1
|
Hou S, Wang C, Ma X, Zhao J, Wang J, Fang Y, Liu H, Ding H, Guo J, Lu W. Methylmercury Chloride Exposure Affects Oocyte Maturation Through AMPK/mTOR-Mediated Mitochondrial Autophagy. Int J Mol Sci 2025; 26:3603. [PMID: 40332119 PMCID: PMC12026530 DOI: 10.3390/ijms26083603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Mercury, a prevalent heavy metal, negatively impacts oocyte maturation. However, the exact mechanism by which methylmercury chloride (MMC) affects this process remains elusive. The present study found that MMC administration triggered meiotic failure in oocytes by disrupting cumulus cell expansion, leading to compromised spindle apparatus and altered chromosomal architecture, which are crucial for oocyte development. This disruption is characterized by abnormal microtubule organization and defective chromosome alignment. Additionally, MMC exposure caused oxidative stress-induced apoptosis due to mitochondrial dysfunction, as indicated by decreased mitochondrial membrane potential, mitochondrial content, mitochondrial DNA copy number, and adenosine triphosphate levels. Proteomic analysis identified 97 differentially expressed proteins, including P62, an autophagy marker. Our results confirmed that MMC induced autophagy, particularly through the hyperactivation of the mitochondrial autophagy to remove damaged and normal mitochondria. The mitochondrial reactive oxygen species (ROS) scavenger Mito-TEMPO alleviated oxidative stress and mitochondrial autophagy levels, suggesting that mitochondrial ROS initiates this autophagic response. Notably, MMC activates mitochondrial autophagy via the monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signal pathway due to mitochondrial dysfunction. In vivo studies in mice revealed that MMC exposure decreased reproductive performance, attributed to excessive mitochondrial autophagy leading to reduced oocyte quality. Overall, these findings demonstrate that MMC exposure impairs oocyte maturation via the hyperactivation of mitochondrial autophagy induced by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shengkui Hou
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Caiyu Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Xin Ma
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Jing Zhao
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Jun Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Yi Fang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Hongyu Liu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - He Ding
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Jing Guo
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| | - Wenfa Lu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130117, China; (S.H.); (X.M.); (J.Z.); (J.W.); (Y.F.); (H.L.); (H.D.)
- Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun 130117, China
- Jilin Provincial Key Laboratory of Beef Cattle Germplasm Resources Conservation and Utilization, Jilin Agricultural University, Changchun 130117, China
| |
Collapse
|
2
|
Yoo MH, Kim TY, Kim HK, Yoo JH, Lee BS, Koh JY. Assessing the health hazards of low-dose ethylmercury: Neurochemical and behavioral impacts in neonatal mice through matrix metalloproteinase activation and brain-derived neurotrophic factor release. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118031. [PMID: 40080937 DOI: 10.1016/j.ecoenv.2025.118031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
Ethylmercury (EtHg) primarily enters the body through contaminated fish and mercury-containing vaccines, raising concerns about its neurotoxic risks, particularly for infants and young children. Although its neurodevelopmental impact has been suggested, research remains inconclusive. Given that neurite outgrowth, matrix metalloproteinase (MMP) activity, and brain-derived neurotrophic factor (BDNF) expression play critical roles in brain development and synaptic plasticity, we hypothesized that EtHg exposure disrupts these processes, leading to behavioral abnormalities. To test this hypothesis, we utilized a neonatal mouse model, exposing mice to a specific dose of EtHg comparable to potential human exposure levels. The exact dosage and exposure conditions were carefully selected to reflect real-world exposure scenarios. Our findings revealed that EtHg exposure led to significant alterations in brain development, including increased brain size and cortical thickness. These structural changes were accompanied by notable impairments in social interactions and behavioral patterns. Further analysis indicated that these effects were likely mediated by increased microglial activation and elevated BDNF expression in the cerebral cortex. Overall, our study suggests that EtHg disrupts neurodevelopment by activating microglia, leading to physiological and morphological changes in the brain. These findings highlight the need for further research on EtHg neurotoxicity and its implications for vulnerable populations, particularly infants and young children.
Collapse
Affiliation(s)
- Min Heui Yoo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Sinseong-dong, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Tae-Youn Kim
- Department of Neurology, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.
| | - Ho-Kyong Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Sinseong-dong, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Ji-Hyun Yoo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Sinseong-dong, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, 141 Gajeong-ro, Sinseong-dong, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Jae-Young Koh
- Department of Neurology, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.
| |
Collapse
|
3
|
Pan Y, Qu K, Li H, Song Y. Toxic effects of chronic occupational mercury vapor exposure on female workers of childbearing age. J Occup Med Toxicol 2025; 20:5. [PMID: 39930517 PMCID: PMC11808966 DOI: 10.1186/s12995-025-00453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Few studies have been conducted on women of childbearing age with chronic mercury poisoning caused by mercury vapor exposure. METHODS Occupational exposure, clinical symptoms and signs, laboratory tests, auxiliary examinations, treatment, and follow-up of 31 female workers with chronic mercury poisoning from a mercury thermometer processing factory who received inpatient treatment at our hospital between September 2021 and August 2022 were analyzed. RESULTS In 31 female workers of childbearing age (23-43 years) who were chronically exposed to mercury vapor (3-31 months), urinary mercury levels exceeded the normal range. The clinical manifestations were primarily neurological (96.77%). Renal pathology of the two female workers suggested membranous nephropathy in the first stage. Some female workers experienced menstrual abnormalities, anxiety, depression, and sleep disorders. Treatment was mainly chelation therapy supplemented with antioxidants and other symptomatic supportive treatments. All patients achieved good results after discontinuing exposure to mercury vapor and receiving treatment. However, follow-up after discharge revealed that some female workers still had insomnia. CONCLUSIONS Occupational mercury vapor exposure is hazardous to female workers of childbearing age and increases the risk of adverse effects on their reproductive health. Occupational protection and prevention of mercury exposure in female workers of reproductive age must be emphasized.
Collapse
Affiliation(s)
- Yujie Pan
- Department of Occupational Medicine and Toxicology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Kunlong Qu
- Department of Occupational Medicine and Toxicology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Huiling Li
- Department of Occupational Medicine and Toxicology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Yuguo Song
- Department of Occupational Medicine and Toxicology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
4
|
Kushawaha B, Yadav R, Garg SK, Pelosi E. The impact of mercury exposure on male reproduction: Mechanistic insights. J Trace Elem Med Biol 2025; 87:127598. [PMID: 39827527 DOI: 10.1016/j.jtemb.2025.127598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Mercury is a pervasive environmental toxin with significant negative effects on human health. In occupational settings, incidents such as the Minamata and Niigata disease in Japan and the large-scale methylmercury poisoning in Iraq have highlighted the severe health impacts of mercury exposure. It is widely accepted that all forms of mercury including methylmercury and mercuric chloride have the potential to induce toxic effects in mammals, and there is increasing concern about the impact of environmentally relevant levels of mercury on reproductive functions. This review summarizes current knowledge on the mechanisms of mercury toxicity, focusing specifically on its impact on male reproductive health across species. We searched the literature and found that mercury exposure is associated with testicular degeneration, altered spermatogenesis, and Leydig cell deformation. In addition, mercury can disrupt sperm motility, steroidogenesis and interfere with the hypothalamic-pituitary-gonadal axis by generation of reactive oxygen species, inducing mitochondrial dysfunction, epigenetic changes, and DNA damage. At the molecular level, mercury has been found to dysregulate the expression of key steroidogenic and spermatogenic genes, significantly reducing overall fertility potential. However, specific mechanisms of action remain to be fully elucidated. Similarly, comprehensive data on the potential transgenerational effects of paternal mercury exposure are lacking. In this review, we discuss both animal and human studies, and highlight the need for further research due to lack of standardization and control for variables such as lifestyle, immune system function, and exposure concentrations.
Collapse
Affiliation(s)
- Bhawna Kushawaha
- Indiana University, Department of Biochemistry and Molecular Biology, Indianapolis, USA
| | - Rajkumar Yadav
- U.P. Pt. Deen Dayal Upadhyay Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Ansundhan Sansthan (DUVASU), Mathura, India
| | - Satish Kumar Garg
- Rajasthan University of Veterinary and Animal Sciences Bikaner, India
| | - Emanuele Pelosi
- Indiana University, Department of Biochemistry and Molecular Biology, Indianapolis, USA.
| |
Collapse
|
5
|
Kek T, Geršak K, Karas Kuželički N, Celar Šturm D, Mazej D, Snoj Tratnik J, Falnoga I, Horvat M, Virant-Klun I. Associations of Essential and Non-Essential Trace Elements' Levels in the Blood, Serum, and Urine in Women with Premature Ovarian Insufficiency. Biol Trace Elem Res 2025:10.1007/s12011-024-04507-8. [PMID: 39789351 DOI: 10.1007/s12011-024-04507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Premature ovarian insufficiency (POI) is poorly understood, with causes identified in only 25% of cases. Emerging evidence suggests links between trace elements (TEs) and POI. This study is the first to compare concentrations of manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo), arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) across urine, serum, and whole blood in women with POI compared to healthy controls (HC), aiming to explore their distribution and potential associations with POI. This cross-sectional-case-control study enrolled 81 participants (40 POI patients and 41 healthy controls) at the University Medical Centre Ljubljana, Slovenia. Blood and urine samples were collected to quantify basic biochemical parameters using standard clinical chemistry methods and concentrations of Mn, Cu, Zn, Se, Mo, As, Cd, Hg, and Pb using inductively coupled plasma-mass spectrometry (ICP-MS). Participants also completed questionnaires on socio-demographics, medical history, lifestyle, and nutrition. Data was analyzed using the Mann-Whitney U test, Student's t-tests, Fisher exact test, logistic regression models adjusted on body mass index (BMI), age, hematocrit, and Kendall's tau correlation. Women with POI had significantly higher BMI and red blood cell (RBC) indices, including hemoglobin, hematocrit, and red cell distribution width (RDW), compared to controls. A larger proportion of POI patients resided in rural agricultural areas. Liver and kidney function assessments showed no significant differences between the groups. Adjusted models revealed that POI patients had significantly lower urinary levels of Cu, Zn, Se, Mo, Cd, Hg, and Pb than controls, while whole blood Mn levels were higher. Serum Cu levels were significantly elevated in POI patients, whereas Pb, Cd, and Hg were lower. No significant differences were observed for As. Correlation analysis showed several strong to moderate associations among TEs across biofluids, but only weak correlations were found between TEs and demographic or biochemical factors. This study suggests potential associations between TEs and POI in women. Notably, most TEs (Zn, Se, Cu, Mo, Cd, Hg, Pb) were significantly lower in the urine of the POI group, while Cu, Cd, Hg, and Pb showed significant differences in both urine and serum.
Collapse
Affiliation(s)
- Tina Kek
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia.
| | - Ksenija Geršak
- Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, Šlajmarjeva 3, 1000, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| | - Nataša Karas Kuželički
- Faculty of Pharmacy, University of Ljubljana, Aškrčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Dominika Celar Šturm
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia
| | - Darja Mazej
- Department of Environmental Sciences, Institute Jožef Stefan, Jamova 39, 1000, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Institute Jožef Stefan, Jamova 39, 1000, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Institute Jožef Stefan, Jamova 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Institute Jožef Stefan, Jamova 39, 1000, Ljubljana, Slovenia
| | - Irma Virant-Klun
- Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
6
|
Oladimeji T, Oyedemi M, Emetere M, Agboola O, Adeoye J, Odunlami O. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024; 10:e40370. [PMID: 39654720 PMCID: PMC11625160 DOI: 10.1016/j.heliyon.2024.e40370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The incidence of water pollution in developing countries is high due to the lack of regulatory policies and laws that protect water bodies from anthropogenic activities and industrial wastewater. Industrial wastewater contains significant amounts of heavy metals that are detrimental to human health, aquatic organisms, and the ecosystem. The focus of this review was to evaluate the sources and treatment methods of wastewater, with an emphasis on technologies, advantages, disadvantages, and innovation. It was observed that conventional methods of wastewater treatment (such as flotation, coagulation/flocculation, and adsorption) had shown promising results but posed certain limitations, such as the generation of high volumes of sludge, relatively low removal rates, inefficiency in treating low metal concentrations, and sensitivity to varying pH. Recent technologies like nanotechnology, photocatalysis, and electrochemical coagulation have significant advantages over conventional methods for removing heavy metals, including higher removal rates, improved energy efficiency, and greater selectivity for specific contaminants. However, the high costs associated with these advanced methods remain a major drawback. Therefore, we recommend that future developments in wastewater treatment technology focus on reducing both costs and waste generation.
Collapse
Affiliation(s)
- T.E. Oladimeji
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M. Oyedemi
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M.E. Emetere
- Department of Physics, Bowen University, Osun State, Nigeria
- Department of Mechanical Engineering Science, University of Johannesburg, South Africa
| | - O. Agboola
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - J.B. Adeoye
- Department of Chemical and Energy Engineering, Curtin University, Malaysia
| | - O.A. Odunlami
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| |
Collapse
|
7
|
Hasegawa K, Inaba Y, Toubou H, Shibazaki T, Iwai-Shimada M, Yamazaki S, Kamijima M, Tsukahara T, Nomiyama T. Prenatal mercury exposure and the secondary sex ratio: The Japan Environment and Children's Study. Reprod Toxicol 2024; 130:108685. [PMID: 39127150 DOI: 10.1016/j.reprotox.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Prior research into the association between prenatal mercury (Hg) exposure and the secondary sex ratio has yielded inconclusive and conflicting results. Notably, no study has used cord blood Hg measurement in this context. Also, the differences in Hg species and the potential modifying role of selenium (Se) on this association remain unexplored. Using data from the Japan Environment and Children's Study, we analyzed mother-child pairs with available data for concentrations of total mercury (THg) and Se in maternal blood during late pregnancy, and THg, inorganic mercury (IHg), methylmercury (MeHg), and Se in cord blood. Logistic regression models were employed to examine the association between Hg and Se biomarkers and the secondary sex ratio. Out of the total sample of 3698 children, 1877 (50.8 %) were male, corresponding to an overall secondary sex ratio of 1.03. After adjusting for maternal age and parity, no significant associations were observed between THg concentrations of maternal blood and the secondary sex ratio. Nevertheless, we identified that two-fold increases in THg, IHg, and MeHg concentrations in cord blood were positively associated with increased odds of having a male child, yielding adjusted odds ratios of 1.13 (95 %CI: 1.04, 1.22), 1.12 (1.03, 1.21), and 1.12 (1.03, 1.22), respectively. When stratified by the median Se concentrations, no apparent differences were detected in the associations between Hg concentrations and the secondary sex ratio. In summary, elevated Hg concentrations in cord blood, but not maternal blood, were associated with an increased probability of male births.
Collapse
Affiliation(s)
- Kohei Hasegawa
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Yuji Inaba
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Neurology, Nagano Children's Hospital, 3100 Toyoshina, Azumino, Nagano 399-8288, Japan; Life Science Research Center, Nagano Children's Hospital, 3100 Toyoshina, Azumino, Nagano 399-8288, Japan
| | - Hirokazu Toubou
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Takumi Shibazaki
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Miyuki Iwai-Shimada
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shin Yamazaki
- Japan Environment and Children's Study Programme Office, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Teruomi Tsukahara
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Occupational Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Tetsuo Nomiyama
- Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; Department of Occupational Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
8
|
D A, T B S. Impact of air pollution and heavy metal exposure on sperm quality: A clinical prospective research study. Toxicol Rep 2024; 13:101708. [PMID: 39224457 PMCID: PMC11367516 DOI: 10.1016/j.toxrep.2024.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Exposure to air pollution poses significant risks to human health, including detrimental effects on the reproductive system, affecting both men and women. Our prospective clinical study aimed to assess the impact of prolonged air pollution exposure on sperm quality in male patients attending a fertility clinic. The current study was conducted at Sri Narayani Hospital and Research Centre in Vellore, Tamil Nadu, India, and the study examined sperm samples obtained from individuals with extended exposure to air pollution. Microscopic analysis, including scanning electron microscopy (SEM), was conducted to evaluate sperm morphology. At the same time, atomic absorption spectroscopy (AAS) determined the presence of heavy metals, including Zinc (Zn), Magnesium (Mg), Lead (Pb) and Cadmium (Cd), known to affect sperm production. Our findings revealed that long-term exposure to air pollution adversely affects sperm quality, manifesting in alterations during the spermatogenesis cycle, morphological abnormalities observed through SEM, and impaired sperm motility. Additionally, epidemiological evidence suggests that elevated levels of cadmium and lead in the environment induce oxidative stress, leading to sperm DNA damage and reduced sperm concentrations. These results underscore the urgent need for environmental interventions to mitigate air pollution and protect reproductive health.
Collapse
Affiliation(s)
- Abilash D
- Gene Cloning Technology Lab, School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Sridharan T B
- Gene Cloning Technology Lab, School of Biosciences and Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
9
|
Scalisi EM, Pecoraro R, Scalisi A, Dragotto J, Bracchitta G, Zimbone M, Impellizzeri G, Brundo MV. Susceptibility of Human Spermatozoa to Titanium Dioxide Nanoparticles: Evaluation of DNA Damage and Biomarkers. Life (Basel) 2024; 14:1455. [PMID: 39598253 PMCID: PMC11595473 DOI: 10.3390/life14111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Nowadays, developing countries have seen a reduction in male reproductive parameters, and it has been linked to the exposure of endocrine disrupting chemicals (EDCs), which are able to mimic or disrupt steroid hormone actions. Also, nanoparticles have shown effects on the male reproductive system, in particular the use of TiO2-NPs in drugs, cosmetics, and food as pigment additives, and, thanks to their small size (1-100 nm), provide themselves the opportunity to be internalized by the body and pass the blood-testis barrier (BTB). Therefore, TiO2-NPs can act on spermatogenesis and spermatozoa. In this study, we carried out an in vitro assay on human spermatozoa to evaluate the effects of TiO2-NPs at the concentrations of 500, 250, 100, and 50 ppm. Exposure did not statistically alter sperm parameters (e.g., motility and viability) but induced damage to sperm DNA and the expression of biomarkers by spermatozoa. This immunofluorescence investigation showed a positivity for biomarkers of stress (HSP70 and MTs) on the connecting piece of spermatozoa and also for sex hormone binding globulin (SHBG) biomarkers. The SHBG protein acts as a carrier of androgens and estrogens, regulating their bioavailability; therefore, its expression in the in vitro assay did not rule out the ability of TiO2-NPs to act as endocrine disruptors.
Collapse
Affiliation(s)
- Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| | - Agata Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| | - Jessica Dragotto
- U.O. Fisiopatologia della Riproduzione Umana—Clinica del Mediterraneo, 97100 Ragusa, Italy; (J.D.); (G.B.)
| | - Giovanni Bracchitta
- U.O. Fisiopatologia della Riproduzione Umana—Clinica del Mediterraneo, 97100 Ragusa, Italy; (J.D.); (G.B.)
| | | | | | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (R.P.); (A.S.); (M.V.B.)
| |
Collapse
|
10
|
Fan Y, Jiang X, Xiao Y, Li H, Chen J, Bai W. Natural antioxidants mitigate heavy metal induced reproductive toxicity: prospective mechanisms and biomarkers. Crit Rev Food Sci Nutr 2024; 64:11530-11542. [PMID: 37526321 DOI: 10.1080/10408398.2023.2240399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Heavy metals are harmful environmental pollutants that have attracted widespread attention, attributed to their health hazards to humans and animals. Due to the non-degradable property of heavy metals, organisms are inevitably exposed to heavy metals such as arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg). Several studies revealed that heavy metals can cause reproductive damage by the excessive production of reactive oxygen species (ROS), which exacerbates oxidative stress, inflammation, and endocrine disruption. Natural antioxidants, mainly polyphenols, carotenoids, and vitamins, have been shown to mitigate heavy metal-induced reproductive toxicity potentially. In this review, accumulated evidences on the influences of four non-essential heavy metals As, Cd, Pb, and Hg on both males and females reproductive system were established. The purpose of this review is to explore the potential mechanisms of the effects of heavy metals on reproductive function and point out the potential biomarkers of natural antioxidants interventions toward heavy metal-induced reproductive toxicity. Notably, increasing evidence proven that the regulations of hypothalamic-pituitary-gonadal axis, Nrf2, MAPK, or NF-κB pathways are the important mechanisms for the amelioration of heavy metal induced reproductive toxicity by natural antioxidants. It also provided a promising guidance for prevention and management of heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yueyao Fan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Yuhang Xiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|
11
|
Sunday NU, Honeychurch KC, Newton L, Chidugu-Ogborigbo RU. An anodic stripping voltammetric approach for total mercury determination in sea sponges from the Niger Delta region of Nigeria. MARINE POLLUTION BULLETIN 2024; 208:117008. [PMID: 39299188 DOI: 10.1016/j.marpolbul.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Mercury pollution from ongoing crude oil refining and waste disposal activities threatens aquatic ecosystems and human health in the Niger Delta. Mercury monitoring exercise in this region is challenging due to the high cost of traditional instruments and the complexity of marine samples. This research presents a novel analytical method using differential pulse anodic stripping voltammetry (DPASV) with a glassy carbon electrode (GCE) to determine mercury levels in sea sponges from the Niger Delta. Using a 2.36 M HCl + 2.4 M NaCl supporting electrolyte, -0.6 V deposition potential, and 300 s deposition time, average mercury levels were found to be 0.98 mg kg-1, 0.63 mg kg-1 and 0.42 mg kg-1 for Ibiotirem, Kaa and Samanga, respectively. The result showed that the Niger Delta is polluted, and remediation efforts are necessary. Furthermore, the DPASV method could be used for routine mercury monitoring as it is cost-effective, user-friendly, and highly sensitive.
Collapse
Affiliation(s)
- N U Sunday
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - K C Honeychurch
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - L Newton
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | - R U Chidugu-Ogborigbo
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
12
|
Şimşek H, Gür C, Küçükler S, İleritürk M, Akaras N, Öz M, Kandemir FM. Carvacrol Reduces Mercuric Chloride-Induced Testicular Toxicity by Regulating Oxidative Stress, Inflammation, Apoptosis, Autophagy, and Histopathological Changes. Biol Trace Elem Res 2024; 202:4605-4617. [PMID: 38133725 DOI: 10.1007/s12011-023-04022-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Mercuric chloride (HgCl2) is a heavy metal that is toxic to the human body. Carvacrol (CAR) is a flavonoid found naturally in plants and has many biological and pharmacological activities including anti-inflammatory, antioxidant, and anticancer activities. This study aimed to investigate the efficacy of CAR in HgCl2-induced testicular tissue damage. HgCl2 was administered intraperitoneally at a dose of 1.23 mg/kg body weight alone or in combination with orally administered CAR (25 mg/kg and 50 mg/kg body weight) for 7 days. Biochemical and histological methods were used to investigate oxidative stress, inflammation, apoptosis, and autophagy pathways in testicular tissue. CAR treatment increased HgCl2-induced decreased antioxidant enzyme (SOD, CAT, and GPx) activities and GSH levels. In addition, CAR reduced MDA levels, a marker of lipid peroxidation. CAR decreased the levels of inflammatory mediators NF-κB, TNF-α, IL-1β, COX-2, iNOS, MAPK14, MAPK15, and JNK. The increases in apoptotic Bax and Caspase-3 with HgCl2 exposure decreased with CAR, while the decreased antiapoptotic Bcl-2 level increased. CAR reduced HgCl2-induced autophagy damage by increasing Beclin-1, LC3A, and LC3B levels. Overall, the data from this study suggested that testicular tissue damage associated with HgCl2 toxicity can be mitigated by CAR administration.
Collapse
Affiliation(s)
- Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Cihan Gür
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Ataturk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Mehmet Öz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
13
|
Eslami H, Askari FR, Mahdavi M, Taghavi M, Ghaseminasab-Parizi M. Environmental arsenic exposure and reproductive system toxicity in male and female and mitigatory strategies: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:420. [PMID: 39269655 DOI: 10.1007/s10653-024-02197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Environmental Arsenic (As) exposure is one of the main health challenges in different area of the world. As is a significant factor responsible to the reproductive system toxicity in both male and female. In this study, the most important effects mechanisms and biomarkers related to environmental exposure to As and the reproductive system toxicity, and infertility risk are reviewed in male and female. The results showed that the most important As-induced reproductive system toxicity in the male were alteration in the quantity and quality of semen, testicular toxicity, oxidative stress, testosterone reduction, and sperm apoptosis. For female were oxidative stress, spontaneous miscarriage, reproductive cycle disruption, decrease in the estradiol, progesterone, and testosterone levels and impair fecundity. The main mechanisms of reproductive system toxicity caused by As exposure in male were, genotoxic effects, reduction of glutathione, disruption of sex hormones, sperm flagellum formation impairment, inhibition of spermatogenesis, disruption of cell signaling pathways, and metabolites disruption. For female were abnormal signaling in gene expression, hormonal homeostasis, As-accumulation in placental tissue and creation of reactive oxygen, disruption in the neurotransmitters balance, and sex hormones disruption. The suitable biomarkers for As-induced reproductive toxicity in male were changes in testosterone, one-carbon and lipid metabolism, noncoding RNAs, and steroid hormone homeostasis, and for female was human chorionic gonadotropin (hCG) changes. Finaly, taking selenium, zinc, silymarin, vitamins (C and E) and phytonutrients can be effective in reducing the As-induced reproductive system toxicity and infertility risk.
Collapse
Affiliation(s)
- Hadi Eslami
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Environmental Health Engineering, School of Health, Occupational Safety and Health Research Center, NICICO, World Safety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Foad Ranjbar Askari
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Masoumeh Mahdavi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahmoud Taghavi
- Department of Environment Health Engineering, School of Health, Social Determinates of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maryam Ghaseminasab-Parizi
- Department of Health Education and Health Promotion, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
14
|
Angley M, Lu L, Zhang Y, Howards PP, Kahe K. Mercury, natural fertility and outcomes of assisted reproduction: A systematic review. Reprod Toxicol 2024; 128:108613. [PMID: 38830454 DOI: 10.1016/j.reprotox.2024.108613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
The primary route of mercury exposure for the general population is through consumption of contaminated seafood. There is a biological basis for an adverse effect of mercury exposure on human fertility. The goal of this review was to evaluate the existing literature on the association between mercury and pregnancy, among men and women attempting to conceive with and without assisted reproductive technology (ART). Systematic searches were performed in PubMed, EMBASE, Scopus and Web of Science for papers published up to March 2023 with no early date restriction, only including studies with a biomarker measurement of mercury exposure. We identified 11 studies examining mercury and natural fertility and 12 studies examining mercury and outcomes of assisted reproduction (implantation or clinical pregnancy). The accumulated evidence provides some support for a null association between bodily mercury concentrations and natural fertility among women, however, a large proportion of studies did not report adjusted estimates or were extremely imprecise. The majority of studies of natural fertility were also cross-sectional in nature. There was no evidence for an inverse or null association between mercury and natural fertility among men, or mercury and ART outcomes among men or women. In spite of biological plausibility, the existing evidence includes studies that are imprecise and often conflicting and does not allow us to make definitive conclusions on the associations of mercury exposure with successful pregnancy. Additional, larger studies are warranted, especially among individuals with high concentrations of mercury exposure as these individuals may be underrepresented in the current literature.
Collapse
Affiliation(s)
- Meghan Angley
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Liping Lu
- Department of Nutrition and Health Science, College of Health, Ball State University, Muncie, IN, United States
| | - Yijia Zhang
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Penelope P Howards
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Ka Kahe
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States.
| |
Collapse
|
15
|
Espitia-Pérez L, Brango H, Peñata-Taborda A, Galeano-Páez C, Jaramillo-García M, Espitia-Pérez P, Pastor-Sierra K, Bru-Cordero O, Hoyos-Giraldo LS, Reyes-Carvajal I, Saavedra-Trujillo D, Ricardo-Caldera D, Coneo-Pretelt A. Influence of genetic polymorphisms of Hg metabolism and DNA repair on the frequencies of micronuclei, nucleoplasmic bridges, and nuclear buds in communities living in gold mining areas. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503790. [PMID: 39054006 DOI: 10.1016/j.mrgentox.2024.503790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Fishing communities living near gold mining areas are at increased risk of mercury (Hg) exposure via bioaccumulation of methylmercury (MeHg) in fish. This exposure has been linked to health effects that may be triggered by genotoxic events. Genetic polymorphisms play a role in the risk associated with Hg exposure. This study evaluated the effect of single nucleotide polymorphisms (SNPs) in metabolic and DNA repair genes on genetic instability and total hair Hg (T-Hg) levels in 78 individuals from "La Mojana" in northern Colombia and 34 individuals from a reference area. Genetic instability was assessed by the frequency of micronuclei (MNBN), nuclear buds (NBUDS), and nucleoplasmic bridges (NPB). We used a Poisson regression to assess the influence of SNPs on T-Hg levels and genetic instability, and a Bayesian regression to examine the interaction between Hg detoxification and DNA repair. Among exposed individuals, carriers of XRCC1Arg399Gln had a significantly higher frequency of MNBN. Conversely, the XRCC1Arg194Trp and OGG1Ser326Cys polymorphisms were associated with lower frequencies of MNBN. XRCC1Arg399Gln, XRCC1Arg280His, and GSTM1Null carriers showed lower NPB frequencies. Our results also indicated that individuals with the GSTM1Nulland GSTT1null polymorphisms had a 1.6-fold risk for higher T-Hg levels. The Bayesian model showed increased MNBN frequencies in carriers of the GSTM1Null polymorphism in combination with XRCC1Arg399Gln and increased NBUDS frequencies in the GSTM1Null carriers with the XRCC3Thr241Met and OGG1Ser326Cys alleles. The GSTM1+ variant was found to be a protective factor in individuals carrying OGG1Ser326Cys (MNBN) and XRCC1Arg280His (NPB); the GSTT1+ polymorphism combined with XRCCArg194Trp also modulated lower MNBN frequencies, while GSTT1+ carriers with the XRCC1Arg399Gln allele showed lower NPB frequencies. Consistent with GSTM1, GSTT1Null carriers with XRCC3Thr241Met showed increased NBUDS frequency. With the rise of gold mining activities, these approaches are vital to identify and safeguard populations vulnerable to Hg's toxic effects.
Collapse
Affiliation(s)
- Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia.
| | - Hugo Brango
- Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
| | - Ana Peñata-Taborda
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Claudia Galeano-Páez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Manolo Jaramillo-García
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia (Postmorten)
| | - Pedro Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Karina Pastor-Sierra
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Osnamir Bru-Cordero
- Universidad Nacional de Colombia, Dirección académica, kilómetro 9, vía Valledupar-La Paz, La Paz, Cesar, Colombia
| | - Luz Stella Hoyos-Giraldo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Ingrid Reyes-Carvajal
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Diana Saavedra-Trujillo
- Department of Biology, Research Group Genetic Toxicology and Cytogenetics, Faculty of Natural Sciences and Education, Universidad del Cauca, Popayán, Cauca, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Investigación Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Andrés Coneo-Pretelt
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Montería, Córdoba, Colombia
| |
Collapse
|
16
|
Canonico LF, De Clemente C, Fardilha M, Ferreira AF, Maremonti MI, Dannhauser D, Causa F, Netti PA. Exploring altered bovine sperm trajectories by sperm tracking in unconfined conditions. Front Vet Sci 2024; 11:1358440. [PMID: 38628946 PMCID: PMC11019440 DOI: 10.3389/fvets.2024.1358440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Mammalian sperm motility is getting more relevant due to rising infertility rates worldwide, generating the need to improve conventional analysis and diagnostic approaches. Nowadays, computer assisted sperm analysis (CASA) technologies represent a popular alternative to manual examination which is generally performed by observing sperm motility in very confined geometries. However, under physiological conditions, sperm describe three-dimensional motility patterns which are not well reconstructed by the limited depth of standard acquisition chambers. Therefore, affordable and more versatile alternatives are needed. Here, a motility analysis in unconfined conditions is proposed. In details, the analysis is characterized by a significant longer duration -with respect to conventional systems- with the aim to observe eventually altered motility patterns. Brightfield acquisition in rectangular glass capillaries captured frozen-thawed bovine spermatozoa which were analyzed by means of a self-written tracking routine and classified in sub-populations, based on their curvilinear velocity. To test the versatility of our approach, cypermethrin -a commonly used pesticides- known to be responsible for changes in sperm motility was employed, assessing its effect at three different time-steps. Experimental results showed that such drug induces an increase in sperm velocity and progressiveness as well as circular pattern formation, likely independent of wall interactions. Moreover, this resulted in a redistribution of sperm with the rapid class declining in number with time, but still showing an overall velocity increase. The flexibility of the approach permits parameter modifications with the experimental needs, allowing us to conduct a comprehensive examination of sperm motility. This adaptability facilitated data acquisition which can be computed at different frame rates, extended time periods, and within deeper observation chambers. The suggested approach for sperm analysis exhibits potential as a valuable augmentation to current diagnostic instruments.
Collapse
Affiliation(s)
- Luigi Fausto Canonico
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples “Federico II”, Naples, Italy
| | - Claudia De Clemente
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples “Federico II”, Naples, Italy
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Ana Filipa Ferreira
- Laboratory of Signal Transduction, Institute for Biomedicine-iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Maria Isabella Maremonti
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples “Federico II”, Naples, Italy
| | - David Dannhauser
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples “Federico II”, Naples, Italy
| | - Filippo Causa
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples “Federico II”, Naples, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, Dei Materiali e Della Produzione Industriale, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
17
|
Dack K, Huang P, Taylor CM, Rai D, Lewis SJ. Environmental and genetic predictors of whole blood mercury and selenium concentrations in pregnant women in a UK birth cohort. ENVIRONMENTAL ADVANCES 2024; 15:100469. [PMID: 38562418 PMCID: PMC10951965 DOI: 10.1016/j.envadv.2023.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024]
Abstract
There is evidence that tissue concentrations of mercury (Hg) and selenium (Se) are predicted by numerous dietary, sociodemographic, environmental, and genetic factors. This study aimed to estimate the relative importance of predictors of Hg and Se concentrations in blood samples taken from pregnant women. The Avon Longitudinal Study of Parents and Children (ALSPAC) in the UK measured whole blood Hg and Se concentrations in 3,972 pregnant women. We identified 30 potential predictors of Hg and 24 of Se, which were evaluated using cross-validated random forests to identify the optimal models for predictive power. The relative importance of individual variables was estimated by averaging the added-R2 per predictor. Linkage disequilibrium score regression was used to estimate the variance explained by genotype. A multivariable model of 14 predictors explained 22.4% of Hg variance (95% CI: 13.0 to 37.1), including 6.9% from blood Se and 3.2% from white fish consumption. There were 11 predictors which explained 15.3% of Se variance (CI: 8.9 to 25.9), including 6.4% from blood Hg, 1.3% from blood lead, and 1.3% from oily fish. Measured genetic variation explained 30% of Hg variance (CI: 8.4 to 51.5) and 37.5% of Se (CI: 10.4 to 64.5). A high proportion of Hg and Se variance could be explained from dietary, sociodemographic, metabolic, and genetic factors. Seafood consumption was less predictive of Hg than may be expected and other factors should be considered when determining risk of exposure. There was tentative evidence that genotype is a major contributor to Hg and Se variation, possibly by modifying the efficacy of internal metabolism.
Collapse
Affiliation(s)
- Kyle Dack
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Peiyuan Huang
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Caroline M Taylor
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dheeraj Rai
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Sarah J Lewis
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
18
|
Sudhakaran G, Kesavan D, Kandaswamy K, Guru A, Arockiaraj J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod Toxicol 2024; 124:108531. [PMID: 38176575 DOI: 10.1016/j.reprotox.2023.108531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Male infertility is a multifactorial condition influenced by epigenetic regulation, oxidative stress, and mitochondrial dysfunction. Oxidative stress-induced damage leads to epigenetic modifications, disrupting gene expression crucial for spermatogenesis and fertilization. Paternal exposure to oxidative stress induces transgenerational epigenetic alterations, potentially impacting male fertility in offspring. Mitochondrial dysfunction impairs sperm function, while leukocytospermia exacerbates oxidative stress-related sperm dysfunction. Therefore, this review focuses on understanding these mechanisms as vital for developing preventive strategies, including targeting oxidative stress-induced epigenetic changes and implementing lifestyle modifications to prevent male infertility. This study investigates how oxidative stress affects the epigenome and sperm production, function, and fertilization. Unravelling the molecular pathways provides valuable insights that can advance our scientific understanding. Additionally, these findings have clinical implications and can help to address the significant global health issue of male infertility.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
19
|
Chormey DS, Zaman BT, Kustanto TB, Erarpat Bodur S, Bodur S, Er EÖ, Bakırdere S. Deep eutectic solvents for the determination of endocrine disrupting chemicals. Talanta 2024; 268:125340. [PMID: 37948953 DOI: 10.1016/j.talanta.2023.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The harmful effects of endocrine disrupting chemicals (EDCs) to humans and other organisms in the environment have been well established over the years, and more studies are ongoing to classify other chemicals that have the potential to alter or disrupt the regular function of the endocrine system. In addition to toxicological studies, analytical detection systems are progressively being improved to facilitate accurate determination of EDCs in biological, environmental and food samples. Recent microextraction methods have focused on the use of green chemicals that are safe for analytical applications, and present very low or no toxicity upon disposal. Deep eutectic solvents (DESs) have emerged as one of the viable alternatives to the conventional hazardous solvents, and their unique properties make them very useful in different applications. Notably, the use of renewable sources to prepare DESs leads to highly biodegradable products that mitigate negative ecological impacts. This review presents an overview of both organic and inorganic EDCs and their ramifications on human health. It also presents the fundamental principles of liquid phase and solid phase microextraction methods, and gives a comprehensive account of the use of DESs for the determination of EDCs in various samples.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye.
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010, İstanbul, Turkiye; İstinye University, Scientific and Technological Research Application and Research Center, 34010, İstanbul, Turkiye
| | - Elif Özturk Er
- İstanbul Technical University, Department of Chemical Engineering, 34469, İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Turkiye.
| |
Collapse
|
20
|
Missimer TM, MacDonald JH, Tsegaye S, Thomas S, Teaf CM, Covert D, Kassis ZR. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:118. [PMID: 38276812 PMCID: PMC10815244 DOI: 10.3390/ijerph21010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1-514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg.
Collapse
Affiliation(s)
- Thomas M. Missimer
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - James H. MacDonald
- Environmental Geology Program & Honors College, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Seneshaw Tsegaye
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Serge Thomas
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Christopher M. Teaf
- Institute for Science & Public Affairs, Florida State University, Tallahassee, FL 32310, USA;
| | - Douglas Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA;
| | - Zoie R. Kassis
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| |
Collapse
|
21
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
22
|
Palomba S, Viganò P, Chamayou S, Donarelli Z, Costantini MP, Marci R, Piomboni P, Fino E, Montano L, Guglielmino A, Somigliana E. Diagnosis and management of infertility: NICE-adapted guidelines from the Italian Society of Human Reproduction. Reprod Biol Endocrinol 2024; 22:9. [PMID: 38183116 PMCID: PMC10768082 DOI: 10.1186/s12958-023-01179-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/23/2023] [Indexed: 01/07/2024] Open
Abstract
In Italy the fertility rate is very low, and an increasing number of patients are infertile and require treatments. The Italian Law concerning the safety of patient care, and the professional liability of health professionals, indicates that health professionals must comply with the recommendations set out in the guidelines developed by public and private bodies and institutions, as well as scientific societies and technical-scientific associations of the health professions, except for specific cases. Unfortunately, no guideline for the diagnosis and the management of infertility is currently available in Italy. In 2019, the Italian Society of Human Reproduction pointed out the need to produce Italian guidelines and subsequently approved the establishment of a multidisciplinary and multiprofessional working group (MMWG) to develop such a guideline. The MMWG was representative of 5 scientific societies, one national federation of professional orders, 3 citizens' and patients' associations, 5 professions (including lawyer, biologist, doctor, midwife, and psychologist), and 3 medical specialties (including medical genetics, obstetrics and gynecology, and urology). The MMWG chose to adapt a high-quality guideline to the Italian context instead of developing one from scratch. Using the Italian version of the Appraisal of Guidelines for Research and Evaluation II scoring system, the National Institute of Clinical Excellence guidelines were selected and adapted to the Italian context. The document was improved upon by incorporating comments and suggestions where needed. This study presents the process of adaptation and discusses the pros and cons of the often-neglected choice of adapting rather than developing new guidelines.
Collapse
Affiliation(s)
- Stefano Palomba
- Department of Medical-Surgical Science and Translational Medicine, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy.
- Unit of Gynecology, Sant'Andrea Hospital, Via di Grottarossa, 1039, Rome, Italy.
| | - Paola Viganò
- Infertility Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandrine Chamayou
- HERA Center, Unit of Reproductive Medicine (U.M.R.), Sant'Agata Li Battiati, Catania, Italy
| | - Zaira Donarelli
- Psychological Counselling Service, University of Palermo, Palermo, and Clinical Psychology Unit, ANDROS Day Surgery Clinic, Palermo, Italy
| | | | - Roberto Marci
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Unit of Medically Assisted Reproduction, Siena University Hospital, Siena, Italy
| | - Egidio Fino
- Italian Society of Human Reproduction, SIRU, Rome, Italy
| | - Luigi Montano
- Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority of Salerno, Salerno, Italy
| | - Antonino Guglielmino
- HERA Center, Unit of Reproductive Medicine (U.M.R.), Sant'Agata Li Battiati, Catania, Italy
| | - Edgardo Somigliana
- Infertility Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Heath, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Li Y, Zhong Q, He P, Chen L, Zhou H, Wu X, Liang S. Dietary shifts drive the slowdown of declining methylmercury related health risk in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122793. [PMID: 37879551 DOI: 10.1016/j.envpol.2023.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Chinese population suffers severe health risk from dietary methylmercury (MeHg) exposure. However, the temporal change of such risk and socioeconomic driving factors remain unknown. This study investigates this issue by compiling time-series inventory of China's MeHg-related health risk at the provincial scale and revealing critical socioeconomic influencing factors through structural decomposition analysis. Results show that the per-fetus IQ decrements from dietary MeHg exposure have declined by 60% nationally during 2004-2019. Such decline results from the joint effects of dietary shifts (contributing 44%) and the decrease of MeHg concentrations in foods consumed (contributing 56%). However, the declining trend has slowed down since 2014 and even leveled off after 2016, which is mainly affected by dietary pattern changes. Especially, the increased intake level and proportion of fishes in underdeveloped provinces of China have dominated the slowdown of declining trend after 2016. Moreover, the affluence and education levels have significantly negative associations with per-fetus IQ decrements. Rich and well-educated people have higher ability of risk perception, which indicates the importance of rational consumption patterns. Our findings can help develop socioeconomic regulatory policies on reducing per-fetus IQ decrements from dietary MeHg exposure in China.
Collapse
Affiliation(s)
- Yumeng Li
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Qiumeng Zhong
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China
| | - Pan He
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Haifeng Zhou
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xiaohui Wu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Sai Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
24
|
Henriques MC, Carvalho I, Santos C, Herdeiro MT, Fardilha M, Pavlaki MD, Loureiro S. Unveiling the molecular mechanisms and developmental consequences of mercury (Hg) toxicity in zebrafish embryo-larvae: A comprehensive approach. Neurotoxicol Teratol 2023; 100:107302. [PMID: 37739188 DOI: 10.1016/j.ntt.2023.107302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Mercury (Hg) is a global contaminant affecting aquatic ecosystems' health. Chronic exposure to Hg has shown that the normal development of zebrafish embryo-larvae is affected. However, the molecular mechanisms behind the toxicity of Hg on fish embryonic development are still poorly understood. This work aimed to investigate the effects of Hg exposure on zebrafish embryo-larvae using a combined approach at individual (mortality, embryo development and locomotor behavior) and biochemical (neurotoxicity and oxidative stress enzymatic activities and protein phosphatase expression) levels. The Fish Embryo Toxicity assay followed the Organization for Economic Cooperation and Development Guideline 236 and used a concentration range between 13 and 401 μg Hg/L. Lethal and developmental endpoints were examined at 24, 48, 72 and 96 hpf. Biochemical markers, including Acetylcholinesterase (AChE), Catalase (CAT), Glutathione Reductase (GR), and Glutathione-S-Transferase (GST) activities and, for the first time, the expression of the protein phosphatase 1 gamma (PP1γ) was assessed after 24, 48, 72 and 96 h of exposure to 10 and 100 μg Hg/L. The behavioral effects of a sublethal range of Hg (from 0.8 to 13 μg Hg/L) were assessed using an automated video tracking system at 120 hpf. Several developmental abnormalities on zebrafish embryos and larvae, including pericardial edema, spin and tail deformities and reduced rate of consumption of the yolk sac, were found after exposure to Hg (LC50 at 96 hpf of 139 μg Hg/L) with EC50 values for total malformations ranging from 22 to 264 μg Hg/L. After 96 hpf, no significant effects were observed in the CAT and GR activities. However, an increase in the GST activity in a concentration and time-dependent manner was found, denoting possible stress-related adaptation of zebrafish embryos to deleterious effects of Hg exposure. The AchE activity showed a response pattern in line with the behavioral responses. At the lowest concentration tested, no significant effects were found for the AChE activity, whereas a decrease in AChE activity was observed at 100 μg Hg/L, suggesting that exposure to Hg induced neurotoxic effects in zebrafish embryos which in turn may explain the lack of equilibrium found in this study (EC50 at 96 hpf of 83 μg Hg/L). Moreover, a decrease in the PP1γ expression was found after 96 h of exposure to 10 and 100 μg Hg/L. Thus, we suggest that Hg may be an inhibitor of PP1γ in zebrafish embryos-larvae and thus, along with the alterations in the enzymatic activity of GST, explain some of the developmental malformations observed, as well as the lack of equilibrium. Hence, in this study, we propose the use of PP1 expression, in combination with apical and biochemical endpoints, as a precursor for assessing Hg's toxic mechanism on embryonic development.
Collapse
Affiliation(s)
- Magda Carvalho Henriques
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Carvalho
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Cátia Santos
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria Teresa Herdeiro
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED) & Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Maria Dimitriou Pavlaki
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
25
|
Henriques MC, Santiago J, Patrício A, Herdeiro MT, Loureiro S, Fardilha M. Smoking Induces a Decline in Semen Quality and the Activation of Stress Response Pathways in Sperm. Antioxidants (Basel) 2023; 12:1828. [PMID: 37891907 PMCID: PMC10604710 DOI: 10.3390/antiox12101828] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Male infertility is a prevalent concern affecting couples worldwide. While genetic factors, hormonal imbalances, and reproductive system defects play significant roles, emerging evidence suggests that lifestyle choices also profoundly impact male fertility. This study aimed to explore the effects of several lifestyle factors, including tobacco and alcohol consumption, physical activity, and dietary habits, on semen quality parameters and molecular biomarkers. Thirty healthy male volunteers were recruited in the Urology service at Hospital Infante D. Pedro, Aveiro, Portugal. Participants completed lifestyle questionnaires and provided semen samples, which were analyzed according to the World Health Organization criteria by experienced technicians. We also analyzed the expression levels of antioxidant enzymes and heat-shock response-related proteins to explore the activation of signaling pathways involved in stress response within sperm cells. Our results revealed that tobacco consumption reduced semen volume and total sperm count. Although the changes in the percentage of total motility and normal morphology in the smokers' group did not reach statistical significance, a slight decrease was observed. Moreover, we identified for the first time a significant association between tobacco consumption and increased levels of heat shock protein 27 (HSP27) and phosphorylated HSP27 (p-HSP27) in sperm cells, indicating the potential detrimental effects of tobacco on the reproductive system. This study highlights that lifestyle factors reduce semen quality, possibly by inducing stress in sperm, raising awareness about the effects of these risk factors among populations at risk of male infertility.
Collapse
Affiliation(s)
- Magda Carvalho Henriques
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santiago
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
| | - António Patrício
- Hospital Infante D. Pedro, Centro Hospitalar do Baixo Vouga, EPE, 3810-096 Aveiro, Portugal
| | - Maria Teresa Herdeiro
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
| | - Susana Loureiro
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Margarida Fardilha
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.H.)
| |
Collapse
|
26
|
Génard-Walton M, Warembourg C, Duros S, Ropert-Bouchet M, Lefebvre T, Guivarc'h-Levêque A, Le Martelot MT, Jacquemin B, Cordier S, Costet N, Multigner L, Garlantézec R. Heavy metals and diminished ovarian reserve: single-exposure and mixture analyses amongst women consulting in French fertility centres. Reprod Biomed Online 2023; 47:103241. [PMID: 37451971 DOI: 10.1016/j.rbmo.2023.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023]
Abstract
RESEARCH QUESTION Do heavy metals affect the risk of diminished ovarian reserve (DOR) in women of reproductive age? DESIGN A total of 139 cases and 153 controls were included between 2016 and 2020. The participants were aged between 18 and 40 years and attended consultations for couple infertility in one of four fertility centres in western France. Cases of DOR were defined as women with an antral follicle count less than 7, anti-Müllerian hormone levels 1.1 ng/ml or less, or both. Controls were frequency matched on age groups and centres, and were women with normal ovarian reserve evaluations, no malformations and menstrual cycles between 26 and 35 days. Heavy metals (lead, mercury, cadmium and chromium) were measured in whole blood at inclusion. Single-exposure associations were examined with multivariable logistic regressions adjusted on potential confounders. Mixture effects were investigated with quantile g-computation and Bayesian kernel machine regression (BKMR). RESULTS Chromium as a continuous exposure was significantly associated with DOR in unadjusted models (OR 2.07, 95% CI 1.04 to 4.13) but the association was no longer significant when confounders were controlled for (adjusted OR 2.75, 95% CI 0.88 to 8.60). Similarly, a statistically significant association was observed for the unadjusted second tercile of cadmium exposure (OR 1.87, 95% CI 1.06 to 3.30); however, this association was no longer statistically significant after adjustment. None of the other associations tested were statistically significant. Quantile g-computation and BKMR both yielded no significant change of risk of DOR for the mixture of metals, with no evidence of interaction. CONCLUSIONS Weak signals that some heavy metals could be associated with DOR were detected. These findings should be replicated in other studies.
Collapse
Affiliation(s)
- Maximilien Génard-Walton
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Charline Warembourg
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Solène Duros
- Reproductive Medicine, CHU Rennes, 35200 Rennes, France
| | | | | | | | | | - Bénédicte Jacquemin
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Sylvaine Cordier
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Nathalie Costet
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Luc Multigner
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Ronan Garlantézec
- Université de Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
27
|
Palomar A, Gonzalez-Martin R, Quiñonero A, Pellicer N, Fernandez-Saavedra R, Rucandio I, Fernandez-Martinez R, Conde-Vilda E, Quejido AJ, Zuckerman C, Whitehead C, Scott RT, Dominguez F. Bioaccumulation of Non-Essential Trace Elements Detected in Women's Follicular Fluid, Urine, and Plasma Is Associated with Poor Reproductive Outcomes following Single Euploid Embryo Transfer: A Pilot Study. Int J Mol Sci 2023; 24:13147. [PMID: 37685954 PMCID: PMC10487767 DOI: 10.3390/ijms241713147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
This study aims to determine the association of non-essential trace elements present in follicular fluid, plasma, and urine with reproductive outcomes of women undergoing intracytoplasmic sperm injection (ICSI), preimplantation genetic testing for aneuploidies (PGT-A) and single frozen euploid embryo transfer (SET/FET). This single-center, prospective cohort study included sixty women undergoing ICSI with PGT-A and SET/FET between 2018 and 2019. Urine, plasma and follicular fluid samples were collected on the vaginal oocyte retrieval day to simultaneously quantify ten non-essential trace elements (i.e., Ba, Sr, Rb, Sn, Ti, Pb, Cd, Hg, Sb, and As). We found several associations between the levels of these non-essential trace elements and clinical IVF parameters. Specifically, the increased levels of barium in follicular fluid were negatively associated with ovarian function, pre-implantation development and embryo euploidy, while elevated strontium concentrations in this biofluid were negatively associated with impaired blastulation and embryo euploidy. Elevated plasma strontium levels were negatively associated with ovarian function, fertilization and blastulation. Enhanced presence of other trace elements in plasma (i.e., rubidium and arsenic) were associated with a diminished ovarian function and limited the number of recovered oocytes, mature oocytes and zygotes, respectively. Fully adjusted models suggested significantly lower odds of achieving a live birth when increased concentrations of barium and tin were found in urine.
Collapse
Affiliation(s)
- Andrea Palomar
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| | - Roberto Gonzalez-Martin
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| | - Alicia Quiñonero
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| | - Nuria Pellicer
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| | - Rocio Fernandez-Saavedra
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Isabel Rucandio
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Rodolfo Fernandez-Martinez
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Estefania Conde-Vilda
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Alberto J. Quejido
- Chemistry Division, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (R.F.-S.); (I.R.); (R.F.-M.); (E.C.-V.); (A.J.Q.)
| | - Caroline Zuckerman
- Department of Clinical Research, IVIRMA Global Research Alliance IVI-RMA New Jersey, Basking Ridge, NJ 07920, USA; (C.Z.); (C.W.)
| | - Christine Whitehead
- Department of Clinical Research, IVIRMA Global Research Alliance IVI-RMA New Jersey, Basking Ridge, NJ 07920, USA; (C.Z.); (C.W.)
| | - Richard T. Scott
- Department of Clinical Research, IVIRMA Global Research Alliance IVI-RMA New Jersey, Basking Ridge, NJ 07920, USA; (C.Z.); (C.W.)
- Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Francisco Dominguez
- Reproductive Biology and Bioengineering in Human Reproduction, IVIRMA Global Research Alliance IVI Foundation—Health Research Institute La Fe (IIS La Fe), 46026 Valencia, Spain; (A.P.); (R.G.-M.); (A.Q.); (N.P.)
| |
Collapse
|
28
|
Peivasteh-roudsari L, Barzegar-bafrouei R, Sharifi KA, Azimisalim S, Karami M, Abedinzadeh S, Asadinezhad S, Tajdar-oranj B, Mahdavi V, Alizadeh AM, Sadighara P, Ferrante M, Conti GO, Aliyeva A, Mousavi Khaneghah A. Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon 2023; 9:e18140. [PMID: 37539203 PMCID: PMC10395372 DOI: 10.1016/j.heliyon.2023.e18140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing public health concern worldwide. Consumption of foodstuffs is currently thought to be one of the principal exposure routes to EDCs. However, alternative ways of human exposure are through inhalation of chemicals and dermal contact. These compounds in food products such as canned food, bottled water, dairy products, fish, meat, egg, and vegetables are a ubiquitous concern to the general population. Therefore, understanding EDCs' properties, such as origin, exposure, toxicological impact, and legal aspects are vital to control their release to the environment and food. The present paper provides an overview of the EDCs and their possible disrupting impact on the endocrine system and other organs.
Collapse
Affiliation(s)
| | - Raziyeh Barzegar-bafrouei
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kurush Aghbolagh Sharifi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Shamimeh Azimisalim
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marziyeh Karami
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Abedinzadeh
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Asadinezhad
- Department of Food Science and Engineering, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behrouz Tajdar-oranj
- Food and Drug Administration of Iran, Ministry of Health and Medical Education, Tehran, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 1475744741, Tehran, Iran
| | - Adel Mirza Alizadeh
- Social Determinants of Health Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Parisa Sadighara
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia,” Hygiene and Public Health, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Aynura Aliyeva
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
| | - Amin Mousavi Khaneghah
- Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research Institute, 36 Rakowiecka St., 02-532, Warsaw, Poland
| |
Collapse
|
29
|
Li Q, Zhou Y. Recent advances in fluorescent materials for mercury(ii) ion detection. RSC Adv 2023; 13:19429-19446. [PMID: 37383685 PMCID: PMC10294291 DOI: 10.1039/d3ra02410e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Invading mercury would cause many serious health hazards such as kidney damage, genetic freak, and nerve injury to human body. Thus, developing highly efficient and convenient mercury detection methods is of great significance for environmental governance and protection of public health. Motivated by this problem, various testing technologies for detecting trace mercury in the environment, food, medicines or daily chemicals have been developed. Among them, the fluorescence sensing technology is a sensitive and efficient detection method for detecting Hg2+ ions due to its simple operation, rapid response and economic value. This review aims to discuss the recent advances in fluorescent materials for Hg2+ ion detection. We reviewed the Hg2+ sensing materials and divided them into seven categories according to the sensing mechanism: static quenching, photoinduced electron transfer, intramolecular charge transfer, aggregation-induced emission, metallophilic interaction, mercury-induced reactions and ligand-to-metal energy transfer. The challenges and prospects of fluorescent Hg2+ ion probes are briefly presented. We hope that this review can provide some new insights and guidance for the design and development of novel fluorescent Hg2+ ion probes to promote their applications.
Collapse
Affiliation(s)
- Qiuping Li
- Key Laboratory of Chronic Diseases, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - You Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University Ningbo 315211 China
| |
Collapse
|
30
|
Lazarus M, Sergiel A, Ferenčaković M, Orct T, Kapronczai L, Pađen L, Janz DM, Reljić S, Zwijacz-Kozica T, Zięba F, Selva N, Huber Đ. Stress and reproductive hormones in hair associated with contaminant metal(loid)s of European brown bear (Ursus arctos). CHEMOSPHERE 2023; 325:138354. [PMID: 36907481 DOI: 10.1016/j.chemosphere.2023.138354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Environmental contaminants like arsenic (As), cadmium (Cd), mercury (Hg) or lead (Pb) may disrupt hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes due to their endocrine toxicity potential. Resulting long-term physiological stress or adverse effects on wildlife reproduction and ontogeny may cause detrimental effects at the individual and population levels. However, data on environmental metal(loid)s' impact on reproductive and stress hormones in wildlife, especially large terrestrial carnivores, are scarce. Hair cortisol, progesterone and testosterone concentrations were quantified and modelled with hair As, Cd, total Hg, Pb, biological, environmental and sampling factors to test for potential effects in free-ranging brown bears (Ursus arctos) from Croatia (N = 46) and Poland (N = 27). Testosterone in males (N = 48) and females (N = 25) showed positive associations with Hg and an interaction between Cd and Pb, but a negative association with interaction between age and Pb. Higher testosterone was found in hair during its growth phase compared to quiescent phase. Body condition index was negatively associated with hair cortisol and positively associated with hair progesterone. Year and conditions of sampling were important for cortisol variation, while maturity stage for progesterone variation (lower concentrations in cubs and yearlings compared to subadult and adult bears). These findings suggest that environmental levels of Cd, Hg and Pb might influence the HPG axis in brown bears. Hair was shown to be a reliable non-invasive sample for investigating hormonal fluctuations in wildlife while addressing individual and sampling specificities.
Collapse
Affiliation(s)
- Maja Lazarus
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Agnieszka Sergiel
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland.
| | | | - Tatjana Orct
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Lana Pađen
- Faculty of Veterinary Medicine, University of Zagreb, Croatia.
| | - David M Janz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada.
| | - Slaven Reljić
- Faculty of Veterinary Medicine, University of Zagreb, Croatia.
| | | | | | - Nuria Selva
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland; Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, Huelva, Spain.
| | - Đuro Huber
- Institute of Nature Conservation of Polish Academy of Sciences, Kraków, Poland; Faculty of Veterinary Medicine, University of Zagreb, Croatia.
| |
Collapse
|
31
|
Palomar A, Quiñonero A, Medina-Laver Y, Gonzalez-Martin R, Pérez-Debén S, Alama P, Domínguez F. Antioxidant Supplementation Alleviates Mercury-Induced Cytotoxicity and Restores the Implantation-Related Functions of Primary Human Endometrial Cells. Int J Mol Sci 2023; 24:ijms24108799. [PMID: 37240143 DOI: 10.3390/ijms24108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Mercury (Hg) cytotoxicity, which is largely mediated through oxidative stress (OS), can be relieved with antioxidants. Thus, we aimed to study the effects of Hg alone or in combination with 5 nM N-Acetyl-L-cysteine (NAC) on the primary endometrial cells' viability and function. Primary human endometrial epithelial cells (hEnEC) and stromal cells (hEnSC) were isolated from 44 endometrial biopsies obtained from healthy donors. The viability of treated endometrial and JEG-3 trophoblast cells was evaluated via tetrazolium salt metabolism. Cell death and DNA integrity were quantified following annexin V and TUNEL staining, while the reactive oxygen species (ROS) levels were quantified following DCFDA staining. Decidualization was assessed through secreted prolactin and the insulin-like growth factor-binding protein 1 (IGFBP1) in cultured media. JEG-3 spheroids were co-cultured with the hEnEC and decidual hEnSC to assess trophoblast adhesion and outgrowth on the decidual stroma, respectively. Hg compromised cell viability and amplified ROS production in trophoblast and endometrial cells and exacerbated cell death and DNA damage in trophoblast cells, impairing trophoblast adhesion and outgrowth. NAC supplementation significantly restored cell viability, trophoblast adhesion, and outgrowth. As these effects were accompanied by the significant decline in ROS production, our findings originally describe how implantation-related endometrial cell functions are restored in Hg-treated primary human endometrial co-cultures by antioxidant supplementation.
Collapse
Affiliation(s)
- Andrea Palomar
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Alicia Quiñonero
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Yassmin Medina-Laver
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | - Roberto Gonzalez-Martin
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| | | | - Pilar Alama
- Department of Gynecology, IVIRMA-Valencia, 46015 Valencia, Spain
| | - Francisco Domínguez
- Reproductive Medicine Research Group, IVI Foundation-IIS La Fe Health Research Institute, 46026 Valencia, Spain
| |
Collapse
|
32
|
Kapoor RT, Ahmad A, Shakoor A, Paray BA, Ahmad P. Nitric Oxide and Strigolactone Alleviate Mercury-Induced Oxidative Stress in Lens culinaris L. by Modulating Glyoxalase and Antioxidant Defense System. PLANTS (BASEL, SWITZERLAND) 2023; 12:1894. [PMID: 37176951 PMCID: PMC10181142 DOI: 10.3390/plants12091894] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 05/15/2023]
Abstract
Developmental activities have escalated mercury (Hg) content in the environment and caused food security problems. The present investigation describes mercury-incited stress in Lens culinaris (lentil) and its mitigation by supplementation of sodium nitroprusside (SNP) and strigolactone (GR24). Lentil exposure to Hg decreased root and shoot length, relative water content and biochemical variables. Exogenous application of SNP and GR24 alone or in combination enhanced all of the aforementioned growth parameters. Hg treatment increased electrolyte leakage and malondialdehyde content, but this significantly decreased with combined application (Hg + SNP + GR24). SNP and GR24 boosted mineral uptake and reduced Hg accumulation, thus minimizing the adverse impacts of Hg. An increase in mineral accretion was recorded in lentil roots and shoots in the presence of SNP and GR24, which might support the growth of lentil plants under Hg stress. Hg accumulation was decreased in lentil roots and shoots by supplementation of SNP and GR24. The methylglyoxal level was reduced in lentil plants with increase in glyoxalase enzymes. Antioxidant and glyoxylase enzyme activities were increased by the presence of SNP and GR24. Therefore, synergistic application of nitric oxide and strigolactone protected lentil plants against Hg-incited oxidative pressure by boosting antioxidant defense and the glyoxalase system, which assisted in biochemical processes regulation.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, Uttar Pradesh, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, 25198 Lleida, Spain
| | - Bilal Ahamad Paray
- Zoology Department, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Parvaiz Ahmad
- Department of Botany, Govt. Degree College, Pulwama 192301, Jammu and Kashmir, India
| |
Collapse
|
33
|
Camacho JA, Welch B, Sprando RL, Hunt PR. Reproductive-Toxicity-Related Endpoints in C. elegans Are Consistent with Reduced Concern for Dimethylarsinic Acid Exposure Relative to Inorganic Arsenic. J Dev Biol 2023; 11:18. [PMID: 37218812 PMCID: PMC10204422 DOI: 10.3390/jdb11020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Exposures to arsenic and mercury are known to pose significant threats to human health; however, the effects specific to organic vs. inorganic forms are not fully understood. Caenorhabditis elegans' (C. elegans) transparent cuticle, along with the conservation of key genetic pathways regulating developmental and reproductive toxicology (DART)-related processes such as germ stem cell renewal and differentiation, meiosis, and embryonic tissue differentiation and growth, support this model's potential to address the need for quicker and more dependable testing methods for DART hazard identification. Organic and inorganic forms of mercury and arsenic had different effects on reproductive-related endpoints in C. elegans, with methylmercury (meHgCl) having effects at lower concentrations than mercury chloride (HgCl2), and sodium arsenite (NaAsO2) having effects at lower concentrations than dimethylarsinic acid (DMA). Progeny to adult ratio changes and germline apoptosis were seen at concentrations that also affected gravid adult gross morphology. For both forms of arsenic tested, germline histone regulation was altered at concentrations below those that affected progeny/adult ratios, while concentrations for these two endpoints were similar for the mercury compounds. These C. elegans findings are consistent with corresponding mammalian data, where available, suggesting that small animal model test systems may help to fill critical data gaps by contributing to weight of evidence assessments.
Collapse
Affiliation(s)
- Jessica A. Camacho
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | | | | | | |
Collapse
|
34
|
Bello TCS, Buralli RJ, Cunha MPL, Dórea JG, Diaz-Quijano FA, Guimarães JRD, Marques RC. Mercury Exposure in Women of Reproductive Age in Rondônia State, Amazon Region, Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5225. [PMID: 36982134 PMCID: PMC10049295 DOI: 10.3390/ijerph20065225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Environmental contamination by mercury (Hg) is a problem of global scale that affects human health. This study's aim was to evaluate Hg exposure among women of reproductive age residing in the Madeira River basin, in the State of Rondônia, Brazilian Amazon. This longitudinal cohort study used linear regression models to assess the effects on Hg levels of breastfeeding duration at 6 months, and of breastfeeding duration and number of new children at 2-year and 5-year. Breastfeeding duration was significantly associated with maternal Hg levels in all regression models (6 months, 2 years and 5 years) and no significant association was observed between the number of children and the change in maternal Hg levels in the 2-year and 5-year models. This longitudinal cohort study evaluated Hg levels and contributing factors among pregnant women from different communities (riverine, rural, mining and urban) in Rondônia, Amazon Region, for 5 years. A well-coordinated and designed national biomonitoring program is urgently needed to better understand the current situation of Hg levels in Brazil and the Amazon.
Collapse
Affiliation(s)
- Thayssa C. S. Bello
- Programa de Pós-Graduação em Ciências Ambientais e Conservação, Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, Brazil;
| | - Rafael J. Buralli
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo (FMUSP), São Paulo 01246-903, Brazil;
| | - Mônica P. L. Cunha
- Programa de Pós-Graduação em Desenvolvimento Regional e Meio Ambiente, Universidade Federal de Rondônia (UNIR), Porto Velho 76801-058, Brazil;
| | - José G. Dórea
- Departamento de Nutrição, Universidade de Brasília (UnB), Brasilia 70970-000, Brazil;
| | - Fredi A. Diaz-Quijano
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo (USP), São Paulo 01246-904, Brazil;
| | - Jean R. D. Guimarães
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-170, Brazil;
| | - Rejane C. Marques
- Programa de Pós-Graduação em Ciências Ambientais e Conservação, Universidade Federal do Rio de Janeiro (UFRJ), Macaé 27965-045, Brazil;
| |
Collapse
|
35
|
Whittaker J. Dietary trends and the decline in male reproductive health. Hormones (Athens) 2023; 22:165-197. [PMID: 36725796 DOI: 10.1007/s42000-023-00431-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023]
Abstract
Over the twentieth century, male reproductive health has suffered a substantial decline, as evidenced by decreases in sperm counts and testosterone levels and increases in reproductive pathologies. At the same time, the prevalence of chronic diseases such as obesity, diabetes, and metabolic syndrome has risen dramatically. Metabolic and reproductive health are highly interconnected, suggesting that their respective trends are intertwined and, given the timeframe of such trends, environmental and not genetic factors are most likely to be the primary causes. Industrialization, which began in Europe in the mid-eighteenth century, has resulted in profound changes to our diet, lifestyle, and environment, many of which are causal factors in the rise in chronic diseases. Industrialization results in a nutrition transition from an agricultural unprocessed to a modern processed diet, incorporating increases in sugar, vegetable oils, ultra-processed foods, linoleic acid, trans-fats, and total energy. This dietary shift has incurred numerous adverse effects on metabolic and reproductive health, characterized by chronic inflammation, oxidative stress, and insulin resistance. Moreover, these effects appear to multiply across subsequent generations via epigenetic inheritance. Men's fertility is markedly affected by obesity and diabetes, with an increase in total energy via processed food intake arguably being the key factor driving the diabesity pandemic. In contrast, wholefoods rich in micronutrients and phytonutrients support male fertility and a healthy body weight. Therefore, men wanting to maximize their fertility should consider making positive dietary changes, such as replacing processed foods with unprocessed foods that support metabolic and reproductive health.
Collapse
Affiliation(s)
- Joseph Whittaker
- The School of Allied Health and Community, University of Worcester, Henwick Grove, Worcester, WR2 6AJ, UK.
| |
Collapse
|
36
|
Brodziak-Dopierała B, Fischer A, Chrzanowska M, Ahnert B. Mercury Exposure from the Consumption of Dietary Supplements Containing Vegetable, Cod Liver, and Shark Liver Oils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2129. [PMID: 36767496 PMCID: PMC9915034 DOI: 10.3390/ijerph20032129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Vegetable and fish oils constitute a significant part of all dietary supplements. Due to increasing environmental pollution, the raw materials used for their production may be contaminated with toxic substances, including metals. The aim of the present study was to determine the mercury (Hg) content in vegetable oils, shark liver oils, and cod liver oils. The tests conducted were to help determine the level of mercury contamination of the tested preparations and the related potential threat to human health. The amount of Hg in the tested dietary supplements was compared, and the amount of the metal consumed at various times of use was determined. A total of 36 preparations of dietary supplements available on the Polish market were used for the study. The method of atomic absorption spectrometry using the amalgamation technique was used for the determinations (AMA 254, Altec, Czech Republic). Among the sample of all of the tested preparations, the Hg concentration ranged from 0.023 to 0.427 µg/kg, with an average of 0.165 µg/kg. Differences in Hg content in the various tested preparations (shark liver oil, cod liver oil, and vegetable oils) were statistically significant. The average concentration of Hg in the vegetable oils (0.218 µg/kg) was more than twice that of the cod liver oils (0.106 µg/kg) and shark liver oils (0.065 µg/kg). In none of the tested preparations did the amount of Hg exceed the acceptable standard for dietary supplements (0.10 mg/kg). The analysis showed that the Hg content in vegetable oils, shark liver oils, and fish oils from the Polish market is at a low level, guaranteeing the safety of their use, and as such, they do not pose a threat to health.
Collapse
Affiliation(s)
- Barbara Brodziak-Dopierała
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Science, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
| | - Agnieszka Fischer
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Science, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
| | | | - Bożena Ahnert
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Science, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
37
|
Non-traditional stable isotopic analysis for source tracing of atmospheric particulate matter. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Marić Đ, Baralić K, Javorac D, Mandić Rajčević S, Đukić-Ćosić D, Antonijević Miljaković E, Aćimović M, Bulat Z, Aschner M, Buha Djordjevic A. Puzzling relationship between levels of toxic metals in blood and serum levels of reproductive hormones: Benchmark dose approach in cross-sectional study. ALL LIFE 2022; 15:1052-1064. [PMID: 36278024 PMCID: PMC9585479 DOI: 10.1080/26895293.2022.2128439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reproductive disorders and infertility have become more common recently among the general population. Toxic metals are known as endocrine disruptors and as they are widespread in nature they may be linked to reproductive problems. This study was conducted as a cross-sectional study and its aim was to examine the dose–response relationship between cadmium, arsenic, mercury, chromium and nickel and serum hormone levels of testosterone (women) and estradiol and progesterone (men) using the Benchmark dose approach (BMD). Blood samples were collected from 218 women and 217 men digested in a microwave, and the levels of the tested metals were determined by atomic absorption spectrophotometry (AAS) or inductively coupled plasma-mass spectrometry (ICP-MS). Dose–response analysis was performed in PROAST software (version 70.1). The model averaging method was used to calculate the Benchmark dose interval (BMDI). A dose–response relationship has been established between all metals and hormones. The narrowest BMDI was found for the As-testosterone and Hg-testosterone. Levels estimated to produce the extra risk of testosterone serum levels disturbances of 10% were lower than median levels measured in the general population. Moreover, this research suggests the possibility of use of the BMD approach in analyzing data pool generated from extensive human-biomonitoring studies.
Collapse
Affiliation(s)
- Đurđica Marić
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Stefan Mandić Rajčević
- School of Public Health and Health Management and Institute of Social Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | | | - Zorica Bulat
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| | | | - Aleksandra Buha Djordjevic
- Department of Toxicology ‘Akademik Danilo Soldatović’, University of Belgrade – Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
39
|
Fang GC, Zhuang YJ. Atmospheric Hg(p) concentrations at various particles sizes before (2018-2019) and during (2019-2020 and 2020-2021) COVID-19 occurred periods in Taichung, Taiwan. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:970-976. [PMID: 36308006 DOI: 10.1080/10934529.2022.2133915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The main goal of this study is to compare concentrations of atmospheric Hg(p) for various particles sizes Total Suspended Particulates (TSP), PM18, PM10, PM2.5, PM1, PM<1 before (2018-2019) and during (2019-2020 and 2020-2021) COVID-19 occurred periods in central Taiwan. In addition, test the statistical differences concentrations of Hg(p) for various particles sizes before and during COVID-19 occurred periods in central Taiwan. Finally, calculate the Hg(p) health risk assessment before and during COVID-19 occurred period in central Taiwan.The result indicated that the mean Hg(p) concentrations in TSP and PM2.5 were higher during (2020-2021) the COVID-19 occurred period than that of the mean Hg(p) concentrations in TSP and PM2.5 before the COVID-19 occurred period. In addition, the Hg(p)concentrations PM18, PM10, PM2.5, PM1 and PM<1 were all increased during the COVID-19 occurred period. The Hg(p) concentrations in TSP were decreased during (2019-2020) the COVID-19 occurred period when compared with that of the before the COVID-19 occurred period. Moreover, significant mean Hg(p) concentrations differences were existed at PM18, PM10 and PM2.5 before and during (2020-2021) COVID-19 occurred periods. Finally, the HQ and HI values for Hg(p) were both increased during COVID-19 occurred periods when compared with before COVID-19 occurred period in this study.
Collapse
|
40
|
Kumar S, Sharma A, Sedha S. Occupational and environmental mercury exposure and human reproductive health - a review. J Turk Ger Gynecol Assoc 2022; 23:199-210. [PMID: 36065987 PMCID: PMC9450922 DOI: 10.4274/jtgga.galenos.2022.2022-2-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Mercury is a toxic heavy metal. Humans are exposed to mercury through several sources including environmental, occupational, contaminated food and water and from mercury-containing dental amalgam. Mercury exposure is known to harm the nervous system profoundly, and have a negative impact on digestive and immune systems, and other organs. To review and discuss the effect of mercury exposure through environmental or occupational routes on human reproduction, pregnancy, and its outcome. Published information about the potential toxic effects of mercury on human reproduction were collected and summarized. Literature was identified by systematic search using relevant keywords. Literature review revealed a number of negative impacts of mercury on human reproduction. These included effects on semen quality, including reduced sperm count, motility, and changes in morphology that may reduce fertility potential. There may also be an effect in changing reproductive hormone levels. Mercury exposure might also affect pregnancy but the data concerning mercury effects on female reproduction are limited except for some data about mercury exposure and poor pregnancy outcomes. Available data indicate that mercury exposure may have a toxicity effect on reproductive potential, especially in males. Prenatal mercury exposure may affect pregnancy or its outcome and this appears to be dependent upon dose, duration, and timing of exposure. Nutritional status of exposed individual might also influence the impact of mercury.
Collapse
Affiliation(s)
- Sunil Kumar
- National Institute of Occupational Health, Gujarat, India
| | - Anupama Sharma
- National Institute of Occupational Health, Gujarat, India
| | - Sapna Sedha
- Department of Biotechnology, Dr. Hari Singh Gour University, Madhya Pradesh, India
| |
Collapse
|
41
|
Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711066. [PMID: 36078782 PMCID: PMC9518444 DOI: 10.3390/ijerph191711066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/17/2023]
Abstract
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential.
Collapse
Affiliation(s)
| | | | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Kulczycka
- Institute of Health Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81448-7182
| |
Collapse
|
42
|
Aldakheel RK, Gondal MA, Alsayed HN, Almessiere MA, Nasr MM, Shemsi AM. Rapid Determination and Quantification of Nutritional and Poisonous Metals in Vastly Consumed Ayurvedic Herbal Medicine (Rejuvenator Shilajit) by Humans Using Three Advanced Analytical Techniques. Biol Trace Elem Res 2022; 200:4199-4216. [PMID: 34800280 DOI: 10.1007/s12011-021-03014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Shilajit is used commonly as Ayurvedic medicine worldwide which is Rasayana herbo-mineral substance and consumed to restore the energetic balance and to prevent diseases like cognitive disorders and Alzheimer. Locally, Shilajit is applied for patients diagnosed with bone fractures. For safety of the patients, the elemental analysis of Shilajit is imperative to evaluate its nutritional quality as well as contamination from heavy metals. The elemental composition of Shilajit was conducted using three advanced analytical techniques (LIBS, ICP, and EDX). For the comparative studies, the two Shilajit kinds mostly sold globally produced in India and Pakistan were collected. Our main focus is to highlight nutritional eminence and contamination of heavy metals to hinge on Shilajit therapeutic potential. In this work, laser-induced breakdown spectroscopy (LIBS) was applied for qualitative and quantitative analysis of the Shilajit. Our LIBS analysis revealed that Shilajit samples composed of several elements like Ca, S, K, Mg, Al, Na, Sr, Fe, P, Si, Mn, Ba, Zn, Ni, B, Cr, Co, Pb, Cu, As, Hg, Se, and Ti. Indian and Pakistani Shilajits were highly enriched with Ca, S, and K nutrients and contained Al, Sr, Mn, Ba, Zn, Ni, B, Cr, Pb, As, and Hg toxins in amounts that exceeded the standard permissible limit. Even though the content of most elements was comparable among both Shilajits, nutrients, and toxins, in general, were accentuated more in Indian Shilajit with the sole detection of Hg and Ti. The elemental quantification was done using self-developed calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method, and LIBS results are in well agreement with the concentrations determined by standard ICP-OES/MS method. To verify our results by LIBS and ICP-OES/MS techniques, EDX spectroscopy was also conducted which confirmed the presence above mentioned elements. This work is highly significant for creating awareness among people suffering due to overdose of this product and save many human lives.
Collapse
Affiliation(s)
- R K Aldakheel
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M A Gondal
- Laser Research Group, Physics Department, IRC-Hydrogen & Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
- K.A. CARE Energy Research and Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Hasan N Alsayed
- Department of Orthopedic Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M M Nasr
- Physics Department, Riyadh Elm University, P.O. Box 321815, Riyadh, 11343, Saudi Arabia
| | - A M Shemsi
- Center for Environment and Marine Study, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
43
|
Tian Q, Hong T, Zhao Z, Shi Z. Synthesis and application of a novel reactive Coumarin-derived probe for the determination of Hg2+ in real samples. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Fan Q, Bao GM, Li SH, Liu SY, Cai XR, Xia YF, Li W, Wang XY, Deng K, Yuan HQ. A dual-channel "on-off-on" fluorescent probe for the detection and discrimination of Fe 3+ and Hg 2+ in piggery feed and swine wastewater. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2318-2328. [PMID: 35639468 DOI: 10.1039/d2ay00629d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Blue-fluorescent blood-CDs were synthesized through a one-pot hydrothermal method using a mixture of chicken blood and trisodium citrate and then explored as a fluorescent probe for detecting Fe3+ and Hg2+. The probe showed excellent selectivity and sensitivity towards Fe3+ and Hg2+ with a dramatic "on-off" fluorescence response. F- recovered the fluorescence quenching by Fe3+, and Al3+ recovered the fluorescence quenching by Hg2+, showing an "off-on" fluorescence response. The blood-CDs were used as an "on-off-on" dual-channel fluorescent sensor for the detection and discrimination of Fe3+ and Hg2+ ions. The probe showed wide linear ranges for determination of Fe3+ (0-100 μM) and Hg2+ (0-120 μM) with low detection limits of 0.23 μM for Fe3+ and 0.17 μM for Hg2+. This probe was practically applied for the determination of Fe3+ and Hg2+ in piggery feed and wastewater with good recoveries. This work provides a fluorescent probe for the quantification of Fe3+ and Hg2+ in livestock feed and environmental water samples.
Collapse
Affiliation(s)
- Qing Fan
- Institute of Veterinary Drug/Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, PR China
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Guang-Ming Bao
- Institute of Veterinary Drug/Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, PR China
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, PR China
| | - Si-Han Li
- Institute of Veterinary Drug/Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Si-Yi Liu
- Institute of Veterinary Drug/Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xin-Ru Cai
- Institute of Veterinary Drug/Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yi-Fan Xia
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Wei Li
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Xiao-Ying Wang
- Institute of Veterinary Drug/Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ke Deng
- Institute of Veterinary Drug/Biotechnological Engineering Center for Pharmaceutical Research and Development, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hou-Qun Yuan
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, PR China.
- School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
45
|
Wang L, Wang J, Wang Y, Zhou F, Huang J. Thioether-functionalized porphyrin-based polymers for Hg 2+ efficient removal in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128303. [PMID: 35101759 DOI: 10.1016/j.jhazmat.2022.128303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
In this paper, thioether-functionalized porphyrin-based polymers (TPPs) were constructed according to two different "bottom-up" and "top-down" strategies and they were applied for Hg2+ capture in aqueous solution. TPP1, which was constructed by one-step polycondensation of 2,5-bis(methylthio) terephthalaldehyde (BMTA) with pyrrole according to the "bottom-up" strategy, owned high Brunauer-Emmett-Teller (BET) surface area (SBET, 554 m2/g), pore volume (Vtotal, 0.32 cm3/g), and S content (16.8%), resulting in high Hg2+ capture (913 mg/g) with high removal efficiency (> 99%). The adsorption mechanism clarified that the strong coordination between the S species and Hg2+ was the main driving force. In comparison, TPP2 and TPP3 were fabricated by the thioether functionalization of the porphyrin-based polymers according to the "top-down" strategy. They showed much lower SBET, Vtotal, and S content for the reason that the post-functionalization process greatly blocked the pores and the functional sites were hardly fully post-functionalized, resulting in much lower Hg2+ capture (555 mg/g and 609 mg/g, respectively). This work reveals the advantage of the "bottom-up" strategy for the construction of the thioether-functionalized polymers and it offers the guidance for the construction of some other thioether-functionalized polymers.
Collapse
Affiliation(s)
- Lizhi Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Jiajia Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - You Wang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China
| | - Fa Zhou
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China.
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Micro and Nano Material Interface, Central South University, Changsha 410083, China.
| |
Collapse
|
46
|
Goutam Mukherjee A, Ramesh Wanjari U, Renu K, Vellingiri B, Valsala Gopalakrishnan A. Heavy metal and metalloid - induced reproductive toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103859. [PMID: 35358731 DOI: 10.1016/j.etap.2022.103859] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals and metalloid exposure are among the most common factors responsible for reproductive toxicity in human beings. Several studies have indicated that numerous metals and metalloids can display severe adverse properties on the human reproductive system. Metals like lead, silver, cadmium, uranium, vanadium, and mercury and metalloids like arsenic have been known to induce reproductive toxicity. Moderate to minute quantities of lead may affect several reproductive parameters and even affect semen quality. The ecological and industrial exposures to the various heavy metals and metalloids have disastrous effects on the reproductive system ensuing in infertility. This work emphasizes the mechanism and pathophysiology of the aforementioned heavy metals and metalloids in reproductive toxicity. Additionally, this work aims to cover the classical protective mechanisms of zinc, melatonin, chelation therapy, and other trending methods to prevent heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India; Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077 Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
47
|
Machado-Neves M. Effect of heavy metals on epididymal morphology and function: An integrative review. CHEMOSPHERE 2022; 291:133020. [PMID: 34848222 DOI: 10.1016/j.chemosphere.2021.133020] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Male fertility has deteriorated over the last decades, and environmental risk factors are among the possible causes of this phenomenon. Pollutants such as heavy metals might accumulate in male reproductive organs to levels that are associated with reproductive disorders. Several studies reported detrimental effects of inorganic arsenic (iAs+3/iAs+5), cadmium (Cd+2), lead (Pb+2), and mercury (Hg+2/CH3Hg+2) on the epididymis, which plays a crucial role in sperm maturation. However, the magnitude of their effects and the consequences on the physiology of the epididymis are still unclear. Therefore, an integrative review with meta-analyses was conducted examining 138 studies to determine how exposure to arsenic, cadmium, lead, and mercury affects epididymal morphology and functions, using primarily murine data from experimental studies as a source. This study showed that exposure to metal(loids) reduced epididymal weight, sperm motility, and sperm number. Inorganic arsenic, cadmium, and lead damaged sperm structures within the epididymal duct. While sodium arsenite, sodium arsenate, and lead acetate generate oxidative stress by an imbalance between ROS production and scavenging, cadmium chloride causes an increase in the pH level of the luminal fluid (from 6.5 to 7.37) that diminishes sperm viability. Inorganic arsenic induced a delay in the sperm transit time by modulating noradrenaline and dopamine secretion. Subacute exposure to heavy metals at concentrations < 0.1 mg L-1 initiates a dyshomeostasis of calcium, copper, iron, and zinc that disturbs sperm parameters and reduces epididymal weight. These alterations worsen with prolonged exposure time and higher doses. Most studies evaluated the effects of concentrations > 1.1 mg L-1 of heavy metals on the epididymis rather than doses with relevant importance for human health risk. This meta-analytical study faced limitations regarding a deeper analysis of epididymis physiology. Hence, several recommendations for future investigations are provided. This review creates a baseline for the comprehension of epididymal toxicology.
Collapse
Affiliation(s)
- Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, DBG, Campus Universitário, Viçosa, 36570-900, Minas Gerais, Brasil.
| |
Collapse
|
48
|
Identification and Characterization of Peruvian Native Bacterial Strains as Bioremediation of Hg-Polluted Water and Soils Due to Artisanal and Small-Scale Gold Mining in the Secocha Annex, Arequipa. SUSTAINABILITY 2022. [DOI: 10.3390/su14052669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The water and soils pollution due to mercury emissions from mining industries represents a serious environmental problem and continuous risk to human health. Although many strategies have been designed for the recovery or elimination of this metal from environmental sources, microbial bioremediation has proven to be the most effective and environmentally friendly strategy and thus control heavy metal contamination. The main objective of this work, using native bacterial strains obtained from contaminated soils of the Peruvian region of Secocha, was to identify which of these strains would have growth capacity on mercury substrates to evaluate their adsorption behavior and mercury removal capacity. Through a DNA analysis (99.78% similarity) and atomic absorption spectrometry, the Gram-positive bacterium Zhihengliuella alba sp. T2.2 was identified as the strain with the highest mercury removal capacity from culture solutions with an initial mercury concentration of 162 mg·L−1. The removal capacity reached values close to 39.5% in a period of incubation time of 45 days, with maximum elimination efficiency in the first 48 h. These results are encouraging and show that this native strain may be the key to the bioremediation of water and soils contaminated with mercury.
Collapse
|
49
|
Montano L, Maugeri A, Volpe MG, Micali S, Mirone V, Mantovani A, Navarra M, Piscopo M. Mediterranean Diet as a Shield against Male Infertility and Cancer Risk Induced by Environmental Pollutants: A Focus on Flavonoids. Int J Mol Sci 2022; 23:ijms23031568. [PMID: 35163492 PMCID: PMC8836239 DOI: 10.3390/ijms23031568] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
The role of environmental factors in influencing health status is well documented. Heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, dioxins, pesticides, ultrafine particles, produced by human activities put a strain on the body’s entire defense system. Therefore, together with public health measures, evidence-based individual resilience measures are necessary to mitigate cancer risk under environmental stress and to prevent reproductive dysfunction and non-communicable diseases; this is especially relevant for workers occupationally exposed to pollutants and/or populations residing in highly polluted areas. The Mediterranean diet is characterized by a high intake of fruits and vegetables rich in flavonoids, that can promote the elimination of pollutants in tissues and fluids and/or mitigate their effects through different mechanisms. In this review, we collected evidence from pre-clinical and clinical studies showing that the impairment of male fertility and gonadal development, as well as cancers of reproductive system, due to the exposure of organic and inorganic pollutants, may be counteracted by flavonoids.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL), 84124 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessandro Maugeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Maria Grazia Volpe
- Institute of Food Sciences, National Research Council, CNR, 83100 Avellino, Italy;
| | - Salvatore Micali
- Urology Department, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Vincenzo Mirone
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80126 Naples, Italy;
| | - Alberto Mantovani
- Department of Food, Safety, Nutrition and Veterinary public health, Italian National Health Institute, 00161 Roma, Italy;
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence:
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|
50
|
Multimedia Pollution Prevention of Mercury-Containing Waste and Articles: Case Study in Taiwan. SUSTAINABILITY 2022. [DOI: 10.3390/su14031557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In response to the Minamata Convention on Mercury, effective 16 August 2017, the Taiwan government in recent years started to implement the sustainable material management of mercury-containing waste and articles. This was completed by a cross-ministerial collaboration for preventing the adverse effects of mercury on human health and the environment, based on the multimedia approach. The legislative or regulatory frameworks on the control and prevention of mercury emissions and releases have been established in environmental distributions, including air, water, soil, waste, food, and article (or commodity). Therefore, the central authorities included the Environmental Protection Administration (EPA), Council of Agriculture (COA), Ministry of Health and Welfare (MOHW), Ministry of Economic Affairs (MOEA), and Ministry of Labor (MOL). Furthermore, the implementation plans covered the reduction in mercury-containing products by restricted use and bans on its use, remediation of soil and groundwater for mercury-pollution sites, control of stationary source emissions, environmental monitoring, and compulsory recovery of mercury from electronic waste such as waste lightings. A successful case study on the recovery of mercury from electronic waste using a thermal treatment, and its capture control by activated carbon, was also addressed in this work. Due to the effectiveness of source control in Taiwan, the annual reported amount of mercury emissions from the stationary air pollution sources indicated a decreasing trend from 1.989 metric tons in 2016 to 1.760 metric tons in 2019. More significantly, the ministerial collaboration in implementing the Convention in Taiwan also echoed the United Nations (UN) Agenda 2030 for sustainable development goals (SDGs).
Collapse
|