. Thyroid hormones were measured in maternal serum and kit blood. Placental gene expression was evaluated by RNAseq and qPCR. PFAS exposure resulted in higher body weight (p = 0.01), liver (p = 0.01) and kidney (p = 0.01) weights, blood pressure (p = 0.05), and BUN:CRE ratio (p = 0.04) in dams, along with microscopic changes in renal cortices. Fetal weight, measures, and histopathology were unchanged, but a significant interaction between dose and sex was detected in the fetal: placental weight ratio (p = 0.036). Placental macroscopic changes were present in PFAS-exposed dams. Dam serum showed lower T4 and a higher T3:T4 ratio, although not statistically significant. RNAseq revealed that 11 of the 14 differentially expressed genes (adj. p < 0.1) are involved in placentation or pregnancy complications. In summary, exposure elicited maternal weight gain and signs of hypertension, renal injury, sex-specific changes in placental response, and differential expression of genes involved in placentation and preeclampsia. Importantly, these are the first results to show adverse maternal and placental effects of an environmentally-relevant PFAS mixture in vivo.
Collapse
Affiliation(s)
- Christine E Crute
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha M Hall
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Chelsea D Landon
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Angela Garner
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey I Everitt
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Sharon Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Bevin Blake
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstasse 40, 14195 Berlin, Germany
| | - Henry Chen
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Susan K Murphy
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Heather M Stapleton
- Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Liping Feng
- Nicholas School of the Environment, Duke University, Durham, NC, USA; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
20
|
Narizzano AM, Lent EM, Hanson JM, East AG, Bohannon ME, Quinn MJ. Reproductive and developmental toxicity of perfluorooctane sulfonate (PFOS) in the white-footed mouse (Peromyscus leucopus). Reprod Toxicol 2022; 113:120-127. [PMID: 35985401 DOI: 10.1016/j.reprotox.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/09/2023]
Abstract
Concerns about per- and polyfluoroalkyl substances (PFAS) stem from their ubiquitous presence in the environment, bioaccumulation, resistance to degradation, and toxicity. Previously, toxicity data relevant to ecological risk assessment has largely been aquatic, terrestrial invertebrates, or avian in origin. In this study, repeated oral exposures of perfluorooctane sulfonate (PFOS) were administered to white-footed mice (Peromyscus leucopus) to evaluate effects on reproduction and development. Prenatal exposure to high doses of PFOS caused neonatal mortality, though growth and development were unaffected by low doses. Additionally, parental (P) generation animals exhibited increased liver:body weight, increased hepatocyte cytoplasmic vacuolization, and decreased serum thyroxine (T4) levels. Total litter loss was selected as the protective critical effect in this study resulting in a benchmark dose low (BMDL) of 0.12 mg/kg-d PFOS. Importantly, PFOS exposure has been linked to reduced adult recruitment in myriad species and at similar thresholds to this study. Similarities in critical/toxicologic effects across taxa may add confidence in risk assessments at sites with multiple taxa or environments.
Collapse
Affiliation(s)
- Allison M Narizzano
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA.
| | - Emily May Lent
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Jarod M Hanson
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Andrew G East
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Meredith E Bohannon
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| | - Michael J Quinn
- Toxicology Directorate, US Army Public Health Center, 5158 Blackhawk Road, Aberdeen Proving Ground, MD 21010, USA
| |
Collapse
|
21
|
Robarts DR, Venneman KK, Gunewardena S, Apte U. GenX induces fibroinflammatory gene expression in primary human hepatocytes. Toxicology 2022; 477:153259. [PMID: 35850385 PMCID: PMC9741548 DOI: 10.1016/j.tox.2022.153259] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/09/2023]
Abstract
The toxicity induced by the persistent organic pollutants per- and polyfluoroalkyl substances (PFAS) is dependent on the length of their polyfluorinated tail. Long-chain PFASs have significantly longer half-lives and profound toxic effects compared to their short-chain counterparts. Recently, production of a short-chain PFAS substitute called ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, also known as GenX, has significantly increased. However, the adverse health effects of GenX are not completely known. In this study, we investigated the dose-dependent effects of GenX on primary human hepatocytes (PHH). Freshly isolated PHH were treated with either 0.1, 10, or 100 μM of GenX for 48 and 96 h; then, global transcriptomic changes were determined using Human Clariom™ D arrays. GenX-induced transcriptional changes were similar at 0.1 and 10 μM doses but were significantly different at the 100 μM dose. Genes involved in lipid, monocarboxylic acid, and ketone metabolism were significantly altered following exposure of PHH at all doses. However, at the 100 μM dose, GenX caused changes in genes involved in cell proliferation, inflammation and fibrosis. A correlation analysis of concentration and differential gene expression revealed that 576 genes positively (R > 0.99) and 375 genes negatively (R < -0.99) correlated with GenX concentration. The upstream regulator analysis indicated HIF1α was inhibited at the lower doses but were activated at the higher dose. Additionally, VEGF, PPARα, STAT3, and SMAD4 signaling was induced at the 100 µM dose. These data indicate that at lower doses GenX can interfere with metabolic pathways and at higher doses can induce fibroinflammatory changes in human hepatocytes.
Collapse
Affiliation(s)
- Dakota R Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Kaitlyn K Venneman
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
22
|
Bil W, Zeilmaker MJ, Bokkers BG. Internal Relative Potency Factors for the Risk Assessment of Mixtures of Per- and Polyfluoroalkyl Substances (PFAS) in Human Biomonitoring. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:77005. [PMID: 35881550 PMCID: PMC9320915 DOI: 10.1289/ehp10009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND In human biomonitoring, blood is often used as a matrix to measure exposure to per- and polyfluoroalkyl substances (PFAS). Because the toxicokinetics of a substance (determining the steady-state blood concentration) may affect the toxic potency, the difference in toxicokinetics among PFAS has to be accounted for when blood concentrations are used in mixture risk assessment. OBJECTIVES This research focuses on deriving relative potency factors (RPFs) at the blood serum level. These RPFs can be applied to PFAS concentrations in human blood, thereby facilitating mixture risk assessment with primary input from human biomonitoring studies. METHODS Toxicokinetic models are generated for 10 PFAS to estimate the internal exposure in the male rat at the blood serum level over time. By applying dose-response modeling, these internal exposures are used to derive quantitative internal RPFs based on liver effects. RESULTS Internal RPFs were successfully obtained for nine PFAS. Perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoDA), perfluorooctane sulfonic acid (PFOS), and hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX) were found to be more potent than perfluorooctanoic acid (PFOA) at the blood serum level in terms of relative liver weight increase, whereas perfluorobutane sulfonic acid (PFBS) and perfluorohexane sulfonic acid (PFHxS) were found to be less potent. The practical implementation of these internal RPFs is illustrated using the National Health and Nutrition Examination Survey (NHANES) biomonitoring data of 2017-2018. DISCUSSION It is recommended to assess the health risk resulting from exposure to PFAS as combined, aggregate exposure to the extent feasible. https://doi.org/10.1289/EHP10009.
Collapse
Affiliation(s)
- Wieneke Bil
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marco J. Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Bas G.H. Bokkers
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
23
|
Zeng G, Zhang Q, Wang X, Wu KH. The relationship between multiple perfluoroalkyl substances and cardiorespiratory fitness in male adolescents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53433-53443. [PMID: 35288850 DOI: 10.1007/s11356-022-19685-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Exposure to perfluoroalkyl substances (PFASs) is associated with a number of adverse health outcomes. However, the relationship between mixed and individual PFAS exposure and cardiorespiratory fitness (CRF) in adolescents remains unclear. We used cross-sectional data from 491 teenagers (aged 13-19 years) from the 2003-2004 National Health and Nutrition Examination Survey (NHANES) and examined the association between mixed PFAS exposure and CRF via weighted quantile sum (WQS) regression. Maximal oxygen consumption (VO2max) was used to evaluate CRF. Multivariate linear regression was performed to investigate the relationship between each PFAS and VO2max as well as the relationship between PFAS exposure and the inflammation parameters and blood lipid content. Mediation analyses were performed to investigate possible explanations of the risk of low CRF due to PFAS exposure. The results showed that for males, mixed PFAS exposure was negatively related to VO2max (beta = - 0.80, 95% CI: - 1.53 to - 0.10, P = 0.028) and that of the PFASs, perfluorononanoic acid (PFNA) had the greatest influence on VO2max. In the individual PFAS analysis, PFNA was negatively related to VO2max in male adolescents (beta = - 1.49, 95% CI: - 2.65 to - 0.32, P = 0.013). Additionally, significant relationships among serum PFNA levels and total cholesterol and the white blood cell (WBC) count were found. Mediation analyses revealed that WBC count accounted for 24.18% of the variation between PFNA level and CRF. The present results provide epidemiological evidence that exposure to PFASs, mainly PFNA, is negatively associated with CRF, possibly via alterations in WBC count.
Collapse
Affiliation(s)
- Guowei Zeng
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Qi Zhang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Xiaowei Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Kai-Hong Wu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
24
|
Golovko O, Kaczmarek M, Asp H, Bergstrand KJ, Ahrens L, Hultberg M. Uptake of perfluoroalkyl substances, pharmaceuticals, and parabens by oyster mushrooms (Pleurotus ostreatus) and exposure risk in human consumption. CHEMOSPHERE 2022; 291:132898. [PMID: 34780735 DOI: 10.1016/j.chemosphere.2021.132898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Organic micropollutants (MPs) pose potential threats to environmental ecosystems and human health. This study investigated uptake of perfluoroalkyl substances (PFASs), pharmaceuticals, and paraben by edible oyster mushrooms (Pleurotus ostreatus), cultivated on spiked growth substrate. Concentrations of pharmaceuticals and paraben in substrate showed a decreasing trend over a 20-day harvesting period, whereas PFAS concentrations were variable over the harvesting period. However, only propylparaben, clarithromycin, and PFASs were detected in fruiting bodies of oyster mushroom. Uptake of PFASs by oyster mushroom fruit bodies was negatively correlated with perfluorocarbon chain length. An impact of MPs on fungal colonization was observed, with decreased respiration in treatments with the highest concentration of MPs, but production of fruiting bodies was not affected by exposure level. The potential human risk from ingestion of MPs was evaluated for oyster mushrooms exposed to the highest concentration of MPs in substrate, based on acceptable daily intake (ADI).
Collapse
Affiliation(s)
- Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007, Uppsala, Sweden.
| | - Michał Kaczmarek
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007, Uppsala, Sweden
| | - Håkan Asp
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Växtskyddsvägen 3, SE-230 53, Alnarp, Sweden
| | - Karl-Johan Bergstrand
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Växtskyddsvägen 3, SE-230 53, Alnarp, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), SE-75007, Uppsala, Sweden
| | - Malin Hultberg
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Växtskyddsvägen 3, SE-230 53, Alnarp, Sweden
| |
Collapse
|
25
|
LaKind JS, Verner MA, Rogers RD, Goeden H, Naiman DQ, Marchitti SA, Lehmann GM, Hines EP, Fenton SE. Current Breast Milk PFAS Levels in the United States and Canada: After All This Time, Why Don't We Know More? ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:25002. [PMID: 35195447 PMCID: PMC8865090 DOI: 10.1289/ehp10359] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/08/2022] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Despite 20 y of biomonitoring studies of per- and polyfluoroalkyl substances (PFAS) in both serum and urine, we have an extremely limited understanding of PFAS concentrations in breast milk of women from the United States and Canada. The lack of robust information on PFAS concentrations in breast milk and implications for breastfed infants and their families were brought to the forefront by communities impacted by PFAS contamination. OBJECTIVES The objectives of this work are to: a) document published PFAS breast milk concentrations in the United States and Canada; b) estimate breast milk PFAS levels from maternal serum concentrations in national surveys and communities impacted by PFAS; and c) compare measured/estimated milk PFAS concentrations to screening values. METHODS We used three studies reporting breast milk concentrations in the United States and Canada We also estimated breast milk PFAS concentrations by multiplying publicly available serum concentrations by milk:serum partitioning ratios for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and perfluorononanoic acid (PFNA). Measured and estimated breast milk concentrations were compared to children's drinking water screening values. DISCUSSION Geometric means of estimated breast milk concentrations ranged over approximately two orders of magnitude for the different surveys/communities. All geometric mean and mean estimated and measured breast milk PFOA and PFOS concentrations exceeded drinking water screening values for children, sometimes by more than two orders of magnitude. For PFHxS and PFNA, all measured breast milk levels were below the drinking water screening values for children; the geometric mean estimated breast milk concentrations were close to-or exceeded-the children's drinking water screening values for certain communities. Exceeding a children's drinking water screening value does not indicate that adverse health effects will occur and should not be interpreted as a reason to not breastfeed; it indicates that the situation should be further evaluated. It is past time to have a better understanding of environmental chemical transfer to-and concentrations in-an exceptional source of infant nutrition. https://doi.org/10.1289/EHP10359.
Collapse
Affiliation(s)
- Judy S. LaKind
- LaKind Associates, LLC, Catonsville, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Canada
- Centre de Recherche en Santé Publique, Université de Montréal and CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Québec, Canada
| | - Rachel D. Rogers
- Office of the Director, National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Atlanta, Georgia, USA
| | - Helen Goeden
- Environmental Health Division, Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Daniel Q. Naiman
- Department of Applied Mathematics & Statistics, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Geniece M. Lehmann
- Center for Public Health and Environmental Assessment, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Erin P. Hines
- Center for Public Health and Environmental Assessment, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Suzanne E. Fenton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
26
|
Conley JM, Lambright CS, Evans N, Medlock-Kakaley E, Hill D, McCord J, Strynar MJ, Wehmas LC, Hester S, MacMillan DK, Gray LE. Developmental toxicity of Nafion byproduct 2 (NBP2) in the Sprague-Dawley rat with comparisons to hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) and perfluorooctane sulfonate (PFOS). ENVIRONMENT INTERNATIONAL 2022; 160:107056. [PMID: 34952357 PMCID: PMC8821375 DOI: 10.1016/j.envint.2021.107056] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 05/04/2023]
Abstract
Nafion byproduct 2 (NBP2) is a polyfluoroalkyl ether sulfonic acid that was recently detected in surface water, drinking water, and human serum samples from monitoring studies in North Carolina, USA. We orally exposed pregnant Sprague-Dawley rats to NBP2 from gestation day (GD) 14-18 (0.1-30 mg/kg/d), GD17-21, and GD8 to postnatal day (PND) 2 (0.3-30 mg/kg/d) to characterize maternal, fetal, and postnatal effects. GD14-18 exposures were also conducted with perfluorooctane sulfonate (PFOS) for comparison to NBP2, as well as data previously published for hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). NBP2 produced stillbirth (30 mg/kg), reduced pup survival shortly after birth (10 mg/kg), and reduced pup body weight (10 mg/kg). Histopathological evaluation identified reduced glycogen stores in newborn pup livers and hepatocyte hypertrophy in maternal livers at ≥ 10 mg/kg. Exposure to NBP2 from GD14-18 reduced maternal serum total T3 and cholesterol concentrations (30 mg/kg). Maternal, fetal, and neonatal liver gene expression was investigated using RT-qPCR pathway arrays, while maternal and fetal livers were also analyzed using TempO-Seq transcriptomic profiling. Overall, there was limited alteration of genes in maternal or F1 livers from NBP2 exposure with significant changes mostly occurring in the top dose group (30 mg/kg) associated with lipid and carbohydrate metabolism. Metabolomic profiling indicated elevated maternal bile acids for NBP2, but not HFPO-DA or PFOS, while all three reduced 3-indolepropionic acid. Maternal and fetal serum and liver NBP2 concentrations were similar to PFOS, but ∼10-30-fold greater than HFPO-DA concentrations at a given maternal oral dose. NBP2 is a developmental toxicant in the rat, producing neonatal mortality, reduced pup body weight, reduced pup liver glycogen, reduced maternal thyroid hormones, and altered maternal and offspring lipid and carbohydrate metabolism similar to other studied PFAS, with oral toxicity for pup loss that is slightly less potent than PFOS but more potent than HFPO-DA.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Donna Hill
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Mark J Strynar
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Leah C Wehmas
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - Susan Hester
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - Denise K MacMillan
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency/Office of Research & Development/Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
27
|
Jiao X, Liu N, Xu Y, Qiao H. Perfluorononanoic acid impedes mouse oocyte maturation by inducing mitochondrial dysfunction and oxidative stress. Reprod Toxicol 2021; 104:58-67. [PMID: 34246765 DOI: 10.1016/j.reprotox.2021.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
Abstract
Perfluorononanoic acid (PFNA), a member of PFAS, is frequently detected in human blood and tissues, even in follicular fluid of women. The exposure of PFNA, but not PFOA and PFOS, is positively correlated with miscarriage and increased time to pregnancy. Toxicological studies indicated that PFNA exposure is associated with immunotoxicity, hepatotoxicity, developmental toxicity, and reproductive toxicity in animals. However, there is little information regarding the toxic effects of PFNA on oocyte maturation. In this study, we investigated the toxic effects of PFNA exposure on mouse oocyte maturation in vitro. Our results showed that 600 μM PFNA significantly inhibited germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Our further study revealed that PFNA induced abnormal metaphase I (MI) spindle assembly, evidenced by malformed spindles and mislocalization of p-ERK1/2 in PFNA-treated oocytes. We also found that PFNA induced abnormal mitochondrial distribution and increased mitochondrial membrane potential. Consequently, PFNA increased reactive oxygen species (ROS) levels, leading to oxidative stress, DNA damage, and eventually early-stage apoptosis in oocytes. In addition, after 14 h culture, PFNA disrupted the formation of metaphase II (MII) spindle in most PFNA-treated oocytes with polar bodies. Collectively, our results indicate that PFNA interferes with oocyte maturation in vitro via disrupting spindle assembly, damaging mitochondrial functions, and inducing oxidative stress, DNA damage, and early-stage apoptosis.
Collapse
Affiliation(s)
- Xiaofei Jiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiding Xu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
28
|
Bioactivity profiling of per- and polyfluoroalkyl substances (PFAS) identifies potential toxicity pathways related to molecular structure. Toxicology 2021; 457:152789. [PMID: 33887376 DOI: 10.1016/j.tox.2021.152789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a broad class of hundreds of fluorinated chemicals with environmental health concerns due to their widespread presence and persistence in the environment. Several of these chemicals have been comprehensively studied for experimental toxicity, environmental fate and exposure, and human epidemiology; however, most chemicals have limited or no data available. To inform methods for prioritizing these data-poor chemicals for detailed toxicity studies, we evaluated 142 PFAS using an in vitro screening platform consisting of two multiplexed transactivation assays encompassing 81 diverse transcription factor activities and tested in concentration-response format ranging from 137 nM to 300 μM. Results showed activity for various nuclear receptors, including three known PFAS targets--specifically estrogen receptor alpha and peroxisome proliferator receptors alpha and gamma. We also report activity against the retinoid X receptor beta, the key heterodimeric partner of type II, non-steroidal nuclear receptors. Additional activities were found against the pregnane X receptor, nuclear receptor related-1 protein, and nuclear factor erythroid 2-related factor 2, a sensor of oxidative stress. Using orthogonal assay approaches, we confirmed activity of representative PFAS against several of these targets. Finally, we identified key PFAS structural features associated with nuclear receptor activity that can inform future predictive models for use in prioritizing chemicals for risk assessment and in the design of new structures devoid of biological activity.
Collapse
|
29
|
Zhang Y, Xu Y, Ding H, Yu W, Chen L. Prenatal exposure of female mice to perfluorononanoic acid delays pubertal activation of the reproductive endocrine axis through enhanced hepatic FGF21 production. CHEMOSPHERE 2021; 269:128776. [PMID: 33131727 DOI: 10.1016/j.chemosphere.2020.128776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
The developmental toxicity of perfluorononanoic acid (PFNA), a ubiquitous environmental contaminant, has been associated with the activation of PPARα. This study investigated influence of prenatal exposure to PFNA in pubertal activation of reproductive endocrine axis in female mice and explored underlying molecular mechanisms. Herein, we show that when PFNA (3 mg kg-1 body weight) was orally administered during gestational days 1-18, dams showed an increase in liver weight and hepatic FGF21 synthesis via PPARα activation, and their female offspring (PFNA mice) showed an increase in liver weight and hepatic FGF21 synthesis from postnatal day (PND) 1 to PND21, which were corrected by the administration of the PPARα antagonist GW6471 from PND1-14 (pup-GW). Expression of vasopressin (VAP) in the hypothalamic suprachiasmatic nucleus (SCN) was reduced in PND14-30 PFNA mice, and could be rescued by pup-GW. Pubertal activation of kisspeptin neurons in anteroventral periventricular nucleus (AVPV) and hypothalamic GnRH neurons in PND21-30 PFNA mice was obviously suppressed, but were recovered by pup-GW or PND21-30 application of VAP. The times of vaginal opening and first estrus were delayed in PFNA mice with a decrease in ovary size and the numbers of primary, secondary and antral follicles, and corpora lutea, which were relieved by pup-GW or application of VAP. The findings indicate that prenatal exposure to PFNA through increased FGF21 production in postnatal female offspring impedes postnatal activation of SCN-VAP neurons, which suppresses pubertal onset in AVPV-kisspeptin neurons and reproductive endocrine axis, leading to delayed puberty and dysfunction of ovaries.
Collapse
Affiliation(s)
- Yajie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Ye Xu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Ding
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China; Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases of Education Ministry, Guizhou Medical University, Guian New District, Guizhou, 550025, China.
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
30
|
Fenton SE, Ducatman A, Boobis A, DeWitt JC, Lau C, Ng C, Smith JS, Roberts SM. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:606-630. [PMID: 33017053 PMCID: PMC7906952 DOI: 10.1002/etc.4890] [Citation(s) in RCA: 913] [Impact Index Per Article: 228.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 01/09/2023]
Abstract
Reports of environmental and human health impacts of per- and polyfluoroalkyl substances (PFAS) have greatly increased in the peer-reviewed literature. The goals of the present review are to assess the state of the science regarding toxicological effects of PFAS and to develop strategies for advancing knowledge on the health effects of this large family of chemicals. Currently, much of the toxicity data available for PFAS are for a handful of chemicals, primarily legacy PFAS such as perfluorooctanoic acid and perfluorooctane sulfonate. Epidemiological studies have revealed associations between exposure to specific PFAS and a variety of health effects, including altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. Concordance with experimental animal data exists for many of these effects. However, information on modes of action and adverse outcome pathways must be expanded, and profound differences in PFAS toxicokinetic properties must be considered in understanding differences in responses between the sexes and among species and life stages. With many health effects noted for a relatively few example compounds and hundreds of other PFAS in commerce lacking toxicity data, more contemporary and high-throughput approaches such as read-across, molecular dynamics, and protein modeling are proposed to accelerate the development of toxicity information on emerging and legacy PFAS, individually and as mixtures. In addition, an appropriate degree of precaution, given what is already known from the PFAS examples noted, may be needed to protect human health. Environ Toxicol Chem 2021;40:606-630. © 2020 SETAC.
Collapse
Affiliation(s)
- Suzanne E. Fenton
- National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Alan Ducatman
- West Virginia University School of Public Health, Morgantown, West Virginia, USA
| | - Alan Boobis
- Imperial College London, London, United Kingdom
| | - Jamie C. DeWitt
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Christopher Lau
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Carla Ng
- Departments of Civil and Environmental Engineering and Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James S. Smith
- Navy and Marine Corps Public Health Center, Portsmouth, Virginia, USA
| | - Stephen M. Roberts
- Center for Environmental & Human Toxicology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Panieri E, Buha-Đorđevic A, Saso L. Endocrine disruption by PFAS: A major concern associated with legacy and replacement substances. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Perand poly-fluorinated alkyl substances (PFAS) have been used for decades in a great variety of processes and products by virtue of their exceptional properties, versatility and chemical stability. Nevertheless, it is increasingly recognized that these substances can represent a serious hazard to human health and living organisms due to their persistence, long-range transport potential and tendency to accumulate in biota. For this reason, some efforts have been made across the EU to identify alternative molecules, with a shorter carbon chain and theoretically safer profile, that might replace the previous generation of legacy PFAS. Unfortunately, this strategy has not been entirely successful and serious concerns are still posed by PFAS in different human populations. Among others, an emerging aspect is represented by the adverse effects that both legacy and alternative PFAS can exert on the human endocrine system, with respect to vulnerable target subpopulations. In this review we will briefly summarize PFAS properties, uses and environmental fate, focusing on their effects on human reproductive capacity and fertility, body weight control and obesity as well as thyroid function.
Collapse
|
32
|
Wan HT, Wong AYM, Feng S, Wong CKC. Effects of In Utero Exposure to Perfluorooctane Sulfonate on Placental Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:16050-16061. [PMID: 33258594 DOI: 10.1021/acs.est.0c06569] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a metabolic-disrupting chemical. There is a strong association between maternal and cord blood PFOS concentrations, affecting metabolism in early life. However, the underlying effects have not been fully elucidated. In this study, using the maternal-fetal model, we investigated the impact of gestational PFOS exposure on the placental structure and nutrient transport. Pregnant mice were oral gavaged with PFOS (1 or 3 μg PFOS/g body weight) from gestational day (GD) 4.5 until GD 17.5. Our data showed a significant reduction in fetal body weight at high dose exposure. There were no noticeable changes in placental weights and the relative areas of junctional and labyrinth zones among the control and exposed groups. However, a placental nutrient transport assay showed a significant reduction in maternal-fetal transport of the glucose and amino acid analogues. Western blot analysis showed a significant decrease in the expression levels of placental SNAT4 upon PFOS exposure. Moreover, in the high-dose exposed group, placenta and fetal livers were found to have significantly higher corticosterone levels, a negative regulator of fetal growth. The perturbation in the placental transport function and corticosterone levels accounted for the PFOS-induced reduction of fetal body weights.
Collapse
Affiliation(s)
- Hin Ting Wan
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Aman Yi-Man Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Shi Feng
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Chris Kong-Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
33
|
Blake BE, Fenton SE. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology 2020; 443:152565. [PMID: 32861749 PMCID: PMC7530144 DOI: 10.1016/j.tox.2020.152565] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous drinking water contaminants of concern due to mounting evidence implicating adverse health outcomes associated with exposure, including reduced kidney function, metabolic syndrome, thyroid disruption, and adverse pregnancy outcomes. PFAS have been produced in the U.S. since the 1940s and now encompass a growing chemical family comprised of diverse chemical moieties, yet the toxicological effects have been studied for relatively few compounds. Critically, exposures to some PFAS in utero are associated with adverse outcomes for both mother and offspring, such as hypertensive disorders of pregnancy (HDP), including preeclampsia, and low birth weight. Given the relationship between HDP, placental dysfunction, adverse health outcomes, and increased risk for chronic diseases in adulthood, the role of both developmental and lifelong exposure to PFAS likely contributes to disease risk in complex ways. Here, evidence for the role of some PFAS in disrupted thyroid function, kidney disease, and metabolic syndrome is synthesized with an emphasis on the placenta as a critical yet understudied target of PFAS and programming agent of adult disease. Future research efforts must continue to fill the knowledge gap between placental susceptibility to environmental exposures like PFAS, subsequent perinatal health risks for both mother and child, and latent health effects in adult offspring.
Collapse
Affiliation(s)
- Bevin E Blake
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of the National Toxicology Program (DNTP), NTP Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, USA.
| | - Suzanne E Fenton
- Division of the National Toxicology Program (DNTP), NTP Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
34
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
35
|
Heusinkveld HJ, Schoonen WG, Hodemaekers HM, Nugraha A, Sirks JJ, Veenma V, Sujan C, Pennings JL, Wackers PF, Palazzolo L, Eberini I, Rorije E, van der Ven LT. Distinguishing mode of action of compounds inducing craniofacial malformations in zebrafish embryos to support dose-response modeling in combined exposures. Reprod Toxicol 2020; 96:114-127. [DOI: 10.1016/j.reprotox.2020.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
|
36
|
Scinicariello F, Buser MC, Abadin HG, Attanasio R. Perfluoroalkyl substances and anthropomorphic measures in children (ages 3-11 years), NHANES 2013-2014. ENVIRONMENTAL RESEARCH 2020; 186:109518. [PMID: 32315828 PMCID: PMC8132309 DOI: 10.1016/j.envres.2020.109518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs) are man-made compounds that are persistent in the environment and highly bioaccumulative in the body. Humans are exposed to a mixture of these substances, and the effects of these mixtures may be different than the effects noted for individual compounds. Prenatal exposure to PFAAs has been associated with decreased birth weight. The objective of the present study is to evaluate concurrent serum PFAA levels, as single compounds and as mixtures, in relation to anthropomorphic measures in children. METHODS Using multivariate linear regression, we evaluated the association between single or PFAA mixtures and with height-for-age (HAZ), weight-for-age (WAZ), and BMI (BMIZ) z-scores in children (ages 3-11 years) participants of the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Analyses were also stratified by sex. The PFAA mixture was based on relative potency factors express in terms of PFOA equivalency (CmixRPFi) or as molar sum of the PFAA congeners (∑molPFAA). RESULTS There was a statistically significant association of PFHxS and PFOS with decreased HAZ in boys. The significantly decreased HAZ in boys was also found when the PFAAs were analyzed as mixtures: CmixRPFi (β = -0.33; 95%CI: 0.63, -0.04) or ΣmolPFAAs (β = -0.30; 95%CI: 0.56, -0.04). In boys, PFHxS was also associated with decreased WAZ and BMIZ. The only statistically significant association found in girls was between decreased HAZ and PFHxS. CONCLUSIONS We found sex differences in the association between concurrent serum PFAA levels and anthropomorphic measures in children 3-11 years old. PFAA levels, as single congeners or as mixture concentrations were associated with decreased height-for-age z-score in boys.
Collapse
Affiliation(s)
- Franco Scinicariello
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA.
| | - Melanie C Buser
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA
| | - Henry G Abadin
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, 30341, USA
| | | |
Collapse
|
37
|
Zhang Y, Le Y, Bu P, Cheng X. Regulation of Hox and ParaHox genes by perfluorochemicals in mouse liver. Toxicology 2020; 441:152521. [PMID: 32534105 DOI: 10.1016/j.tox.2020.152521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 01/01/2023]
Abstract
Homeobox (Hox) genes encode homeodomain proteins, which play important roles in the development and morphological diversification of organisms including plants and animals. Perfluorinated chemicals (PFCs), which are well recognized industrial pollutants and universally detected in human and wildlife, interfere with animal development. In addition, PFCs produce a number of hepatic adverse effects, such as hepatomegaly and dyslipidemia. Homeodomain proteins profoundly contribute to liver regeneration. Hox genes serve as either oncogenes or tumor suppressor genes during target organ carcinogenesis. However, to date, no study investigated whether PFCs regulate expression of Hox genes. This study was designed to determine the regulation of Hox (including Hox-a to -d subfamily members) and paraHox [including GS homeobox (Gsx), pancreatic and duodenal homeobox (Pdx), and caudal-related homeobox (Cdx) family members] genes by PFCs including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) in mouse liver. 46.4 mg/kg PFNA induced mRNA expression of Hoxa5, b7, c5, d10 and Pdx1 in wild-type and CAR-null mouse livers, but not in PPARα-null mouse livers, indicating a PPARα-dependent manner. PFOA, PFNA, and PFDA all induced mRNA expression of Hoxa5, b7, c5, d10, Pdx1 and Zeb2 in wild-type but not PPARα-null mouse livers. In addition, in Nrf2-null mouse livers, PFNA continued to increase mRNA expression of Hoxa5 and Pdx1, but not Hoxb7, c5 or d10. Furthermore, Wy14643, a classical PPARα agonist, induced mRNA expression of Hoxb7 and c5 in wild-type but not PPARα-null mouse livers. However, Wy14643 did not induce mRNA expression of Hoxa5, d10 or Pdx1 in either wild-type or PPARα-null mouse livers. TCPOBOP, a classical mouse CAR agonist, increased mRNA expression of Hoxb7, c5 and d10 but not Hoxa5 or Pdx1 in mouse livers. Moreover, PFNA decreased cytoplasmic and nuclear Hoxb7 protein levels in mouse livers. However, PFNA increased cytoplasmic Hoxc5 protein level but decreased nuclear Hoxc5 protein level in mouse livers. In conclusion, PFCs induced mRNA expression of several Hox genes such as Hoxb7, c5 and d10, mostly through the activation of PPARα and/or Nrf2 signaling.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, United States
| | - Yuan Le
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, United States
| | - Pengli Bu
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, Chicago, IL, 60064, United States
| | - Xingguo Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, United States.
| |
Collapse
|
38
|
Defining embryonic developmental effects of chemical mixtures using the embryonic stem cell test. Food Chem Toxicol 2020; 140:111284. [DOI: 10.1016/j.fct.2020.111284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
|
39
|
Jiang W, Deng Y, Song Z, Xie Y, Gong L, Chen Y, Kuang H. Gestational Perfluorooctanoic Acid Exposure Inhibits Placental Development by Dysregulation of Labyrinth Vessels and uNK Cells and Apoptosis in Mice. Front Physiol 2020; 11:51. [PMID: 32116763 PMCID: PMC7025578 DOI: 10.3389/fphys.2020.00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Perfluorooctanoic acid (PFOA) is a widely used perfluorinated compound and known to cause developmental toxicity which includes the increase of resorbed embryo, decrease of fetal survival, and fetal growth retardation. Nevertheless, whether it is associated with alteration of placental development remains unknown. Pregnant mice were gavaged with 0, 2.5, 5, 10 mg PFOA /kg/day from pregnancy day (PD) 1 to PD 13. Results showed that PFOA exposure markedly decreased the placental weight and caused interstitial edema of placenta. Laminin staining indicated that blood sinusoids area was shrunken in placenta of PFOA-exposed mice. Furthermore, PFOA treatment significantly reduced numbers of uNK cells. Western blot analysis revealed that levels of Bax and cleaved-caspase 3 proteins were markedly up-regulated in PFOA-treated groups. In addition, TEM examination showed that PFOA treatment caused rupture of nuclear membrane and nuclear pyknosis and fragmentation. Thus, our results suggested that gestational PFOA exposure significantly inhibited development of early placenta through shrinkage of labyrinth vessels and downregulation of uNK cells and apoptosis induction, which may result in adverse gestational outcomes.
Collapse
Affiliation(s)
- Wenyu Jiang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Yu Deng
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Department of Clinic Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Zifan Song
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Yajuan Xie
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Lixin Gong
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Yilu Chen
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China
| | - Haibin Kuang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Medical Experimental Teaching Center, Nanchang University, Nanchang, China
| |
Collapse
|
40
|
Zoupa M, Zwart EP, Gremmer ER, Nugraha A, Compeer S, Slob W, van der Ven LTM. Dose addition in chemical mixtures inducing craniofacial malformations in zebrafish (Danio rerio) embryos. Food Chem Toxicol 2020; 137:111117. [PMID: 31927004 DOI: 10.1016/j.fct.2020.111117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
A challenge in cumulative risk assessment is to model hazard of mixtures. EFSA proposed to only combine chemicals linked to a defined endpoint, in so-called cumulative assessment groups, and use the dose-addition model as a default to predict combined effects. We investigated the effect of binary mixtures of compounds known to cause craniofacial malformations, by assessing the effect in the head skeleton (M-PQ angle) in 120hpf zebrafish embryos. We combined chemicals with similar mode of action (MOA), i.e. the triazoles cyproconazole, triadimefon and flusilazole; next, reference compounds cyproconazole or triadimefon were combined with dissimilar acting compounds, TCDD, thiram, VPA, prochloraz, fenpropimorph, PFOS, or endosulfan. These mixtures were designed as (near) equipotent combinations of the contributing compounds, in a range of cumulative concentrations. Dose-addition was assessed by evaluation of the overlap of responses of each of the 14 tested binary mixtures with those of the single compounds. All 10 test compounds induced an increase of the M-PQ angle, with varying potency and specificity. Mixture responses as predicted by dose-addition did not deviate from the observed responses, supporting dose-addition as a valid assumption for mixture risk assessment. Importantly, dose-addition was found irrespective of MOA of contributing chemicals.
Collapse
Affiliation(s)
- Maria Zoupa
- Laboratory of Toxicological Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Attika, 44561, Greece
| | - Edwin P Zwart
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Eric R Gremmer
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ananditya Nugraha
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sharon Compeer
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wout Slob
- Department of Food Safety, Center for Food, Prevention and Care, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Leo T M van der Ven
- Department of Innovative Testing Strategies, Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
41
|
Singh S, Singh SK. Acute exposure to perfluorononanoic acid in prepubertal mice: Effect on germ cell dynamics and an insight into the possible mechanisms of its inhibitory action on testicular functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109499. [PMID: 31398581 DOI: 10.1016/j.ecoenv.2019.109499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 05/15/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are anthropogenic compounds used globally in a variety of commercial products. Perfluorononanoic acid (PFNA), a member of PFAAs, is detected in human blood and this has been reported to cause hepatotoxic, immunotoxic, and developmental and testicular toxic effects in laboratory animals. We have recently shown that the acute exposure to PFNA in prepubertal Parkes (P) mice impairs spermatogenesis by inducing oxidative stress and inhibiting testosterone biosynthesis in the testis. The present study was aimed to examine the effect of acute exposure to PFNA in prepubertal P mice on germ cell dynamics and to understand the possible mechanisms of action of this compound on testicular functions. PFNA (2 and 5 mg/kg body weight) was orally administered to male mice for 14 days from postnatal day 25-38. The treatment caused a decrease in overall germ cell transformation. The results also reveal that impairment in testicular functions in treated mice is associated with alterations in cholesterol and glucose homeostasis; further, an inhibition in expressions of growth hormone receptor (GHR), insulin-like growth factor-1 (IGF-1), insulin-like growth factor-1 receptor (IGF-1R), androgen receptor (AR), phosphorylated mammalian target of rapamycin (p-mTOR) and peroxisome proliferator activated receptor α (PPAR α) in the testis is also implicated in this action. The findings thus suggest involvement of multiple factors which altogether contribute to the alterations in spermatogenic process and testosterone production following acute exposure to PFNA in prepubertal mice.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
42
|
Wang G, Wang X, Xing Z, Lu J, Chang Q, Tong Y. Occurrence and distribution of perfluorooctane sulfonate and perfluorooctanoic acid in three major rivers of Xinjiang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28062-28070. [PMID: 31359316 DOI: 10.1007/s11356-019-05770-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Drinking water is a main pathway of human exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). These two compounds have been identified in environmental waters worldwide, but little is known about their occurrence in Xinjiang. In this study, 155 water samples were obtained from 37 locations across Ulungur River, Manasi River, and Tarim River in Xinjiang, and were assessed by using liquid chromatography tandem-mass spectrometry. PFOS and PFOA were detected in over 50% of the samples with mean concentrations of 3.194 ng/L for PFOS and 3.460 ng/L for PFOA. Spatial and regional distribution differences do exist among the three analyzed rivers. PFOS and PFOA in Manasi River were observed at the highest levels (especially in M10 and M11), but no aggravation occurred from 2014 to 2017. Seasonal variations of PFOS and PFOA concentrations showed that water samples collected during summer were higher than those in other three seasons. The occurrence, levels, and distribution patterns of PFOS and PFOA were investigated in the present study, which provides useful theory and data support for human health risk assessment. The findings of the present study can be considered for controlling these water pollutants in environmental waters.
Collapse
Affiliation(s)
- Gehui Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Xiaolong Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Zhenni Xing
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Jianjiang Lu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Qigang Chang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| | - Yanbin Tong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Production and Construction Corps, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| |
Collapse
|
43
|
Singh S, Singh SK. Effect of gestational exposure to perfluorononanoic acid on neonatal mice testes. J Appl Toxicol 2019; 39:1663-1671. [PMID: 31389053 DOI: 10.1002/jat.3883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in commercial products and are found in many goods of daily use. Perfluorononanoic acid (PFNA) is one of the PFAAs that possesses endocrine disrupting properties and we have recently shown that PFNA affects testicular functions in Parkes mice. Exposure to environmental endocrine disruptors during fetal life is believed to affect gonadal development and they might produce reproductive abnormalities in males. Therefore, the present study examined the effect of gestational exposure to PFNA on the testes of neonatal mice offspring. Pregnant Parkes mice were orally administered PFNA (2 and 5 mg/kg body weight) or distilled water from gestational day 12 until parturition. Male pups were killed on postnatal day 3. PFNA treatment decreased testosterone biosynthesis by inhibiting expression of steroidogenic acute regulatory protein, cytochrome P450scc, and 3β- and 17β-hydroxysteroid dehydrogenase; proliferation of testicular cells was also affected in treated mice. Furthermore, a marked decrease in expression of Wilms tumor 1, steroidogenic factor 1 and insulin-like factor 3 was noted in neonatal mice testes, indicating that the PFNA treatment may affect the development of the testis. Moreover, observation of the dose-related expression of anti-müllerian hormone and c-Kit in neonatal mice testes is also suggestive of an interference with gonadal development by PFNA exposure. In conclusion, the results suggest that the gestational exposure to PFNA decreased testosterone biosynthesis and altered the expression of critical factors involved in the development of the testis, thereby advocating a potential risk of PFNA to male reproductive health.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
44
|
Singh S, Singh SK. Prepubertal exposure to perfluorononanoic acid interferes with spermatogenesis and steroidogenesis in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:590-599. [PMID: 30576894 DOI: 10.1016/j.ecoenv.2018.12.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/11/2018] [Indexed: 05/15/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in industrial and commercial products and possess endocrine disrupting properties. Perfluorononanoic acid (PFNA), one of PFAAs, has been mainly reported to produce testicular toxicity in adult animals. The objective of the present study was to examine the effect of acute exposure of PFNA to prepubertal male Parkes (P) mice on spermatogenesis and testicular steroidogenesis, and to study the possible mechanism(s) of its action. PFNA (2 and 5 mg/kg) was orally administered to male P mice for 14 days from postnatal day 25-38. Histologically, testis in PFNA-treated mice showed non-uniform diverse degenerative changes in the seminiferous tubules; both normal and affected tubules were seen in the same testicular sections. The treatment caused a reduction in intra-testicular and serum testosterone levels accompanied by a decrease in testicular expression of SF1, StAR, CYP11A1, and 3β- and17β-HSD. Further, the activity of antioxidant enzymes and expression of Nrf2 and HO-1 in the testis were markedly decreased, while the level of lipid peroxidation and expression of IKKβ, NF-κB and caspase-3 were significantly increased in testis of PFNA-treated mice. There was also a decrease in PCNA expression and in PCNA-index and an increase in TUNEL-positive germ cells in testes of PFNA-treated mice. In conclusion, the results suggest that PFNA exposure to prepubertal male mice altered antioxidant enzymes activity and Nrf2-HO-1 signaling, leading to oxidative stress and a decrease in testosterone biosynthesis in the testis; these changes, in turn, caused increased apoptosis and decreased proliferation of germ cells, thereby suppression of spermatogenesis.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
45
|
Vogs C, Johanson G, Näslund M, Wulff S, Sjödin M, Hellstrandh M, Lindberg J, Wincent E. Toxicokinetics of Perfluorinated Alkyl Acids Influences Their Toxic Potency in the Zebrafish Embryo ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3898-3907. [PMID: 30844262 DOI: 10.1021/acs.est.8b07188] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Perfluorinated alkyl acids (PFAA) are highly persistent and bioaccumulative and have been associated with several adverse health effects. The chemical structure mainly differs in two ways: the length of the hydrophobic alkyl chain and the type of hydrophilic end group. Little is known how the chemical structure affects the toxicokinetics (TK) in different organisms. We studied the TK of four PFAA (PFOS, PFHxS, PFOA, and PFBA) with different chain lengths (4-8 carbons) and functional groups (sulfonic and carboxylic acid) in zebrafish ( Danio rerio) embryo. The time courses of the external (ambient water) and internal concentrations were determined at three exposure concentrations from 2 up to 120 h postfertilization (hpf). Three of the four PFAA showed a biphasic uptake pattern with slow uptake before hatching (around 48 hpf) and faster uptake thereafter. A two-compartment TK model adequately described the biphasic uptake pattern, suggesting that the chorion functions as an uptake barrier until 48 hpf. The bioconcentration factors (BCF) determined at 120 hpf varied widely between PFAA with averages of approximately 4000 (PFOS), 200 (PFHxS), 50 (PFOA), and 0.8 (PFBA) L kg dry weight-1, suggesting that both the alkyl chain length and the functional group influence the TK. The differences in toxic potency were reduced by 3 orders of magnitude when comparing internal effect concentrations instead of effective external concentrations.
Collapse
Affiliation(s)
- Carolina Vogs
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden
| | - Gunnar Johanson
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden
| | - Markus Näslund
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden
- Swedish Toxicology Sciences Research Center (Swetox) , 151 36 Södertälje , Sweden
| | - Sascha Wulff
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden
- Swedish Toxicology Sciences Research Center (Swetox) , 151 36 Södertälje , Sweden
| | - Marcus Sjödin
- Swedish Toxicology Sciences Research Center (Swetox) , 151 36 Södertälje , Sweden
| | - Magnus Hellstrandh
- Swedish Toxicology Sciences Research Center (Swetox) , 151 36 Södertälje , Sweden
| | - Johan Lindberg
- Swedish Toxicology Sciences Research Center (Swetox) , 151 36 Södertälje , Sweden
| | - Emma Wincent
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden
- Swedish Toxicology Sciences Research Center (Swetox) , 151 36 Södertälje , Sweden
| |
Collapse
|
46
|
Puttige Ramesh N, Arora M, Braun JM. Cross-sectional study of the association between serum perfluorinated alkyl acid concentrations and dental caries among US adolescents (NHANES 1999-2012). BMJ Open 2019; 9:e024189. [PMID: 30782897 PMCID: PMC6377528 DOI: 10.1136/bmjopen-2018-024189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/13/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
STUDY OBJECTIVES Perfluoroalkyl acids (PFAAs) are a class of anthropogenic and persistent compounds that may impact some biological pathways related to oral health. The objective of our study was to estimate the relationship between dental caries prevalence and exposure to four PFAA: perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonic acid (PFOS) in a nationally representative sample of US adolescents. SETTING/DESIGN We analysed cross-sectional data from the National Health and Nutrition Examination Survey from 1999 to 2012 for 12-19-year-old US adolescents. PARTICIPANTS Of 10 856 adolescents aged 12 to 19 years who had a dental examination, we included 2869 with laboratory measurements for serum PFAA concentrations and complete covariate data in our study. PRIMARY AND SECONDARY OUTCOME MEASURES Dental caries prevalence was defined as the presence of decay or a restoration on any tooth surface, or the loss of a tooth due to tooth decay. We used multivariable logistic regression to estimate the covariate-adjusted association between serum PFAA concentrations and dental caries prevalence, accounting for the complex National Health and Nutrition Examination Survey design. RESULTS Of 2869 adolescents, 59% had one or more dental caries. We observed no associations between the prevalence of dental caries and serum concentrations of PFOA, PFOS or PFHxS. The adjusted odds of caries were 21% (OR 0.79; 95% CI 0.63 to 1.01), 15% (OR 0.85; 95% CI 0.67 to 1.08) and 30% (OR 0.7; 95% CI 0.55 to 0.90) lower among adolescents in the 2nd, 3rd and 4th serum PFNA concentration quartiles compared to adolescents in the first quartile, respectively. The linear trend for this association was not statistically significant. CONCLUSION PFOA, PFOS and PFHxS were not associated with prevalence of dental caries. The prevalence of caries was reduced with increasing serum PFNA concentrations; however, these results should be interpreted cautiously given that we were unable to adjust for several factors related to oral health.
Collapse
Affiliation(s)
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, New York, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
47
|
Perfluorononanoic acid (PFNA) alters lipid accumulation in bovine blastocysts after oocyte exposure during in vitro maturation. Reprod Toxicol 2018; 84:1-8. [PMID: 30502403 DOI: 10.1016/j.reprotox.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/08/2018] [Accepted: 11/27/2018] [Indexed: 11/24/2022]
Abstract
Perfluorononanoic acid (PFNA) is one of the perfluoroalkyl acids present in human tissues. In this study, effects on early embryo development after PFNA exposure were investigated using the bovine in vitro production system. Oocytes were exposed to PFNA during maturation in vitro (10 μg mL-1 and 0.1 μg mL-1), and then fertilized and cultured in parallel with control groups. Developmental parameters (cleavage, blastocyst formation) were followed and embryo quality evaluated (stage, grade). Embryos developed after exposure to 0.1 μg mL-1 were stained to distinguish nuclei, active mitochondria and neutral lipids. 10 μg mL-1 of PFNA had a severe negative effect on blastocyst formation (OR: 0.27 p < 0.05), an effect not observed at 0.1 μg mL-1. However, lipid droplet distribution was significantly altered in embryos exposed to 0.1 μg mL-1, suggesting a disturbance of lipid metabolism after exposure to sublethal levels of PFNA during oocyte maturation in vitro.
Collapse
|
48
|
Singh S, Singh SK. Chronic exposure to perfluorononanoic acid impairs spermatogenesis, steroidogenesis and fertility in male mice. J Appl Toxicol 2018; 39:420-431. [DOI: 10.1002/jat.3733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Shilpi Singh
- Department of Zoology, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
49
|
Li C, Liu X, Liu Q, Li S, Li Y, Hu H, Shao J. Protection of Taurine Against PFOS-Induced Neurotoxicity in PC12 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 2:907-916. [PMID: 28849510 DOI: 10.1007/978-94-024-1079-2_72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
As a new member of persistent organic pollutants, the potent neurotoxicity of perfluorooctane sulfonates (PFOS) found in epidemiological studies and laboratory research has drawn increasing attention around the world. Previous studies showed that apoptosis driven by oxidative stress and autophagy were both observed in PFOS-induced toxicity. Taurine has been demonstrated to exert potent protections against oxidative stress as an efficient antioxidant. Whether taurine could protect against the PFOS neurotoxicity is not known. In the present study, PC12 cells were treated with several concentrations of PFOS (31.25, 250 μM) for 24 h. 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was applied to assess the cell viability. DCFH-DA detector was used to explore the production of ROS. Caspase 3 activity was used to reflect the possible apoptosis pathway. The lyso-tracker red dying was invited to evaluate the autophagy. Our data showed that taurine could significantly reverse the decreased viability and the increased ROS production in PC12 cells treated with PFOS. Moreover, the increased autophagy and apoptosis elicited by PFOS in PC12 cells could also be attenuated by taurine. Collectively, our results indicate that taurine may be an effective antioxidant in fighting against PFOS cytotoxicity and therefore could potentially serve as a preventative and therapeutic agent for environmental pollution-related toxicities.
Collapse
Affiliation(s)
- Chunna Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Qi Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Shuangyue Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Yachen Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Hong Hu
- Laboratory of Medicine, The Second Hospital of Dalian Medical University, Dalian, 116027, China.
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
50
|
Song P, Li D, Wang X, Zhong X. Effects of perfluorooctanoic acid exposure during pregnancy on the reproduction and development of male offspring mice. Andrologia 2018; 50:e13059. [PMID: 29862542 DOI: 10.1111/and.13059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to explore the effects of maternal exposure to perfluorooctanoic acid (PFOA) on reproduction and development of male offspring mice. Pregnant mice were given 1, 2.5 or 5 mg/kg BW PFOA daily by gavage during gestation. The results showed that the survival number of offspring mice at weaning was significantly decreased. There were no differences in the testicular index of offspring mice between PFOA exposure groups and non-PFOA group. Maternal exposure to PFOA reduced the level of testosterone in the male offspring mice on PND 21 (p < 0.01) but increased in 1 mg/kg group and decreased in 2.5 and 5 mg/kg groups on PND 70 (p < 0.01). There were different degrees of damage to testis in a dose-dependent manner, and the number of Leydig cells markedly decreased (p < 0.01) in 2.5 and 5 mg/kg PFOA groups on PND 21 and PND 70. The expression of Dlk1-Dio3 imprinted gene cluster showed a decreasing trend, where Glt2, Rian and Dio3 gene expressions were significantly reduced (p < 0.05) on PND 21. Therefore, PFOA exposure during pregnancy reduces the number of survival offspring mice, damages testis, disrupts reproductive hormones and reduces the mRNA expressions of the Dlk1-Dio3 imprinted cluster in testis.
Collapse
Affiliation(s)
- Pengyan Song
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Danyang Li
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Xiuhui Zhong
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| |
Collapse
|