1
|
Ji J, Gong X, Liu G, Yin S, Ling F, Wang G. Antiparasitic effect of (+)-catechin derived from Pseudolarix amabilis against Dactylogyrus intermedius in goldfish. Vet Parasitol 2025; 334:110399. [PMID: 39827727 DOI: 10.1016/j.vetpar.2025.110399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Medicinal plants are considered promising candidates for controlling parasitic pathogen in aquaculture. Our previous study demonstrated that the crude extracts of Pseudolarix amabilis exhibit promising anti-Dactylogyrus intermedius activity. However, the specific compounds responsible for the antiparasitic effects of these crude extracts remain elusive. In this study, the bioactive compounds from the ethyl acetate extract of P. amabilis were isolated by the multi-column chromatography and in vivo bioassay-guided methods. Two crystalline compounds were identified as (+)-catechin through the nuclear magnetic resonance spectroscopy and specific rotation analysis. (+)-Catechin showed 98.1 % antiparasitic activity at 20 mg/L with the median effective concentration (EC50) of 4.3 mg/L. The 96 h median lethal concentration (LC50) of (+)-catechin for zebrafish larvae and goldfish was determined to be 32.9 and 152.8 mg/L, respectively. The therapeutic index (TI) of (+)-catechin was 6.8 and 35.5, indicating a potential for safe application in aquaculture. These findings suggest that (+)-catechin could be further developed as a viable therapeutic agent against D. intermedius.
Collapse
Affiliation(s)
- Jie Ji
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China.
| | - Xiang Gong
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China
| | - Guanglu Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Zhou D, Zhong W, Fu B, Li E, Hao L, Li Q, Yang Q, Zou Y, Liu Z, Wang F, Liao S, Xing D. Dietary supplementation of mulberry leaf oligosaccharides improves the growth, glucose and lipid metabolism, immunity, and virus resistance in largemouth bass ( Micropterus salmoides). Front Immunol 2025; 16:1525992. [PMID: 39935475 PMCID: PMC11811104 DOI: 10.3389/fimmu.2025.1525992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
This study investigated the effects of dietary supplementation of mulberry leaf oligosaccharides (MLO) on the growth performance, serum biochemistry, glucose and lipid metabolism, antioxidant activity, liver health, and virus resistance in largemouth bass (Micropterus salmoides). The fish were fed with CK (basal diet), MLOL (basal diet supplemented with 0.5%MLO), and MLOH (basal diet supplemented with 1.0% MLO) for 80 days, and then subjected to a 21-day viral challenge experiment. The results showed that MLO supplementation had no adverse effect on the weight gain rate, specific growth rate, feed intake, and condition factor (P > 0.05), but significantly decreased the feed conversion rate and viscerosomatic index (P< 0.05). Moreover, the MLOL and MLOH group had significantly lower contents of triglyceride, blood glucose, and malondialdehyde and activities of serum alanine aminotransferase and aspartate aminotransferase, while significantly higher levels of serum and liver total superoxide dismutase and lower levels of glutathione than the CK group (P< 0.05). MLO supplementation significantly up-regulated the relative expression of glycolytic genes gk and pfk and lipid catabolism genes ppar-α and cpt-1, while obviously down-regulated that of acc, fas, and dgat related to fatty acid synthesis in the liver tissue (P< 0.05). In terms of liver health, MLO supplementation significantly up-regulated the relative expression of anti-inflammatory cytokines il-10 and tgf-β, while decreased that of pro-inflammatory cytokines nf-κb, il-8, and tnf-α in the liver tissue (P< 0.05). The viral challenge test showed that MLO supplementation significantly improved the survival rate of M. salmoides after largemouth bass ranavirus (LMBV) infection. Dietary MLO supplementation promoted liver glucose and lipid metabolism, and improved the immunity and resistance of M. salmoides to LMBV by regulating the PPAR signaling way and inhibiting the NF-kB signaling pathway. The appropriate addition amount of MLO to the diet was determined to be 1.0%.
Collapse
Affiliation(s)
- Donglai Zhou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center of Special Aquatic Functional Feed, Foshan, China
| | - Wenhao Zhong
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Bing Fu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Erna Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
- Guangdong Provincial Engineering Technology Research Center of Special Aquatic Functional Feed, Foshan, China
| | - Le Hao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qingrong Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Qiong Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yuxiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Zhenxing Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fubao Wang
- Guangdong Provincial Engineering Technology Research Center of Special Aquatic Functional Feed, Foshan, China
| | - Sentai Liao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Dongxu Xing
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| |
Collapse
|
3
|
Huang D, Liu C, Zhou H, Wang X, Zhang Q, Liu X, Deng Z, Wang D, Li Y, Yao C, Song W, Rao Q. Simultaneous and High-Throughput Analytical Strategy of 30 Fluorinated Emerging Pollutants Using UHPLC-MS/MS in the Shrimp Aquaculture System. Foods 2024; 13:3286. [PMID: 39456348 PMCID: PMC11507328 DOI: 10.3390/foods13203286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study established novel and high-throughput strategies for the simultaneous analysis of 30 fluorinated emerging pollutants in different matrices from the shrimp aquaculture system in eastern China using UHPLC-MS/MS. The parameters of SPE for analysis of water samples and of QuEChERS methods for sediment and shrimp samples were optimized to allow the simultaneous detection and quantitation of 17 per- and polyfluoroalkyl substances (PFASs) and 13 fluoroquinolones (FQs). Under the optimal conditions, the limits of detection of 30 pollutants for water, sediment, and shrimp samples were 0.01-0.30 ng/L, 0.01-0.22 μg/kg, and 0.01-0.23 μg/kg, respectively, while the limits of quantification were 0.04-1.00 ng/L, 0.03-0.73 μg/kg, and 0.03-0.76 μg/kg, with satisfactory recoveries and intra-day precision. The developed methods were successfully applied to the analysis of multiple samples collected from aquaculture ponds in eastern China. PFASs were detected in all samples with concentration ranges of 0.18-0.77 μg/L in water, 0.13-1.41 μg/kg (dry weight) in sediment, and 0.09-0.96 μg/kg (wet weight) in shrimp, respectively. Only two FQs, ciprofloxacin and enrofloxacin, were found in the sediment and shrimp. In general, this study provides valuable insights into the prevalence of fluorinated emerging contaminants, assisting in the monitoring and control of emerging contaminants in aquatic foods.
Collapse
Affiliation(s)
- Di Huang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chengbin Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
| | - Huatian Zhou
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Xianli Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Qicai Zhang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Xiaoyu Liu
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Zhongsheng Deng
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
| | - Danhe Wang
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Yameng Li
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Chunxia Yao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Weiguo Song
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
- Shanghai Co-Elite Agri-Food Testing Technical Service Co., Ltd., Shanghai 201403, China
- School of Health Science and Engineering, University of Shanghai for Science & Technology, Shanghai 100049, China
| | - Qinxiong Rao
- The Institute of Agro-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (D.H.); (C.L.); (H.Z.); (X.W.); (Q.Z.); (X.L.); (Z.D.); (D.W.); (Y.L.); (C.Y.); (Q.R.)
- Key Laboratory of Food Quality Safety and Nutrition (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| |
Collapse
|
4
|
Sharjeel M, Ali S, Summer M, Noor S, Nazakat L. Recent advancements of nanotechnology in fish aquaculture: an updated mechanistic insight from disease management, growth to toxicity. AQUACULTURE INTERNATIONAL 2024; 32:6449-6486. [DOI: 10.1007/s10499-024-01473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/16/2024] [Indexed: 08/04/2024]
|
5
|
Yaparatne S, Morón-López J, Bouchard D, Garcia-Segura S, Apul OG. Nanobubble applications in aquaculture industry for improving harvest yield, wastewater treatment, and disease control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172687. [PMID: 38663593 DOI: 10.1016/j.scitotenv.2024.172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
The ever-growing demand for aquaculture has led the industry to seek novel approaches for more sustainable practices. These attempts aim to increase aquaculture yield by increasing energy efficiency and decreasing footprint and chemical demand without compromising animal health. For this, emerging nanobubbles (NBs) aeration technology gained attention. NBs are gas-filled pockets suspended as sphere-like cavities (bulk NBs) or attached to surfaces (surface NBs) with diameters of <1 μm. Compared to macro and microbubbles, NBs have demonstrated unique characteristics such as long residence times in water, higher gas mass transfer efficiency, and hydroxyl radical production. This paper focuses on reviewing NB technology in aquaculture systems by summarizing and discussing uses and implications. Three focus areas were targeted to review the applicability and effects of NBs in aquaculture: (i) NBs aeration to improve the aquaculture harvest yield and subsequent wastewater treatment; (ii) NB application for inactivation of harmful microorganisms; and (iii) NBs for reducing oxidative stress and improving animal health. Thus, this study reviews the research studies published in the last 10 years in which air, oxygen, ozone, and hydrogen NBs were tested to improve gas mass transfer, wastewater treatment, and control of pathogenic microorganisms. The experimental results indicated that air and oxygen NBs yield significantly higher productivity, growth rate, total harvest, survival rate, and less oxygen consumption in fish and shrimp farming. Secondly, the application of air and ozone NBs demonstrated the ability of efficient pollutant degradation. Third, NB application demonstrated effective control of infectious bacteria and viruses, and thus increased fish survival, as well as different gene expression patterns that induce immune responses to infections. Reviewed studies lack robust comparative analyses of the efficacy of macro- and microbubble treatments. Also, potential health and safety implications, as well as economic feasibility through factors such as changes in capital infrastructure, routine maintenance and energy consumption need to be considered and evaluated in parallel to applicability. Therefore, even with a promising future, further studies are needed to confirm the benefits of NB treatment versus conventional aquaculture practices.
Collapse
Affiliation(s)
- Sudheera Yaparatne
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Jesús Morón-López
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Deborah Bouchard
- Aquaculture Research Institute, University of Maine, Orono, ME 04469, United States
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
6
|
Huang Z, Ye Y, Kong L, Xu A, Liu L, Li Z. Regulatory effects of Astragalus membranaceus polysaccharides on lipid metabolism disorders induced by a high-fat diet in spotted sea bass (Lateolabrax maculatus). Int J Biol Macromol 2024; 271:132584. [PMID: 38795881 DOI: 10.1016/j.ijbiomac.2024.132584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
This study evaluated the regulatory effects of Astragalus membranaceus polysaccharides (AMP) on lipid metabolism disorders induced by a high-fat diet (HFD) in spotted sea bass (Lateolabrax maculatus). Compared with the normal diets (10 % lipids), diets containing 15 % lipid levels were used as the high-fat diet (HFD). Three levels of the AMP (0.06 %, 0.08 %, 0.10 %) were added in the HFD and used as experimental diets. A total of 375 spotted sea bass (average weight 3.00 ± 0.01 g) were divided into 15 tanks and deemed as 5 groups, with each tank containing 25 fish. Fish in each group were fed with different diets for 56 days. After feeding, the HFD induced lipid metabolism disorders in fish, as evidenced by elevated serum lipids, malonaldehyde levels, and more severe liver damage. The AMP alleviated the HFD-induced liver damage, as evidenced by the reduced severity of liver histological lesions and malonaldehyde levels. The low-density lipoprotein cholesterol was reduced, and the expression of FAS and PPAR-α were down and up-regulated, respectively. However, the AMP had a limited ability to affect the serum lipids and abdominal fat percentage. These results reveal the potential of the AMP used in aquaculture to regulate lipid metabolism disorders induced by the HFD.
Collapse
Affiliation(s)
- Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| | - Youling Ye
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Anle Xu
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Longhui Liu
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China; Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| |
Collapse
|
7
|
Huang Q, Butaye P, Ng PH, Zhang J, Cai W, St-Hilaire S. Impact of low-dose ozone nanobubble treatments on antimicrobial resistance genes in pond water. Front Microbiol 2024; 15:1393266. [PMID: 38812692 PMCID: PMC11136503 DOI: 10.3389/fmicb.2024.1393266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat as the silent pandemic. Because of the use of antimicrobials in aquaculture systems, fish farms may be potential reservoirs for the dissemination of antimicrobial resistance genes (ARGs). Treatments with disinfectants have been promoted to reduce the use of antibiotics; however, the effect of these types of treatments on AMR or ARGs is not well known. This study aimed to evaluate the effects of low dose ozone treatments (0.15 mg/L) on ARG dynamics in pond water using metagenomic shotgun sequencing analysis. The results suggested that ozone disinfection can increase the relative abundance of acquired ARGs and intrinsic efflux mediated ARGs found in the resistance nodulation cell division (RND) family. Notably, a co-occurrence of efflux and non-efflux ARGs within the same bacterial genera was also observed, with most of these genera dominating the bacterial population following ozone treatments. These findings suggest that ozone treatments may selectively favor the survival of bacterial genera harboring efflux ARGs, which may also have non-efflux ARGs. This study underscores the importance of considering the potential impacts of disinfection practices on AMR gene dissemination particularly in aquaculture settings where disinfectants are frequently used at low levels. Future endeavors should prioritize the evaluation of these strategies, as they may be associated with an increased risk of AMR in aquatic environments.
Collapse
Affiliation(s)
- Qianjun Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Patrick Butaye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Pok Him Ng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ju Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Shao GJ, Pan XD, Han JL. Antibiotic residues in commercial freshwater fish from southeast China: distribution and human health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23780-23789. [PMID: 38430444 DOI: 10.1007/s11356-024-32708-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
We investigated 14 antibiotic residues in 8 marketed freshwater fish species from southeast China and estimated the associated health risks to local consumers. The antibiotic residues were determined by UPLC-MS/MS. Our findings revealed widespread distribution of quinolones (QNs), tetracyclines (TCs), and chloramphenicols (CAPs) in the freshwater fish. Notably, the average concentrations of enrofloxacin and ciprofloxacin reached levels as high as 62.5 μg/kg wet weight (ww) and 11.7 μg/kg ww, respectively, and detection frequencies were 68.7% for enrofloxacin and 31.6% for ciprofloxacin. Additionally, we detected chloramphenicol, a prohibited antibiotic, in samples with a detection frequency of 0.76%. Among the fish species, the mean concentration of total antibiotic residues was highest in bluntnose black bream (263.3 μg/kg), followed by English perch (52.4 μg/kg), crucian carp (46.3 μg/kg), black carp (28.6 μg/kg), yellowcheek carp (21.0 μg/kg), grass carp (15.3 μg/kg), bighead carp (3.78 μg/kg), and mandarin fish (3.69 μg/kg). We estimated the daily intake values of these antibiotic residues which were lower than the acceptable daily intake values and hazard indexes were much less than 1. It indicates that there is very low direct health risk to consumers. Despite that, investigation on the chronic impact, such as antibiotic-resistant bacteria, gut microbiota disruption, and allergic reactions, is urgently needed.
Collapse
Affiliation(s)
- Guo-Jian Shao
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Xiao-Dong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Jian-Long Han
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
9
|
Gobbato J, Becchi A, Bises C, Siena F, Lasagni M, Saliu F, Galli P, Montano S. Occurrence of phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) in key species of anthozoans in Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 200:116078. [PMID: 38290362 DOI: 10.1016/j.marpolbul.2024.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The Mediterranean Sea's biodiversity is declining due to climate change and human activities, with plastics and emerging contaminants (ECs) posing significant threats. This study assessed phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) occurrence in four anthozoan species (Cladocora caespitosa, Eunicella cavolini, Madracis pharensis, Parazoanthus axinellae) using solid phase microextraction (SPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All specimens were contaminated with at least one contaminant, reaching maximum values of 57.3 ng/g for the ∑PAEs and 64.2 ng/g (wet weight) for ∑APIs, with dibutyl phthalate and Ketoprofen being the most abundant. P. axinellae was the most contaminated species, indicating higher susceptibility to bioaccumulation, while the other three species showed two-fold lower concentrations. Moreover, the potential adverse effects of these contaminants on anthozoans have been discussed. Investigating the impact of PAEs and APIs on these species is crucial, given their key role in the Mediterranean benthic communities.
Collapse
Affiliation(s)
- J Gobbato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives.
| | - A Becchi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - C Bises
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - F Siena
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - M Lasagni
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - F Saliu
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - P Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; University of Dubai, P.O. Box 14143, Dubai Academic City, United Arab Emirates; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| | - S Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| |
Collapse
|
10
|
Busari AA, Efejene IO, Olayemi SO, Orororo OC, Egbune EO. Evaluation of antibiotic use and analysis of ciprofloxacin and gentamicin residue in fish samples from farms in Lagos, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:127. [PMID: 38195963 DOI: 10.1007/s10661-024-12303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Antibiotic use in aquaculture for increase yield has been established over time; however, consumption of such fish may lead to inadvertent intake of sub therapeutic doses of antibiotics. Therefore, this study aimed to investigate the extent of antibiotic use in fish farming and ciprofloxacin and gentamicin residues in fish that are consumed in Lagos, Nigeria. It was conducted in two parts: a survey of 60 fish producers to assess their use of antibiotics and an analysis of ciprofloxacin and gentamicin residues in fish organs using high-performance liquid chromatography (HPLC). The survey found that twenty-nine (48%) of the farms used antibiotics, with oxytetracycline being the most common (20%), followed by ciprofloxacin (15%); gentamicin (5%); neomycin (8.33%); and probiotics (13%). HPLC analysis of fish liver and fillet samples showed that Lagos Island had the lowest residual ciprofloxacin dose (0.3014ug/g), while Lagos mainland had the greatest residual ciprofloxacin dosage (113.78765ug/g). The mean gentamicin residue in flesh of fish from farms in Lagos Island LGA was 0.37ug/g while that obtained for liver of fish samples from Surulere LGA was 2.12ug/g). The largest (5.3240ug/g) and lowest (0.2661ug/g) residual gentamicin antibiotic concentrations were found in fishes harvested from farms located in Surulere and Lagos Island, respectively. The residue levels were within the permitted range set by the WHO, but continuous regulatory surveillance is necessary to prevent antimicrobial resistance spread and improved food safety. The study has revealed that fish produced in the study area contained residues of the commonly used antibiotics hence farmers should be encouraged to consult veterinarians in cases of disease treatment for judicious use of antibiotics while self-medication and purchase of antibiotics from vendors should be discouraged.
Collapse
Affiliation(s)
- Abdulwasiu A Busari
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Israel O Efejene
- Deparment of Pharmacology, College of Medical and Health Sciences, Novena University, Ogume, Delta State, Nigeria
| | - Sunday O Olayemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Osuvwe C Orororo
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Egoamaka O Egbune
- Department of Biochemistry, Faculty of Science, Delta State University, P.M.B. 1, Abraka, Nigeria.
| |
Collapse
|
11
|
Memesh R, Yasir M, Ledder RG, Zowawi H, McBain AJ, Azhar EI. An update on the prevalence of colistin and carbapenem-resistant Gram-negative bacteria in aquaculture: an emerging threat to public health. J Appl Microbiol 2024; 135:lxad288. [PMID: 38059867 DOI: 10.1093/jambio/lxad288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Aquaculture has been recognized as a hotspot for the emergence and spread of antimicrobial resistance genes conferring resistance to clinically important antibiotics. This review gives insights into studies investigating the prevalence of colistin and carbapenem resistance (CCR) among Gram-negative bacilli in aquaculture. Overall, a high incidence of CCR has been reported in aquatic farms in several countries, with CCR being more prevalent among opportunistic human pathogens such as Acinetobacter nosocomialis, Shewanella algae, Photobacterium damselae, Vibrio spp., Aeromonas spp., as well as members of Enterobacteriaceae family. A high proportion of isolates in these studies exhibited wide-spectrum profiles of antimicrobial resistance, highlighting their multidrug-resistance properties (MDR). Several mobile colistin resistance genes (including, mcr-1, mcr-1.1, mcr-2, mcr-2.1, mcr-3, mcr-3.1, mcr-4.1, mcr-4.3, mcr-5.1, mcr-6.1, mcr-7.1, mcr-8.1, and mcr-10.1) and carbapenemase encoding genes (including, blaOXA-48, blaOXA-55, blaNDM, blaKPC, blaIMI, blaAIM, blaVIM, and blaIMP) have been detected in aquatic farms in different countries. The majority of these were carried on MDR Incompatibility (Inc) plasmids including IncA/C, and IncX4, which have been associated with a wide host range of different sources. Thus, there is a risk for the possible spread of resistance genes between fish, their environments, and humans. These findings highlight the need to monitor and regulate the usage of antimicrobials in aquaculture. A multisectoral and transdisciplinary (One Health) approach is urgently needed to reduce the spread of resistant bacteria and/or resistance genes originating in aquaculture and avoid their global reach.
Collapse
Affiliation(s)
- Roa Memesh
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ruth G Ledder
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hosam Zowawi
- College of Medicine, King Saud bin Abdul-Aziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
13
|
Ogunlaja A, Ogunlaja OO, Olukanni OD, Taylor GO, Olorunnisola CG, Dougnon VT, Mousse W, Fatta-Kassinos D, Msagati TAM, Unuabonah EI. Antibiotic resistomes and their chemical residues in aquatic environments in Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119783. [PMID: 35863703 DOI: 10.1016/j.envpol.2022.119783] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The aquatic environment is a hotspot for the transfer of antibiotic resistance to humans and animals. Several reviews have put together research efforts on the presence and distribution of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic chemical residue (ACRs) in food, hospital wastewater, and even in other aquatic environments. However, these reports are largely focused on data from developed countries, while data from developing countries and especially those in Africa, are only marginally discussed. This review is the first effort that distills information on the presence and distribution of ARGs and ACRs in the African aquatic environments (2012-2021). This review provides critical information on efforts put into the study of ARB, ARGs, and ACRs in aquatic environments in Africa through the lens of the different sub-regions in the continent. The picture provided is compared with those from some other continents in the world. It turns out that the large economies in Africa (South Africa, Nigeria, Tunisia, Kenya) all have a few reports of ARB and ARGs in their aquatic environment while smaller economies in the continent could barely provide reports of these in their aquatic environment (in most cases no report was found) even though they have some reports on resistomes from clinical studies. Interestingly, the frequency of these reports of ARB and ARGs in aquatic environments in Africa suggests that the continent is ahead of the South American continent but behind Europe and Asia in relation to providing information on these contaminants. Common ARGs found in African aquatic environment encode resistance to sulfonamide, tetracycline, β-lactam, and macrolide classes of antibiotics. The efforts and studies from African scientists in eliminating ARB and ARGs from the aquatic environment in Africa are also highlighted. Overall, this document is a ready source of credible information for scientists, policy makers, governments, and regional bodies on ARB, ARGs, and ACRs in aquatic environments in Africa. Hopefully, the information provided in this review will inspire some necessary responses from all stakeholders in the water quality sector in Africa to put in more effort into providing more scientific evidence of the presence of ARB, ARGs, and ACRs in their aquatic environment and seek more efficient ways to handle them to curtail the spread of antibiotic resistance among the population in the continent. This will in turn, put the continent on the right path to meeting the United Nations Sustainable Development Goals #3 and #6, which at the moment, appears to be largely missed by most countries in the continent.
Collapse
Affiliation(s)
- Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria.
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, P.M.B. 230, Ede, Nigeria
| | - Gloria O Taylor
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Victorien T Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Wassiyath Mousse
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, South Africa
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| |
Collapse
|
14
|
Zhang J, Ge H, Shi J, Tao H, Li B, Yu X, Zhang M, Xu Z, Xiao R, Li X. A tiered probabilistic approach to assess antibiotic ecological and resistance development risks in the fresh surface waters of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114018. [PMID: 36037634 DOI: 10.1016/j.ecoenv.2022.114018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/23/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Exposure to antibiotics can result in not only ecotoxicity on aquatic organisms but also the development of antibiotic resistance. In the study, the ecotoxicity data and minimum inhibitory concentrations of the antibiotics were screened to derive predicted no-effect concentrations of ecological (PNECeco) and resistance development risks (PNECres) for 36 antibiotics in fresh surface waters of China. The derived PNECeco and PNECres values were ranged from 0.00175 to 2351 μg/L and 0.037-50 μg/L, respectively. Antibiotic ecological and resistance development risks were geographically widespread, especially in the Yongding River, Daqing River, and Ziya River basins of China. Based on the risk quotients, 11 and 14 of 36 target antibiotics were at high ecological risks and high resistance development risks in at least one basin, respectively. The higher tiered assessments provided more detailed risk descriptions by probability values and β-lactams (penicillin and amoxicillin) were present at the highest levels for ecological and resistance development risks. Although there was uncertainty based on the limited data and existing methods, this study can indicate the overall situation of the existing risk levels and provide essential insights and data supporting antibiotic management.
Collapse
Affiliation(s)
- Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Huanyu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
| | - Bin Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiangyi Yu
- Solid Waste and Chemicals Management Center of Ministry of Ecology and Environment, Beijing 100029, China
| | - Mengtao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zonglin Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijie Xiao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoyan Li
- Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Zhong W, Chen K, Yang L, Tang T, Jiang S, Guo J, Gao Z. Essential Oils From Citrus unshiu Marc. Effectively Kill Aeromonas hydrophila by Destroying Cell Membrane Integrity, Influencing Cell Potential, and Leaking Intracellular Substances. Front Microbiol 2022; 13:869953. [PMID: 35836415 PMCID: PMC9274202 DOI: 10.3389/fmicb.2022.869953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Aeromonas hydrophila is one of the important pathogenic bacteria in aquaculture causing serious losses every year. Essential oils are usually used as natural antimicrobial agents to reduce or replace the use of antibiotics. The aim of this study was to evaluate the antibacterial activity and explore the mechanisms of essential oil from satsuma mandarin (Citrus unshiu Marc.) (SMEO) against A. hydrophila. The results of the gas chromatography-mass spectrometer demonstrated that SMEO contains 79 chemical components with the highest proportion of limonene (70.22%). SMEO exhibited strong antibacterial activity against A. hydrophila in vitro, the diameter of the inhibition zone was 31.22 ± 0.46 mm, and the MIC and MBC values were all 1% (v/v). Intracellular material release, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and flow cytometry analysis revealed the dynamic antibacterial process of SMEO, the morphological changes of bacterial cells, and the leakage process of intracellular components. These results demonstrated that SMEO disrupted the extracellular membrane permeability. Our study demonstrated that SEMO has the potential to be used to control and prevent A. hydrophila infections in aquaculture.
Collapse
Affiliation(s)
- Weiming Zhong
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Kangyong Chen
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Linlin Yang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tao Tang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Sifan Jiang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Jiajing Guo,
| | - Zhipeng Gao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Zhipeng Gao,
| |
Collapse
|
16
|
Zhang R, Du J, Dong X, Huang Y, Xie H, Chen J, Li X, Kadokami K. Occurrence and ecological risks of 156 pharmaceuticals and 296 pesticides in seawater from mariculture areas of Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148375. [PMID: 34157531 DOI: 10.1016/j.scitotenv.2021.148375] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
China is the largest mariculture producer in the world. In recent years, pharmaceuticals and pesticides have been widely used in mariculture activities; however, most studies have only focused on the occurrence of limited types of antibiotics and organochlorine pesticides. It is critical to comprehensively investigate the occurrence of pharmaceuticals and pesticides in mariculture areas and assess their potential impacts on ocean ecosystems. In this study, the occurrence, distribution, and ecological risk of 484 compounds, including 296 pesticides, 156 pharmaceuticals, and 32 other substances, in the drainage ditches of culture ponds and raft-culture areas were investigated. A total of 51 compounds were detected in the mariculture area, with total concentrations ranging from 5.4 × 102 to 2.0 × 104 ng/L at each sampling site. Eleven pesticides, three pharmaceuticals, and five other compounds were detected with detection frequencies of 100%. The cluster analysis indicated that mariculture is a source of herbicide pollution in coastal waters. To assess the ecological risks of the detected compounds, toxicity data collected from the database and predicted from quantitative structure activity relationship (QSAR) models were used to calculate the risk quotients and probabilistic risks. According to the risk quotients, five pollutants, including diuron, ametryn, prometryne, simetryn, and terbutryn, were estimated to pose high risks to marine organisms. The results of the probabilistic risk assessment indicated that only diuron, a biocide used in antifouling paint and mariculture, would have an adverse effect on up to 8% of the aquatic species in nearshore areas. These findings could be helpful in determining the aquatic benchmarks of pesticides and pharmaceuticals in mariculture discharge to promote the sustainable development of mariculture and ecological protection in coastal areas.
Collapse
Affiliation(s)
- Ruohan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Xianbao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Yang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.
| | - Kiwao Kadokami
- Institute of Environmental Science and Technology, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan.
| |
Collapse
|
17
|
Fauzi NNFNM, Hamdan RH, Mohamed M, Ismail A, Mat Zin AA, Mohamad NFA. Prevalence, antibiotic susceptibility, and presence of drug resistance genes in Aeromonas spp. isolated from freshwater fish in Kelantan and Terengganu states, Malaysia. Vet World 2021; 14:2064-2072. [PMID: 34566322 PMCID: PMC8448652 DOI: 10.14202/vetworld.2021.2064-2072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Aim: The emergence of antibiotic-resistant bacterial pathogens has been increasingly reported, which has resulted in a decreasing ability to treat bacterial infections. Therefore, this study investigated the presence of Aeromonas spp., including its antibiotic resistance in various fish samples, Oreochromis spp., Clarias gariepinus, and Pangasius hypophthalmus, obtained from Kelantan and Terengganu, Malaysia. Materials and Methods: In this study, 221 fish samples, of which 108 (Oreochromis spp., n=38; C. gariepinus, n=35; and P. hypophthalmus, n=35) were from Kelantan and 113 (Oreochromis spp., n=38; C. gariepinus, n=35; and P. hypophthalmus, n=40) were from Terengganu, were caught using cast nets. Then, samples from their kidneys were cultured on a Rimler Shott agar to isolate Aeromonas spp. Polymerase chain reaction (PCR) was used to confirm this isolation using specific gene primers for species identification. Subsequently, the isolates were tested for their sensitivity to 14 antibiotics using the Kirby–Bauer method, after which the PCR was conducted again to detect resistance genes: sul1, strA-strB, aadA, blaTEM, blaSHV, tetA-tetE, and tetM. Results: From the results, 61 isolates were identified as being from the genus Aeromonas using PCR, of which 28 were Aeromonas jandaei, 19 were Aeromonas veronii, seven were Aeromonas hydrophila, and seven were Aeromonas sobria. Moreover, 8, 12, and 8 of A. jandaei; 4, 3, and 12 of A. veronii; 6, 0, and 1 of A. hydrophila; and 3, 3, and 1 of A. sobria were obtained from Oreochromis spp., C. gariepinus, and P. hypophthalmus, respectively. In addition, the isolates showed the highest level of resistance to ampicillin (100%), followed by streptomycin (59.0%), each kanamycin and nalidixic acid (41.0%), neomycin (36.1%), tetracycline (19.7%), sulfamethoxazole (14.8%), and oxytetracycline (13.1%). Resistance to gentamicin and ciprofloxacin both had the same percentage (9.8%), whereas isolates showed the lowest resistance to norfloxacin (8.2%) and doxycycline (1.6%). Notably, all Aeromonas isolates were susceptible to chloramphenicol and nitrofurantoin. Results also revealed that the multiple antibiotic resistances index of the isolates ranged from 0.07 to 0.64, suggesting that the farmed fish in these areas were introduced to the logged antibiotics indiscriminately and constantly during their cultivation stages. Results also revealed that the sul1 gene was detected in 19.7% of the Aeromonas isolates, whereas the tetracycline resistance genes, tetA and tetE, were detected in 27.9% and 4.9% of the isolates, respectively. However, β-lactam resistance genes, blaTEM and blaSHV, were found in 44.3% and 13.1% of Aeromonas isolates, respectively, whereas strA-strB and aadA genes were found in 3.3% and 13.1% of the isolates, respectively. Conclusion: This study, therefore, calls for continuous surveillance of antibiotic-resistant Aeromonas spp. in cultured freshwater fish to aid disease management and better understand their implications to public health.
Collapse
Affiliation(s)
- Nik Nur Fazlina Nik Mohd Fauzi
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Ruhil Hayati Hamdan
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Maizan Mohamed
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Aziana Ismail
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Ain Auzureen Mat Zin
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| | - Nora Faten Afifah Mohamad
- Department of Paraclinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
18
|
Hang Pham TT, Cochevelou V, Khoa Dinh HD, Breider F, Rossi P. Implementation of a constructed wetland for the sustainable treatment of inland shrimp farming water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111782. [PMID: 33307316 DOI: 10.1016/j.jenvman.2020.111782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
In the Mekong delta, inland-based shrimp breeding requires significant inflow of high-quality freshwater. In turn, discharge of substantial loads of poor-quality effluents negatively impacts adjacent water bodies and favors disease outbreaks. This project describes the implementation of a laboratory-based continuous closed recirculation aquaculture system composed of a constructed wetland (CW) with horizontal subsurface flow as a water treatment filter for mesohaline conditions, functioning under high loading rate (HLR = 1.54 m/d with HRT = 1.31 h). This CW was equipped of successive compartment dedicated to the successive elimination of the contaminants of interests. CW performance was measured over a complete growth cycle of the White-leg shrimps (Litopenaeus vannamei). Results showed that the designed system was pertinent, improving water quality of the shrimp culture substantially. Complete removal of nitrite was attained, with a concomitant reduction of respectively 78% and 76% of nitrate and COD. Bacteria enumeration tests showed that Vibrio sp. cells were fully removed, and that a 3 Log reduction was reached in total aerobic bacteria.
Collapse
Affiliation(s)
- Thi Thu Hang Pham
- Environmental Biotechnology Laboratory, Institute for Environment and Resources, National University Viet Nam, Ho Chi Minh City, Viet Nam
| | - Vincent Cochevelou
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Hoang Dang Khoa Dinh
- Environmental Biotechnology Laboratory, Institute for Environment and Resources, National University Viet Nam, Ho Chi Minh City, Viet Nam
| | - Florian Breider
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Pierre Rossi
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
19
|
Wang C, Chen M, Hu Q, Bai H, Wang C, Ma Q. Non-lethal microsampling and rapid identification of multi-residue veterinary drugs in aquacultured fish by direct analysis in real time coupled with quadrupole-Orbitrap high-resolution mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Zhang H, Chen Q, Niu B. Risk Assessment of Veterinary Drug Residues in Meat Products. Curr Drug Metab 2020; 21:779-789. [PMID: 32838714 DOI: 10.2174/1389200221999200820164650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/04/2023]
Abstract
With the improvement of the global food safety regulatory system, there is an increasing importance for food safety risk assessment. Veterinary drugs are widely used in poultry and livestock products. The abuse of veterinary drugs seriously threatens human health. This article explains the necessity of risk assessment for veterinary drug residues in meat products, describes the principles and functions of risk assessment, then summarizes the risk assessment process of veterinary drug residues, and then outlines the qualitative and quantitative risk assessment methods used in this field. We propose the establishment of a new meat product safety supervision model with a view to improve the current meat product safety supervision system.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| |
Collapse
|
21
|
Peng YY, Gao F, Yang HL, Wu HWJ, Li C, Lu MM, Yang ZY. Simultaneous removal of nutrient and sulfonamides from marine aquaculture wastewater by concentrated and attached cultivation of Chlorella vulgaris in an algal biofilm membrane photobioreactor (BF-MPBR). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138524. [PMID: 32302854 DOI: 10.1016/j.scitotenv.2020.138524] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Microalgae based wastewater treatment has attracted increasing attention for its many advantages in recent years. In this study, a novel microalgae biofilm membrane photobioreactor (BF-MPBR) was developed for the efficient microalgae cultivation and the removal of nutrient and sulfonamides (SAs) from marine aquaculture wastewater. Two BF-MPBRs with hydraulic retention time (HRT) of 1 day and 2 days respectively were continuously operated for 70 days without harvesting microalgae. Concentrated and attached culture of marine Chlorella vulgaris was achieved in these continuous flow BF-MPBRs due to the suspended solid carriers and microfiltration membrane module in the reactors. The algal biomass productivity achieved in BF-MPBRs with HRT of 1 day and 2 days were 14.02 and 22.03 mg L-1 day-1, respectively. In addition, at the end of the cultivation, 60.4% and 45.0% of microalgae were fixed into algal biofilm in BF-MPBRs with 1 day and 2 day HRT, respectively. Compared with batch cultivation, more efficient nutrient and SAs removal performance was achieved in BF-MPBRs, although the HRT of the BF-MPBRs used in this study was only 1 or 2 days. During the stable operation stage of the BF-MPBRs, the reduction in dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), sulfadiazine (SDZ), sulfamethazine (SMZ) and sulfamethoxazole (SMX) were found in the range of 91.0-99.6%, 92.1-98.4%, 61.0-79.2%, 50.0-76.7% and 60.8-82.1%, respectively. Therefore, nutrient and SAs were simultaneously and efficiently removed from marine aquaculture wastewater by microalgae cultivation in BF-MPBR.
Collapse
Affiliation(s)
- Yuan-Yuan Peng
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China
| | - Feng Gao
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China.
| | - Hong-Li Yang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Hang-Wei-Jing Wu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China
| | - Chen Li
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China
| | - Miao-Miao Lu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China
| | - Zi-Yan Yang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
22
|
Zheng X, Zhou S, Hu J, Yang R, Gu Z, Qin JG, Ma Z, Yu G. Could the gut microbiota community in the coral trout Plectropomus leopardus (Lacepède, 1802) be affected by antibiotic bath administration? Vet Med Sci 2020; 6:649-657. [PMID: 32307901 PMCID: PMC7397917 DOI: 10.1002/vms3.267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 01/03/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Gut microbiota in fish plays an important role in the nutrient digestion, immune responses and disease resistance. To understand the effect of fluoroquinolone antibiotic bath administration on fish gut microbiota, the gut microbiota community in the coral trout Plectropomus leopardus (Lacepède, 1802) was studied after enrofloxacin bathing treatment at two concentrations (5 and 10 mg/L) and 0 mg/L as control. A total of 90 fish were used in this study, and three replicates were used for each treatment. After a 24‐hr bath, the gut bacterial composition was analyzed using high‐throughput Illumina sequencing. The results indicated that the richness, diversity and the dominant bacterial taxa of P. leopardus gut bacteria were not affected by enrofloxacin bathing (p > .05). Proteobacteria and Firmicutes were the dominant phyla, and Exiguobacterium, Citrobacter, Vibrio, Acinetobacter, Pseudomonas were the dominant genus. The findings in the present study provide an understanding on the relationship between fish gut bacteria community and antibiotic bath administration. The findings of this study are instructive on the antibiotic bath administration applied for the management of P. leopardus health in aquaculture.
Collapse
Affiliation(s)
- Xing Zheng
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Ocean College, Hainan University, Haikou, P. R. China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Shengjie Zhou
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Jing Hu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Rui Yang
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Zhifeng Gu
- Ocean College, Hainan University, Haikou, P. R. China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, China.,Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, P. R. China
| |
Collapse
|
23
|
|
24
|
Coyne L, Arief R, Benigno C, Giang VN, Huong LQ, Jeamsripong S, Kalpravidh W, McGrane J, Padungtod P, Patrick I, Schoonman L, Setyawan E, Harja Sukarno A, Srisamran J, Ngoc PT, Rushton J. Characterizing Antimicrobial Use in the Livestock Sector in Three South East Asian Countries (Indonesia, Thailand, and Vietnam). Antibiotics (Basel) 2019; 8:E33. [PMID: 30934638 PMCID: PMC6466601 DOI: 10.3390/antibiotics8010033] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 11/25/2022] Open
Abstract
A framework was developed to characterize the antimicrobial use/antimicrobial resistance complex in livestock systems in Indonesia, Vietnam, and Thailand. Farm profitability, disease prevention, and mortality rate reduction were identified as drivers toward antimicrobial use in livestock systems. It revealed that antimicrobial use was high in all sectors studied, and that routine preventative use was of particular importance to broiler production systems. Misleading feed labeling was identified as a hurdle to the collection of accurate antimicrobial use data, with farmers being unaware of the antimicrobials contained in some commercial feed. Economic analysis found that the cost of antimicrobials was low relative to other farm inputs, and that farm profitability was precariously balanced. High disease and poor prices were identified as potential drivers toward economic loss. The research indicates that antimicrobial use in small-scale poultry production systems improves feed conversion ratios and overall productivity. However, data were limited to quantify adequately these potential gains and their impacts on the food supply. During the study, all countries embraced and implemented policies on better management of antimicrobial use in livestock and surveillance of antimicrobial resistance. Future policies need to consider farm-level economics and livestock food supply issues when developing further antimicrobial use interventions in the region.
Collapse
Affiliation(s)
- Lucy Coyne
- Epidemiology and Population Health, University of Liverpool, Neston CH64 7TE, UK.
| | - Riana Arief
- Center for Indonesian Veterinary Analytical Studies, Bogor 16310, Indonesia.
| | - Carolyn Benigno
- FAO Regional Office for Asia and the Pacific, Bangkok 10200, Thailand.
| | | | | | - Saharuetai Jeamsripong
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - James McGrane
- FAO Country Office for Indonesia, Jakarta 10250, Indonesia.
| | | | - Ian Patrick
- Epidemiology and Population Health, University of Liverpool, Neston CH64 7TE, UK.
- Agricultural and Resource Economic Consulting Services, Armidale, NSW 2350, Australia.
| | - Luuk Schoonman
- FAO Country Office for Indonesia, Jakarta 10250, Indonesia.
| | - Erry Setyawan
- FAO Country Office for Indonesia, Jakarta 10250, Indonesia.
| | | | - Jutanat Srisamran
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pham Thi Ngoc
- National Institute of Veterinary Research, Hanoi, Vietnam.
| | - Jonathan Rushton
- Epidemiology and Population Health, University of Liverpool, Neston CH64 7TE, UK.
| |
Collapse
|
25
|
Alavinia SJ, Mirzargar SS, Rahmati-Holasoo H, Mousavi HE. The in vitro and in vivo effect of tannic acid on Ichthyophthirius multifiliis in zebrafish (Danio rerio) to treat ichthyophthiriasis. JOURNAL OF FISH DISEASES 2018; 41:1793-1802. [PMID: 30168579 DOI: 10.1111/jfd.12886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
The in vitro antiparasitic effect of polyphenol tannic acid (TA) on Ichthyophthirius multifiliis theronts and tomonts was evaluated. In vitro antiparasitic assays revealed that TA in a dose- and time-dependent pattern through the damage of parasite plasma membrane could be 100% effective against I. multifiliis theronts at concentrations of 8 and 11 ppm during all the exposure times (45-270 min). The tomonts proliferation was completely inhibited by penetrating TA (at least 15 ppm for 22-hr exposure) into encysted tomont across the cyst wall. However, 10 ppm TA could result in a ninefold decrease in the population of live tomonts compared to the control group (p < 0.05). Although at theront concentrations of over 6,000 per zebrafish (Danio rerio), a 100% prevalence of ichthyophthiriasis during a 5-day exposure was recorded, results of in vivo tests showed that the parasite that pretreated up to 10 ppm TA for 70 min had not any capability to infect the studied zebrafish population. The acute toxicity (96 hr-LC50 ) of TA for zebrafish was 19.51 ppm. Thus, TA can be considered as a natural therapeutant to safely and efficiently improve the health of aquatic systems by controlling ichthyophthiriasis.
Collapse
Affiliation(s)
- Seyed Jalil Alavinia
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Saeed Mirzargar
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
26
|
Shi Y, Xu X, Li Q, Zhang M, Li J, Lu Y, Liang R, Zheng X, Shao X. Integrated regional ecological risk assessment of multiple metals in the soils: A case in the region around the Bohai Sea and the Yellow Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:288-297. [PMID: 29990936 DOI: 10.1016/j.envpol.2018.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Methodology to quantify and distinguish the spatial distribution of the risks from multiple pollutants within the region was developed in this paper. An integrated quantitative risk assessment was conducted by utilizing a large amount of information available to explore spatial distribution of risk by single and multiple pollutants, and the magnitude of the overall risk from multiple pollutants based on the current concentrations of pollutants and toxicity data. Two target criteria levels - level I (NOEC/LOEC based) and level II (LC/EC/IC50 based) - were employed, and thus, the regional and sub-regional risks were evaluated according to these two levels. The risk of multiple toxic metals (As, Cd, Cr, Hg and Pb) to a terrestrial ecosystem for the region around the Bohai Sea and the Yellow Sea were evaluated as a case. The total overall ecological risks from heavy metals in the region for level I and level II were 21.73% and 12.53%, respectively. The risks were ranked in the order of Cr > As > Pb > Cd > Hg with Cr posing the greatest ecological risk, which was 61.12% for level I. The top three cities according to the level II ecological risk were Cangzhou > Lianyungang > Panjin, while the top three cities of level I ecological risk were Cangzhou > Panjin > Lianyungang. This method provides a quantitative risk assessment with multiple and clear protection levels for risk management.
Collapse
Affiliation(s)
- Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangbo Xu
- Center for Chinese Agricultural Policy, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qifeng Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Ruoyu Liang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqi Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Xiuqing Shao
- Shanxi University, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
27
|
Hamilton KA, Chen A, de-Graft Johnson E, Gitter A, Kozak S, Niquice C, Zimmer-Faust AG, Weir MH, Mitchell J, Gurian P. Salmonella risks due to consumption of aquaculture-produced shrimp. MICROBIAL RISK ANALYSIS 2018; 9:22-32. [PMID: 30525084 PMCID: PMC6277047 DOI: 10.1016/j.mran.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of aquaculture is increasing to meet the growing global demand for seafood. However, the use of aquaculture for seafood production incurs potential human health risks, especially from enteric bacteria such as Salmonella spp. Salmonella spp. was the most frequently reported cause of outbreaks associated with crustaceans from 1998 to 2004. Among crustacean species, shrimp are the most economically important, internationally traded seafood commodity, and the most commonly aquaculture-raised seafood imported to the United States. To inform safe aquaculture practices, a quantitative microbial risk assessment (QMRA) was performed for wastewater-fed aquaculture, incorporating stochastic variability in shrimp growth, processing, and consumer preparation. Several scenarios including gamma irradiation, proper cooking, and improper cooking were considered in order to examine the relative importance of these practices in terms of their impact on risk. Median annual infection risks for all scenarios considered were below 10-4, however 95th percentile risks were above 10-4 annual probability of infection and 10-6 DALY per person per year for scenarios with improper cooking and lack of gamma irradiation. The greatest difference between microbiological risks for the scenarios tested was observed when comparing proper vs. improper cooking (5 to 6 orders of magnitude) and gamma irradiation (4 to 5 orders of magnitude) compared to (up to less than 1 order of magnitude) for peeling and deveining vs. peeling only. The findings from this research suggest that restriction of Salmonella spp. to low levels (median 5 to 30 per L aquaculture pond water) may be necessary for scenarios in which proper downstream food handling and processing cannot be guaranteed.
Collapse
Affiliation(s)
- Kerry A. Hamilton
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| | - Arlene Chen
- Maryland Pathogen Research Center, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Emmanuel de-Graft Johnson
- Department of Mathematics, Faculty of Physical and Computational Sciences, College of Science, Kwame Nkrumah University of Science and Technology, SCB/AMC SF 24/B6-KNUST, Kumasi Ghana
| | - Anna Gitter
- Water Management and Hydrological Sciences Program, Texas A&M University, 400 Bizzell Street, College Station, Texas 77843
| | - Sonya Kozak
- School of Medicine, Griffith University, Gold Coast, Australia
| | - Celma Niquice
- Faculty of Civil Engineering and Geosciences, Technical University of Delft, Netherlands
| | - Amity G. Zimmer-Faust
- Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, USA
| | - Mark H. Weir
- Division of Environmental Health Sciences and Department of Civil Environmental and Geodetic Engineering, The Ohio State University
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 S. Shaw Lane, East Lansing, MI 48824
| | - Patrick Gurian
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| |
Collapse
|
28
|
Vu TTT, Alter T, Roesler U, Roschanski N, Huehn S. Investigation of Extended-Spectrum and AmpC β-Lactamase-Producing Enterobacteriaceae from Retail Seafood in Berlin, Germany. J Food Prot 2018; 81:1079-1086. [PMID: 29897274 DOI: 10.4315/0362-028x.jfp-18-029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retail seafood in Berlin, Germany, was investigated to detect the prevalence and quantitative load of Enterobacteriaceae that produce extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase (AmpC). A total of 160 raw seafood samples were screened for the presence of these bacteria using MacConkey agar supplemented with 1 mg/L cefotaxime after nonselective enrichment. Isolated species were subsequently identified using matrix-assisted laser desorption-ionization time-of-flight analysis. ESBL and AmpC production was tested by the disk diffusion method, and ESBL and AmpC genes were characterized using real-time and conventional PCR assays with DNA sequencing. Spread plating was used for quantification of ESBL- and AmpC-producing Enterobacteriaceae. Overall, these bacteria were detected in 21.3% of seafood samples (34 of 160 samples) with prevalences of 22.5 and 20% for shrimp and bivalves, respectively. Of the positive samples, 91.2% contained an ESBL- or AmpC-producing Enterobacteriaceae load of <100 CFU/g (lower detection limit), and 8.8% contained 100 to 1,000 CFU/g. Among the 45 Enterobacteriaceae isolates, Klebsiella pneumoniae (13 isolates) and Escherichia coli (12 isolates) were the predominant species. ESBL and AmpC genes were detected in 33 isolates, with the majority of isolates harboring blaCTX-M (27.3%), blaCMY (21.2%), or blaDHA (21.2%). Our study highlights the hazard associated with seafood containing ESBL- and AmpC-producing Enterobacteriaceae in Germany. Even though the contamination levels were low, the high prevalence of ESBL- and AmpC-producing Enterobacteriaceae in seafood might be of concern to public health because of the potential transmission of these bacteria from seafood to humans through the food chain.
Collapse
Affiliation(s)
| | | | - Uwe Roesler
- 2 Institute of Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany; and
| | - Nicole Roschanski
- 2 Institute of Animal Hygiene and Environmental Health, Freie Universitaet Berlin, Berlin, Germany; and
| | - Stephan Huehn
- 3 Life Sciences and Technology, Beuth University of Applied Science, Berlin, Germany
| |
Collapse
|
29
|
Ali H, Rahman MM, Rico A, Jaman A, Basak SK, Islam MM, Khan N, Keus HJ, Mohan CV. An assessment of health management practices and occupational health hazards in tiger shrimp ( Penaeus monodon) and freshwater prawn ( Macrobrachium rosenbergii) aquaculture in Bangladesh. Vet Anim Sci 2018; 5:10-19. [PMID: 32734040 PMCID: PMC7386765 DOI: 10.1016/j.vas.2018.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/12/2017] [Accepted: 01/05/2018] [Indexed: 12/04/2022] Open
Abstract
Diseases have been recognized as the major obstacle to the shrimp (Penaeus monodon) and prawn (Macrobrachium rosenbergii) aquaculture production in Bangladesh. This study provides an assessment of shrimp and prawn diseases/syndromes, health management practices, and occupational health hazards associated with the handling of chemical and biological products to prevent and treat shrimp and prawn diseases. A survey was conducted using a semi-structured questionnaire with 380 shrimp and prawn farmers in the southwest of Bangladesh during February and June of 2016. The farms were categorized on the basis of the three cropping patterns: shrimp polyculture, prawn polyculture, and shrimp and prawn polyculture. Eight different diseases and/or symptoms were reported by the surveyed farmers. The white spot disease and the broken antenna and rostrum symptom were the most common in shrimp and prawn species, respectively. In total, 35 chemical and biological products (4 antibiotics, 15 disinfectants, 13 pesticides, 2 feed additives and probiotics) were used to treat and/or prevent diseases in the all farm categories. The major constraints for disease management were limited access to disease diagnostic service, inadequate product application information and lack of knowledge on better management practices. Handling chemicals and preparation of medicated feed with bare hands was identified as a potential occupational health hazard. This study suggests improvements in farmers' knowledge and skill in disease diagnostics and health management practices, and appropriate handling of potentially hazardous chemicals.
Collapse
Affiliation(s)
- Hazrat Ali
- WorldFish, Bangladesh and South Asia Office, House #22/B, Road # 7, Block #F, Banani, Dhaka, Bangladesh
| | - Muhammad Meezanur Rahman
- WorldFish, Bangladesh and South Asia Office, House #22/B, Road # 7, Block #F, Banani, Dhaka, Bangladesh
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain
| | - Ahmed Jaman
- WorldFish, Bangladesh and South Asia Office, House #22/B, Road # 7, Block #F, Banani, Dhaka, Bangladesh
| | - Siddhwartha Kumar Basak
- WorldFish, Bangladesh and South Asia Office, House #22/B, Road # 7, Block #F, Banani, Dhaka, Bangladesh
| | - Mohammad Mahbubul Islam
- WorldFish, Bangladesh and South Asia Office, House #22/B, Road # 7, Block #F, Banani, Dhaka, Bangladesh
| | - Nazneen Khan
- WorldFish, Bangladesh and South Asia Office, House #22/B, Road # 7, Block #F, Banani, Dhaka, Bangladesh
| | - Hendrik Jan Keus
- WorldFish, Bangladesh and South Asia Office, House #22/B, Road # 7, Block #F, Banani, Dhaka, Bangladesh
| | | |
Collapse
|
30
|
Arias-Andrés M, Rämö R, Mena Torres F, Ugalde R, Grandas L, Ruepert C, Castillo LE, Van den Brink PJ, Gunnarsson JS. Lower tier toxicity risk assessment of agriculture pesticides detected on the Río Madre de Dios watershed, Costa Rica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13312-13321. [PMID: 27783250 DOI: 10.1007/s11356-016-7875-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Costa Rica is a tropical country with one of the highest biodiversity on Earth. It also has an intensive agriculture, and pesticide runoff from banana and pineapple plantations may cause a high toxicity risk to non-target species in rivers downstream the plantations. We performed a first tier risk assessment of the maximum measured concentrations of 32 pesticides detected over 4 years in the River Madre de Dios (RMD) and its coastal lagoon on the Caribbean coast of Costa Rica. Species sensitivity distributions (SSDs) were plotted in order to derive HC5 values for each pesticide, i.e., hazard concentrations for 5 % of the species, often used as environmental criteria values in other countries. We also carried out toxicity tests for selected pesticides with native Costa Rican species in order to calculate risk coefficients according to national guidelines in Costa Rica. The concentrations of herbicides diuron and ametryn and insecticides carbofuran, diazinon, and ethoprophos exceeded either the HC5 value or the lower limit of its 90 % confidence interval suggesting toxic risks above accepted levels. Risk coefficients of diuron and carbofuran derived using local guidelines indicate toxicity risks as well. The assessed fungicides did not present acute toxic risks according to our analysis. Overall, these results show a possible toxicity of detected pesticides to aquatic organisms and provide a comparison of Costa Rican national guidelines with more refined methods for risk assessment based on SSDs. Further higher tier risk assessments of pesticides in this watershed are also necessary in order to consider pesticide water concentrations over time, toxicity from pesticide mixtures, and eventual effects on ecosystem functions.
Collapse
Affiliation(s)
- M Arias-Andrés
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica.
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - R Rämö
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91, Stockholm, Sweden
| | - F Mena Torres
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - R Ugalde
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - L Grandas
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - C Ruepert
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - L E Castillo
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - P J Van den Brink
- Alterra, Wageningen University and Research Centre, Wageningen, The Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research centre, 47, 6700, AA, Wageningen, The Netherlands
| | - J S Gunnarsson
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
31
|
Zhou SY, Liu YM, Zhang QZ, Fu YW, Lin DJ. Evaluation of an antiparasitic compound extracted from Polygonum cuspidatum against Ichthyophthirius multifiliis in grass carp. Vet Parasitol 2018; 253:22-25. [PMID: 29604998 DOI: 10.1016/j.vetpar.2018.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 11/30/2022]
Abstract
Ichthyophthirius multifiliis is a ciliated parasite that infests almost all freshwater fish species and causes great economic losses to the aquaculture industry. In this study, a compound with anti-I. multifiliis activity was isolated from Polygonum cuspidatum and identified as emodin. In vitro anti-I. multifiliis results showed that emodin at 1 mg/L killed all I. multifiliis theronts for 96.0 min, and at 0.5 mg/L or lower concentrations could not kill all I. multifiliis theronts, but could significantly reduce the infectivity of theronts after pretreatment with emodin at the low concentrations mentioned above for 2 h. Additionally, emodin at 1 mg/L and 2 mg/L completely terminated the reproduction of nonencysted and encysted tomonts, respectively. In vivo tests, emodin at 0.5 mg/L could cure infected grass carp and protect naive fish from I. multifiliis infection by continuous adding emodin for 10 days. The 96 h median lethal concentration (LC50) of emodin to grass carp was 3.15 mg/L, which were approximately 18 and 7 times the median effective concentration (EC50) of emodin for killing theronts (0.18 mg/L) and nonencysted tomonts (0.45 mg/L), respectively. On the basis of these results, emodin is an effective compound for the development of a new drug against I. multifiliis.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Aquatic Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Institute of Hydrobiology, Jinan University, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Yan-Meng Liu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Aquatic Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Institute of Hydrobiology, Jinan University, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - Qi-Zhong Zhang
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Aquatic Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Institute of Hydrobiology, Jinan University, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, China.
| | - Yao-Wu Fu
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Aquatic Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Institute of Hydrobiology, Jinan University, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| | - De-Jie Lin
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Aquatic Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Institute of Hydrobiology, Jinan University, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, China
| |
Collapse
|
32
|
Rico A, Jacobs R, Van den Brink PJ, Tello A. A probabilistic approach to assess antibiotic resistance development risks in environmental compartments and its application to an intensive aquaculture production scenario. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:918-928. [PMID: 28886537 DOI: 10.1016/j.envpol.2017.08.079] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/11/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
Estimating antibiotic pollution and antibiotic resistance development risks in environmental compartments is important to design management strategies that advance our stewardship of antibiotics. In this study we propose a modelling approach to estimate the risk of antibiotic resistance development in environmental compartments and demonstrate its application in aquaculture production systems. We modelled exposure concentrations for 12 antibiotics used in Vietnamese Pangasius catfish production using the ERA-AQUA model. Minimum selective concentration (MSC) distributions that characterize the selective pressure of antibiotics on bacterial communities were derived from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) Minimum Inhibitory Concentration dataset. The antibiotic resistance development risk (RDR) for each antibiotic was calculated as the probability that the antibiotic exposure distribution exceeds the MSC distribution representing the bacterial community. RDRs in pond sediments were nearly 100% for all antibiotics. Median RDR values in pond water were high for the majority of the antibiotics, with rifampicin, levofloxacin and ampicillin having highest values. In the effluent mixing area, RDRs were low for most antibiotics, with the exception of amoxicillin, ampicillin and trimethoprim, which presented moderate risks, and rifampicin and levofloxacin, which presented high risks. The RDR provides an efficient means to benchmark multiple antibiotics and treatment regimes in the initial phase of a risk assessment with regards to their potential to develop resistance in different environmental compartments, and can be used to derive resistance threshold concentrations.
Collapse
Affiliation(s)
- Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain.
| | - Rianne Jacobs
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Paul J Van den Brink
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Alfredo Tello
- Instituto Tecnológico del Salmón, INTESAL de Salmon Chile, Juan Soler Manfredini 41, Oficina, 1802, Puerto Montt, Chile
| |
Collapse
|
33
|
Henriksson PJG, Rico A, Troell M, Klinger DH, Buschmann AH, Saksida S, Chadag MV, Zhang W. Unpacking factors influencing antimicrobial use in global aquaculture and their implication for management: a review from a systems perspective. SUSTAINABILITY SCIENCE 2017; 13:1105-1120. [PMID: 30147798 PMCID: PMC6086308 DOI: 10.1007/s11625-017-0511-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 11/07/2017] [Indexed: 05/06/2023]
Abstract
Global seafood provides almost 20% of all animal protein in diets, and aquaculture is, despite weakening trends, the fastest growing food sector worldwide. Recent increases in production have largely been achieved through intensification of existing farming systems, resulting in higher risks of disease outbreaks. This has led to increased use of antimicrobials (AMs) and consequent antimicrobial resistance (AMR) in many farming sectors, which may compromise the treatment of bacterial infections in the aquaculture species itself and increase the risks of AMR in humans through zoonotic diseases or through the transfer of AMR genes to human bacteria. Multiple stakeholders have, as a result, criticized the aquaculture industry, resulting in consequent regulations in some countries. AM use in aquaculture differs from that in livestock farming due to aquaculture's greater diversity of species and farming systems, alternative means of AM application, and less consolidated farming practices in many regions. This, together with less research on AM use in aquaculture in general, suggests that large data gaps persist with regards to its overall use, breakdowns by species and system, and how AMs become distributed in, and impact on, the overall social-ecological systems in which they are embedded. This paper identifies the main factors (and challenges) behind application rates, which enables discussion of mitigation pathways. From a set of identified key mechanisms for AM usage, six proximate factors are identified: vulnerability to bacterial disease, AM access, disease diagnostic capacity, AMR, target markets and food safety regulations, and certification. Building upon these can enable local governments to reduce AM use through farmer training, spatial planning, assistance with disease identification, and stricter regulations. National governments and international organizations could, in turn, assist with disease-free juveniles and vaccines, enforce rigid monitoring of the quantity and quality of AMs used by farmers and the AM residues in the farmed species and in the environment, and promote measures to reduce potential human health risks associated with AMR.
Collapse
Affiliation(s)
- Patrik J. G. Henriksson
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
- WorldFish, Jalan Batu Maung, Batu Maung, 11960 Bayan Lepas, Penang Malaysia
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid Spain
| | - Max Troell
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
- The Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, Box 50005, 104 05 Stockholm, Sweden
| | - Dane H. Klinger
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544 USA
| | | | - Sonja Saksida
- Aquaculture Management Division, Fisheries and Oceans Canada, Ottawa, Canada
| | - Mohan V. Chadag
- WorldFish, Jalan Batu Maung, Batu Maung, 11960 Bayan Lepas, Penang Malaysia
| | - Wenbo Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
34
|
Syed Raffic Ali S, Ambasankar K, Saiyad Musthafa M, Harikrishnan R. Jerusalem artichoke enriched diet on growth performance, immuno-hematological changes and disease resistance against Aeromonas hydrophila in Asian seabass (Lates calcarifer). FISH & SHELLFISH IMMUNOLOGY 2017; 70:335-342. [PMID: 28899777 DOI: 10.1016/j.fsi.2017.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
A 45 days feeding trial was conducted to study the effect of Jerusalem artichoke (JA) on growth performance, body composition, biochemical, immuno-hematological parameters and disease resistance in Asian seabass (Lates calcarifer) fingerlings against Aeromonas hydrophila. JA was supplemented at three different levels viz., control 0, 5, 10, and 20 g kg-1 in the commercial diet (403 g kg-1protein and 89 g kg -1lipid) in L. calcarifer. The results showed that there were no significant (P > 0.05) differences in various growth parameters, while the whole body composition showed significant differences (P < 0.05) between control and treatment groups. Hematological parameters showed that red blood cells (RBC), white blood cells (WBC), hemoglobin (Hb), pack cell volume (PCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were not significantly (P > 0.05) affected by dietary supplementation of JA at different concentration. However, the mean corpuscular volume (MCV) was significantly (P < 0.05) higher in the fish fed with 20 g kg-1 JA supplemented diet. Biochemical parameters revealed that glucose, urea, cholesterol, and triglyceride showed significant (P < 0.05) differences between control and treatments groups. Interestingly, 20 g kg-1 JA supplemented diet significantly modulates the innate immune response and disease resistance against Aeromonas hydrophila compared with control and other treatment groups. The results of the study revealed that 20 g kg-1 JA supplementation has a beneficial effect in the biochemical, immunological and disease resistance in L. calcarifer juveniles.
Collapse
Affiliation(s)
- Sajjad Syed Raffic Ali
- Nutrition Genetics and Biotechnology Division, Central Institute of Brackishwater Aquaculture (ICAR), Chennai, India
| | - Kondusamy Ambasankar
- Nutrition Genetics and Biotechnology Division, Central Institute of Brackishwater Aquaculture (ICAR), Chennai, India.
| | | | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India.
| |
Collapse
|
35
|
High-Throughput Determination of 30 Veterinary Drug Residues in Milk Powder by Dispersive Solid-Phase Extraction Coupled with Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0941-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data. REMOTE SENSING 2017. [DOI: 10.3390/rs9050440] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Zouiten A, Mehri I, Beltifa A, Ghorbel A, Sire O, Van Loco J, Abdenaceur H, Reyns T, Ben Mansour H. Designation of pathogenic resistant bacteria in the Sparusaurata sea collected in Tunisia coastlines: Correlation with high performance liquid chromatography-tandem mass spectrometry analysis of antibiotics. Microb Pathog 2017; 106:3-8. [DOI: 10.1016/j.micpath.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 11/29/2022]
|
38
|
Liu X, Steele JC, Meng XZ. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:161-169. [PMID: 28131482 DOI: 10.1016/j.envpol.2017.01.003] [Citation(s) in RCA: 473] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 05/26/2023]
Abstract
Aquaculture is a booming industry in the world and China is the largest producer and exporter of aquatic products. To prevent and treat diseases occurred in aquaculture, antibiotics are widely applied. However, the information of antibiotics used in Chinese aquaculture is still limited. Based on peer-reviewed papers, documents, reports, and even farmer surveys, this review summarized antibiotics used in Chinese aquaculture. In 2014, more than 47.4 million tonnes of farmed aquatic products were produced in mainland China. The outputs in the east and south parts of China can reach as much as 600 times higher than those in the northwest areas, which is clearly separated by the "Hu Line" - a line that marks a striking difference in the distribution of population. A total of 20 antibiotics belonging to eight categories have been reported for use, mainly via oral administration. However, only 13 antibiotics have been authorized for application in Chinese aquaculture and 12 antibiotics used are not authorized. Totally, 234 cases on antibiotic residues in Chinese aquatic products were recorded, including 24 fish species, eight crustacean species, and four mollusk species. Thirty-two antibiotics have been detected in aquatic products; quinolones and sulfonamides were the dominated residual chemicals. For specific compound, ciprofloxacin, norfloxacin, and sulfisoxazole have the highest concentrations. Except for a few cases, all residual concentrations were lower than the maximum residue limits. Through the consumption of aquatic products tainted by antibiotics, humans may acquire adverse drug reactions or antibiotic-resistant bacteria. However, the risk of antimicrobial resistance in human body, when exposed to antibiotics at sub-inhibitory concentrations, has not been exhaustively considered in the risk assessment. In addition, a national comprehensive investigation on the amount of antibiotics used in Chinese aquaculture is still needed in future studies.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, Zhejiang Province, China
| | - Joshua Caleb Steele
- Biodesign Center for Environmental Security, The Biodesign Institute, Global Security Initiative and School of Sustainable Engineering and the Built Environment, Arizona State University, 781 E. Terrace Mall, Tempe 85287, USA
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, Zhejiang Province, China.
| |
Collapse
|
39
|
Chuah LO, Effarizah ME, Goni AM, Rusul G. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture. Curr Environ Health Rep 2017; 3:118-27. [PMID: 27038482 DOI: 10.1007/s40572-016-0091-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Catfish is one of the most cultivated species worldwide. Antibiotics are usually used in catfish farming as therapeutic and prophylactic agents. In the USA, only oxytetracycline, a combination of sulfadimethoxine and ormetoprim, and florfenicol are approved by the Food Drug Administration for specific fish species (e.g., catfish and salmonids) and their specific diseases. Misuse of antibiotics as prophylactic agents in disease prevention, however, is common and contributes in the development of antibiotic resistance. Various studies had reported on antibiotic residues and/or resistance in farmed species, feral fish, water column, sediments, and, in a lesser content, among farm workers. Ninety percent of the world aquaculture production is carried out in developing countries, which lack regulations and enforcement on the use of antibiotics. Hence, efforts are needed to promote the development and enforcement of such a regulatory structure. Alternatives to antibiotics such as antibacterial vaccines, bacteriophages and their lysins, and probiotics have been applied to curtail the increasing emergence of antibiotic-resistant bacteria due to the imprudent application of antibiotics in aquaculture.
Collapse
Affiliation(s)
- Li-Oon Chuah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - M E Effarizah
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Abatcha Mustapha Goni
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Gulam Rusul
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
40
|
Quantitative multiresidue analysis of antibiotics in milk and milk powder by ultra-performance liquid chromatography coupled to tandem quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:172-179. [DOI: 10.1016/j.jchromb.2016.08.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/06/2016] [Accepted: 08/14/2016] [Indexed: 12/13/2022]
|
41
|
Van Doan H, Doolgindachbaporn S, Suksri A. Effects of Eryngii mushroom (Pleurotus eryngii) and Lactobacillus plantarum on growth performance, immunity and disease resistance of Pangasius catfish (Pangasius bocourti, Sauvage 1880). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1427-1440. [PMID: 27129725 DOI: 10.1007/s10695-016-0230-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 04/24/2016] [Indexed: 06/05/2023]
Abstract
This study was conducted to evaluate the effects of Eryngii mushroom, Pleurotus eryngii (PE), and Lactobacillus plantarum single or combined on growth, innate immune response and disease resistance of the Pangasius catfish, Pangasius bocourti. Two hundred forty fish were divided into four treatments, i.e., 0 g kg(-1) PE (Control, Diet 1), 3 g kg(-1) PE (Diet 2), 10(8) cfu g(-1) L. plantarum (Diet 3) and 3 g kg(-1) PE + 10(8) cfu g(-1) L. plantarum (Diet 4). Fish were culture in glass tanks with water volume approximately of 150 l, and each treatment had four replications with 15 fish per replication. Following 30, 60 and 90 days of the feeding trial, specific growth rate (SGR), feed conversion ratio (FCR), serum lysozyme, phagocytosis and respiratory burst activities were measured. SGR and FCR were significantly improved in fish fed supplemented diets after 90 days of the feeding trial. Serum lysozyme, phagocytosis and respiratory burst activity of fish were significantly stimulated by both PE and L. plantarum diets; however, the highest innate immune response was observed in fish fed synbiotic diet. At the end of the experiment, five fish were randomly selected for a challenge test against Aeromonas hydrophila. The post-challenge survival rate of the fish fed supplemented diets was significantly greater than the control treatment, and the highest post-challenge survival rate was observed in synbiotic diet. The results revealed that dietary supplementation of PE and L. plantarum stimulated growth, immunity and disease resistance of the P. bocourti.
Collapse
Affiliation(s)
- Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Plant Sciences and Natural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Doolgindachbaporn
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Department of Plant Sciences and Natural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Amnuaysilpa Suksri
- Department of Fisheries, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Plant Sciences and Natural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
42
|
Valladão GMR, Gallani SU, Ikefuti CV, da Cruz C, Levy-Pereira N, Rodrigues MVN, Pilarski F. Essential oils to control ichthyophthiriasis in pacu, Piaractus mesopotamicus (Holmberg): special emphasis on treatment with Melaleuca alternifolia. JOURNAL OF FISH DISEASES 2016; 39:1143-1152. [PMID: 26776242 DOI: 10.1111/jfd.12447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
In vitro effect of the Melaleuca alternifolia, Lavandula angustifolia and Mentha piperita essential oils (EOs) against Ichthyophthirius multifiliis and in vivo effect of M. alternifolia for treating ichthyophthiriasis in one of the most important South American fish, Piaractus mesopotamicus (Holmberg), were evaluated. The in vitro test consisted of three EOs, each at concentrations of 57 μL L(-1) , 114 μL L (-1) , 227 μL L(-1) and 455 μL L (-1) , which were assessed once an hour for 4 h in microtitre plates (96 wells). The in vitro results demonstrated that all tested EOs showed a cytotoxic effect against I. multifiliis compared to control groups (P < 0.05). The in vivo treatment for white spot disease was performed in a bath for 2 h day(-1) for 5 days using the M. alternifolia EO (50 μL L (-1) ). In this study, 53.33% of the fish severely infected by I. multifiliis survived after the treatment with M. alternifolia (50 μL L (-1) ) and the parasitological analysis has shown an efficacy of nearly 100% in the skin and gills, while all the fish in the control group died. Furthermore, the potential positive effect of M. alternifolia EO against two emergent opportunistic bacteria in South America Edwardsiella tarda and Citrobacter freundii was discussed.
Collapse
Affiliation(s)
- G M R Valladão
- Aquaculture Center, Universidade Estadual Paulista (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - S U Gallani
- Aquaculture Center, Universidade Estadual Paulista (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - C V Ikefuti
- Center for Environmental Studies and Research of Weed (NEPEAM), Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - C da Cruz
- Center for Environmental Studies and Research of Weed (NEPEAM), Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - N Levy-Pereira
- Aquaculture Center, Universidade Estadual Paulista (CAUNESP), Jaboticabal, São Paulo, Brazil
| | - M V N Rodrigues
- Laboratory of Organic and Pharmaceutical Chemistry, Multidisciplinary Center for Chemical, Biological and Agricultural Research (CPQBA), Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - F Pilarski
- Aquaculture Center, Universidade Estadual Paulista (CAUNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
43
|
Oliveira R, Grisolia CK, Monteiro MS, Soares AMVM, Domingues I. Multilevel assessment of ivermectin effects using different zebrafish life stages. Comp Biochem Physiol C Toxicol Pharmacol 2016; 187:50-61. [PMID: 27153811 DOI: 10.1016/j.cbpc.2016.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/09/2016] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
Abstract
Several studies have shown high toxicity of the veterinary pharmaceutical ivermectin (a semisynthetic avermectin) for aquatic invertebrates however, few data is found for fish species. The present study evaluated the toxicity of ivermectin, to embryos, juveniles, and adults of zebrafish at different levels of biological organization including developmental, behavioural and biochemical. Toxicity tests were performed based on OECD protocols and mortality and behavioural changes were assed for all stages. Biochemical responses were assessed in adults and embryos and included cholinesterases (ChEs), catalase (CAT) (only in embryos), glutathione-S-Transferase (GST), lactate dehydrogenase (LDH) and vitellogenin (VTG) like proteins (only in embryos). Genotoxicity was evaluated in adults. Results showed a higher sensitivity of juvenile and adults of zebrafish (96h-LC10 values of 14.0 and 55.4μg/L, respectively). For embryos a 96h-LC10 of 147.1μg/L was calculated, moreover developmental anomalies and hatching inhibition were observed only at high concentrations (>400μg/L), whereas biochemical and behavioural responses occurred at lower concentrations (<60μg/L). Behavioural responses (lethargy) occurred in all life stages. Biochemical responses were observed including the inhibition of GST in adults and changes in ChE, CAT, LDH activities and VTG levels in embryos. Ivermectin did not show to be genotoxic for adult fish. The species sensitivity distribution analysis, based on fish and invertebrate species, indicated a Hazardous Concentration for 5% of the population (HC5) value of 0.057μg/L; suggesting high sensitivity of both groups to ivermectin and a high risk of this compound to aquatic ecosystems.
Collapse
Affiliation(s)
- Rhaul Oliveira
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil; Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Cesar K Grisolia
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil.
| | - Marta S Monteiro
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
44
|
Sun M, Chang Z, Van den Brink PJ, Li J, Zhao F, Rico A. Environmental and human health risks of antimicrobials used in Fenneropenaeus chinensis aquaculture production in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15689-15702. [PMID: 27137193 DOI: 10.1007/s11356-016-6733-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
This study aimed to quantify the environmental fate of antimicrobials applied in Fenneropenaeus chinensis aquaculture production in China and to assess their potential risks for surrounding aquatic ecosystems, for the promotion of antimicrobial resistance in target and non-target bacteria and for consumers eating shrimp products that contain antimicrobial residues. For this, we first used the results of an environmental monitoring study performed with the antimicrobial sulfamethazine to parameterize and calibrate the ERA-AQUA model, a mass balance model suited to perform risk assessments of veterinary medicines applied in aquaculture ponds. Next, a scenario representing F. chinensis production in China was built and used to perform risk assessments for 21 antimicrobials which are regulated for aquaculture in China. Results of the model calibration showed a good correspondence between the predicted and the measured sulfamethazine concentrations, with differences within an order of magnitude. Results of the ecological risk assessment showed that four antimicrobials (levofloxacin, sarafloxacin, ampicillin, sulfadiazine) are expected to have adverse effects on primary producers, while no short-term risks were predicted for invertebrates and fish exposed to farm wastewater effluents containing antimicrobial residues. Half of the evaluated antimicrobials showed potential to contribute to antimicrobial resistance in bacteria exposed to pond water and farm effluents. A withdrawal period of three weeks is recommended for antimicrobials applied via oral administration to F. chinensis in order to comply with the current national and international toxicological food safety standards. The results of this study indicate the need to improve the current regulatory framework for the registration of aquaculture antimicrobials in China and suggest compounds that should be targeted in future aquaculture risk assessments and environmental monitoring studies.
Collapse
Affiliation(s)
- Ming Sun
- Fishery College, Ocean University of China, Qingdao, 266003, People's Republic of China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Zhiqiang Chang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
| | - Paul J Van den Brink
- Alterra, Wageningen University and Research centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, People's Republic of China.
| | - Fazhen Zhao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, People's Republic of China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, People's Republic of China
| | - Andreu Rico
- Alterra, Wageningen University and Research centre, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
45
|
Boss R, Overesch G, Baumgartner A. Antimicrobial Resistance of Escherichia coli, Enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from Raw Fish and Seafood Imported into Switzerland. J Food Prot 2016; 79:1240-6. [PMID: 27357045 DOI: 10.4315/0362-028x.jfp-15-463] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A total of 44 samples of salmon, pangasius (shark catfish), shrimps, and oysters were tested for the presence of Escherichia coli, enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus, which are indicator organisms commonly used in programs to monitor antibiotic resistance. The isolated bacterial strains, confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, were tested against a panel of 29 antimicrobial agents to obtain MICs. Across the four sample types, Enterococcus faecalis (59%) was most common, followed by E. coli (55%), P. aeruginosa (27%), and S. aureus (9%). All bacterial species were resistant to some antibiotics. The highest rates of resistance were in E. faecalis to tetracycline (16%), in E. coli to ciprofloxacin (22%), and in S. aureus to penicillin (56%). Antibiotic resistance was found among all sample types, but salmon and oysters were less burdened than were shrimps and pangasius. Multidrug-resistant (MDR) strains were exclusively found in shrimps and pangasius: 17% of pangasius samples (MDR E. coli and S. aureus) and 64% of shrimps (MDR E. coli, E. faecalis, and S. aureus). Two of these MDR E. coli isolates from shrimps (one from an organic sample) were resistant to seven antimicrobial agents. Based on these findings, E. coli in pangasius, shrimps, and oysters, E. faecalis in pangasius, shrimps, and salmon, and P. aeruginosa in pangasius and shrimps are potential candidates for programs monitoring antimicrobial resistance. Enrichment methods for the detection of MDR bacteria of special public health concern, such as methicillin-resistant S. aureus and E. coli producing extended-spectrum β-lactamases and carbapenemases, should be implemented.
Collapse
Affiliation(s)
- Renate Boss
- Federal Food Safety and Veterinary Office, Schwarzenburgstrasse 155, 3003 Berne, Switzerland.
| | - Gudrun Overesch
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Berne, Länggassstrasse 122, 3001 Berne, Switzerland
| | - Andreas Baumgartner
- Federal Food Safety and Veterinary Office, Schwarzenburgstrasse 155, 3003 Berne, Switzerland
| |
Collapse
|
46
|
Domingues I, Oliveira R, Soares AMVM, Amorim MJB. Effects of ivermectin on Danio rerio: a multiple endpoint approach: behaviour, weight and subcellular markers. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:491-499. [PMID: 26769347 DOI: 10.1007/s10646-015-1607-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
Ivermectin (IVM) is a broad acting antihelmintic used in various veterinary pharmaceuticals. It has been shown that IVM enters the aquatic compartment and adversely affects organisms including fish. This study is based on the hypothesis that long term exposure to IVM affects fish and thus, the main objective was to assess the chronic effects of 0.25 and 25 µg IVM/L to zebrafish using multiple endpoints representative of several levels of biological organization: weight, behaviour (swimming and feeding) and subcellular markers including biomarkers for oestrogenicity (vitellogenin-VTG), oxidative stress (catalase-CAT and glutathione-S-transferase-GST) and neurotransmission (cholinesterase-ChE). Concentrations as low as 0.25 µg IVM/L disrupted the swimming behaviour, causing fish to spend more time at the bottom of aquaria. Such reduction of the swimming performance affected the feeding ability which is likely responsible for the weight loss. The effects on weight were gender differentiated, being more pronounced in males (0.25 µg IVM/L) than in females (25 µg IVM/L). Fish exposed to 25 µg/L exhibited darker coloration and mild curvature of the spine. No effects on VTG and AChE were observed, but a reduction on CAT and GST levels was observed in fish exposed to 25 µg IVM/L, although these alterations probably only reflect the general condition of the fish which was significantly compromised at this concentration. Despite that predicted environmental concentrations of IVM are below 0.25 µg/L, the behavioural effects may be translated into important ecological impacts, e.g. at predator-prey interactions where fish competitive advantage can be decreased. Future work should address the link between behaviour disruption and population fitness. The current study was based on a one experiment and multiple endpoint (anchored) approach, allowing the results to be integrated and linked towards a mechanistic understanding.
Collapse
Affiliation(s)
- I Domingues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, CEP 3810-193, Aveiro, Portugal.
| | - R Oliveira
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, CEP 3810-193, Aveiro, Portugal
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - A M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, CEP 3810-193, Aveiro, Portugal
| | - M J B Amorim
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, CEP 3810-193, Aveiro, Portugal
| |
Collapse
|
47
|
Li Y, Li Q, Zhou K, Sun XL, Zhao LR, Zhang YB. Occurrence and distribution of the environmental pollutant antibiotics in Gaoqiao mangrove area, China. CHEMOSPHERE 2016; 147:25-35. [PMID: 26757132 DOI: 10.1016/j.chemosphere.2015.12.107] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 12/20/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
Occurrence and distribution of 15 antibiotics belonging to families of sulfonamides, fluoroquinolones, tetracyclines and chloramphenicols were investigated in water and sediment in Gaoqiao mangrove area, China, using LC-MS-MS. The influence of tidal level and mangrove vegetation on antibiotic residues were examined. The levels of antibiotics were found to be ranged from 0.15 to 198 ng L(-1) in water and from 0.08 to 849 μg kg(-1) in sediment. No significant difference in concentrations of 15 different antibiotics from water and sediment samples was observed among the high, middle and low intertidal channel. The residues of SMZ, SMTZ, OFL, NOR, ENR, OXY and FLO were significantly higher in Aegiceras corniculatum assemblage than in Avicennia marina assemblage. Although no significant difference in tested antibiotics was found between the surface and bottom sediment, mangrove vegetation can to some extent reduce the accumulation for SMZ, SMTZ, OFL, NOR, CIP, OXY and TET in sediments relative to corresponding bare mudflats, implying that the environmental pollution from antibiotics may be mitigated by mangrove vegetation. Principal components analysis revealed that the terrestrial input and different habitats directly influenced the occurrence and distribution of antibiotics.
Collapse
Affiliation(s)
- Yuan Li
- Monitoring Center for Marine Resources and Environments, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qin Li
- Monitoring Center for Marine Resources and Environments, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kai Zhou
- Shenzhen Marine Environment and Resources Monitoring Center, Shenzhen 518031, China
| | - Xing-Li Sun
- Monitoring Center for Marine Resources and Environments, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li-Rong Zhao
- Monitoring Center for Marine Resources and Environments, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu-Bin Zhang
- Monitoring Center for Marine Resources and Environments, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
48
|
Arpin-Pont L, Bueno MJM, Gomez E, Fenet H. Occurrence of PPCPs in the marine environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4978-91. [PMID: 25253059 DOI: 10.1007/s11356-014-3617-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/16/2014] [Indexed: 05/22/2023]
Abstract
Little research has been conducted on the occurrence of pharmaceuticals and personal care products (PPCPs) in the marine environment despite being increasingly impacted by these contaminants. This article reviews data on the occurrence of PPCPs in seawater, sediment, and organisms in the marine environment. Data pertaining to 196 pharmaceuticals and 37 personal care products reported from more than 50 marine sites are analyzed while taking sampling strategies and analytical methods into account. Particular attention is focused on the most frequently detected substances at highest concentrations. A snapshot of the most impacted marine sites is provided by comparing the highest concentrations reported for quantified substances. The present review reveals that: (i) PPCPs are widespread in seawater, particularly at sites impacted by anthropogenic activities, and (ii) the most frequently investigated and detected molecules in seawater and sediments are antibiotics, such as erythromycin. Moreover, this review points out other PPCPs of concern, such as ultraviolet filters, and underlines the scarcity of data on those substances despite recent evidence on their occurrence in marine organisms. The exposure of marine organisms in regard to these insufficient data is discussed.
Collapse
Affiliation(s)
- Lauren Arpin-Pont
- UMR 5569 Hydrosciences Montpellier, Université Montpellier 1, Montpellier, France.
| | | | - Elena Gomez
- UMR 5569 Hydrosciences Montpellier, Université Montpellier 1, Montpellier, France
| | - Hélène Fenet
- UMR 5569 Hydrosciences Montpellier, Université Montpellier 1, Montpellier, France
| |
Collapse
|
49
|
Henriksson PJG, Rico A, Zhang W, Ahmad-Al-Nahid S, Newton R, Phan LT, Zhang Z, Jaithiang J, Dao HM, Phu TM, Little DC, Murray FJ, Satapornvanit K, Liu L, Liu Q, Haque MM, Kruijssen F, de Snoo GR, Heijungs R, van Bodegom PM, Guinée JB. Comparison of Asian Aquaculture Products by Use of Statistically Supported Life Cycle Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14176-83. [PMID: 26512735 DOI: 10.1021/acs.est.5b04634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We investigated aquaculture production of Asian tiger shrimp, whiteleg shrimp, giant river prawn, tilapia, and pangasius catfish in Bangladesh, China, Thailand, and Vietnam by using life cycle assessments (LCAs), with the purpose of evaluating the comparative eco-efficiency of producing different aquatic food products. Our starting hypothesis was that different production systems are associated with significantly different environmental impacts, as the production of these aquatic species differs in intensity and management practices. In order to test this hypothesis, we estimated each system's global warming, eutrophication, and freshwater ecotoxicity impacts. The contribution to these impacts and the overall dispersions relative to results were propagated by Monte Carlo simulations and dependent sampling. Paired testing showed significant (p < 0.05) differences between the median impacts of most production systems in the intraspecies comparisons, even after a Bonferroni correction. For the full distributions instead of only the median, only for Asian tiger shrimp did more than 95% of the propagated Monte Carlo results favor certain farming systems. The major environmental hot-spots driving the differences in environmental performance among systems were fishmeal from mixed fisheries for global warming, pond runoff and sediment discards for eutrophication, and agricultural pesticides, metals, benzalkonium chloride, and other chlorine-releasing compounds for freshwater ecotoxicity. The Asian aquaculture industry should therefore strive toward farming systems relying upon pelleted species-specific feeds, where the fishmeal inclusion is limited and sourced sustainably. Also, excessive nutrients should be recycled in integrated organic agriculture together with efficient aeration solutions powered by renewable energy sources.
Collapse
Affiliation(s)
- Patrik J G Henriksson
- Institute of Environmental Sciences, Leiden University , 2300 RA Leiden, The Netherlands
| | - Andreu Rico
- Alterra, Wageningen University and Research Centre , 6708 PB Wageningen, The Netherlands
| | - Wenbo Zhang
- College of Fisheries and Life Science, Shanghai Ocean University , Beijing 100044, China
| | - Sk Ahmad-Al-Nahid
- Faculty of Fisheries, Bangladesh Agricultural University , Mymensingh 2202, Bangladesh
| | - Richard Newton
- Institute of Aquaculture, University of Stirling , Stirling FK9 4LA, Scotland, United Kingdom
| | - Lam T Phan
- Institute of Aquaculture, University of Stirling , Stirling FK9 4LA, Scotland, United Kingdom
- Department of Inland Resources & Fisheries Capture, Research Institute for Aquaculture No. 2 , Ho Chi Minh City, Vietnam
| | - Zongfeng Zhang
- College of Fisheries and Life Science, Shanghai Ocean University , Beijing 100044, China
| | - Jintana Jaithiang
- Faculty of Fisheries, Kasetsart University , Bangkok 10900, Thailand
| | - Hai M Dao
- College of Aquaculture and Fisheries, Can Tho University , Can Tho, Vietnam
| | - Tran M Phu
- College of Aquaculture and Fisheries, Can Tho University , Can Tho, Vietnam
| | - David C Little
- Institute of Aquaculture, University of Stirling , Stirling FK9 4LA, Scotland, United Kingdom
| | - Francis J Murray
- Institute of Aquaculture, University of Stirling , Stirling FK9 4LA, Scotland, United Kingdom
| | | | - Liping Liu
- College of Fisheries and Life Science, Shanghai Ocean University , Beijing 100044, China
| | - Qigen Liu
- College of Fisheries and Life Science, Shanghai Ocean University , Beijing 100044, China
| | - M Mahfujul Haque
- Faculty of Fisheries, Bangladesh Agricultural University , Mymensingh 2202, Bangladesh
| | | | - Geert R de Snoo
- Institute of Environmental Sciences, Leiden University , 2300 RA Leiden, The Netherlands
| | - Reinout Heijungs
- Institute of Environmental Sciences, Leiden University , 2300 RA Leiden, The Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences, Leiden University , 2300 RA Leiden, The Netherlands
| | - Jeroen B Guinée
- Institute of Environmental Sciences, Leiden University , 2300 RA Leiden, The Netherlands
| |
Collapse
|
50
|
Kookana RS, Williams M, Boxall ABA, Larsson DGJ, Gaw S, Choi K, Yamamoto H, Thatikonda S, Zhu YG, Carriquiriborde P. Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0586. [PMID: 25405973 DOI: 10.1098/rstb.2013.0586] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Active pharmaceutical ingredients (APIs) can enter the natural environment during manufacture, use and/or disposal, and consequently public concern about their potential adverse impacts in the environment is growing. Despite the bulk of the human population living in Asia and Africa (mostly in low- or middle-income countries), limited work relating to research, development and regulations on APIs in the environment have so far been conducted in these regions. Also, the API manufacturing sector is gradually shifting to countries with lower production costs. This paper focuses mainly on APIs for human consumption and highlights key differences between the low-, middle- and high-income countries, covering factors such as population and demographics, manufacture, prescriptions, treatment, disposal and reuse of waste and wastewater. The striking differences in populations (both human and animal), urbanization, sewer connectivity and other factors have revealed that the environmental compartments receiving the bulk of API residues differ markedly between low- and high-income countries. High sewer connectivity in developed countries allows capture and treatment of the waste stream (point-source). However, in many low- or middle-income countries, sewerage connectivity is generally low and in some areas waste is collected predominantly in septic systems. Consequently, the diffuse-source impact, such as on groundwater from leaking septic systems or on land due to disposal of raw sewage or septage, may be of greater concern. A screening level assessment of potential burdens of APIs in urban and rural environments of countries representing low- and middle-income as well as high-income has been made. Implications for ecological risks of APIs used by humans in lower income countries are discussed.
Collapse
Affiliation(s)
- Rai S Kookana
- CSIRO, Private Mail Bag No 2, Glen Osmond, South Australia 5064, Australia
| | - Mike Williams
- CSIRO, Private Mail Bag No 2, Glen Osmond, South Australia 5064, Australia
| | | | - D G Joakim Larsson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sally Gaw
- Department of Chemistry, University of Canterbury, Christchurch 8140, New Zealand
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, South Korea
| | - Hiroshi Yamamoto
- Faculty of Integrated Arts and Sciences, The University of Tokushima, Tokushima 770-8502, Japan
| | | | - Yong-Guan Zhu
- General Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, People's Republic of China
| | - Pedro Carriquiriborde
- Centro de Investigaciones del Medio Ambiente Facultad de Ciencias Exactas, Universidad Nacional de la Plata Calle, Buenos Aires, Argentina
| |
Collapse
|