1
|
Zhang Z, Xie B, Zhong Q, Dai C, Xu X, Huo X. Abnormal erythrocyte-related parameters in children with Pb, Cr, Cu and Zn exposure. Biometals 2024:10.1007/s10534-024-00624-y. [PMID: 39154116 DOI: 10.1007/s10534-024-00624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
The link between exposure to a particular heavy metal or metalloid and the development of anemia is well established. However, the association between combined exposure to multiple heavy metal(loid)s and anemia in children is still lacking in evidence. In this study, a total of 266 children aged 3 to 7 were recruited from Guiyu, China. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure blood heavy metal(loid) concentrations. Blood cell count, hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), hematocrit (HCT), and red blood cell distribution width (RDW) were measured by an automated hematology analyzer. Erythrocyte-related parameters were negatively correlated with the Cu and Cu/Zn ratios and positively correlated with Cr, Ni, Zn, and Se by Spearman correlation analysis. Only blood Cu level was negatively correlated with HGB [β = -2.74, (95% Cl: -4.49, -0.995)], MCH [β = -0.505, (95% Cl: -0.785, -0.226)], MCV [β = -1.024, (95% Cl: -1.767, -0.281)], and MCHC [β = -2.137, (95% Cl: -3.54, -0.734)] by multiple linear regression analysis. The Bayesian Kernel Machine Regression (BKMR) model analysis indicated a negative correlation between the combined exposure to Cu, Zn, Pb, and Cr and MCH and MCV. The single-factor analysis showed a considerable statistical difference only with Cu on MCV, MCH, and HGB. Furthermore, the interaction analysis highlighted the interdependent effects of Cu and Zn, Pb and Zn, and Cr and Zn on MCH and MCV levels. Additionally, the oxidation and/or antioxidation reactions may play a significant role in the development of metal(loid)-induced anemia risk. It is crucial to investigate the effects of co-exposure to multiple heavy metal(loid) elements on anemia, especially the interrelationships and mechanisms among them.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Bo Xie
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chenxu Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou, 511443, Guangdong, China.
- Laboratory of Environmental Medicine and Developmental Toxicology, the First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
2
|
Poudel K, Ikeda A, Fukunaga H, Brune Drisse MN, Onyon LJ, Gorman J, Laborde A, Kishi R. How does formal and informal industry contribute to lead exposure? A narrative review from Vietnam, Uruguay, and Malaysia. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:371-388. [PMID: 36735953 DOI: 10.1515/reveh-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Lead industries are one of the major sources of environmental pollution and can affect human through different activities, including industrial processes, metal plating, mining, battery recycling, etc. Although different studies have documented the various sources of lead exposure, studies highlighting different types of industries as sources of environmental contamination are limited. Therefore, this narrative review aims to focus mainly on lead industries as significant sources of environmental and human contamination. CONTENT Based on the keywords searched in bibliographic databases we found 44 relevant articles that provided information on lead present in soil, water, and blood or all components among participants living near high-risk areas. We presented three case scenarios to highlight how lead industries have affected the health of citizens in Vietnam, Uruguay, and Malaysia. SUMMARY AND OUTLOOK Factories conducting mining, e-waste processing, used lead-acid battery recycling, electronic repair, and toxic waste sites were the primary industries for lead exposure. Our study has shown lead exposure due to industrial activities in Vietnam, Uruguay, Malaysia and calls for attention to the gaps in strategic and epidemiologic efforts to understand sources of environmental exposure to lead fully. Developing strategies and guidelines to regulate industrial activities, finding alternatives to reduce lead toxicity and exposure, and empowering the public through various community awareness programs can play a crucial role in controlling exposure to lead.
Collapse
Affiliation(s)
- Kritika Poudel
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Center for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
- Centre for Health Equity, University of Melbourne, Melbourne, Australia
| | - Atsuko Ikeda
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Center for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Marie-Noel Brune Drisse
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Lesley Jayne Onyon
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Julia Gorman
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Amalia Laborde
- Department of Toxicology, Faculty of Medicine, Republic University of Montevideo, Montevideo, Uruguay
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
- WHO Collaborating Center for Environmental Health and Prevention of Chemical Hazards, Sapporo, Japan
| |
Collapse
|
3
|
Sewberath Misser VH, Hindori-Mohangoo AD, Shankar A, Lichtveld M, Wickliffe J, Mans DRA. Possible Risk Factors and Their Potential Associations with Combined Heavy Metal Exposures in Pregnant Women in the Republic of Suriname. Ann Glob Health 2024; 90:30. [PMID: 38618276 PMCID: PMC11011959 DOI: 10.5334/aogh.4402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024] Open
Abstract
Background The exposure of pregnant women to multiple environmental pollutants may be more disadvantageous to birth outcomes when compared to single-compound contaminations. Objective This study investigated the mixed exposures to mercury, manganese, or lead in 380 pregnant Surinamese women. The factors that might be associated with the heavy metal exposures and the relative risk of the potential factors to cause the mixed exposures were explored. The influencing factors of exposures to mixed contaminants assessed were living in Suriname's rural regions, several parts of which are contaminated with heavy metals emitted from artisanal and small-scale gold mining and agricultural activities; the consumption of potentially contaminated foods; advanced maternal age; as well as a relatively low formal educational level and monthly household income. Methods Descriptive statistics were used to calculate frequency distributions and χ2-contingency analyses to calculate associations and relative risks (RR) with 95% confidence intervals (CI). Findings Blood levels of two or three of the heavy metals above public health limits were observed in 36% of the women. These women were more often residing in the rural regions, primarily consumed potentially contaminated food items, were 35 years or older, were lower educated, and more often had a lower household income. However, only living in the rural regions (RR = 1.48; 95% CI 1.23-1.77) and a low household income (RR = 1.38; 95% CI 1.15-1.66) significantly increased the risk of exposure exceeding levels of concern to two or three of the heavy metals (by 48% and 38%, respectively). Conclusion More comprehensive pharmacological, ecological, and epidemiological studies about exposures to mixed heavy metal contaminations in pregnant women are warranted.
Collapse
Affiliation(s)
- Vinoj H. Sewberath Misser
- Department of Pharmacology, Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | | | - Arti Shankar
- Tulane University School of Public Health and Tropical Medicine, New Orleans (LA), USA
| | - Maureen Lichtveld
- School of Public Health, University of Pittsburgh, Pittsburgh (PA), USA
| | - Jeffrey Wickliffe
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Alabama (AL), USA
| | - Dennis R. A. Mans
- Department of Pharmacology, Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| |
Collapse
|
4
|
Queirolo EI, Kordas K, Martínez G, Ahmed Z, Barg G, Mañay N. Secular trends in blood lead concentrations of school-age children in Montevideo, Uruguay from 2009 to 2019. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123160. [PMID: 38104764 PMCID: PMC10922799 DOI: 10.1016/j.envpol.2023.123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Lead exposure continues to be a public health problem globally, yet very few countries perform systematic biomonitoring or surveillance of children's blood lead levels (BLLs). Secular trends in children's BLLs have not been well characterized outside North America and Europe. In 2009-19, we conducted a series of non-representative cross-sectional surveys in Montevideo, Uruguay, enrolling children living in areas of the city with known or suspected lead contamination. Lead was measured with atomic absorption spectrometry on fasting venous blood samples. Of the 856 children representing independent (non-sibling) observations, 759 had BLL measures. Other missing data were imputed. Using linear and logistic regression models, we estimated the covariate-adjusted year to year difference in mean BLL and the likelihood of having BLL ≥5 and BLL ≥3.5 μg/dL. At the start of the study, mean ± SD BLL was 4.8 ± 2.6 μg/dL, and at the end 1.4 ± 1.4 μg/dL. The prevalence of BLL ≥5 and BLL ≥3.5 μg/dL also differed markedly between 2009 and 2019 (30.8% vs. 2.7% and 53.8% vs. 5.8%). Similarly, where 80.8% of children had BLL ≥2 μg/dL in 2011, in 2019 that number was 19.3%. The estimated year to year difference in BLL was ∼0.3 μg/dL. Despite this progress, pediatric lead exposure remains a problem in Montevideo. In years 2015-19, between 19 and 48% of school children had BLL ≥2 μg/dL, a level at which adverse neurobehavioral outcomes continue to be reported in the literature. Continued prevention and risk-reduction efforts are needed in Montevideo, including systematic surveillance of BLLs in all children.
Collapse
Affiliation(s)
- Elena I Queirolo
- Department of Neuroscience and Learning, Faculty of Health Sciences, Catholic University of Uruguay, Montevideo, Uruguay.
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA.
| | - Gabriela Martínez
- Department of Toxicology, Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo, Uruguay
| | - Zia Ahmed
- RENEW Institute, University at Buffalo, 106 Cooke Hall, Buffalo NY, USA.
| | - Gabriel Barg
- Department of Neuroscience and Learning, Faculty of Health Sciences, Catholic University of Uruguay, Montevideo, Uruguay.
| | - Nelly Mañay
- Department of Toxicology, Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo, Uruguay
| |
Collapse
|
5
|
Li K, Wu J, Mei Y, Zhao J, Zhou Q, Li Y, Yang M, Xu J, Zhao M, Xu Q. Metallomics analysis of metal exposure and cognitive function in older adults: A combined epidemiological and bioinformatics study. CHEMOSPHERE 2023; 341:140049. [PMID: 37660799 DOI: 10.1016/j.chemosphere.2023.140049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/10/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Dementia is a significant cause of elderly disability and Alzheimer's disease (AD) is the most prevalent form of dementia. As an early stage of AD, the mechanism related to mild cognitive impairment (MCI) and heavy metals is still unclear. This study utilized a cross-sectional design and enrolled 514 older adults in Bejing, China. Cognitive function was assessed by the Mini-Mental State Examination (MMSE) and fourteen blood metals were measured by inductively coupled plasma mass spectrometry (ICP-MS). In the adjusted single-metal models, we observed that copper [Cu, β (95% CI): 3.73 (-6.42, -1.03)] and lead [Pb, β (95% CI): 0.79 (-1.26, -0.32)] demonstrated negative associations with cognitive function, while selenium [Se, β (95% CI): 2.97 (1.23, 4.70)] was beneficial to cognition. Our findings were robust in secondary analysis using multi-metal models, which included generalized linear models (GLM), Bayesian kernel machine regression (BKMR), and quantile g-computation (qgcomp). Moreover, the toxic metal mixture (Cu and Pb) exhibited a significant negative association with MMSE scores and the inclusion of Se in the metal mixture attenuated the neurotoxicity of Cu-Pb mixture. The in silico analysis was used to examine the potential molecular mechanisms (genes, biological processes, pathways, and illnesses) of interaction among metal mixtures. We identified 20 cognition-related genes that are associated with both Cu-Pb and Se. Among these genes, eight (APOE, APP, BAX, BDNF, CASP3, HMOX1, TF, and TPP1) exhibited opposite effects on protein activity, mRNA expression, or protein expression in response to Se and Cu/Pb exposure, which could be the key genes accounting for the anti-neurotoxic effects of Se. Our findings support that Se can attenuate the neurotoxicity of exposure to single Cu or Pb, and Cu-Pb mixture. More research is needed to confirm our findings and gain knowledge about the molecular mechanisms of combined metal exposure on cognitive function.
Collapse
Affiliation(s)
- Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
6
|
Kusanagi E, Takamura H, Hoshi N, Chen SJ, Adachi M. Levels of Toxic and Essential Elements and Associated Factors in the Hair of Japanese Young Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1186. [PMID: 36673943 PMCID: PMC9859141 DOI: 10.3390/ijerph20021186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
There is growing concern regarding the effects of toxic element exposure on the development of children. However, little is known about the level of toxic elements exposure in Japanese children. The purpose of this study was to assess the concentrations of multiple elements (aluminum, cadmium, lead, calcium, copper, iron, magnesium, sodium, zinc) in the hair of 118 Japanese young children and to explore the factors associated with their element levels. The element concentration was analyzed by ICP-MS, and children's food and water intake were assessed by the questionnaire. Results showed that there were no large differences between the level of elements in the hair of Japanese children and those of children in other developed countries. Girls had significantly higher levels of aluminum, copper, and iron (p = 0.000, 0.014, and 0.013, respectively), and boys had a higher level of sodium (p = 0.006). The levels of calcium, iron, magnesium, and sodium in nursery school children were significantly higher than those in kindergarten children (p = 0.024, 0.001, 0.046, and 0.029, respectively). Multiple regression analyses with controlling the confounding variables showed significant negative associations of frequency of yogurt intake with aluminum and lead levels (p = 0.015 and 0.037, respectively). When the children were divided into three groups based on the frequency of yoghurt consumption, viz. L (≤once a week), M (2 or 3 times a week), and H (≥4 to 6 times a week) group, the mean aluminum concentration (µg/g) in the L, M, and H groups was 11.06, 10.13, and 6.85, while the mean lead concentration (µg/g) was 1.76, 1.70, and 0.87, respectively. Our results suggested the validity of hair element concentrations as an exposure measure of essential elements and frequent yogurt intake as a viable measure for protecting children from toxic elements. However, these findings will need to be confirmed in more detailed studies with larger sample sizes in the future.
Collapse
Affiliation(s)
- Emiko Kusanagi
- Department of Childhood Education, Kokugakuin University Hokkaido Junior College, Takikawa 073-0014, Japan
| | - Hitoshi Takamura
- Department of Food Science and Nutrition, Faculty of Human Life and Environmental Sciences, Nara Women’s University, Nara 630-8506, Japan
| | - Nobuko Hoshi
- Department of Early Childhood Education, Junior College of Sapporo Otani University, Sapporo 065-8567, Japan
| | - Shing-Jen Chen
- Centers for Early Childhood Education and Care, Koen Gakuen Women’s Junior College, Sapporo 005-0012, Japan
| | - Mayumi Adachi
- Research Group of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
7
|
Zheng K, Zeng Z, Huang J, Tian Q, Cao B, Huo X. Kindergarten indoor dust metal(loid) exposure associates with elevated risk of anemia in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158227. [PMID: 35998718 DOI: 10.1016/j.scitotenv.2022.158227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Exposure to metals and metalloids in indoor dust is associated with adverse health effects in young children, but there is limited evidence for an association with anemia, which is at high risk in children. The aim of this study was to investigate the association between exposure to multiple metal(loid)s in indoor dust in kindergartens and the risk of anemia in children. In 2021, 2165 children from 25 kindergartens in eastern China were included in the study and had their hemoglobin (Hb) measured. Indoor dust samples were collected from the children's kindergartens, and the concentrations of 11 metals and metalloids in the samples were measured using inductively coupled plasma mass spectrometry (ICP-MS). The daily exposure dose (DED) of dust was used to assess the risk of metal(loid) exposure in the children. The results showed that of the 2165 children with available data, 351 (16.2 %) met the WHO definition of anemia. In multiple linear regression and logistic regression analyses, we found that for each quartile of DED increase in Cd inhalation, child Hb levels decreased by 2.703 g/L (95 % CI: -4.055, -1.351), and the risk of anemia increased 1.602-fold (95 % CI: 1.087, 2.360). Mn ingestion was associated with increased odds of anemia [odds ratio (OR) = 1.760 (95 % CI: 1.217, 2.544)]. Interaction analysis indicated that metal(loid)s exposure effects were modified by child sex, age, and body mass index (BMI). Cluster analysis found that children at high risk of metal(loid) exposure in the school environment tended to have lower Hb levels and higher prevalence of anemia compared with those at low risk, although this was not statistically significant. These findings suggest that child school exposure to metal(loid)s in indoor dust is associated with an increased risk of developing anemia in children, modified by child sex, age, and BMI.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China
| | - Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Bo Cao
- Community Health Service Center of Kou Town Street, Jinan 250000, Shandong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
8
|
Hyaluronic Acid Methacrylate Hydrogel-Modified Electrochemical Device for Adsorptive Removal of Lead(II). BIOSENSORS 2022; 12:bios12090714. [PMID: 36140099 PMCID: PMC9496323 DOI: 10.3390/bios12090714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022]
Abstract
This paper presents the development of a compact, three-electrode electrochemical device functionalized by a biocompatible layer of hyaluronic acid methacrylate (HAMA) hydrogel for the adsorptive removal of detrimental lead (Pb(II)) ions in aqueous solutions. An adsorption mechanism pertaining to the observed analytical performance of the device is proposed and further experimentally corroborated. It is demonstrated that both the molecular interactions originating from the HAMA hydrogel and electrochemical accumulation originating from the electrode beneath contribute to the adsorption capability of the device. Infrared spectral analysis reveals that the molecular interaction is mainly induced by the amide functional group of the HAMA hydrogel, which is capable of forming the Pb(II)–amide complex. In addition, inductively coupled plasma mass spectrometric (ICP-MS) analysis indicates that the electrochemical accumulation is particularly valuable in facilitating the adsorption rate of the device by maintaining a high ion-concentration gradient between the solution and the hydrogel layer. ICP-MS measurements show that 94.08% of Pb(II) ions present in the test solution can be adsorbed by the device within 30 min. The HAMA hydrogel-modified electrochemical devices exhibit reproducible performance in the aspect of Pb(II) removal from tap water, with a relative standard deviation (RSD) of 1.28% (for n = 8). The experimental results suggest that the HAMA hydrogel-modified electrochemical device can potentially be used for the rapid, on-field remediation of Pb(II) contamination.
Collapse
|
9
|
Frndak S, Barg G, Queirolo EI, Mañay N, Colder C, Yu G, Ahmed Z, Kordas K. Do Neighborhood Factors Modify the Effects of Lead Exposure on Child Behavior? TOXICS 2022; 10:517. [PMID: 36136482 PMCID: PMC9504847 DOI: 10.3390/toxics10090517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Lead exposure and neighborhoods can affect children’s behavior, but it is unclear if neighborhood characteristics modify the effects of lead on behavior. Understanding these modifications has important intervention implications. Blood lead levels (BLLs) in children (~7 years) from Montevideo, Uruguay, were categorized at 2 µg/dL. Teachers completed two behavior rating scales (n = 455). At one-year follow-up (n = 380), caregivers reported child tantrums and parenting conflicts. Multilevel generalized linear models tested associations between BLLs and behavior, with neighborhood disadvantage, normalized difference vegetation index (NDVI), and distance to nearest greenspace as effect modifiers. No effect modification was noted for neighborhood disadvantage or NDVI. Children living nearest to greenspace with BLLs < 2 µg/dL were lower on behavior problem scales compared to children with BLLs ≥ 2 µg/dL. When furthest from greenspace, children were similar on behavior problems regardless of BLL. The probability of daily tantrums and conflicts was ~20% among children with BLLs < 2 µg/dL compared to ~45% among children with BLLs ≥ 2 µg/dL when closest to greenspace. Furthest from greenspace, BLLs were not associated with tantrums and conflicts. Effect modification of BLL on child behavior by distance to greenspace suggests that interventions should consider both greenspace access and lead exposure prevention.
Collapse
Affiliation(s)
- Seth Frndak
- Department of Epidemiology and Environmental Health, University at Buffalo—State University of New York, New York, NY 14203, USA
| | - Gabriel Barg
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo 11600, Uruguay
| | - Elena I. Queirolo
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo 11600, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo 11600, Uruguay
| | - Craig Colder
- Department of Psychology, University at Buffalo—State University of New York, New York, NY 14214, USA
| | - Guan Yu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zia Ahmed
- Research and Education in Energy, Environment and Water (RENEW) Institute, University at Buffalo—State University of New York, New York, NY 14260, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo—State University of New York, New York, NY 14203, USA
| |
Collapse
|
10
|
Hatesin An I, Uchenna El G, C. Nwosu D, Miracle Ad K, Chukwunomu C, Philip Igb E, Obi E, Anthony On A, Chibuike I D, Ogechukwu J, Agatha Eme E, Ogechukwu A. Sources and Prevalence of Lead Poisoning Among School Children in Owerri Metropolis, South-East Nigeria. JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.3923/jms.2022.189.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Rowan J, Kordas K, Queirolo EI, Vahter M, Mañay N, Peregalli F, Desai G. Contribution of household drinking water intake to arsenic and lead exposure among Uruguayan schoolchildren. CHEMOSPHERE 2022; 292:133525. [PMID: 34998846 PMCID: PMC10977869 DOI: 10.1016/j.chemosphere.2022.133525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Food and water are common exposure sources of arsenic and lead among children. Whereas dietary sources of these toxicants are fairly well-studied, the contribution of drinking water to toxicant exposures is not well characterized in many populations, particularly in the Global South. OBJECTIVE To assess the extent to which consumption of household drinking water contributes to arsenic and lead exposure among Uruguayan schoolchildren with low-level exposure. METHODS Children, aged 5-8 years, were enrolled into the Salud Ambiental Montevideo study during 2009-2013 from schools in Montevideo, Uruguay. Participants reported water intake as part of two 24-h dietary recalls. Concentrations of arsenic were measured in first morning void urine samples, and adjusted for urinary specific gravity. Lead concentrations were measured in venous blood samples. Drinking water samples were collected from participants' homes and toxicant concentrations measured. Data analyses involved a triangulation approach. First, multivariable linear regressions estimated the associations between toxicant exposure through drinking water, calculated for each child as the product of water intake and water toxicant concentration, and the respective toxicant biomarker concentrations among children with complete data on all variables (Sample A; n = 40). Second, regressions were repeated for participants with complete data on all variables except water intakes (Sample B; n = 195), after water intakes were imputed. Finally, models were constructed for participants of Sample B (n = 195) based on drinking water intakes assumed to be fixed at 25th, 50th, 75th percentile intakes of participants in sample A. RESULTS Toxicant exposure via drinking water intake was low. The triangulation approach revealed no associations between toxicant exposure through household water intake and the respective toxicant biomarker concentrations. CONCLUSION Studies with larger samples and repeated measures are needed to confirm these findings. Nevertheless, it appears that at low water toxicant concentrations, typical water consumption is not a major contributor to children's exposure.
Collapse
Affiliation(s)
- Jennifer Rowan
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA; Genesee County Health Department, Batavia, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| |
Collapse
|
12
|
Capitão C, Martins R, Santos O, Bicho M, Szigeti T, Katsonouri A, Bocca B, Ruggieri F, Wasowicz W, Tolonen H, Virgolino A. Exposure to heavy metals and red blood cell parameters in children: A systematic review of observational studies. Front Pediatr 2022; 10:921239. [PMID: 36275050 PMCID: PMC9583003 DOI: 10.3389/fped.2022.921239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Mechanistic studies show that heavy metals interfere with the hematopoietic system by inhibiting key enzymes, which could lead to anemia. However, the link between children's exposure and red blood cell (RBC) parameters has been inconsistent. We aimed to summarize evidence on human studies exploring the association between exposure to lead, mercury, cadmium, arsenic, and chromium VI and RBC parameters in children. METHODS Following the PRISMA guidelines, we searched PubMed, Scopus, and Web of Science databases for studies published between January 2010 and April 2022. Eligible papers included human observational studies that directly assessed exposure (internal dose) to the heavy metals under study and RBC parameters in participants aged ≤ 18 years. We excluded studies using hospital-based samples. Study quality was assessed using the National Institutes of Health's Quality Assessment Tools for Cohort and Cross-Sectional Studies. We synthesized the evidence using vote counting based on the direction of the relationship. RESULTS Out of 6,652 retrieved papers, we included a total of 38 (33 assessing lead, four mercury, two cadmium, and two arsenic; chromium VI was not assessed in any included paper). More than half of the studies were conducted in Asia. We found evidence of a positive relationship between lead concentration and hemoglobin (proportion of studies reporting negative relationships = 0.750; 95% Confidence Interval (CI) 0.583, 0.874) and mean corpuscular hemoglobin (0.875; 95% CI 0.546, 0.986), and a positive relationship with red cell distribution width (0.000; 95%CI 0.000, 0.379). When considering only good-quality studies (24% of the Pb studies), only the relationship with hemoglobin levels remained (0.875; 95% CI: 0.546, 0.986). CONCLUSION We found evidence of a negative relationship between lead concentration and hemoglobin and mean corpuscular hemoglobin and of a positive relationship with red cell distribution width in children. We also identified a need to conduct more studies in European countries. Future studies should use standardized practices and make efforts to increase study quality, namely by conducting comprehensive longitudinal studies. Our findings support the need to take further actions to limit heavy metal exposure during childhood.
Collapse
Affiliation(s)
- Carolina Capitão
- Environmental Health Behaviour Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Raquel Martins
- Environmental Health Behaviour Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Osvaldo Santos
- Environmental Health Behaviour Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Unbreakable Idea Research, Cadaval, Portugal
| | - Manuel Bicho
- Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Laboratório de Genética, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto Rocha Cabral, Lisbon, Portugal
| | | | | | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Ana Virgolino
- Environmental Health Behaviour Lab, Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Laboratório Associado TERRA, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Donangelo CM, Kerr BT, Queirolo EI, Vahter M, Peregalli F, Mañay N, Kordas K. Lead exposure and indices of height and weight in Uruguayan urban school children, considering co-exposure to cadmium and arsenic, sex, iron status and dairy intake. ENVIRONMENTAL RESEARCH 2021; 195:110799. [PMID: 33508259 PMCID: PMC10916356 DOI: 10.1016/j.envres.2021.110799] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 05/18/2023]
Abstract
Child growth depends on complex factors including diet, nutritional status, socioeconomic, and sanitary conditions, and exposure to environmental chemicals. Lead exposure is known to impair growth in young children but effects in school-age children are less clear. The effects of co-exposure to low-level lead and other toxic metals on child growth are not well understood. We examined cross-sectional associations of blood lead (BLL) with growth indices (Z scores of body mass index for age, BAZ, and height for age, HAZ) in Uruguayan urban school children (n = 259; ~7 y). Potential differences in these associations in children with lower vs. higher urinary inorganic arsenic metabolites (U-As), urinary cadmium (U-Cd), sex (42% girls), iron deficiency (ID, 39% children), or intake of dairy foods below recommended levels were examined. BLL was measured using AAS, U-As using HPLC-HGICP-MS, and U-Cd using ICP-MS. Dietary information was obtained by two 24-h recalls completed by caregivers. Children's linear growth was within age and sex-appropriate reference values. Overweight (BAZ > 1 2 SD) was found in 20.1%, and obesity (BAZ > 2 SD) in 18.5%, of children. Ranges (5th, 95th percentile) of biomarker concentrations were: BLL, 0.8-7.8 μg/dL; U-Cd, 0.01-0.2 μg/L, and U-As, 4.0-27.3 μg/L. BLL was inversely associated with HAZ ([95% CI]: 0.10 [-0.17, -0.03]) in covariate-adjusted models. Although this association was slightly more pronounced in girls, children without ID, and children with lower U-As, there was little evidence of effect modification due to overlapping CIs in stratified models. BLLs were not associated with BAZ, except for a suggestion of a negative relationship in girls (-0.10 [-0.23, 0.02]) but not boys [0.001 [-0.11, 0.12]). Our findings indicate that exposure to low levels of lead was associated with lower HAZ in apparently normally growing urban school children. Larger future studies should help elucidate if these associations persist over time and across populations.
Collapse
Affiliation(s)
| | - Brendan T Kerr
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Elena I Queirolo
- Departmento de Neurocognición, Centro de Investigación Mullin, Universidad Católica Del Uruguay, Montevideo, Uruguay
| | - Marie Vahter
- Department of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Fabiana Peregalli
- Departmento de Neurocognición, Centro de Investigación Mullin, Universidad Católica Del Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Departmento de Toxicología, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
14
|
Astolfi ML, Pietris G, Mazzei C, Marconi E, Canepari S. Element Levels and Predictors of Exposure in the Hair of Ethiopian Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228652. [PMID: 33233360 PMCID: PMC7700284 DOI: 10.3390/ijerph17228652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/07/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023]
Abstract
Children's development and health may be affected by toxic heavy metal exposure or suboptimal essential element intake. This study aimed to provide updated information regarding the concentrations of 41 elements in children's hair (aged under 18) living in a rural area of the Benishangul-Gumuz region, Ethiopia. The highest average levels (as a geometric mean) for toxic heavy metals were obtained for Al (1 mg kg-1), Pb (3.1 mg kg-1), and Ni (1.2 mg kg-1), while the lowest concentrations among the essential elements were found for Co (0.32 mg kg-1), Mo (0.07 mg kg-1), Se (0.19 mg kg-1), and V (0.8 mg kg-1). Hair analysis was combined with a survey to evaluate relationships and variations among subgroups and potential metal exposure predictors. Females showed significantly higher concentrations for most hair elements, excluding Zn, than males, and the 6-11 years age group reported the highest levels for Be, Ce, Co, Fe, La, Li, Mo, and Na. The main predictors of exposure to toxic elements were fish consumption for Hg and drinking water for Ba, Be, Cs, Li, Ni, Tl, and U. The data from this study can be used to develop prevention strategies for children's health and protection in developing countries.
Collapse
Affiliation(s)
- Maria Luisa Astolfi
- Department of Chemistry, Sapienza University, Piazzale Aldo Moro 5, I-00185 Rome, Italy;
- Correspondence: ; Tel.: +39-064-991-3384
| | - Georgios Pietris
- Department of General Surgery, Thoracic Diseases General Hospital Sotiria of Athens, Mesogion 152, 115 27 Athens, Greece;
| | - Corrado Mazzei
- Canon Toshiba Medical Systems s.r.l., Via Canton 115, I-00144 Rome, Italy;
| | - Elisabetta Marconi
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, I-00185 Rome, Italy;
| | - Silvia Canepari
- Department of Chemistry, Sapienza University, Piazzale Aldo Moro 5, I-00185 Rome, Italy;
| |
Collapse
|
15
|
Travis SC, Aga DS, Queirolo EI, Olson JR, Daleiro M, Kordas K. Catching flame retardants and pesticides in silicone wristbands: Evidence of exposure to current and legacy pollutants in Uruguayan children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140136. [PMID: 32927574 PMCID: PMC10989841 DOI: 10.1016/j.scitotenv.2020.140136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/06/2023]
Abstract
Children are exposed to many potentially toxic compounds in their daily lives and are vulnerable to the harmful effects. To date, very few non-invasive methods are available to quantify children's exposure to environmental chemicals. Due to their ease of implementation, silicone wristbands have emerged as passive samplers to study personal environmental exposures and have the potential to greatly increase our knowledge of chemical exposures in vulnerable population groups. Nevertheless, there is a limited number of studies monitoring children's exposures via silicone wristbands. In this study, we implemented this sampling technique in ongoing research activities in Montevideo, Uruguay which aim to monitor chemical exposures in a cohort of elementary school children. The silicone wristbands were worn by 24 children for 7 days; they were quantitatively analyzed using gas chromatography with tandem mass spectrometry for 45 chemical pollutants, including polychlorinated biphenyls (PCBs), pesticides, polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (OPFRs), and novel halogenated flame-retardant chemicals (NHFRs). All classes of chemicals, except NHFRs, were identified in the passive samplers. The average number of analytes detected in each wristband was 13 ±3. OPFRs were consistently the most abundant class of analytes detected. Median concentrations of ΣOPFRs, ΣPBDEs, ΣPCBs, and dichlorodiphenyltrichloroethane (DDT) and its metabolites (dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD)) were 1020, 3.00, 0.52 and 3.79 ng/g wristband, respectively. Two major findings result from this research; differences in trends of two OPFRs (TCPP and TDCPP) are observed between studies in Uruguay and the United States, and the detection of DDT, a chemical banned in several countries, suggests that children's exposure profiles in these settings may differ from other parts of the world. This was the first study to examine children's exposome in South America using silicone wristbands and clearly points to a need for further studies.
Collapse
Affiliation(s)
- Steven C Travis
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - James R Olson
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States
| | - Mónica Daleiro
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York (SUNY) Buffalo, New York, United States.
| |
Collapse
|
16
|
Liu W, Xin Y, Li Q, Shang Y, Ping Z, Min J, Cahill CM, Rogers JT, Wang F. Biomarkers of environmental manganese exposure and associations with childhood neurodevelopment: a systematic review and meta-analysis. Environ Health 2020; 19:104. [PMID: 33008482 PMCID: PMC7531154 DOI: 10.1186/s12940-020-00659-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Although prior studies showed a correlation between environmental manganese (Mn) exposure and neurodevelopmental disorders in children, the results have been inconclusive. There has yet been no consistent biomarker of environmental Mn exposure. Here, we summarized studies that investigated associations between manganese in biomarkers and childhood neurodevelopment and suggest a reliable biomarker. METHODS We searched PubMed and Web of Science for potentially relevant articles published until December 31th 2019 in English. We also conducted a meta-analysis to quantify the effects of manganese exposure on Intelligence Quotient (IQ) and the correlations of manganese in different indicators. RESULTS Of 1754 citations identified, 55 studies with 13,388 subjects were included. Evidence from cohort studies found that higher manganese exposure had a negative effect on neurodevelopment, mostly influencing cognitive and motor skills in children under 6 years of age, as indicated by various metrics. Results from cross-sectional studies revealed that elevated Mn in hair (H-Mn) and drinking water (W-Mn), but not blood (B-Mn) or teeth (T-Mn), were associated with poorer cognitive and behavioral performance in children aged 6-18 years old. Of these cross-sectional studies, most papers reported that the mean of H-Mn was more than 0.55 μg/g. The meta-analysis concerning H-Mn suggested that a 10-fold increase in hair manganese was associated with a decrease of 2.51 points (95% confidence interval (CI), - 4.58, - 0.45) in Full Scale IQ, while the meta-analysis of B-Mn and W-Mn generated no such significant effects. The pooled correlation analysis revealed that H-Mn showed a more consistent correlation with W-Mn than B-Mn. Results regarding sex differences of manganese associations were inconsistent, although the preliminary meta-analysis found that higher W-Mn was associated with better Performance IQ only in boys, at a relatively low water manganese concentrations (most below 50 μg/L). CONCLUSIONS Higher manganese exposure is adversely associated with childhood neurodevelopment. Hair is the most reliable indicator of manganese exposure for children at 6-18 years of age. Analysis of the publications demonstrated sex differences in neurodevelopment upon manganese exposure, although a clear pattern has not yet been elucidated for this facet of our study.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjuan Xin
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qianwen Li
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yanna Shang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhiguang Ping
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Catherine M. Cahill
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Jack T. Rogers
- Neurochemistry Laboratory, Department of Psychiatry-Neuroscience, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA USA
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Kirichuk AA, Skalny AA, Rusakov AI, Tinkov AA, Skalny AV. Arsenic, cadmium, mercury, and lead levels in hair and urine in first-year RUDN University students of different geographic origins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34348-34356. [PMID: 32557050 DOI: 10.1007/s11356-020-09683-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/10/2020] [Indexed: 05/27/2023]
Abstract
The objective of the present study was to assess the markers of arsenic, cadmium, mercury, and lead exposure in first-year RUDN University students of different geographic origins. A total of 274 first-year students of the RUDN University originating from Russia (n = 65), Asia (n = 57), Middle East (n = 84), Africa (n = 40), and Latin America (n = 28) were enrolled in the present study. Evaluation of As, Cd, Hg, and Pb levels in urine and hair was performed using inductively coupled plasma-mass spectrometry. The obtained data demonstrate that hair As levels in foreign students exceed that in Russian examinees. The highest Cd and Pb levels were detected in subjects from Africa and Latin America, whereas hair Hg content was significantly higher in Latin America students. Urinary Cd levels in foreign students exceeded those in Russian counterparts. In turn, the highest Hg concentration in urine was revealed in students originating from Middle East and especially Latin America. Urinary Pb levels were found to be the highest in students from Africa. Multiple regression analysis demonstrated that Asian, African, and Latin American origins were considered as a significant predictor of hair Hg content. Higher urinary Hg levels were associated with Asia, Middle East, and Latin American origins. Prior habitation in Africa and Asia was considered as predictor of higher hair Pb and urinary Cd levels. The observed difference may be indicative of geographic difference in toxic metal exposure patterns.
Collapse
Affiliation(s)
- Anatoly A Kirichuk
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198
| | - Andrey A Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198
- Yaroslavl State University, Yaroslavl, Russia, 150003
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119146
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia, 117198.
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119146.
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia, 460000.
| |
Collapse
|
18
|
Desai G, Barg G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Kordas K. Executive functions in school children from Montevideo, Uruguay and their associations with concurrent low-level arsenic exposure. ENVIRONMENT INTERNATIONAL 2020; 142:105883. [PMID: 32599352 PMCID: PMC10927015 DOI: 10.1016/j.envint.2020.105883] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Arsenic is a known childhood neurotoxicant, but its neurotoxicity at low exposure levels is still not well established. The aim of our cross-sectional study was to test the association between low-level arsenic exposure and executive functions (EF) among children in Montevideo. We also assessed effect modification by arsenic methylation capacity, a susceptibility factor for the health effects of arsenic, and by B-vitamin intake, which impacts arsenic methylation. METHODS Arsenic exposure was assessed as the specific gravity-adjusted sum of urinary arsenic metabolites (U-As) among 255 ~ 7 year-old children, and methylation capacity as the proportion of urinary monomethylarsonic acid (%MMA). Arsenic concentrations from kitchen water samples at participants' homes were assessed. B-vitamin intake was calculated from the average of two 24-hour dietary recalls. EF was measured using three tests from the Cambridge Neuropsychological Test Automated Battery- Stockings of Cambridge (SOC), Intra-dimensional/extra-dimensional shift task (IED), and Spatial Span (SSP). Generalized linear models assessed the association between U-As and EF measures; models were adjusted for age, sex, maternal education, possessions score, Home Observation for Measurement of the Environment Inventory score, season, and school clusters. Additional analyses were conducted to address issues of residual confounding and sample size. A "B-vitamin index" was calculated using principal component analysis. Effect modification by the index and urinary %MMA was assessed in strata split at the respective medians of these variables. RESULTS The median (range) U-As and water arsenic levels were 9.9 µg/L (2.2, 47.7) and 0.45 µg/L (0.1, 18.9) respectively, indicating that exposure originated mainly from other sources. U-As was inversely associated with the number of stages completed (β = -0.02; 95% CI: -0.03, -0.002) and pre-executive shift errors (β = -0.08; 95% CI: -0.14, -0.02) of the IED task, and span length of the SSP task (β = -0.01; 95% CI: -0.02, -0.004). There was no clear pattern of effect modification by B-vitamin intake or urinary %MMA. CONCLUSION Low-level arsenic exposure may adversely affect executive function among children but additional, including longitudinal, studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
19
|
Desai G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Browne RW, Kordas K. Vitamin B-6 Intake Is Modestly Associated with Arsenic Methylation in Uruguayan Children with Low-Level Arsenic Exposure. J Nutr 2020; 150:1223-1229. [PMID: 31913474 PMCID: PMC7198313 DOI: 10.1093/jn/nxz331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Detoxification of inorganic arsenic (iAs) occurs when it methylates to form monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). Lower proportions of urinary iAs and MMA, and higher proportions of DMA indicate efficient methylation. The role of B-vitamins in iAs methylation in children with low-level arsenic exposure is understudied. OBJECTIVES Our study objective was to assess the association between B-vitamin intake and iAs methylation in children with low-level arsenic exposure (<50 µg/L in water; urinary arsenic 5-50 µg/L). METHODS We conducted a cross-sectional study in 290 ∼7-y-old children in Montevideo. Intake of thiamin, riboflavin, niacin, vitamin B-6, and vitamin B-12 was calculated by averaging 2 nonconsecutive 24-h recalls. Total urinary arsenic concentration was measured as the sum of urinary iAs, MMA, and DMA, and adjusted for urinary specific gravity; iAs methylation was measured as urinary percentage As, percentage MMA, and percentage DMA. Arsenic concentrations from household water sources were assessed. Linear regressions tested the relationships between individual energy-adjusted B-vitamins and iAs methylation. RESULTS Median (range) arsenic concentrations in urine and water were 9.9 (2.2-48.7) and 0.45 (0.1-18.9) µg/L, respectively. The median (range) of urinary percentage iAs, percentage MMA, and percentage DMA was 10.6% (0.0-33.8), 9.7% (2.6-24.8), and 79.1% (58.5-95.4), respectively. The median (range) intake levels of thiamin, riboflavin, niacin, and vitamin B-6 were 0.81 (0.19-2.56), 1.0 (0.30-2.24), 8.6 (3.5-23.3), and 0.67 (0.25-1.73) mg/1000 kcal, respectively, whereas those of folate and vitamin B-12 were 216 (75-466) and 1.7 (0.34-8.3) µg/1000 kcal, respectively. Vitamin B-6 intake was inversely associated with urinary percentage MMA (β = -1.60; 95% CI: -3.07, -0.15). No other statistically significant associations were observed. CONCLUSIONS Although vitamin B-6 intake was inversely associated with urinary percentage MMA, our findings suggest limited support for a relation between B-vitamin intake and iAs methylation in children exposed to low-level arsenic.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA,Address correspondence to GD (e-mail: )
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
20
|
Levin-Schwartz Y, Gennings C, Schnaas L, Del Carmen Hernández Chávez M, Bellinger DC, Téllez-Rojo MM, Baccarelli AA, Wright RO. Time-varying associations between prenatal metal mixtures and rapid visual processing in children. Environ Health 2019; 18:92. [PMID: 31666078 PMCID: PMC6822453 DOI: 10.1186/s12940-019-0526-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/22/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Humans are exposed to mixtures of chemicals across their lifetimes, a concept sometimes called the "exposome." Mixtures likely have temporal "critical windows" of susceptibility like single agents and measuring them repeatedly might help to define such windows. Common approaches to evaluate the effects of chemical mixtures have focused on their effects at a single time point. Our goal is to expand upon these previous techniques and examine the time-varying critical windows for metal mixtures on subsequent neurobehavior in children. METHODS We propose two methods, joint weighted quantile sum regression (JWQS) and meta-weighted quantile sum regression (MWQS), to estimate the effects of chemical mixtures measured across multiple time points, while providing data on their critical windows of exposure. We compare the performance of both methods using simulations. We also applied both techniques to assess second and third trimester metal mixture effects in predicting performance in the Rapid Visual Processing (RVP) task from the Cambridge Neuropsychological Test Automated Battery (CANTAB) assessed at 6-9 years in children who are part of the PROGRESS (Programming Research in Obesity, GRowth, Environment and Social Stressors) longitudinal cohort study. The metals, arsenic, cadmium (Cd), cesium, chromium, lead (Pb) and antimony (Sb) were selected based on their toxicological profile. RESULTS In simulations, JWQS and MWQS had over 80% accuracy in classifying exposures as either strongly or weakly contributing to an association. In real data, both JWQS and MWQS consistently found that Pb and Cd exposure jointly predicted longer latency in the RVP and that second trimester exposure better predicted the results than the third trimester. Additionally, both JWQS and MWQS highlighted the strong association Cd and Sb had with lower accuracy in the RVP and that third trimester exposure was a better predictor than second trimester exposure. CONCLUSIONS Our results indicate that metal mixtures effects vary across time, have distinct critical windows and that both JWQS and MWQS can determine longitudinal mixture effects including the cumulative contribution of each exposure and critical windows of effect.
Collapse
Affiliation(s)
- Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | | | | | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | | | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health Columbia University, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| |
Collapse
|
21
|
Desai G, Barg G, Vahter M, Queirolo EI, Peregalli F, Mañay N, Millen AE, Yu J, Browne RW, Kordas K. Low level arsenic exposure, B-vitamins, and achievement among Uruguayan school children. Int J Hyg Environ Health 2019; 223:124-131. [PMID: 31588016 DOI: 10.1016/j.ijheh.2019.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Millions of children globally, including the U.S., are exposed to low levels of arsenic from water and food. Arsenic is a known neurotoxicant at high levels but its effects at lower exposure levels are understudied. Arsenic methylation capacity, influenced by B-vitamin intake and status, potentially influences arsenic toxicity. In a cross-secitonal study of 5-8 year-old children from Montevideo, we assessed the relationship between urinary arsenic (U-As) and academic achievement, and tested for effect modification by B-vitamin intake, status, and arsenic methylation capacity. METHODS Broad math and reading scores were calculated based on six subtests (calculation, math facts fluency, applied problems, sentence reading fluency, letter word identification, passage comprehension) from the Woodcock-Muñoz Achievement Battery. B-vitamin intake was assessed from two non-consecutive 24-h dietary recalls, serum folate and vitamin B-12 levels were measured in a subset of participants. Arsenic methylation capacity was measured as the proportion of urinary monomethylarsonic acid (%MMA). Multiple imputation using chained equations was conducted to account for missing covariate and exposure data. Ordinal regressions assessed associations between U-As and achievement score tertiles in the complete case and imputed samples. A "B-vitamin index" was calculated using principal component analysis. Interactions by urinary %MMA and the B-vitamin index were assessed. RESULTS Median specific gravity adjusted U-As was 11.7 μg/L (range: 2.6, 50.1). We found no association between U-As and broad math and reading scores, nor effect modification by %MMA or B-vitamins. CONCLUSION At low-levels of exposure, U-As does not appear to affect children's academic achievement.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Amy E Millen
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Jihnhee Yu
- Department of Biostatistics, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Richard W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, The State University of New York (SUNY) at Buffalo, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
22
|
Dórea JG. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. ENVIRONMENTAL RESEARCH 2019; 177:108641. [PMID: 31421445 DOI: 10.1016/j.envres.2019.108641] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is a worldwide environmental contaminant that even at low levels influences brain development and affects neurobehavior later in life; nevertheless it is only a small fraction of the neurotoxicant (NT) exposome. Exposure to environmental Pb concurrent with other NT substances is often the norm, but their joint effects are challenging to study during early life. The aim of this review is to integrate studies of Pb-containing NT mixtures during the early life and neurodevelopment outcomes of children. The Pb-containing NT mixtures that have been most studied involve other metals (Mn, Al, Hg, Cd), metalloids (As), halogen (F), and organo-halogen pollutants. Co-occurring Pb-associated exposures during pregnancy and lactation depend on the environmental sources and the metabolism and half-life of the specific NT contaminant; but offspring neurobehavioral outcomes are also influenced by social stressors. Nevertheless, Pb-associated effects from prenatal exposure portend a continued burden on measurable neurodevelopment; they thus favor increased neurological health issues, decrements in neurobehavioral tests and reductions in the quality of life. Neurobehavioral test outcomes measured in the first 1000 days showed Pb-associated negative outcomes were frequently noticed in infants (<6 months). In older (preschool and school) children studies showed more variations in NT mixtures, children's age, and sensitivity and/or specificity of neurobehavioral tests; these variations and choice of statistical model (individual NT stressor or collective effect of mixture) may explain inconsistencies. Multiple exposures to NT mixtures in children diagnosed with 'autism spectrum disorders' (ASD) and 'attention deficit and hyperactivity disorders' (ADHD), strongly suggest a Pb-associated effect. Mixture potency (number or associated NT components and respective concentrations) and time (duration and developmental stage) of exposure often showed a measurable impact on neurodevelopment; however, net effects, reversibility and/or predictability of delays are insufficiently studied and need urgent attention. Nevertheless, neurodevelopment delays can be prevented and/or attenuated if public health policies are implemented to protect the unborn and the young child.
Collapse
Affiliation(s)
- José G Dórea
- Universidade de Brasília, Brasília, 70919-970, DF, Brazil.
| |
Collapse
|
23
|
Li T, Zhang S, Tan Z, Dai Y. Potential dietary factors for reducing lead burden of Chinese preschool children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22922-22928. [PMID: 31177414 DOI: 10.1007/s11356-019-05527-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Dietary approaches to treat children's low lead exposure are implemented routinely in China, while evidence for the effect could not be provided until now. The aim of this study was to examine the relationship between diets including nutrition supplementation and blood lead level of preschool children of China. In total, 17,859 preschool children from 14 cities were recruited, and their social-demography, living environment, and dietary intakes were collected, and capillary blood sample was tested for lead concentration. The average blood lead concentration was 34.5 μg/L, and after adjusting children's social-demography factors, the consumption of milk or dairy production, fruits, and calcium supplementation had negative dose-response relationships with blood lead level. Conversely, intake of iron-rich food and supplementation was not associated. Further studies are needed to prove the causal relationships.
Collapse
Affiliation(s)
- Tao Li
- Capital Institute of Pediatrics, Beijing, 100020, China
| | | | - Zangwen Tan
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yaohua Dai
- Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
24
|
Burganowski R, Vahter M, Queirolo EI, Peregalli F, Baccino V, Barcia E, Mangieri S, Ocampo V, Mañay N, Martínez G, Kordas K. A cross-sectional study of urinary cadmium concentrations in relation to dietary intakes in Uruguayan school children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1239-1248. [PMID: 30677986 PMCID: PMC6369586 DOI: 10.1016/j.scitotenv.2018.12.220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cadmium (Cd) exposure has adverse health effects in children. Diet contributes to Cd exposure, but dietary components could affect body Cd levels. OBJECTIVE To examine associations between diet and urinary Cd (U-Cd) in children. METHODS In this cross-sectional study conducted in Montevideo, Uruguay, Cd exposure of 5-8 year old children (n = 279 with complete data) was assessed in first morning urine (U-Cd), a marker of long-term exposure, measured by ICP-MS and adjusted for specific gravity. Distribution of U-Cd was (median [5%, 95%]: 0.06 [0.02, 0.17] μg/L); data were natural-log-transformed (ln) for statistical analyses. Serum ferritin (SF), an indicator of iron stores, was measured in fasting samples. Trained nutritionists completed two non-consecutive 24-h dietary recalls with both child and caregiver present. Measures of iron, zinc, calcium and fiber intake, and the consumption of grains, root vegetables, milk, and foods rich in heme iron (white and read meats) and non-heme iron (legumes, spinach, broccoli, tomatoes, dried fruit) were derived. Multivariable ordinary least squares (OLS) and ordinal regressions were used to examine associations among tertiles of water Cd, SF, diet, and U-Cd. OLS models were further stratified by sex. RESULTS In covariate-adjusted models, SF was not related to ln-U-Cd. Children in highest tertile of iron and zinc intake had lower ln-U-Cd: (-0.23 [-0.42, -0.03]) and (-0.25 [-0.44, -0.05]), respectively, compared to the reference group. Children consuming higher amounts of foods rich in heme iron had slightly lower ln-U-Cd (-0.17 [-0.36, 0.03]). High grain consumption was related to higher ln-U-Cd (0.25 [0.06, 0.45]). CONCLUSIONS Diets rich in grains were related to higher urinary Cd levels among children living in the context of low Cd pollution. Higher intake of iron and zinc was related to lower Cd levels. Given that urinary Cd is mainly a marker of long-term exposure, these findings should be further corroborated.
Collapse
Affiliation(s)
- Rachael Burganowski
- Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States of America
| | - Marie Vahter
- Institute of Environmental Health, Karolinska Institutet, Stockholm, Sweden
| | - Elena I Queirolo
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Institute of Environmental Health, Karolinska Institutet, Stockholm, Sweden; Department of Gastroenterology, Hepatology and Nutrition, Pereira Rossell Hospital, Montevideo, Uruguay
| | - Valentina Baccino
- Institute of Environmental Health, Karolinska Institutet, Stockholm, Sweden
| | - Elizabeth Barcia
- Institute of Environmental Health, Karolinska Institutet, Stockholm, Sweden
| | - Soledad Mangieri
- Institute of Environmental Health, Karolinska Institutet, Stockholm, Sweden
| | - Virginia Ocampo
- Institute of Environmental Health, Karolinska Institutet, Stockholm, Sweden
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo, Uruguay
| | - Gabriela Martínez
- Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo, Uruguay
| | - Katarzyna Kordas
- Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States of America.
| |
Collapse
|
25
|
Association of Low Lead Levels with Behavioral Problems and Executive Function Deficits in Schoolers from Montevideo, Uruguay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122735. [PMID: 30518085 PMCID: PMC6313712 DOI: 10.3390/ijerph15122735] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/11/2023]
Abstract
The negative effect of lead exposure on children's intelligence is well-documented. Less is known about the impact of lead on the use of executive functions to self-regulate behavior. We measured blood lead level (BLL) in a sample of first grade children from Montevideo, Uruguay (n = 206, age 6.7 ± 0.5 years, 59.7% boys). Behavior was assessed with teacher versions of the Conners Rating Scale (CRS) and the Behavior Rating Inventory of Executive Functions (BRIEF). Mean BLL was 4.2 ± 2.1 μg/dL; 10% had mild-to-severe ratings of Attentional Deficit with Hyperactivity Disorder (ADHD) (T score > 65). In negative binomial regression, BLL was not associated with CRS sub-scales, but was associated with a poorer ability to inhibit inappropriate behaviors, prevalence ratio (PR) [95% CI]: 1.01 [1.00, 1.03] as measured by the BRIEF. In covariate-adjusted models, the association with BLL was attenuated. When stratified by sex, the covariate-adjusted association between BLL, hyperactivity, poorer inhitibion, emotional control, and behavioral regulation was marginally significant for girls but not boys. In summary, among children with low lead-exposure, we found some, but nonetheless modest, evidence of a relationship between higher BLL and child behavior. If confirmed by larger studies and other objective measures of behavior, such links could have implications for learning and social interaction, particularly among girls.
Collapse
|
26
|
Nascimento S, Göethel G, Gauer B, Sauer E, Nardi J, Cestonaro L, Correia D, Peruzzi C, Mota L, Machry RV, Furlanetto TW, Saint' Pierre T, Gioda A, Arbo MD, Garcia SC. Exposure to environment chemicals and its possible role in endocrine disruption of children from a rural area. ENVIRONMENTAL RESEARCH 2018; 167:488-498. [PMID: 30142624 DOI: 10.1016/j.envres.2018.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Endocrine disrupting chemicals (EDCs), including pesticides and metals, are present in rural areas, endangering the health of exposed populations. This work aimed to investigate the possible association between the exposure to these xenobiotics and thyroid dysfunction in children living in a rural community of Southern Brazil. Fifty-four children aged 5-16 years participated in this study. Peripheral biomarker evaluations were performed in periods of low and high exposure to pesticides. Thyroid ultrasonography was evaluated in the high exposure period. Blood levels of chromium (Cr), manganese (Mn), mercury (Hg), and lead (Pb), as well as hair Pb levels were positively correlated with thyroid stimulating hormone (TSH) concentrations and negatively associated with free thyroxine (fT4) levels in the low exposure period. Prolactin was positively associated with hair Mn in both periods. In the ultrasound tests, the majority of children presented a normal echogenicity of thyroid. Glucose was inversely associated with the biomarker of exposure to cholinesterase inhibitor insecticides, butyrylcholinesterase (BuChE). Lipid profile was above the recommended levels in both periods. In summary, our results show that children environmentally exposed to a mixture of xenobiotics in an agricultural community may have health impairments, especially on thyroid function, dyslipidemia, and glucose homeostasis disruption.
Collapse
Affiliation(s)
- Sabrina Nascimento
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Jessica Nardi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Larissa Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Douglas Correia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Caroline Peruzzi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Luciano Mota
- Hospital Universitário de Santa Maria (HUSM), Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, Brazil
| | - Rafael V Machry
- Departamento de Medicina Clínica, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, Brazil
| | - Tania W Furlanetto
- Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2350, Porto Alegre, RS, Brazil
| | - Tatiana Saint' Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Marquês de São Vicente 225, Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Marquês de São Vicente 225, Rio de Janeiro, RJ, Brazil
| | - Marcelo D Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Solange C Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Kordas K, Roy A, Vahter M, Ravenscroft J, Mañay N, Peregalli F, Martínez G, Queirolo EI. Multiple-metal exposure, diet, and oxidative stress in Uruguayan school children. ENVIRONMENTAL RESEARCH 2018; 166:507-515. [PMID: 29957504 PMCID: PMC6110975 DOI: 10.1016/j.envres.2018.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/02/2018] [Accepted: 06/13/2018] [Indexed: 05/05/2023]
Abstract
Oxidative stress (OS) is an important consequence of exposure to toxic metals but it is unclear to what extent low-level metal exposures contribute to OS in children. We examined the cross-sectional association between urinary concentrations of arsenic (As), cadmium (Cd), and lead (Pb) and urinary markers of OS: F2-8α isoprostane and 8-hydroxy-2-deoxy-guanosine (8-OHdG). We also tested effect modification by dietary intakes. Of the 211 children aged 6-8 years living in Montevideo who were eligible for the study because they had at least one OS marker measured via ELISA, 143 were included in a complete-case analysis. Urinary metals were measured with inductively coupled plasma mass spectrometry (ICP-MS: Pb, Cd) and high-performance liquid chromatography online with hydride generation ICP-MS (As-metabolites); concentrations were log2-transformed. All urinary markers were adjusted for specific gravity of urine. Two 24-h dietary recalls were conducted to estimate children's dietary intakes, including total fruit and vegetable consumption and vitamin C, zinc and fiber intake. Ordinary least square (OLS) and weighted quantile sum (WQS) regressions were used to estimate the association between metals and each OS marker as outcome. Metal exposure was generally low: median urinary As, Cd, Pb 9.6 μg/L, 0.06 μg/L and 1.9 μg/L, respectively. Median 8-isoprostane concentration was 1.1 and 8-OHdG 39.6 ng/mL. Log2-transformed urinary As concentrations were positively associated with 8-OHdG concentrations (10.90 [3.82, 17.97]) in covariate-adjusted OLS models which also took account of exposure to Cd and Pb. In WQS, a mixture index was also associated with higher 8-OHdG (8.71 [1.12, 16.3] for each 25% increase in index value), mostly driven by As exposure. There was little evidence of effect modification by dietary antioxidants. In sum, even at low-level, As exposure is associated with detectable oxidative damage to the DNA.
Collapse
Affiliation(s)
- Katarzyna Kordas
- Department of Epidemiology and Environmental Health, SUNY at Buffalo, Buffalo, NY, USA.
| | - Aditi Roy
- Department of Pediatrics; Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Ravenscroft
- Department of Epidemiology and Environmental Health, SUNY at Buffalo, Buffalo, NY, USA
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Faculty of Psychology, Catholic University of Uruguay, Montevideo, Uruguay
| | - Gabriela Martínez
- Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo, Uruguay
| | - Elena I Queirolo
- Center for Research, Faculty of Psychology, Catholic University of Uruguay, Montevideo, Uruguay
| |
Collapse
|
28
|
Leroux IN, Ferreira APSDS, Paniz FP, Pedron T, Salles FJ, da Silva FF, Maltez HF, Batista BL, Olympio KPK. Lead, Cadmium, and Arsenic Bioaccessibility of 24 h Duplicate Diet Ingested by Preschool Children Attending Day Care Centers in Brazil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081778. [PMID: 30126211 PMCID: PMC6121652 DOI: 10.3390/ijerph15081778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 11/28/2022]
Abstract
Lead, known as a metal with high neurotoxicity to children, cadmium, which is a carcinogenic and bioaccumulative contaminant, and arsenic, a class 1 carcinogenic according to the International Agency for Research on Cancer, are toxic elements (TEs) whose relevant route of exposure may be diet. We determined the bio-accessible fraction of lead, cadmium, and arsenic from the diet of preschool children from two day care centers (DCC). A cross-sectional study was conducted with 64 one–four-year-old children from two DCCs where the 24-h duplicate diet samples were collected. The diet samples were analyzed by ICP-MS for lead, cadmium, and arsenic total concentrations (n = 64) and their bio-accessibility were analyzed for a subsample (n = 10). The dietary intake (DI) mean for lead, cadmium, and arsenic were 0.18 ± 0.11 µg kg−1 bw, 0.08 ± 0.04 µg kg−1 bw, and 0.61 ± 0.41 µg kg−1 bw, respectively. All DI calculated for TEs, considering total intake, were found lower than the tolerable limits (TL) (European Union, or World Health Organization, WHO, when applicable) except for one child’s Pb intake. Bio-accessibilities ranged between 0% to 93%, 0% to 103%, and 0% to 69%, for lead, cadmium, and arsenic, respectively. Although DI for TEs has been found lower than TL, these reference values have been recently decreased or withdrawn since it was for lead and arsenic whose TL were withdrawn by WHO.
Collapse
Affiliation(s)
- Isabelle Nogueira Leroux
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| | - Ana Paula Sacone da Silva Ferreira
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| | - Fernanda Pollo Paniz
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Tatiana Pedron
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Fernanda Junqueira Salles
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| | - Fábio Ferreira da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
- Agilent Technologies, Alameda Araguaia, 1142 Alphaville Industrial, Barueri 6455000, Brazil.
| | - Heloisa França Maltez
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Bruno Lemos Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Bairro Santa Terezinha, Santo André-SP-Brasil, Santo André 09210-580, Brazil.
| | - Kelly Polido Kaneshiro Olympio
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, São Paulo 1246-904, Brazil.
| |
Collapse
|
29
|
da Rocha Silva JP, Salles FJ, Leroux IN, da Silva Ferreira APS, da Silva AS, Assunção NA, Nardocci AC, Sayuri Sato AP, Barbosa F, Cardoso MRA, Olympio KPK. High blood lead levels are associated with lead concentrations in households and day care centers attended by Brazilian preschool children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:681-688. [PMID: 29715687 DOI: 10.1016/j.envpol.2018.04.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/26/2018] [Accepted: 04/18/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND A previous study observed high blood lead levels (BLL) in preschool children attending 50 day care centers (DCC) in São Paulo, Brazil. OBJECTIVE To identify whether lead levels found in both homes and DCC environments are associated with high blood lead levels. METHODS Children attending 4 DCCs, quoted here as NR, VA, PS and PF, were divided into two groups according to BLL: high exposure (HE: ≥13.9 μg/dL; 97.5 percentile of the 2013 year sample) and low exposure (LE: <5 μg/dL). For in situ lead measurements (lead paint mode: mg/cm2 and ROHS mode: μg/g) in the children's households and in the DCC environments, a field portable X-ray-fluorescence analyzer was used. Multiple logistic regressions were performed to control for confounding factors. Odds ratios were adjusted for age, sex, day care center's measured lead, and tobacco. RESULTS In an NR DCC building, 33.8% of the measurements had lead levels >600 μg/g, whereas such levels were observed in 77.1% of NR playground measurements. In VA DCC, 22% and 23% of the measurements in the building and in the playgrounds had levels higher than 600 μg/g, respectively. The percentage of high lead levels in the children's houses of the LE group was 5.9% (95% CI: 4.3-7.6%) and 13.2 (95% CI: 8.3-18.0%) in the HE group. Moreover, a significant association was found between high BLLs and lead levels found both in households and DCCs (p < 0.001). Most of the high lead measurements were found in tiles and playground equipment. CONCLUSIONS Lead exposure estimated from the DCCs, where children spend about 10 h/day, can be as relevant as their household exposure. Therefore, public authorities should render efforts to provide a rigorous surveillance for lead-free painting supplies and for all objects offered to children.
Collapse
Affiliation(s)
- Júlia Prestes da Rocha Silva
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Fernanda Junqueira Salles
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Isabelle Nogueira Leroux
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Ana Paula Sacone da Silva Ferreira
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Agnes Soares da Silva
- Sustainable Development and Health Equity, Pan American Health Organization, Washington, DC, United States
| | - Nilson Antonio Assunção
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas. Universidade Federal de São Paulo, Diadema, SP, Brazil.
| | - Adelaide Cassia Nardocci
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| | - Ana Paula Sayuri Sato
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Fernando Barbosa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Maria Regina Alves Cardoso
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Kelly Polido Kaneshiro Olympio
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, CEP 01246-904, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Desai G, Barg G, Queirolo EI, Vahter M, Peregalli F, Mañay N, Kordas K. A cross-sectional study of general cognitive abilities among Uruguayan school children with low-level arsenic exposure, potential effect modification by methylation capacity and dietary folate. ENVIRONMENTAL RESEARCH 2018; 164:124-131. [PMID: 29486343 PMCID: PMC5911190 DOI: 10.1016/j.envres.2018.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Few studies have evaluated the association between low-level arsenic (As) exposure and cognitive performance among children. OBJECTIVES In this cross-sectional study, we assessed the association between low-level As exposure and cognitive performance among 5-8 year-old children in Montevideo, and tested effect modification by As methylation capacity and children's dietary folate intake. METHODS We measured total urinary As (UAs) concentrations and the proportion of monomethylarsonic acid (MMA) in the urine of 328 children. Seven subtests of the standardized Woodcock-Muñoz cognitive battery were used to assess cognitive performance, from which, the general intellectual abilities (GIA) score was derived. Total folate intake was estimated from two 24-h dietary recalls. Linear regression analyses were performed. Effect modification was assessed by stratifying at the median %MMA value and tertiles of total folate intake calculated as micrograms (µg) of dietary folate equivalents (dfe). RESULTS The median UAs was 11.9 µg/l (range = 1.4-93.9), mean folate intake was 337.4 (SD = 123.3) µg dfe, and median %MMA was 9.42 (range = 2.6-24.8). There was no association between UAs and cognitive abilities, and no consistent effect modification by %MMA. UAs was associated inversely with concept formation, and positively with cognitive efficiency and numbers reversed subtest in the lowest folate intake tertile; UAs was also positively associated with sound integration in the second tertile and concept formation in the highest tertile of folate intake. There was no consistent pattern of effect modification by %MMA or folate intake. CONCLUSION There was no association between low-level As exposure and general cognitive abilities.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
31
|
Fábelová L, Vandentorren S, Vuillermoz C, Garnier R, Lioret S, Botton J. Hair concentration of trace elements and growth in homeless children aged <6years: Results from the ENFAMS study. ENVIRONMENT INTERNATIONAL 2018; 114:318-325. [PMID: 29150339 DOI: 10.1016/j.envint.2017.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Growth is an important indicator of health in early childhood. This is a critical developmental period, during which a number of factors, including exposure to metals, might play a role in later physical and metabolic functions. OBJECTIVE To study the association between exposure to arsenic (As), cadmium (Cd), mercury (Hg), lead (Pb) and selenium (Se), and physical growth of children from homeless families aged <6years. METHODS This study was based on data of the cross-sectional survey (ENFAMS), which was conducted by the Observatoire du Samu Social on a random sample of homeless sheltered families in the Paris region during winter 2013. Families with children under 6years (N=324) were interviewed in 17 languages using face-to-face questionnaires. A nurse took anthropometric measures and collected hair samples where As, Cd, Hg, Pb and Se levels were measured. We calculated weight-for-age Z-score (WAZ), height-for-age Z-score (HAZ) and BMI-for-age Z-score (BMIZ) of children, using the 2006 WHO Child Growth Standards as a reference. Associations between ln-transformed metal exposures and growth outcomes were tested by multivariable linear regression models with adjustment for potential confounders (including maternal anthropometrical and socio-demographical characteristics, gestational age, child birthweight, breastfeeding, food insecurity of the child). Due to missing data (1.6% to 14.2% depending on the variables), we used multiple imputation by chained equations. RESULTS A strong positive correlation was found between Pb and Cd levels (r=0.65; p<0.001). Positive associations between Se level and HAZ (β=0.61; p=0.05) and between Cd and BMIZ (β=0.21; p=0.03) and negative associations between As and HAZ (β=-0.18; p=0.05) were no more significant after multiple imputation. A weak negative trend was observed between Cd and HAZ (β=-0.14; p=0.14), while positive trends were found between Se and both WAZ (β=0.55; p=0.10) and HAZ (β=0.51; p=0.06) after multiple imputation. CONCLUSION Overall, our results found no strong association between exposure to metals and physical growth of homeless children but we observed some trends that were consistent with previous studies. More research is required studying these associations longitudinally, along with higher sample sizes, for better understanding the sources of exposure in homeless population and the potential effects on growth.
Collapse
Affiliation(s)
- Lucia Fábelová
- U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France.
| | - Stéphanie Vandentorren
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Department of Social Epidemiology, Paris, France; French Institute for Public Health Surveillance, Saint-Maurice, France
| | - Cécile Vuillermoz
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP UMRS 1136), Department of Social Epidemiology, Paris, France
| | - Robert Garnier
- Centre antipoison et de toxicovigilance de Paris, France
| | - Sandrine Lioret
- U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France
| | - Jérémie Botton
- U1153, Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child's Health and Development (ORCHAD) Team, Inserm, Villejuif, France; Faculty of Pharmacy, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
32
|
Kordas K, Burganowski R, Roy A, Peregalli F, Baccino V, Barcia E, Mangieri S, Ocampo V, Mañay N, Martínez G, Vahter M, Queirolo EI. Nutritional status and diet as predictors of children's lead concentrations in blood and urine. ENVIRONMENT INTERNATIONAL 2018; 111:43-51. [PMID: 29172090 PMCID: PMC5915341 DOI: 10.1016/j.envint.2017.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 11/17/2017] [Indexed: 05/05/2023]
Abstract
Lead exposure remains an important public health problem. Contaminated foods may act as a source of lead exposure, while certain nutrients may reduce lead absorption. We examined the cross-sectional associations of dietary patterns and the intake of several nutrients and foods with blood (Pb-B) and urinary (Pb-U) lead concentrations in children (5-8y) from Montevideo, Uruguay. From two 24-hour recalls completed by caregivers, we derived the mean daily intake of select nutrients and food groups (dairy, milk, fruit, root vegetables, foods rich in heme and non-heme iron), as well as "nutrient dense" and "processed" food patterns. Pb-B (n=315) was measured using atomic absorption spectrometry; Pb-U (n=321) using ICP-MS. Pb-U was adjusted for specific gravity and log-transformed to approximate a normal distribution. Iron deficiency (ID) and dietary variables were tested as predictors of Pb-B and log-Pb-U in covariate-adjusted regressions. Median [5%, 95%] Pb-B and Pb-U were 3.8 [0.8-7.8] μg/dL and 1.9 [0.6-5.1] μg/L, respectively; ~25% of Pb-B above current U.S. CDC reference concentration of 5μg/dL. ID was associated with 0.75μg/dL higher Pb-B, compared to non-ID (p<0.05). Consumption of root vegetables was not associated with Pb-B or log-Pb-U. Higher scores on the nutrient-dense pattern were related with higher Pb-Bs, possibly due to consumption of green leafy vegetables. Dietary intake of iron or iron-rich foods was not associated with biomarkers of lead. Conversely, children consuming more calcium, dairy, milk and yogurt had lower Pb-B and log-Pb-U. Our findings appear consistent with existing recommendations on including calcium-rich, but not iron- or vitamin-C-rich foods in the diets of lead-exposed children, especially where the consumption of these foods is low.
Collapse
Affiliation(s)
- Katarzyna Kordas
- Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States.
| | - Rachael Burganowski
- Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, United States
| | - Aditi Roy
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fabiana Peregalli
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay; Department of Gastroenterology, Hepatology and Nutrition, Pereira Rossell Hospital, Montevideo, Uruguay
| | - Valentina Baccino
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Elizabeth Barcia
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Soledad Mangieri
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Virginia Ocampo
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Toxicology Area, Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Gabriela Martínez
- Toxicology Area, Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Marie Vahter
- Institute of Environmental Health, Karolinska Institutet, Stockholm, Sweden
| | - Elena I Queirolo
- Centre for Research, Catholic University of Uruguay, Montevideo, Uruguay
| |
Collapse
|
33
|
Elemental hair analysis: A review of procedures and applications. Anal Chim Acta 2017; 992:1-23. [DOI: 10.1016/j.aca.2017.09.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
|
34
|
Peña-Fernández A, Del Carmen Lobo-Bedmar M, González-Muñoz MJ. Effects of sex on the levels of metals and metalloids in the hair of a group of healthy Spanish adolescents (13 to 16 years old). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23666-23678. [PMID: 28861694 DOI: 10.1007/s11356-017-9984-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Human biomonitoring can be a reliable tool to protect the health of the citizens of major urban environments. Human hair may be an invaluable specimen to determine chronic exposure to any environmental contaminant in an individual, especially in the young population. However, different factors including a lack of studies that have established reference values for metals and metalloids (trace elements) in human scalp hair make the use of this matrix controversial. A monitoring study was performed to establish possible normal or tentative reference values of Al, As, Be, Cd, Cr, Cu, Hg, Mn, Pb, Sn, Ti, Tl and Zn in adolescents' (aged 13-16) hair who have lived since birth in Alcalá de Henares, Madrid region (Spain). Strict inclusion criteria were followed to study the effect of sex on the hair metal content, and the levels of the above contaminants were also studied in park topsoils from Alcalá de Henares. Scalp hair samples were collected from 96 healthy adolescents (28 boys and 68 girls), and reference values were calculated following the recommendations of the International Union of Pure and Applied Chemistry. The levels of Cd, Cu, Pb, Sn and Zn in hair of adolescents from Alcalá de Henares show a sex dependency, being significantly higher in female participants. Sex should be a factor taken into account when developing future reference values and hair metal content. Soil metal contamination was not correlated with the levels found in hair. To conclude, the values of metals and metalloids here analysed and discussed could be considered as tentative reference values for Spanish adolescents aged 13-16 years living in the Madrid region, and may be used to identify the level of exposure of adolescents in this Spanish region to the various metals and metalloids.
Collapse
Affiliation(s)
- Antonio Peña-Fernández
- Faculty of Health and Life Sciences, School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
- Unidad de Toxicología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871, Alcalá de Henares, Madrid, Spain.
| | - Maria Del Carmen Lobo-Bedmar
- Departamento de Investigación Agroambiental, IMIDRA, Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800, Alcalá de Henares, Madrid, Spain
| | - Maria José González-Muñoz
- Unidad de Toxicología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
35
|
Kafaei R, Tahmasbi R, Ravanipour M, Vakilabadi DR, Ahmadi M, Omrani A, Ramavandi B. Urinary arsenic, cadmium, manganese, nickel, and vanadium levels of schoolchildren in the vicinity of the industrialised area of Asaluyeh, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23498-23507. [PMID: 28849418 DOI: 10.1007/s11356-017-9981-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Asaluyeh is one of the most heavily industrialised areas in the world where gas, petrochemical, and many downstream industries are located. This study aims to survey the biomonitoring of four metals and one metalloid in children living in the vicinity of Asaluyeh area. To do this, we analysed the creatinine-adjusted urinary levels of arsenic (As), cadmium (Cd), vanadium (V), manganese (Mn), and nickel (Ni) in 184 elementary schoolchildren (99 boys and 85 girls) living in Asaluyeh and compared them with a reference population. The comparisons were done for two seasons (spring and fall). The results showed that in the case area (Asaluyeh), the levels of As, V, Mn, and Ni were significantly higher and that of Cd was not significantly higher than the reference city for both seasons. The mean concentration of metal(loid)s in Asaluyeh (case) and Sadabad (reference) area as μg g-1 creatinine was As 2.90 and 2.24, V 0.06 and 0.03, Mn 0.28 and 0.25, Ni 0.54 and 0.29, and Cd 0.31 and 0.28 in spring and As 3.08 and 2.28, V 0.07 and 0.03, Mn 0.30 and 0.26, Ni 0.91 and 0.30, and Cd 0.36 and 0.31 in the fall. Seasonal variations played a key role in determining urinary metal(loid) concentration, as we saw the significant level of As, Cd, V, and Ni in fall than in spring. With regard to the impact of gender on the absorption and accumulation of urinary metal(loid)s, boys showed higher levels of the studied elements, especially for As, than girls as outdoor activities are more popular among boys. Due to the values being lower than those reported in literature, more research is needed on various population groups and other exposure sources in order to judge whether living in the vicinity of the gas and petrochemical industries in Asaluyeh is a threat to nearby residents.
Collapse
Affiliation(s)
- Raheleh Kafaei
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Rahim Tahmasbi
- Department of Biostatistics, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Masomeh Ravanipour
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Dariush Ranjbar Vakilabadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolmajid Omrani
- Department of Pediatrics, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
36
|
Skröder H, Kippler M, Nermell B, Tofail F, Levi M, Rahman SM, Raqib R, Vahter M. Major Limitations in Using Element Concentrations in Hair as Biomarkers of Exposure to Toxic and Essential Trace Elements in Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067021. [PMID: 28669939 PMCID: PMC5743543 DOI: 10.1289/ehp1239] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/19/2017] [Accepted: 02/06/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Hair is a commonly used exposure biomarker for metals and other trace elements, but concern has been raised regarding its appropriateness for assessing the internal dose. OBJECTIVES The aim of the present study was to evaluate children's hair as biomarker of internal dose for toxic (As, Mn, Cd, Pb) and essential elements (Mg, Ca, Fe, Co, Cu, Zn, Se, Mo). METHODS In 207 children (9-10 years of age), originating from a population-based cohort in rural Bangladesh, we measured concentrations of the selected elements in hair ( closest to the scalp) using ICP-MS. We compared these with previously measured concentrations in erythrocytes, urine, and water. For a subset of children (n=19), we analyzed four consecutive 2 cm pieces of hair. RESULTS There were strong associations between hair As and the other biomarkers (erythrocytes: rs=0.73, p<0.001; urine: rS=0.66, p<0.001); and water (rs=0.60, p<0.001); and there were significant correlations between Se in hair and erythrocytes (overall rs=0.38, p<0.001), and urine (rs=0.29, p<0.001). Hair Co and Mo showed weak correlations with concentrations in erythrocytes. Hair Mn was not associated with Mn in erythrocytes, urine, or water, and the geometric mean concentration increased almost five times from the 2 cm closest to the head to the 7th–8th cm (p<0.001). Also Mg, Ca, Co, Cd, and Pb increased from the scalp outward (>50% higher in 7th–8th cm compared with 1st–2nd cm, p<0.001). CONCLUSIONS Hair was found to be a useful exposure biomarker of absorbed As and Se only. Of all measured elements, hair Mn seemed the least reflective of internal dose. https://doi.org/10.1289/EHP1239.
Collapse
Affiliation(s)
- Helena Skröder
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Barbro Nermell
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fahmida Tofail
- International Center for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Michael Levi
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Syed Moshfiqur Rahman
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- International Center for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Rubhana Raqib
- International Center for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
37
|
Iron and Zinc Supplementation Does Not Impact Urinary Arsenic Excretion in Mexican School Children. J Pediatr 2017; 185:205-210.e1. [PMID: 28343659 DOI: 10.1016/j.jpeds.2017.02.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/03/2017] [Accepted: 02/15/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To examine the role of iron and zinc in arsenic excretion and metabolism in children. STUDY DESIGN An analysis of urinary arsenic (UAs) concentrations from a double-blind randomized trial originally testing the efficacy of iron and zinc for lowering blood lead levels in children. A 2 × 2 factorial design was used, with children randomized individually, stratified by sex and classroom, to receive 30?mg ferrous fumarate (n?=?148), 30?mg zinc oxide (n?=?144), iron and zinc together (n?=?148), or placebo (n?=?151). Of the 602 children enrolled, 527 completed the 6-month treatment, and 485 had both baseline and final UAs values. The baseline total UAs concentration ranged from 3.2 to 215.9?µg/L. RESULTS At baseline, children in the highest tertile of serum ferritin concentration had higher excretion of dimethylarsinic acid (DMA; 1.93?±?0.86%; P?<?.05), but lower excretion of monomethylarsonic acid (-0.91?±?0.39%; P?<?.05), compared with children in the lowest tertile. In an intention-to-treat analysis, iron had no effect on arsenic methylation or UAs excretion, but children receiving zinc had lower %DMA in urine (-1.7?±?0.8; P?<?.05). CONCLUSIONS Iron and zinc status are not related to arsenic metabolism in children, and supplementation with these minerals has limited application in lowering arsenic concentrations. TRIAL REGISTRATION ClinicalTrials.gov: NCT02346188.
Collapse
|
38
|
Fatmi Z, Sahito A, Ikegami A, Mizuno A, Cui X, Mise N, Takagi M, Kobayashi Y, Kayama F. Lead Exposure Assessment among Pregnant Women, Newborns, and Children: Case Study from Karachi, Pakistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040413. [PMID: 28406467 PMCID: PMC5409614 DOI: 10.3390/ijerph14040413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 01/31/2023]
Abstract
Lead (Pb) in petrol has been banned in developed countries. Despite the control of Pb in petrol since 2001, high levels were reported in the blood of pregnant women and children in Pakistan. However, the identification of sources of Pb has been elusive due to its pervasiveness. In this study, we assessed the lead intake of pregnant women and one- to three-year-old children from food, water, house dust, respirable dust, and soil. In addition, we completed the fingerprinting of the Pb isotopic ratios (LIR) of petrol and secondary sources (food, house-dust, respirable dust, soil, surma (eye cosmetics)) of exposure within the blood of pregnant women, newborns, and children. Eight families, with high (~50 μg/dL), medium (~20 μg/dL), and low blood levels (~10 μg/dL), were selected from 60 families. The main sources of exposure to lead for children were food and house-dust, and those for pregnant women were soil, respirable dust, and food. LIR was determined by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) with a two sigma uncertainty of ±0.03%. The LIR of mothers and newborns was similar. In contrast, surma, and to a larger extent petrol, exhibited a negligible contribution to both the child’s and mother’s blood Pb. Household wet-mopping could be effective in reducing Pb exposure. This intake assessment could be replicated for other developing countries to identify sources of lead and the burden of lead exposure in the population.
Collapse
Affiliation(s)
- Zafar Fatmi
- Department of Community Health Sciences, Aga Khan University, Karachi 74800, Pakistan.
| | - Ambreen Sahito
- Department of Community Health Sciences, Aga Khan University, Karachi 74800, Pakistan.
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, School of Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan.
| | - Atsuko Mizuno
- Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan.
| | - Xiaoyi Cui
- Department of Environmental and Preventive Medicine, School of Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan.
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, School of Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan.
| | - Mai Takagi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-0053, Japan.
| | - Yayoi Kobayashi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-0053, Japan.
| | - Fujio Kayama
- Department of Environmental and Preventive Medicine, School of Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan.
| |
Collapse
|
39
|
Olympio KPK, Gonçalves CG, Salles FJ, Ferreira APSDS, Soares AS, Buzalaf MAR, Cardoso MRA, Bechara EJH. What are the blood lead levels of children living in Latin America and the Caribbean? ENVIRONMENT INTERNATIONAL 2017; 101:46-58. [PMID: 28159393 DOI: 10.1016/j.envint.2016.12.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Information on the prevalence of lead exposure is essential to formulate efficient public health policies. Developed countries have implemented successful public policies for the prevention and control of lead poisoning. In the United States, Canada, Japan and the European Union, for instance, periodically repeated prevalence studies show that blood lead levels (BLLs) in children have decreased overall. Although BLL of Latino children in the U.S. have also dropped in recent years, the geometric mean remains higher than that of white children. Little is known about lead exposure in children in Latin America and the Caribbean (LAC). In this review, we responded to two questions: What is currently known about lead sources and levels in children in LAC? Are there public policies to prevent children's exposure to lead in LAC? METHOD We conducted a literature review covering the period from January 2000 to March 2014 in the PubMed and Lilacs databases to obtain English, Portuguese and Spanish language studies reporting the prevalence of BLLs in children aged 0-18years living in LAC countries. No specific analytical method was selected, and given the scarcity of data, the study was highly inclusive. RESULTS Fifty-six papers were selected from 16 different LAC countries. The children's BLLs found in this review are high (≥10μg/dL) compared to BLLs for the same age group in the U. S. However, most studies reported an association with some type of "lead hot spot", in which children can be exposed to lead levels similar to those of occupational settings. Only Peru and Mexico reported BLLs in children from population-based studies. CONCLUSIONS Most BLLs prevalence studies carried out in LAC were in areas with known emission sources. The percentage of children at risk of lead poisoning in LAC is unknown, and probably underestimated. Thus, there is an urgent need to establish public health policies to quantify and prevent lead poisoning, specifically by prioritizing the identification and control of "hot spots".
Collapse
Affiliation(s)
| | - Cláudia Gaudência Gonçalves
- Departamento de Controle Ambiental/Grupo Técnico Permanente de Áreas Contaminadas - Secretaria do Verde e Meio Ambiente de São Paulo, Brazil
| | - Fernanda Junqueira Salles
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Agnes Silva Soares
- Sustainable Development and Health Equity, Pan American Health Organization, Washington, DC, United States
| | - Marília Afonso Rabelo Buzalaf
- Departamento de Ciências Biológicas, Faculdade de Odontologia de Bauru, Universidade de São Paulo, Bauru, SP, Brazil
| | - Maria Regina Alves Cardoso
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
40
|
Nascimento SN, Göethel G, Baierle M, Barth A, Brucker N, Charão MF, Moro AM, Gauer B, Sauer E, Durgante J, Arbo MD, Thiesen FV, Pierre TDS, Gioda A, Moresco R, Garcia SC. Environmental exposure and effects on health of children from a tobacco-producing region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:2851-2865. [PMID: 27838906 DOI: 10.1007/s11356-016-8071-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Children may be environmentally exposed to several hazards. In order to evaluate the health of children living in a tobacco-producing region, different biomarkers of exposure and effect, as well as hematological parameters, were evaluated. Biomarkers of exposure to the following xenobiotics were assessed: pesticides, nicotine, toxic elements, and organic solvents. Oxidative damage markers malondialdehyde (MDA) and protein carbonyls (PCO), vitamin C, microalbuminuria (mALB) levels, and N-acetyl-β-D-glucosaminidase (NAG) activity were also evaluated. Peripheral blood samples and urine were collected from 40 children (6-12 years), at two different crop periods: in the beginning of pesticide applications (period 1) and in the leaf harvest (period 2). The Wilcoxon signed-rank test for paired data was used to evaluate the differences between both periods. Biomarkers of exposure cotinine in urine and blood chromium (Cr) levels were increased in period 1 when compared to period 2. Moreover, a significant reduced plasmatic activity of butyrylcholinesterase (BuChE) was observed in period 2 in relation to period 1. Blood Cr levels were above the recommended by WHO in both evaluations. The biomarkers MDA and PCO as well as the kidney dysfunction biomarker, mALB, presented levels significantly increased in period 1. Additionally, decreased lymphocytes and increased basophils were also observed. Cotinine was positively associated with PCO, and Cr was positively associated with PCO and MDA. The increased Cr levels were associated with decreased lymphocytes and increased basophils. Our findings demonstrate that children environmentally exposed to xenobiotics in rural area may present early kidney dysfunction, hematological alterations, as well as lipid and protein damages, associated with co-exposure to different xenobiotics involved in tobacco cultivation.
Collapse
Affiliation(s)
- Sabrina N Nascimento
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marília Baierle
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Anelise Barth
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Mariele F Charão
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
- Institute of Health Sciences, Feevale University, Novo Hamburgo, RS, Brazil
| | - Angela M Moro
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliano Durgante
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
| | - Marcelo D Arbo
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Flavia V Thiesen
- Faculty of Pharmacy, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Tatiana D Saint' Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Rafael Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analyses, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Avenida Ipiranga 2752, Santa Cecília, Porto Alegre, RS, CEP: 90610-000, Brazil.
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
41
|
Andrade VM, Aschner M, Marreilha dos Santos AP. Neurotoxicity of Metal Mixtures. ADVANCES IN NEUROBIOLOGY 2017; 18:227-265. [DOI: 10.1007/978-3-319-60189-2_12] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Peña-Fernández A, González-Muñoz MJ, Lobo-Bedmar MC. Evaluating the effect of age and area of residence in the metal and metalloid contents in human hair and urban topsoils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21299-21312. [PMID: 27497853 DOI: 10.1007/s11356-016-7352-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Monitoring the levels of trace elements in hair can allow estimating the effects of the geographical location and also can provide a notion of the metal body burden. However, the use of human hair is controversial due to the different confounding factors that could affect the presence of trace elements in hair. As a result, a comprehensive monitoring study was performed in Alcalá de Henares, one of the major cities in the Madrid region, Spain. Trace elements have been monitored in urban topsoils and in human hair of two well-defined and healthy groups of population: children (6-9 years) and adolescents (13-16 years). The city was divided into four areas or zones with different characteristics to assess the possible effect of area of residence and age in the presence of Al, As, Be, Cd, Cr, Cu, Hg, Mn, Pb, Sn, Ti, Tl and Zn in soils and hair. There is no current hypothesis that explains the possible effect of the area of monitoring in the distribution of Be, Cr, Ni, Sn and Ti found in these urban soils, maybe because urban soils receive high disturbance, and there are many factors involved. The presence of most of the trace elements monitored was significantly higher in the hair of the children population, except for Sn and Zn. This could be attributed mainly to dietary habits. Other factors influencing metal content in hair such as environmental factors would have had a minimal effect in the population groups here studied. Finally, none of the levels of trace elements studied in hair were significantly correlated with levels measured in the topsoils of public parks in Alcalá de Henares, with the exception of Pb in adolescent participants.
Collapse
Affiliation(s)
- Antonio Peña-Fernández
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
- Unidad de Toxicología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid, Spain.
| | - M J González-Muñoz
- Unidad de Toxicología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid, Spain
| | - M C Lobo-Bedmar
- Departamento de Investigación Agroambiental, IMIDRA, Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
43
|
Musimwa AM, Kanteng GW, Kitoko HT, Luboya ON. [Clinical signs of malnutrition in children living around a mining area: a case study in the city of Lubumbashi and its surrounding]. Pan Afr Med J 2016; 24:67. [PMID: 27642407 PMCID: PMC5012737 DOI: 10.11604/pamj.2016.24.67.9146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/27/2016] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Malnutrition remains to this day a major public health problem, particularly in developing countries. This study aimed to determine the clinical signs observed in malnourished children admitted to a care unit. METHODS This is a descriptive cross-sectional study, conducted from July 2013 to December 2014. Our study included 311 cases (182 malnourished children and 129 well-nourished children), based on exhaustive sampling, with an active screening of malnourished and well-nourished children. The diagnosis was made clinically and was associated with anthropometry. RESULTS The main collected symptoms in malnourished children were: cough or pneumonia in 42.50%, gastroenteritis in 38.55%, skin lesions in 22.91% of cases, fever in 22.35% of cases, edema in 19.0% of children, pallor in 8.38% of children; finally splenomegaly and hepatomegaly were the less common symptoms (1.68% and 2.89% respectively). Well-nourished children, instead, showed splenomegaly and fever associated with malaria. CONCLUSION Malnourished children living around a mining area don't differ in symptomatology from the other malnourished children, except for hepatomegaly and splenomegaly which are very rare in our malnourished children.
Collapse
Affiliation(s)
- Aimée Mudekereza Musimwa
- Département de Pédiatrie, Faculté de Médecine Université de Lubumbashi, Lubumbashi, République Démocratique du Congo
| | - Gray Wakamb Kanteng
- Département de Pédiatrie, Faculté de Médecine Université de Lubumbashi, Lubumbashi, République Démocratique du Congo
| | - Hermann Tamubango Kitoko
- Département de Pédiatrie, Faculté de Médecine Université de Lubumbashi, Lubumbashi, République Démocratique du Congo
| | - Oscar Numbi Luboya
- Département de Pédiatrie, Faculté de Médecine Université de Lubumbashi, Lubumbashi, République Démocratique du Congo
| |
Collapse
|
44
|
Musimwa AM, Kanteng GW, Kitoko HT, Luboya ON. [Trace elements in serum of malnourished and well-nourished children living in Lubumbashi and Kawama]. Pan Afr Med J 2016; 24:11. [PMID: 27583075 PMCID: PMC4992427 DOI: 10.11604/pamj.2016.24.11.9236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/14/2016] [Indexed: 12/27/2022] Open
Abstract
Introduction La place des éléments traces métalliques essentiels en nutrition humaine ne peut plus être ignorée. Les déficits d'apports, les carences secondaires souvent sous – estimées, et les carences iatrogènes font le lit de pathologies telles que les infections et autres. D'où leurs dosages ont une importance particulière pour en évaluer la gravité et faciliter une prise en charge précoce ou améliorer le régime alimentaire. Cette étude a eu pour objectif de déterminer le profil sanguin en éléments traces (cuivre, sélénium, zinc, fer, chrome, cobalt, etc) chez les enfants malnutris et biens nourris dans un milieu minier à Lubumbashi. Méthodes Trois cents onze cas ont été colligés, 182 malnutris et 129 biens nourris, dans une étude descriptive transversale, effectuée de juillet 2013 à décembre 2014. Pour lequel un échantillonnage exhaustif a été réalisé. Le dosage des métaux dans le sérum s'est fait à l’ ICP-OES (spectrométrie de masse à plasma gon induit) au laboratoire de l'Office Congolais de Contrôle de Lubumbashi. Résultats Les oligoéléments essentiels (cuivre, zinc, sélénium et fer) se retrouvent à des concentrations très basses chez les enfants malnutris comme chez les biens nourris. L'arsenic, le cadmium, le magnésium et le manganèse se présentent à des concentrations normales par rapport aux valeurs de références chez les enfants biens nourris. L'antimoine, le chrome, le plomb et le cobalt se retrouvent élevés chez les malnutris et biens nourris. Le nickel est normal chez les malnutris et les biens nourris. Le magnésium, manganèse se sont présentés à des taux très bas chez les enfants malnutris. Conclusion Les enfants malnutris et biens nourris présentent une malnutrition aux oligo-éléments essentiels associés aux éléments traces métalliques. Ce qui permet de supposer qu'une carence en micronutriments essentiel favorise l'absorption des métaux lourds.
Collapse
Affiliation(s)
- Aimée Mudekereza Musimwa
- Département de Pédiatrie, Faculté de Médecine Université de Lubumbashi, République Démocratique du Congo
| | - Gray Wakamb Kanteng
- Département de Pédiatrie, Faculté de Médecine Université de Lubumbashi, République Démocratique du Congo
| | - Hermann Tamubango Kitoko
- Département de Pédiatrie, Faculté de Médecine Université de Lubumbashi, République Démocratique du Congo
| | - Oscar Numbi Luboya
- Département de Pédiatrie, Faculté de Médecine Université de Lubumbashi, République Démocratique du Congo
| |
Collapse
|
45
|
Kordas K, Queirolo EI, Mañay N, Peregalli F, Hsiao PY, Lu Y, Vahter M. Low-level arsenic exposure: Nutritional and dietary predictors in first-grade Uruguayan children. ENVIRONMENTAL RESEARCH 2016. [PMID: 18774129 DOI: 10.1016/j.envres] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arsenic exposure in children is a public health concern but is understudied in relation to the predictors, and effects of low-level exposure. We examined the extent and dietary predictors of exposure to inorganic arsenic in 5-8 year old children from Montevideo, Uruguay. Children were recruited at school; 357 were enrolled, 328 collected morning urine samples, and 317 had two 24-h dietary recalls. Urinary arsenic metabolites, i.e. inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA), were measured using high-performance liquid chromatography with hydride generation and inductively coupled plasma mass spectrometry (HPLC-HG-ICP-MS), and the sum concentration (U-As) used for exposure assessment. Proportions of arsenic metabolites (%iAs, %MMA and %DMA) in urine were modelled in OLS regressions as functions of food groups, dietary patterns, nutrient intake, and nutritional status. Exposure to arsenic was low (median U-As: 9.9µg/L) and household water (water As: median 0.45µg/L) was not a major contributor to exposure. Children with higher consumption of rice had higher U-As but lower %iAs, %MMA, and higher %DMA. Children with higher meat consumption had lower %iAs and higher %DMA. Higher scores on "nutrient dense" dietary pattern were related to lower %iAs and %MMA, and higher %DMA. Higher intake of dietary folate was associated with lower %MMA and higher %DMA. Overweight children had lower %MMA and higher %DMA than normal-weight children. In summary, rice was an important predictor of exposure to inorganic arsenic and DMA. Higher meat and folate consumption, diet rich in green leafy and red-orange vegetables and eggs, and higher BMI contributed to higher arsenic methylation capacity.
Collapse
Affiliation(s)
- Katarzyna Kordas
- School of Social and Community Medicine, University of Bristol, Bristol, UK; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Pao Ying Hsiao
- Department of Food and Nutrition, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Ying Lu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Kordas K, Queirolo EI, Mañay N, Peregalli F, Hsiao PY, Lu Y, Vahter M. Low-level arsenic exposure: Nutritional and dietary predictors in first-grade Uruguayan children. ENVIRONMENTAL RESEARCH 2016; 147:16-23. [PMID: 26828624 PMCID: PMC4821778 DOI: 10.1016/j.envres.2016.01.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 05/18/2023]
Abstract
Arsenic exposure in children is a public health concern but is understudied in relation to the predictors, and effects of low-level exposure. We examined the extent and dietary predictors of exposure to inorganic arsenic in 5-8 year old children from Montevideo, Uruguay. Children were recruited at school; 357 were enrolled, 328 collected morning urine samples, and 317 had two 24-h dietary recalls. Urinary arsenic metabolites, i.e. inorganic arsenic (iAs), methylarsonic acid (MMA), and dimethylarsinic acid (DMA), were measured using high-performance liquid chromatography with hydride generation and inductively coupled plasma mass spectrometry (HPLC-HG-ICP-MS), and the sum concentration (U-As) used for exposure assessment. Proportions of arsenic metabolites (%iAs, %MMA and %DMA) in urine were modelled in OLS regressions as functions of food groups, dietary patterns, nutrient intake, and nutritional status. Exposure to arsenic was low (median U-As: 9.9µg/L) and household water (water As: median 0.45µg/L) was not a major contributor to exposure. Children with higher consumption of rice had higher U-As but lower %iAs, %MMA, and higher %DMA. Children with higher meat consumption had lower %iAs and higher %DMA. Higher scores on "nutrient dense" dietary pattern were related to lower %iAs and %MMA, and higher %DMA. Higher intake of dietary folate was associated with lower %MMA and higher %DMA. Overweight children had lower %MMA and higher %DMA than normal-weight children. In summary, rice was an important predictor of exposure to inorganic arsenic and DMA. Higher meat and folate consumption, diet rich in green leafy and red-orange vegetables and eggs, and higher BMI contributed to higher arsenic methylation capacity.
Collapse
Affiliation(s)
- Katarzyna Kordas
- School of Social and Community Medicine, University of Bristol, Bristol, UK; Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Pao Ying Hsiao
- Department of Food and Nutrition, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Ying Lu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Nascimento S, Baierle M, Göethel G, Barth A, Brucker N, Charão M, Sauer E, Gauer B, Arbo MD, Altknecht L, Jager M, Dias ACG, de Salles JF, Saint' Pierre T, Gioda A, Moresco R, Garcia SC. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children. ENVIRONMENTAL RESEARCH 2016; 147:32-43. [PMID: 26844420 DOI: 10.1016/j.envres.2016.01.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 05/06/2023]
Abstract
Environmental exposure to manganese (Mn) results in several toxic effects, mainly neurotoxicity. This study investigated associations among Mn exposure, neuropsychological performance, biomarkers of oxidative damage and early kidney dysfunction in children aged 6-12 years old. Sixty-three children were enrolled in this study, being 43 from a rural area and 20 from an urban area. Manganese was quantified in blood (B-Mn), hair (H-Mn) and drinking water using inductively coupled plasma mass spectrometry (ICP-MS). The neuropsychological functions assessed were attention, perception, working memory, phonological awareness and executive functions - inhibition. The Intelligence quotient (IQ) was also evaluated. The biomarkers malondialdehyde (MDA), protein carbonyls (PCO), δ-aminolevulinate dehydratase (ALA-D), reactivation indexes with dithiothreitol (ALA-RE/DTT) and ZnCl2 (ALA-RE/ZnCl2), non-protein thiol groups, as well as microalbuminuria (mALB) level and N-acetyl-β-D-glucosaminidase (NAG) activity were assessed. The results demonstrated that Mn levels in blood, hair and drinking water were higher in rural children than in urban children (p<0.01). Adjusted for potential confounding factors, IQ, age, gender and parents' education, significant associations were observed mainly between B-Mn and visual attention (β=0.649; p<0.001). Moreover, B-Mn was negatively associated with visual perception and phonological awareness. H-Mn was inversely associated with working memory, and Mn levels from drinking water with written language and executive functions - inhibition. Rural children showed a significant increase in oxidative damage to proteins and lipids, as well as alteration in kidney function biomarkers (p<0.05). Moreover, significant associations were found between B-Mn, H-Mn and Mn levels in drinking water and biomarkers of oxidative damage and kidney function, besides between some oxidative stress biomarkers and neuropsychological tasks (p<0.05). The findings of this study suggest an important association between environmental exposure to Mn and toxic effects on neuropsychological function, oxidative damage and kidney function in children.
Collapse
Affiliation(s)
- Sabrina Nascimento
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marília Baierle
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Anelise Barth
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Natália Brucker
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariele Charão
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Health Sciences, Feevale University, Novo Hamburgo, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Louise Altknecht
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation (FUC), Porto Alegre, RS, Brazil
| | - Márcia Jager
- Post-graduate Program in Psychology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ana Cristina Garcia Dias
- Post-graduate Program in Psychology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jerusa Fumagalli de Salles
- Post-graduate Program in Psychology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tatiana Saint' Pierre
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Rafael Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analyses, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analyses, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Institute of Cardiology, University Cardiology Foundation (FUC), Porto Alegre, RS, Brazil.
| |
Collapse
|
48
|
Andrade VL, Mateus ML, Batoréu MC, Aschner M, Marreilha dos Santos AP. Lead, Arsenic, and Manganese Metal Mixture Exposures: Focus on Biomarkers of Effect. Biol Trace Elem Res 2015; 166:13-23. [PMID: 25693681 PMCID: PMC4470849 DOI: 10.1007/s12011-015-0267-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
The increasing exposure of human populations to excessive levels of metals continues to represent a matter of public health concern. Several biomarkers have been studied and proposed for the detection of adverse health effects induced by lead (Pb), arsenic (As), and manganese (Mn); however, these studies have relied on exposures to each single metal, which fails to replicate real-life exposure scenarios. These three metals are commonly detected in different environmental, occupational, and food contexts and they share common neurotoxic effects, which are progressive and once clinically apparent may be irreversible. Thus, chronic exposure to low levels of a mixture of these metals may represent an additive risk of toxicity. Building upon their shared mechanisms of toxicity, such as oxidative stress, interference with neurotransmitters, and effects on the hematopoietic system, we address putative biomarkers, which may assist in assessing the onset of neurological diseases associated with exposure to this metal mixture.
Collapse
Affiliation(s)
- VL Andrade
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - ML Mateus
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - MC Batoréu
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 10461 NY, USA
| | - AP Marreilha dos Santos
- Instituto de Investigação do Medicamento, iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Corresponding author – , Tel – 351217946400, Fax - 351217946470
| |
Collapse
|
49
|
Brucker N, Moro A, Charão M, Bubols G, Nascimento S, Goethel G, Barth A, Prohmann AC, Rocha R, Moresco R, Sangoi M, Hausen BS, Saint'Pierre T, Gioda A, Duarte M, Castro I, Saldiva PH, Garcia SC. Relationship between blood metals and inflammation in taxi drivers. Clin Chim Acta 2015; 444:176-81. [DOI: 10.1016/j.cca.2015.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 11/27/2022]
|
50
|
Molina-Villalba I, Lacasaña M, Rodríguez-Barranco M, Hernández AF, Gonzalez-Alzaga B, Aguilar-Garduño C, Gil F. Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. CHEMOSPHERE 2015; 124:83-91. [PMID: 25434277 DOI: 10.1016/j.chemosphere.2014.11.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 05/18/2023]
Abstract
Huelva (South West Spain) and its surrounding municipalities represent one of the most polluted estuaries in the world owing to the discharge of mining and industrial related pollutants in their proximity. A biomonitoring study was conducted to assess exposure to arsenic and some trace metals (cadmium, mercury, manganese and lead) in urine and scalp hair from a representative sample of children aged 6-9 years (n=261). This is the only study simultaneously analyzing those five metal elements in children urine and hair. The potential contribution of gender, water consumption, residence area and body mass index on urinary and hair metal concentrations was also studied. Urine levels of cadmium and total mercury in a proportion (25-50%) of our children population living near industrial/mining areas might have an impact on health, likely due to environmental exposure to metal pollution. The only significant correlation between urine and hair levels was found for mercury. Children living near agriculture areas showed increased levels of cadmium and manganese (in urine) and arsenic (in hair). In contrast, decreased urine Hg concentrations were observed in children living near mining areas. Girls exhibited significantly higher trace metal concentrations in hair than boys. The greatest urine arsenic concentrations were found in children drinking well/spring water. Although human hair can be a useful tool for biomonitoring temporal changes in metal concentrations, levels are not correlated with those found in urine except for total mercury, thus providing additional information.
Collapse
Affiliation(s)
- Isabel Molina-Villalba
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Spain
| | - Marina Lacasaña
- Andalusian School of Public Health (EASP), Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria de Granada (IBS. GRANADA), Granada, Spain
| | | | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Spain
| | | | | | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Spain.
| |
Collapse
|