1
|
Pan S, Zhang Z, Liu Z, Wu L, Gao Q, Cai H. The combination of hydrothermal humification and biological fermentation converts straw lignocellulose into artificial fulvic acid. Int J Biol Macromol 2025; 314:144359. [PMID: 40393589 DOI: 10.1016/j.ijbiomac.2025.144359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
In order to solve the problem of difficult efficient utilization and production of lignocellulosic macromolecules in crop straw, as well as the high pollution production of fulvic acid (FA). We developed an efficient biomass conversion technology that combines hydrothermal humification and biological fermentation in a low alkaline environment. Discussed material conversion and FA structural composition. FA was produced through five steps, namely, enzymatic hydrolysis, hydrothermal treatment, concentration, fermentation and spraying, with a maximum yield of 39 %. The optimal enzymatic hydrolysis conditions were 0.2 % hemicellulase, 50 °C and 6 h. The optimal hydrothermal conditions were 5 % KOH, 160 °C and 2 h. The optimal distillation conditions were 50 °C for 25 min. The optimal conditions for microbial fermentation were 0.02 % Bacillus subtilis/Bacillus licheniformis, 35 °C and of 48 h. Finally, high-temperature spraying was performed at 240 °C. Under these conditions, benzofuran, 2,3-dihydro, and 2-methyl-4-vinylphenol provided precursors for FA and increased the total acidic groups to 14.06 mmol/g. In practical applications, artificial FA has also demonstrated its ability to regulate the absorption of cadmium by plants. In addition, the prepared artificial FA has a relatively high content of hydroxyl and carboxyl groups, which may have strong electron transfer and metal binding abilities. Suitable for various applications in sustainable agriculture and biomass directed conversion.
Collapse
Affiliation(s)
- Shijun Pan
- College of Resources and Environmental Science / Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Jilin Agricultural University, Jilin 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Land Conservation, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China
| | - Zhongqing Zhang
- College of Resources and Environmental Science / Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Jilin Agricultural University, Jilin 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Land Conservation, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China
| | - Zhao Liu
- Jilin Heyuan Technology Co., Ltd, Jilin 130117, China
| | - Longqiang Wu
- Jilin Heyuan Technology Co., Ltd, Jilin 130117, China
| | - Qiang Gao
- College of Resources and Environmental Science / Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Jilin Agricultural University, Jilin 130118, China; Key Laboratory of Straw Comprehensive Utilization and Black Land Conservation, Education Ministry of China, Jilin Agricultural University, Jilin 130118, China.
| | - Hongguang Cai
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Jilin 130033, China.
| |
Collapse
|
2
|
Ni Y, Zhang J, Ma Y, Ren S. Reducing the migration of cadmium, lead and nickel in soil using rice straw-based humic acid modified bentonite. ENVIRONMENTAL TECHNOLOGY 2025:1-12. [PMID: 40163588 DOI: 10.1080/09593330.2025.2483939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
With the continuous advancement of industrial development, the contamination of soil by potentially toxic element ions has emerged as an escalating issue, posing significant threats to both ecological systems and human health. Clay minerals have long been considered as green and economic remediation agents for polluted soil. However, their current application is hampered by low and inconsistent fixation efficiency. Here, a new clay composite BHA@B was prepared by modifying bentonite with biomass humic acid (BHA) prepared from rice straw. The BHA@B was characterized by FTIR, SEM and XRD and then tested as a remediation agent for potentially toxic element ion-contaminated soil. The effect of BHA@B on the prevalence of different fractions of Cd, Pb and Ni in soil and its ability to stabilize these metals were investigated using the BCR sequential extraction method. Treatment with BHA@B reduced the weak acid-extractable and reducible fractions of cadmium, lead and nickel by 22.5 and 8.1%, 17 and 11.4%, and 19.8 and 14%, respectively, compared with untreated soil. BHA@B transforms potentially toxic elements into oxidizable, residual, and other stable fractions, which greatly reduces the ability of potentially toxic element ions in the soil to migrate into the groundwater. BHA@B is a new, green, low-cost and efficient soil remediation agent.
Collapse
Affiliation(s)
- Yaqi Ni
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China
| | - Jiasheng Zhang
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China
| | - Yanli Ma
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China
| | - Shixue Ren
- Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Harbin, People's Republic of China
- College of Material Science and Engineering, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
3
|
Wang L, Ren Y, Jia M, Yang J, Liu H, Zhao P, Tang J, Ma J, Weng L, Li Y. pH-Dependent preferential adsorption and stability of humic substances on goethite: The dual role of aromatic and aliphatic moieties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117838. [PMID: 39919586 DOI: 10.1016/j.ecoenv.2025.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Preferential adsorption occurs during interaction between humic substances (HS) and metal (hydr)oxides, however, the preferential adsorption and thermal stability mechanism remains poorly understood. Here we show that solution pH can modify the configuration of humic acid (HA) and fulvic acid (FA), and thereby altering their fractionation and thermal stability in relation to goethite. At pH 5-7, particles with a molar mass of 3.5-15 kDa were preferentially adsorbed for both fulvic acid (FA) and humic acid (HA). These particles enriched in aromatic moieties and carboxylic groups (-COOH), which enhanced the stability of HS by facilitating the formation of inner-sphere complexes. Conversely, at pH levels exceeding 9.2, large particles (> 50 kDa) and those rich in aliphatic moieties were preferentially adsorbed for both HA and FA, attributed to the increased significance of hydrophobic interactions. However, this stabilization effect on HS was limited under these conditions. FA particles exhibit a lower degree of chemical heterogeneity compared to HA particles. For FA, the variations in aromatic structures (-COOH) and aliphatic moieties were coupled, following a consistent trend in preferential adsorption as pH changed. In contrast, HA demonstrated an opposite pH dependency, with aromatic (-COOH) and aliphatic moieties displaying divergent patterns of preferential adsorption. These innovative discoveries clarify the behavior of organic matter in various environmental conditions and its interactions with minerals surfaces, thereby establishing a critical theoretical foundation for understanding the sequestration of soil organic carbon, emphasizing the dual roles of aromatic and aliphatic moieties in the preferential adsorption and stability of humic substances on goethite.
Collapse
Affiliation(s)
- Long Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450000, China; Postdoctoral Mobile Station of Crop Science, Henan Agricultural University, Zhengzhou 450000, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yanan Ren
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450000, China
| | - Mengke Jia
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450000, China
| | - Jinkang Yang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450000, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450000, China
| | - Peng Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450000, China
| | - Jihua Tang
- Postdoctoral Mobile Station of Crop Science, Henan Agricultural University, Zhengzhou 450000, China
| | - Jie Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yongtao Li
- College of Natural Resources & Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Qiu X, Zheng J, Yan X, Davronbek B, Garcia-Mina JM, Zhou H, Zhao Q, Chai L, Lin Z, Zhang L, Su X. Preparation of calcium-based phosphate adsorbent and mineral-rich humic acid fertilizer from biomass ash and bamboo by hydrothermal-pyrolysis: Performance and mechanism. ENVIRONMENTAL RESEARCH 2025; 264:120318. [PMID: 39521262 DOI: 10.1016/j.envres.2024.120318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Biomass ash (BA) contains alkaline cations such as K, Ca, and Mg. Due to its high pH, direct application to the soil may result in soil salinization. Composting of BA with organic matter is an effective strategy, but the composting cycle is long and there is a large amount of insoluble residue in the product. Therefore, this research proposed for the first time using the hydrothermal method to rapidly convert BA and bamboo powder (BP) into water - soluble fertilizer (WSF) within 4 h. The insoluble hydrothermal residue was further converted into calcium - rich biochar phosphorus adsorption material by a simple pyrolysis process. WSF was neutral and contained humic acid and elements like K, Ca, Mg, and Si. A 14 - day wheat hydroponic experiment showed that the addition of 0.0125% WSF increased the fresh weight of wheat by 18.77% compared with deionized water. The calcium - based biochar adsorbent produced by pyrolysis had an ideal adsorption capacity of up to 113.6 mg P g-1 for phosphate in water, higher than many existing reports. The adsorption mechanisms mainly included surface precipitation, ion exchange, and electrostatic attraction. Moreover, the calcium - rich biochar sample slowly released phosphorus into water after adsorbing phosphate. When the pH was 3 or 4, the removal rate of Pb2+, Cd2+, and Cu2+ at 15 - 20 mg L-1 was as high as 99%. This indicated its potential as a slow - release fertilizer and heavy metal remediation agent. This research provided a new way of thinking for the treatment and disposal of BA.
Collapse
Affiliation(s)
- Xinyue Qiu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jiliang Zheng
- Xinjiang Xinlianxin Energy Chemical Co., Ltd., Manas County, Changji, Xinjiang, 832200, China.
| | - Xiuling Yan
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, College of Chemistry and Chemical Engineering, Yili Normal University, Yining, 835000, China
| | - Bekchanov Davronbek
- Department of Polymer Chemistry, National University of Uzbekistan, Tashkent, 100174, Uzbekistan
| | - Jose Maria Garcia-Mina
- Departmento De Biología Ambiental, Grupo De Química Agrícolay Biología-CMI Roullier, Facultad De Ciencias, Universidad De Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Hao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Qifeng Zhao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Liyuan Chai
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Zhang Lin
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Lijuan Zhang
- Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China; Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, College of Chemistry and Chemical Engineering, Yili Normal University, Yining, 835000, China.
| |
Collapse
|
5
|
Xu Y, Jiang Y, Huang X, Lu Q, Shen G, Chen X. Humic acid activated persulfate combined with electrokinetic delivery for remediation of 2, 4-dichlorophenol contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177585. [PMID: 39566640 DOI: 10.1016/j.scitotenv.2024.177585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/21/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
2,4-dichlorophenol (2,4-DCP) is a high-toxicity phenol compound, which is difficult to remove, poses a threat to human health, and seriously damages the soil ecosystems. In this study, an emerging technology, Electrokinetic (EK) remediation, was used to enhance the mobility of persulfate for remediation of soils contaminated with 2,4-dichloropropanol. In order to improve the overall removal efficiency of 2,4-DCP, Na2S2O8 activated by humic acid (HA) on the remediate effect was investigated. The results showed that the dosage of commercial HA did not affect the physical and chemical properties of the soil, and the optimal dosage was 1.5 g/600 g (HA/soil), in which case the removal efficiency of 2,4-DCP was 73.7 %. When the dosage of compost-derived HA was 1.5 g/600 g (HA/soil), the removal efficiency of 2,4-DCP was 68.66 %. From an economic point of view, compost-derived HA could be used as a good substitute for commercial HA.
Collapse
Affiliation(s)
- Yunfeng Xu
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Jiang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxun Huang
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qinqin Lu
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Guoqing Shen
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueping Chen
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
Rasaq WA, Thiruchenthooran V, Wirkijowska K, Valentin M, Bobak Ł, Adaobi Igwegbe C, Białowiec A. Hydrothermal carbonization of combined food waste: A critical evaluation of emergent products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:44-57. [PMID: 39173471 DOI: 10.1016/j.wasman.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Hydrothermal carbonization (HTC) increasingly appears as an eco-friendly method for managing food waste (FW). In this work, a combination of FW was subjected to HTC, and products were critically evaluated. This involved a lab-scale pressure reactor and optimization of HTC conditions: temperature (220-340 °C) and residence time (90-260 min) via central composite design type of response surface methodology (CCD-RSM). Results showed varying temperatures and residence time to impact the hydrochar (HC) and hydrothermal carbonization aqueous phase (HTC-AP) properties. Although HC produced through HTC exhibited lower ash content (<2%) despite higher fixed carbon (>55 %) with respect to the raw FW, the heating value of HC ranged from 19.2 to 32.5 MJ/kg. Temperature primarily influenced FW conversion, affecting carbonaceous properties. Saturated fatty acids (SFA) were found to be predominant in the HTC-AP under all tested operating conditions (77.3, 48.4, and 37.1 wt% for HTC at 340, 280, and 220 °C in 180 min, respectively). Total phosphorus recovery in HC and HTC-AP respectively peaked at 340 °C and 220 °C in 180 min. The study concludes that HTC holds promise for energy-dense biofuel production, nutrient recovery, and fostering a circular economy.
Collapse
Affiliation(s)
- Waheed A Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland.
| | - Vaikunthavasan Thiruchenthooran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław 50-375, Poland.
| | - Katarzyna Wirkijowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland.
| | - Marvin Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland.
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wrocław 51-630, Poland.
| | - Chinenye Adaobi Igwegbe
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland; Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka 420218, Nigeria.
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., Wrocław 51-630, Poland.
| |
Collapse
|
7
|
Ai S, Wang X, Zhu J, Meng X, Liu Z, Yang F, Cheng K. Microbial community assemblage altered by coprecipitation of artificial humic substances and ferrihydrite: Implications for carbon fixation pathway transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174838. [PMID: 39029757 DOI: 10.1016/j.scitotenv.2024.174838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The suppression of soil carbon mineralization has been demonstrated to be effectively facilitated by carbon‑iron interactions, yet the specific mechanisms by which artificial humic substances (A-HS) coupled with ferrihydrite influence this process remain insufficiently explored. This study is to investigate how the A-HS, specifically artificial fulvic acid (A-FA) and artificial humic acid (A-HA), coupled with ferrihydrite, affect carbon mineralization under anaerobic system that simulates paddy flooding conditions. The object is to investigate trends in carbon emissions and to delineate microbial community structure and functional pathways. The findings indicate that A-HA and A-FA substantially reduce CO2 and CH4 emissions, with A-FA having a particularly pronounced effect on carbon fixation, halving CO2 concentrations. The low concentration of Fe(II) observed suggest that A-FA and A-HA impede the dissimilatory iron reduction (DIR) process. Detailed 16S rDNA sequencing and gene prediction analyses reveal changes in microbial community structures and functions, highlighting Methanobacterium as the dominant hydrogenotrophic methanogens. The reductive citric acid cycle, predominantly utilized by Clostridium carboxidivorans, was identified as the principal carbon fixation pathway. This work provides a novel insight into the microbial mechanisms of carbon sequestration and highlights the potential of A-HS in improving soil fertility and contributing to climate change mitigation through enhancing soil carbon storage.
Collapse
Affiliation(s)
- Shuang Ai
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xiaobin Wang
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Jiayu Zhu
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xianghui Meng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Fan Yang
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
8
|
Rahbari M, Psutka J, Lamar R, Rosario-Ortiz FL. Evaluating the Use of UV Absorbance for the Differentiation of Humified From Non-Humified Materials. J AOAC Int 2024; 107:1018-1026. [PMID: 38696770 PMCID: PMC11532633 DOI: 10.1093/jaoacint/qsae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Products containing humic acids (HA) and fulvic acids (FA) have significant commercial potential; however, unknown to the consumer, some products may be mislabeled or contain adulterants. The prevalence of mislabeling and adulterants is found primarily in FA products. Using UV-Vis spectroscopy to differentiate between real and fake FA products is practical and desirable. OBJECTIVE The objective of this study was to expand the dataset generated using a UV-Vis-based method proposed by Mayhew et al., 2023. METHODS In total, 30 test samples were used to generate 90 test portions (three replicates per test sample) for analysis using the UV-Vis methodology outlined in Mayhew et al., 2023, which in this study is referred to as the UVAC (UV absorbance confirmation) method. RESULTS None of the 13 FA test samples investigated were determined as humified using the UVAC method. The FA samples studied consisted of two IHSS standards, five commercial FA products (CFAP), and six full FA fractions (SFA), which were isolated from six known solid humic material sources (SHMS). There was a leonardite, a humalite, and four peat sources used as the SHMS. Analysis of the neutralized extract of the SHMS found only 3/6 SHMS were determined as humified. Six HA (SHA) test samples were also generated by isolating the HA from the SHMS, and only 3/6 SHA were determined as humified. CONCLUSIONS Given the high prevalence of false determinations, more work is needed to improve the method so that it can be used by industry or regulators. HIGHLIGHTS The proposed method failed to determine IHSS FA standards as humified. Although the method is practical, it needs improvement and further study before it can be used for reliable differentiation of real from fake FA.
Collapse
Affiliation(s)
- Mohammad Rahbari
- BioLiNE Corporation, 3971 Old Walnut Rd., P.O Box 429, Alvinston, Ontario, N0N-1A0, Canada
| | - Jarrod Psutka
- BioLiNE Corporation, 3971 Old Walnut Rd., P.O Box 429, Alvinston, Ontario, N0N-1A0, Canada
| | - Richard Lamar
- Huma, Inc.1331 W. Houston Ave., Gilbert, Arizona, 85233, USA
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, UCB 607, SEEC S295B, Boulder, Colorado, 80309, USA
- Environmental Engineering Program, University of Colorado Boulder, UCB 607, SEEC S295B, Boulder, Colorado, 80309, USA
| |
Collapse
|
9
|
Phong NT, Yoon HY, Kang MS, Kwon M, Lee Y, Baik JM, Son EJ, Jang KS, Han DW, Kim KS, Jeon JR. Ionic Liquid-Based Extraction of Fulvic-like Substances from Wood Sawdust: Reproducing Unique Biological Activities of Fulvic Acids Using Renewable Natural Sources. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20981-20990. [PMID: 39148227 DOI: 10.1021/acs.jafc.4c04364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Fulvic acids (FAs) have been commercially used in cosmetics and agronomy due to their unique biological activities, such as plant stimulation and anti-inflammatory effects. However, the extraction sources of FAs, such as peat, are currently limited. Consequently, new extraction methods using renewable resources need to be developed, while reproducing the biological functions. Here, ionic liquids (ILs) effectively extracted fulvic-like substances (FLSs) from wood sawdust. The overall molecular weight distributions of FLSs were similar to those of commercial FAs, and key organic groups (e.g., aromatic, phenolic, and methoxy groups) were also found to be shared between commercial FAs and FLSs. Detailed compositional analysis revealed by high-resolution mass spectrometry showed that the extracts contain both lignin-like and lipid-like molecules, while commercial FAs are biased toward lignin-like and carbohydrate-like molecules. FLSs generally showed better and similar performance in radical scavenging activity against ABTS+· and H2O2. Fibroblast proliferation and lettuce growth enhancements were also observed with the extract containing 1-ethyl-3-methylimidazolium acetate and triethylammonium hydrogen sulfate, respectively, which performed better than commercial FAs. Immunofluorescence staining of in vitro human follicle dermal papilla cells supports that coexpression of hair growth-related proteins can be accelerated with FLSs, and this effect was further evidenced by in vivo mouse model experiments. Finally, the reusability of ILs in the extraction process was confirmed by analyzing the structural features of FLSs from each recycling. Our findings indicate that ILs are useful for obtaining biologically functional fulvic analogs from renewable plant sources.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eun Ju Son
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju 28119, Chungbuk, Republic of Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju 28119, Chungbuk, Republic of Korea
| | | | | | | |
Collapse
|
10
|
Li Y, Zhang M, Wang X, Ai S, Meng X, Liu Z, Yang F, Cheng K. Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135140. [PMID: 39002486 DOI: 10.1016/j.jhazmat.2024.135140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Microbially induced carbonate precipitation (MICP) is emerging as a favorable alternative to traditional soil remediation techniques for heavy metals, primarily due to its environmental friendliness. However, a significant challenge in using MICP for farmland is not only to immobilize heavy metals but also to concurrently enhance soil fertility. This study explores the innovative combination of artificial humic acid (A-HA), biochar (BC), and Sporosarcina pasteurii (S. pasteurii) to mitigate the bioavailability of cadmium (Cd) in contaminated agricultural soils through MICP. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that the integration of BC and A-HA significantly enhances Cd immobilization efficiency by co-precipitating with CaCO3. Moreover, this treatment also improved soil fertility and ecological functions, as evidenced by increases in total nitrogen (TN, 9.0-78.2 %), alkaline hydrolysis nitrogen (AN, 259.7-635.5 %), soil organic matter (SOM, 18.1-27.9 %), total organic carbon (TOC, 43.8-48.8 %), dissolved organic carbon (DOC, 36.0-88.4 %) and available potassium (AK, 176.2-193.3 %). Additionally, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased with the introduction of BC and A-HA in MICP. Consequently, the integration of BC and A-HA with MICP offers a promising solution for remediating Cd-contaminated agricultural soil and synergistically enhancing soil fertility.
Collapse
Affiliation(s)
- Yu Li
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Meiling Zhang
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Xiaobin Wang
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Shuang Ai
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xianghui Meng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Fan Yang
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
11
|
Lei T, Su J, Chang L, He R, Shan G, Jiang X, Lei Y, Guo X. Artificial humic acid produced from wet distillers grains in a microwave-assisted hydrothermal process: Physicochemical characteristics and stimulation to plant growth. CHEMOSPHERE 2024; 364:142979. [PMID: 39098348 DOI: 10.1016/j.chemosphere.2024.142979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Wet distillers grains, as a waste biomass with a large annual output, pose a threat to the environment and food industry. Herein, artificial humic acid (AHA) was first produced from wet distillers grains in a dual-stage microwave-assisted hydrothermal process. The influence of temperature on AHA's characteristics was investigated and compared with natural humic acid (NHA) and standard humic acid (SHA). A high yield of AHA at 20.6% was obtained at 200 °C with a total reaction time of 1 h, which is 1.8-3.1 times that obtained in traditional single-stage hydrothermal process. Increasing the reaction temperature induced the formation of phenolic hydroxyl in AHA. AHA was rich in aromaticity and carboxylic acid structure, showing similar spectral characteristics to NHA. The distribution of molecular weight of AHA was mostly 5797 Da, which decreased by 15% compared to SHA. The optimal concentration of AHA to promote seedling growth was 0.2 g/L, and the root length was 2.0 times that of the control. The microwave hydrothermal process is a facile and efficient approach to preparing AHA from waste biomass with high moisture content.
Collapse
Affiliation(s)
- Tianlong Lei
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Jie Su
- Tarim Oilfield Company, PetroChina, Korla, 841000, China
| | - Luyi Chang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Rui He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Guangchun Shan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaomei Jiang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Yunhui Lei
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Xiaobo Guo
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China.
| |
Collapse
|
12
|
Zhou H, Dang Y, Chen X, Ivanets A, Ratko AA, Kouznetsova T, Liu Y, Yang B, Zhang X, Sun Y, He X, Ren Y, Su X. Rapid humification of cotton stalk catalyzed by coal fly ash and its excellent cadmium passivation performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52582-52595. [PMID: 39153068 DOI: 10.1007/s11356-024-34514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Due to industrialization, soil heavy metal pollution is a growing concern, with humic substances (HS) playing a pivotal role in soil passivation. To address the long duration of the compost humification problem, coal fly ash (CFA) in situ catalyzes the rapid pyrolysis of the cotton stalk (CS) to produce HS to address Cd passivation. Results indicate that the highest yield of humic acid (HA) (8.42%) and fulvic acid (FA) (1.36%) is obtained when the CS to CFA mass ratio is 1:0.5, at 275 ℃ for 120 min. Further study reveals that CFA catalysis CS humification, through the creation of alkaline pyrolysis conditions, Fe2O3 can stimulate the protein and the decomposition of hemicellulose in CS, and then, through the Maillard and Sugar-amine condensation reaction synthesis HA and FA. Applying HS-CS&CFA in Cd-contaminated soil demonstrates a 26.69% reduction in exchangeable Cd within 30 days by chemical complexation. Excellent maize growth effects and environmental benefits of HS products are the prerequisites for subsequent engineering applications. Similar industrial solid wastes, such as steel slag and red mud, rich in Fe2O3, can be explored to identify their catalytic humification effect. It could provide a novel and effective way for industrial solid wastes to be recycled for biomass humification and widely applied in remediating Cd-contaminated agricultural soil.
Collapse
Affiliation(s)
- Hao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yan Dang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xinyu Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Andrei Ivanets
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Alexander A Ratko
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Tatyana Kouznetsova
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", 220072, Minsk, Belarus
| | - Yongqi Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Bo Yang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xulong Zhang
- China Customs Science and Technology Research Center, Beijing, 100026, People's Republic of China
| | - Yiwei Sun
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Xiaoyan He
- Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, School of Chemistry and Environmental Sciences, Yili Normal University, Xinjiang, 835000, Yining, China
| | - Yanjie Ren
- Xinjiang Qinghua Energy Group Co., Ltd, Xinjiang, 844500, Yining, China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
13
|
Liu Z, Su J, Yao Z, Zhang Y, Wang L, Zhao L. Enhancing humic acids production from cornstalk under fast hydrothermal conditions: Insights into new pathways of skeleton self-polymerization and branch growth. BIORESOURCE TECHNOLOGY 2024; 406:131020. [PMID: 38909871 DOI: 10.1016/j.biortech.2024.131020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Hydrochar, a sustainable fertilizer rich in humic substances, is made from lignocellulose through hydrothermal conversion. However, hydrothermal humification (HTH) is challenged by low yields and limited selectivity in the resulting hydrochar. This study proved humic-like acids production can be enhanced under fast non-catalytic conditions (260 ∼ 280 °C, 0 ∼ 1 h). A higher yield (by 14.1 %) and selectivity (by 40.2 %) in hydrochar of humic-like acids than conventional HTH (<250 °C) were achieved. Meanwhile, decreased lignin derivatives, carbonyl and quinone groups, as well as increased sp2-C structures in the humic-like acids were observed. The synthesized humic-like acids exhibited a lower degree of aromatization and a higher molecular weight than commercial variants. Two pathways of humic-like acids formation of self-polymerization and the development of branched sidechains were hypothesized based on mass mitigation, carbon flow and aqueous phase compositions. This research contributes a novel approach to producing humic-like acids rich hydrochar for environmentally friendly fertilizer production.
Collapse
Affiliation(s)
- Ziyun Liu
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jinting Su
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China; School of Agricultural Engineering and Food Science, Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo, China
| | - Zonglu Yao
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lihong Wang
- School of Agricultural Engineering and Food Science, Shandong Research Center of Engineering and Technology for Clean Energy, Shandong University of Technology, Zibo, China
| | - Lixin Zhao
- Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs P. R. China. Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing 100081, China.
| |
Collapse
|
14
|
Li N, Ma H, Wang G, Ma X, Deng J, Yuan S. Efficient extraction and formation mechanism of fulvic acid from lignite: Experimental and DFT studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121650. [PMID: 38968881 DOI: 10.1016/j.jenvman.2024.121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Enhancing the coal-based fulvic acid (FA) yield through the effect of oxidation methods was of great importance. However, the realization of an efficient and environmentally friendly method for the preparation of FA, along with understanding of its formation mechanism, remains imperative. Herein, coal-based FA was prepared by oxidizing lignite with H2O2 and NaOH/KOH. The experimental data showed that ML lignite was pickled with HCl, metal ions such as iron, aluminum, and calcium can be removed, and this lignite is used as raw material, the reaction time was 150 min, the reaction temperature was 50 °C, and the volume ratio of H2O2 (30%) to KOH (3 mol/L) was 1:1, the effect of H2O2 and KOH on FA extraction was the best. The coal-based FA yield could reach 60.49%. The addition of silicone defoaming agent during the experiment resulted in a significant diminished the presence of bubbles and prevent the production of CO2. A decrease in N2 content was detected by GC. The FTIR, XPS, Py-GC/MS and other characterization results showed that FA has more polar functional groups (-COOH, -OH), and it contains more O-CO structure. Consequently, a greater quantity of FA molecules is generated during the reaction process. Moreover, the partial Gibbs free energies during the formation process of coal-based FA were calculated by density-functional theory (DFT). The highest energy required for free radicals was found to be between 1.3 and 1.7 eV. This study would provide theoretical support for exploring the FA formation process and the promotion of lignite humification by adding H2O2 or alkali to lignite.
Collapse
Affiliation(s)
- Na Li
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, 2 North Cuihu Road, 650091, Kunming, Yunnan, China.
| | - Hang Ma
- R&D Center. Yunnan Yuntianhua CO., LTD, NO.1417 Dian Lake Road, 650228, Kunming, China.
| | - Guodong Wang
- R&D Center. Yunnan Yuntianhua CO., LTD, NO.1417 Dian Lake Road, 650228, Kunming, China.
| | - Xunmeng Ma
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, 2 North Cuihu Road, 650091, Kunming, Yunnan, China.
| | - Jin Deng
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, 2 North Cuihu Road, 650091, Kunming, Yunnan, China.
| | - Shenfu Yuan
- School of Chemical Science and Engineering, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, 2 North Cuihu Road, 650091, Kunming, Yunnan, China.
| |
Collapse
|
15
|
Zhi Y, Li X, Wang X, Jia M, Wang Z. Photosynthesis promotion mechanisms of artificial humic acid depend on plant types: A hydroponic study on C3 and C4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170404. [PMID: 38281646 DOI: 10.1016/j.scitotenv.2024.170404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
It is feasible to improve plant photosynthesis to address the global climate goals of carbon neutrality. The application of artificial humic acid (AHA) is a promising approach to promote plant photosynthesis, however, the associated mechanisms for C3 and C4 plants are still unclear. In this study, the real-time chlorophyll synthesis and microscopic physiological changes in plant leave cells with the application of AHA were first revealed using the real-time chlorophyll fluorescence parameters and Non-invasive Micro-test Technique. The transcriptomics suggested that the AHA application up-regulated the genes in photosynthesis, especially related to chlorophyll synthesis and light energy capture, in maize and the genes in photosynthetic vitality and carbohydrate metabolic process in lettuce. Structural equation model suggested that the photodegradable substances and growth hormones in AHA directly contributes to photosynthesis of C4 plants (0.37). AHA indirectly promotes the photosynthesis in the C4 plants by upregulating functional genes (e.g., Mg-CHLI and Chlorophyllase) involved in light capture and transformation (0.96). In contrast, AHA mainly indirectly promotes C3 plants photosynthesis by increasing chlorophyll synthesis, and the Rubisco activity and the ZmRbcS expression in the dark reaction of lettuce (0.55). In addition, Mg2+ transfer and flux in C3 plant leaves was significantly improved by AHA, indirectly contributes to plant photosynthesis (0.24). Finally, the AHA increased the net photosynthetic rate of maize by 46.50 % and that of lettuce by 88.00 %. Application of the nutrients- and hormone-rich AHA improves plant growth and photosynthesis even better than traditional Hoagland solution. The revelation of the different photosynthetic promotion mechanisms on C3 and C4 plant in this work guides the synthesis and efficient application of AHA in green agriculture and will propose the development of AHA technology to against climate change resulting from CO2 emissions in near future.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaowei Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
16
|
Wang R, Zheng X, Feng Z, Feng Y, Ying Z, Wang B, Dou B. Hydrothermal carbonization of Chinese medicine residues: Formation of humic acids and combustion performance of extracted hydrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171792. [PMID: 38508251 DOI: 10.1016/j.scitotenv.2024.171792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Aiming at the sustainable management of high-moisture Chinese medicine residues (CMR), an alternative way integrating hydrothermal carbonization (HTC), humic acids (HAs) extraction and combustion of remained hydrochar has been proposed in this study. Effect of HTC temperature, HTC duration, and feedwater pH on the mass yield and properties of HAs was examined. The associated formation mechanism of HAs during HTC was proposed. The combustion performance of remained hydrochar after HAs extraction was evaluated. Results show that the positive correlation between hydrochar yield and HAs yield is observed. According to three-dimensional excitation emission matrix (3D EEM) fluorescence intensity, the best quality of HAs is achieved with a yield of 8.17 % at feedwater pH of 13 and HTC temperature of 200 °C. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses show abundant aromatic and aliphatic structure as well as oxygenated functional groups in HAs, which is like commercial HAs (HA-C). Besides, in terms of comprehensive combustion index (CCI), HTC can improve the combustion performance of CMR, while it becomes a bit worse after HAs extraction. Higher weighted mean apparent activation energy (Em) of hydrochar indicating its highly thermal stability. HAs extraction reduces Em and CCI of remained hydrochar. However, it can be regarded a potential renewable energy. This work confirms a more sustainable alternative way for CMR comprehensive utilization in near future.
Collapse
Affiliation(s)
- Rui Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Zhenyang Feng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
17
|
Chen J, Sun T, Yang P, Peng S, Yu J, Wang D, Zhang W. Inhibitory effect of microplastics derived organic matters on humification reaction of organics in sewage sludge under alkali-hydrothermal treatment. WATER RESEARCH 2024; 252:121231. [PMID: 38324988 DOI: 10.1016/j.watres.2024.121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Alkali-hydrothermal treatment (AHT) of sewage sludge is often used to recover value-added dissolved organic matters (DOM) enriched with artificial humic acids (HA). Microplastics (MPs), as emerging contaminants in sewage sludge, can leach organic compounds (MP-DOM) during AHT, which potentially impact the characteristics of thermally treated sludge's DOM. This study employed spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) to explore the impacts of MPs on DOM composition and transformation during AHT. The biological effects of DOM were also investigated by hydroponic experiments. The results showed that the leaching of MP-DOM led to a substantial increase in DOC content of DOM of thermally treated sludge. Conversely, the HA content significantly decreased in the presence of MPs, resulting in a decline of plant growth facilitation degree. FT-ICR-MS analysis revealed that the reduction in HA content was characterized by a notable decline in the abundance of O6-7 and N1-3O6-7 molecules. Reactomics results indicated that the leaching of MP-DOM inhibited the Maillard reaction but bolstered oxidation reactions. The inhibition of Maillard reaction, resulting in a decrease in crucial precursors (dicarbonyl compounds, ketoses, and deoxyglucosone), was responsible for the decrease of HA content. The primary mechanism responsible for inhibiting the Maillard reaction was the consumption of reactive amino reactants through two pathways. Firstly, the leaching of organic acids in MP-DOM caused decrease of sludge pH, leading to the protonation of amino groups. Secondly, the lipid-like compounds in MP-DOM underwent oxidation (-2H+O), producing fatty aldehydes that consumed the reactive amino reactants. These discoveries offer enhanced insights into the specific contribution of MPs to the composition, transformation, bioactivity of DOM during AHT process.
Collapse
Affiliation(s)
- Jun Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
| | - Siwei Peng
- Datang Environment Industry Group Co., Ltd, Haidian District, Beijing 100097, China
| | - Junxia Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang university, Hangzhou 310058, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
18
|
Liu X, Yuan S, Dai X. Thermal hydrolysis prior to hydrothermal carbonization resulted in high quality sludge hydrochar with low nitrogen and sulfur content. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:117-127. [PMID: 38277809 DOI: 10.1016/j.wasman.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Hydrothermal carbonization of waste activated sludge suffers from a low degree of carbonization caused by limited hydrolysis of carbohydrates and proteins, resulting in a high nitrogen content in hydrochar. Thus, it is hypothesized that thermal hydrolysis could destroy the stable floc structure of waste activated sludge, leading to higher degree of carbonization and high quality hydrochar with low nitrogen content by improving the solubilization and hydrolysis of organic matter. In the current study, thermal hydrolysis at 90 °C, 125 °C, and 155 °C was performed prior to hydrothermal carbonization to obtain low-nitrogen-content hydrochar. Thermal hydrolysis greatly improved the hydrolysis of sewage sludge. The nitrogen and sulfur content in hydrochars obtained after thermal hydrolysis decreased to 1.5-1.6 % from 1.7 %, and to 0.4 % from 0.5 %, respectively, depending on the hydrolysis conditions. Thermal decomposition stability of hydrochars obtained after thermal hydrolysis were also improved. Thermal hydrolysis at 90 °C and 125 °C promoted hydrolysis, dehydration, and the Diels-Alder reaction during hydrothermal carbonization, resulting in lower hydrochar yield but higher H/C and O/C atomic ratio. The Maillard reaction occurred during thermal hydrolysis at 155 °C, leading to the formation of large molecular refractory compounds that were retained in the hydrochar and increased the hydrochar yield. Furthermore, thermal hydrolysis can accelerate pyrolysis reaction of hydrochars, resulting in reduced energy consumption. The newly established thermal hydrolysis-hydrothermal carbonization process using sewage sludge as the feedstock has the potential to contribute to the development of the hydrothermal carbonization industry.
Collapse
Affiliation(s)
- Xiaoguang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
19
|
Gai S, Liu B, Lan Y, Han L, Hu Y, Dongye G, Cheng K, Liu Z, Yang F. Artificial humic acid coated ferrihydrite strengthens the adsorption of phosphate and increases soil phosphate retention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169870. [PMID: 38218478 DOI: 10.1016/j.scitotenv.2024.169870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Phosphorus (P) leaching loss from farmland soils is one of the main causes of water eutrophication. Thus, effective methods must be developed to maintain sustainability in agricultural soils. Herein, we design artificial humic acid (A-HA) coated ferrihydrite (Fh) particles for fixing P in soil. The experiments in water and soil are successively conducted to explore the phosphate adsorption mechanism and soil P retention performance of A-HA coated ferrihydrite particles (A-Fh). Compared with unmodified ferrihydrite (Fh), the phosphate adsorption capacity of A-Fh is increased by 15 %, the phosphate adsorption speed and selectivity are also significantly improved. The ligand exchange, electrostatic attraction and hydrogen bonding are the dominant mechanisms of phosphate adsorption by A-Fh. In soil experiments, the addition of 2 % A-Fh increases the soil P retention performance from 0.15 to 0.7 mg/kg, and A-Fh are able to convert more phosphate adsorbed by itself into soil available P to improve soil fertility. Overall, this work highlights the importance of this a highly effective amendment for improving poor soils.
Collapse
Affiliation(s)
- Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Bing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Lin Han
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Yixiong Hu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Guanghao Dongye
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China.
| |
Collapse
|
20
|
Wang X, Huang P, Zhang P, Wang C, He F, Sun H. Synthesis of stabilized zero-valent iron particles and role investigation of humic acid-Fe x+ shell in Fenton-like reactions and surface stability control. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133296. [PMID: 38141302 DOI: 10.1016/j.jhazmat.2023.133296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Herein, a novel humic acid-Fex+ complex-coated ZVI (HA-Fex+@ZVI) was synthesized and used to activate peroxydisulfate (PDS) for phenol degradation. The HA-Fex+ shell selectively reacted with PDS rather than O2, leading to the formation of modified ZVI with excellent surface stability in storage and ultraefficient PDS activation in advanced oxidation processes (AOPs). As a result, the phenol degradation and PDS activation efficiencies of HA-Fex+@ZVI/PDS were ∼14.4 and ∼1.8 times higher than those of ZVI/PDS, respectively. Mechanistic explorations revealed that the replacement of the HA-Fex+ shell relative to the original passivation layer of ZVI greatly changed the SO4•- generation pathway from a heterogeneous process to a homogeneous process, resulting from the slow exposure of Fe0 (generating dissolved Fe2+) and the depolymerized HA (enhancing the Fe3+/Fe2+ cycle). Based on experimental analysis and density functional theory (DFT) calculations, the Fe3+ in HA-Fex+ could be reduced to Fe2+ by PDS, resulting in the disintegration of the HA-Fex+ shell and exposure of Fe0 core active sites. Furthermore, compared to similar catalysts synthesized with commercial HA and traditional chemicals, HA-Fex+@ZVI synthesized with multiple waste biomasses exhibited better performance. This research provides valuable insights for designing ZVI-based catalysts with excellent storage stability and ultraefficient PDS catalytic activity for AOPs.
Collapse
Affiliation(s)
- Xinhua Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Peng Huang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Cuiping Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Feng He
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
21
|
Peng XX, Gai S, Liu Z, Cheng K, Yang F. Effects of Fe 3+ on Hydrothermal Humification of Agricultural Biomass. CHEMSUSCHEM 2024; 17:e202301227. [PMID: 37833827 DOI: 10.1002/cssc.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Hydrothermal humification technology for the preparation of artificial humic matters provides a new strategy, greatly promoting the natural maturation process. Iron, as a common metal, is widely used in the conversion of waste biomass; however, the influence of Fe3+ on hydrothermal humification remains unknown. In this study, FeCl3 is used to catalyze the hydrothermal humification of corn straw, and the influence of Fe3+ on the hydrothermal humification is explored by a series of characterization techniques. Results show that Fe3+ as the catalyst can promote the decomposition of corn straw, shorten the reaction time from 24 h to 6 h, and increase the yield from 6.77 % to 14.08 %. However, artificial humic acid (A-HA) obtained from Fe3+ -catalysis hydrothermal humification contains more unstable carbon and low amount of aromatics, resulting in a significantly decreased stability of the artificial humic acid. These results provide theoretical guidance for regulating the structure and properties of artificial humic acid to meet various maintenance needs.
Collapse
Affiliation(s)
- Xiong-Xin Peng
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Kui Cheng
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| |
Collapse
|
22
|
Lan Y, Gai S, Cheng K, Liu Z, Antonietti M, Yang F. Artificial Humic Acid Mediated Carbon-Iron Coupling to Promote Carbon Sequestration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0308. [PMID: 38375103 PMCID: PMC10875824 DOI: 10.34133/research.0308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
Fe (hydr)oxides have a substantial impact on the structure and stability of soil organic carbon (SOC) pools and also drive organic carbon turnover processes via reduction-oxidation reactions. Currently, many studies have paid much attention to organic matter-Fe mineral-microbial interactions on SOC turnover, while there is few research on how exogenous carbon addition abiotically regulates the intrinsic mechanisms of Fe-mediated organic carbon conversion. The study investigated the coupling process of artificial humic acid (A-HA) and Fe(hydr)oxide, the mechanism of inner-sphere ligands, and the capacity for carbon sequestration using transmission electron microscopy, thermogravimetric, x-ray photoelectron spectroscopy, and wet-chemical disposal. Furthermore, spherical aberration-corrected scanning transmission electron microscopy-electron energy loss spectroscopy and Mössbauer spectra have been carried out to demonstrate the spatial heterogeneity of A-HA/Fe (hydr)oxides and reveal the relationship between the increase in Fe-phase crystallinity and redox sensitivity and the accumulation of organic carbon. Additionally, the dynamics of soil structures on a microscale, distribution of carbon-iron microdomains, and the cementing-gluing effect can be observed in the constructing nonliving anthropogenic soils, confirming that the formation of stable aggregates is an effective approach to achieving organic carbon indirect protection. We propose that exogenous organic carbon inputs, specifically A-HA, could exert a substantial but hitherto unexplored effect on the geochemistry of iron-carbon turnover and sequestration in anoxic water/solid soils and sediments.
Collapse
Affiliation(s)
- Yibo Lan
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
- College of Engineering,
Northeast Agricultural University, Harbin 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Markus Antonietti
- Department of Colloid Chemistry,
Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Fan Yang
- School of Water Conservancy and Civil Engineering,
Northeast Agricultural University, Harbin 150030, China
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| |
Collapse
|
23
|
Chen X, Yang B, Zhou H, Boguta P, Fu X, Ivanets A, Ratko AA, Kouznetsova T, Liu Y, He X, Zhao D, Su X. Iron oxyhydroxide catalyzes production of artificial humic substances from waste biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120152. [PMID: 38266528 DOI: 10.1016/j.jenvman.2024.120152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Production of artificial humic substances (AHS) from waste biomass will contribute to environmental protection and agricultural productivity. However, there is still a lack of a faster, more efficient and eco-friendly way for sustainable production. In this study, we proposed a method to accelerate the production of AHS from cotton stalks by mild pyrolysis and H2O2 oxidation in only 4 hours, and investigated the formation of AHS during biomass transformation. We found that the process increased the aromatic matrix and facilitated biomass transformation by enhancing the depolymerization of lignin into micromolecular phenolics (e.g., guaiacol, p-ethyl guaiacol, etc.). The optimum conditions of pyrolysis at 250 °C and oxidation with 6 mL H2O2 (5 wt%) yielded up to 19.28 ± 1.30 wt% artificial humic acid (AHA) from cotton stalks. In addition, we used iron oxyhydroxide (FeOOH) to catalyze biomass transformation and investigated the effect of FeOOH on the composition and properties of AHS. 1.5 wt% FeOOH promoted the increased content of artificial fulvic acid (AFA) in AHS from 10.1% to 26.5%, eventually improving the activity of AHS. FeOOH raised the content of oxygen-containing groups, such as carboxylic acids and aldehyde, and significantly increased polysaccharide (10.94%-18.95%) and protein (1.95%-2.18%) derivatives. Polymerization of amino acid analogs and many small-molecule carbohydrates (e.g., furans, aldehydes, ketones, and their derivatives) promoted AFA formation. Finally, carbon flow analysis and maize incubation tests confirmed that AHS were expected to achieve carbon emission reductions and reduce environmental pollution from fertilizers. This study provides a sustainable strategy for the accelerated production of AHS, which has important application value for waste biomass resource utilization.
Collapse
Affiliation(s)
- Xinyu Chen
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Bo Yang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Hao Zhou
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Xinying Fu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Andrei Ivanets
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", Minsk, 220072, Belarus
| | - Alexander A Ratko
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", Minsk, 220072, Belarus
| | - Tatyana Kouznetsova
- State Scientific Institution, "Institute of General and Inorganic Chemistry of National Academy of Sciences of Belarus", Minsk, 220072, Belarus
| | - Yongqi Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Xiaoyan He
- Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources in Xinjiang,School of Chemistry and Chemical Engineering,Yili Normal University, Yining 835000, China
| | - Dongmei Zhao
- Xinjiang Huier Agricultural Group Co Ltd, Changji, Xinjiang, 831100, PR China
| | - Xintai Su
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
24
|
Jin Y, Yuan Y, Liu Z, Gai S, Cheng K, Yang F. Effect of humic substances on nitrogen cycling in soil-plant ecosystems: Advances, issues, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119738. [PMID: 38061102 DOI: 10.1016/j.jenvman.2023.119738] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Nitrogen (N) cycle is one of the most significant biogeochemical cycles driven by soil microorganisms on the earth. Exogenous humic substances (HS), which include composted-HS and artificial-HS, as a new soil additive, can improve the water retention capacity, cation exchange capacity and soil nutrient utilization, compensating for the decrease of soil HS content caused by soil overutilization. This paper systematically reviewed the contribution of three different sources of HS in the soil-plant system and explained the mechanisms of N transformation through physiological and biochemical pathways. HS convert the living space and living environment of microorganisms by changing the structure and condition of soil. Generally, HS can fix atmospheric and soil N through biotic and abiotic mechanisms, which improved the availability of N. Besides, HS transform the root structure of plants through physiological and biochemical pathways to promote the absorption of inorganic N by plants. The redox properties of HS participate in soil N transformation by altering the electron gain and loss of microorganisms. Moreover, to alleviate the energy crisis and environmental problems caused by N pollution, we also illustrated the mechanisms reducing soil N2O emissions by HS and the application prospects of artificial-HS. Eventually, a combination of indoor simulation and field test, molecular biology and stable isotope techniques are needed to systematically analyze the potential mechanisms of soil N transformation, representing an important step forward for understanding the relevance between remediation of environmental pollution and improvement of the N utilization in soil-plant system.
Collapse
Affiliation(s)
- Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
25
|
Shao Y, Li Z, Long Y, Zhao J, Huo W, Luo Z, Lu W. Direct humification of biowaste with hydrothermal technology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168232. [PMID: 37923260 DOI: 10.1016/j.scitotenv.2023.168232] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/28/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Hydrothermal humification of biowaste, in comparison to the traditional coal-based humic acid extraction process, better aligns with the goals of carbon neutrality and sustainability. This article provided a comprehensive review on the current advancements in hydrothermal humification of biowaste. Hydrothermal humic acid (HHA) derived from different biowaste sources was compared, exhibiting significant differences in their hydrophobicity, oxygen-containing functional group content, and structural characteristics. The influence of key parameters, including reaction temperature, residence time, pH and the action of catalysts on HHA yield was analyzed. The pathways through which biowaste and its major components transform into HHA were elucidated. Coal-like hydrochar has shown significant potential for producing HHA through hydrothermal treatment, with HHA selectivity exceeding 65 %. HHA also exhibits promising performance in agriculture and environmental remediation, offering comparable value to commercial humic acid. Future research should concentrate on establishing the correlation between hydrothermal conditions and the efficiency of biowaste humification, thereby facilitating the development of a predictive model for assessing efficiency. Additionally, exploring the application value of hydrothermal-synthesized HHA with diverse chemical characteristics will guide the optimization of hydrothermal conditions and selection of suitable feedstock.
Collapse
Affiliation(s)
- Yuchao Shao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhihua Li
- School of Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jun Zhao
- Department of Biology, Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Weizhong Huo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhangrui Luo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Zhu Y, Cao Y, Fu B, Wang C, Shu S, Zhu P, Wang D, Xu H, Zhong N, Cai D. Waste milk humification product can be used as a slow release nano-fertilizer. Nat Commun 2024; 15:128. [PMID: 38167856 PMCID: PMC10761720 DOI: 10.1038/s41467-023-44422-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The demand for milk has increased globally, accompanied by an increase in waste milk. Here, we provide an artificial humification technology to recycle waste milk into an agricultural nano-fertilizer. We use KOH-activated persulfate to convert waste milk into fulvic-like acid and humic-like acid. We mix the product with attapulgite to obtain a slow-release nano fulvic-like acid fertilizer. We apply this nano-fertilizer to chickweeds growing in pots, resulting in improved yield and root elongation. These results indicate that waste milk could be recycled for agricultural purposes, however, this nano-fertilizer needs to be tested further in field experiments.
Collapse
Affiliation(s)
- Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yuxuan Cao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Bingbing Fu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chengjin Wang
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Shihu Shu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Pengjin Zhu
- Guangxi Subtropical Crops Research Institute, Nanning, 530000, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Naiqin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
27
|
Wang R, Li D, Deng F, Cao Z, Zheng G. Production of artificial humic acid from rice straw for fertilizer production and soil improvement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167548. [PMID: 37802338 DOI: 10.1016/j.scitotenv.2023.167548] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
In this study, artificial humic acid (AHA) was produced from rice straw at room temperature. The response surface methodology was used to investigate the response of artificial humic acid to time, liquid-solid ratio, and KOH concentration. The optimal reaction conditions were determined: reaction time of 2 h, liquid-solid ratio of 6, and KOH concentration of 1.5 mol/L. The artificial humic acid content under these conditions was 32.29 g/L, which satisfied the Chinese agricultural industry standard for water-soluble humic acid fertilizers (humic acid content ≥30 g/L). Compared with chemical fertilizers, artificial humic acid fertilizer promoted chard growth and increased soil organic matter and humic acid. The stability of artificial humic acid was better, with a retention rate of 60.47 % in the soil. Water-soluble humic acid fertilizer also promoted chard growth by increasing the relative abundance of growth-promoting bacteria such as Glutamicibacter and Pseudomonas and, as well as growth-promoting fungi such as Mortierella. The application of water-soluble humic acid fertilizers has implications for both soil improvement and the reduction of agricultural carbon emissions.
Collapse
Affiliation(s)
- Ruxian Wang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhenglei Cao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxiang Zheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
Yi P, Yan Y, Kong Y, Chen Q, Wu M, Liang N, Zhang L, Pan B. The opposite influences of Cu and Cd cation bridges on sulfamethoxazole sorption on humic acids in wetting-drying cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165547. [PMID: 37454847 DOI: 10.1016/j.scitotenv.2023.165547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Wetting-drying cycles in the environment could change the inner- or outer-sphere complexation of heavy metal cations on natural organic matter (NOM) and then influence ternary interactions with organic contaminants - a rarely-discussed essential geochemical process. In this work, the sorption of sulfamethoxazole (SMX) on humic acids (HAs) mediated by cations (Cu2+ and Cd2+) was investigated. Considering that outer-sphere complexation could be transformed into inner-sphere complexation during vacuum freeze-drying, the role of inner- or outer-sphere complexation on SMX sorption was explored. The experimental sorption results and density functional theory (DFT) calculations suggested that Cu2+ and Cd2+ sorption on HAs was mainly outer- and inner-sphere complexation, respectively. Cd2+ consistently promoted SMX sorption on HAs, while Cu2+ promoted and inhibited SMX sorption before and after freeze-drying. The structure of HA-Cu complexes with inner-sphere complexation was more compact than those with outer-sphere complexation, which reduced the accessibility of sorption sites for SMX on HA-Cu and inhibited SMX sorption. However, the greater number of coordination sites of Cd2+ may provide more sorption sites and the structure of HA-Cd was looser. These findings provide a groundbreaking understanding of the sorption of organics on natural adsorbents in the presence of cations.
Collapse
Affiliation(s)
- Peng Yi
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Yani Yan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Ying Kong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Ni Liang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
29
|
Deng F, Cao Z, Luo Y, Wang R, Shi H, Li D. Production of artificial humic acid from corn straw acid hydrolysis residue with biogas slurry impregnation for fertilizer application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118845. [PMID: 37619379 DOI: 10.1016/j.jenvman.2023.118845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
This study investigated hydrothermal humification of corn straw acid hydrolysis residue with biogas slurry impregnation, aiming at producing water-soluble artificial humic acid fertilizer for fertilizer application and soil remediation. Hydrothermal humification parameters, including potassium hydroxide concentration (1-3 mol/L), retention time (2-6 h), and temperature (140-180 °C), were investigated using water as the liquid phase. The selected hydrothermal humification condition was 1.5 mol/L potassium hydroxide at 180 °C for 4 h. Moreover, biogas slurry impregnation (0-30 days) was evaluated to improve humic acid yield without introducing additional chemicals or energy input. Biogas slurry as the liquid phase increased the humic acid production by 73.24% with 5 days of impregnation compared to the control due to the alkalinity. The humic acid concentration was sufficient for China's national standard of water-soluble humic acid fertilizers in such conditions. The organic components in biogas slurry were involved in artificial humification as a precursor, forming C-N bonds with humic acid. The product with fortified nitrogen-containing functional groups enhanced the nutrient slow-release characteristics and water retention capabilities. The pot experiment further confirmed that artificial humic acid prepared in this study not only promoted the growth of plants but also achieved soil remediation.
Collapse
Affiliation(s)
- Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhenglei Cao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiping Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Ruxian Wang
- College of Engineering, Northeast Agriculture University, Harbin, 150030, PR China
| | - Hongying Shi
- Heilongjiang Boneng Green Energy Technology Co., Ltd., Harbin, 150028, PR China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Anuchi S, Campbell KLS, Hallett JP. Effects of the Ionic Liquid Structure on Porosity of Lignin-Derived Carbon Materials. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:15228-15241. [PMID: 37886039 PMCID: PMC10598883 DOI: 10.1021/acssuschemeng.3c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Converting lignin into advanced porous carbon materials, with desirable surface functionalities, can be challenging. While lignin-derived carbons produced by pyrolysis at >600 °C develop porosity, they also simultaneously lose nearly all their surface functional groups. By contrast, pyrolysis of lignin at lower temperatures (e.g., <400 °C) results in the formation of nonporous char that retains some surface functionalities. However, copyrolysis of lignin with some ionic liquids (ILs) at lower temperatures offers an opportunity to produce porous carbon materials with both large surface areas and an abundance of surface functional groups. This study investigates the effects of IL properties (solubility, thermal, and ionic size) on the specific surface areas of lignin-derived carbons produced by copyrolysis of lignin and ILs at 350-400 °C for 20 min. It was found that ILs that have bulky anions and small cation sizes can induce porosity in lignin-derived carbons with large surface areas. Among 16 ILs that were tested, [C2MIm][NTF2] demonstrated the best performance; the inclusion of it in the copyrolysis process resulted in lignin-derived carbons with ∼528 m2 g-1 and 0.48 cm3 g-1. Lignin-derived carbons produced using no IL, [C2MIm][NTF2], and [C4MIm][OTF] were further characterized for morphology, interfacial chemical, and elemental properties. The copyrolysis of lignin and [C2MIm][NTF2], and [C4MIm][OTF] resulted in doping of heteroatoms (N and S) on the porous carbon materials during pyrolysis reaction. The present findings contribute to a better understanding of the main property of ILs responsible for creating porosity in lignin carbon during pyrolysis.
Collapse
Affiliation(s)
- Samson
O. Anuchi
- Laboratory
of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 1AZ, U.K.
| | | | - Jason P. Hallett
- Laboratory
of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 1AZ, U.K.
| |
Collapse
|
31
|
Jin Y, Zhang X, Yuan Y, Lan Y, Cheng K, Yang F. Synthesis of artificial humic acid-urea complex improves nitrogen utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118377. [PMID: 37348301 DOI: 10.1016/j.jenvman.2023.118377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The inefficient use of conventional nitrogen (N) fertilizers leads to N enrichment in the soil, resulting in N loss via runoff, volatilization and leaching. While using artificial humic acid to prepare novel N fertilizer is a good choice to improve its efficiency, the high heterogeneity of artificial humic acid limits its structural analysis and utilization efficiency. To solve above problems, this work mainly carried out the fractionation experiments, melt penetration experiments and soil incubation experiments. The results revealed that four fractions with different aromatization degree and molecular weights were obtained by the newly proposed continuous dissolution method, particular in the extraction solution of pH = 3-4, which were extracted with the highest aromatization degree. Furthermore, artificial humic acid urea complex fertilizers prepared at pH = 3-4 significantly improved the release of NH4+-N by 38.32% on days 7 and NO3--N by 10.30% on days 14, compared to urea application. The highly aromatic complex fertilizer with loading of urea-N was able to supply more inorganic N to the soil on days 3-14 (low molecular weight N) and to maintain a higher N content on days 70 (highly aromatized N). This can partially offset the mineralization of readily available organic N, buffering the immobilization of inorganic N from the soil when unstable organic compounds (e.g. conventional urea) were incorporated. A-HAU3-4 addition on days 70, Proteobacteria and Actinobacteriota were found to be the dominant phylum in the soil and the relative abundance of Endophytic bacteria was increased, which was conducive to the improvement of soil N utilization efficiency and soil N sequestration. Therefore, the preparation of artificial humic urea fertilizer with high aromatization degree or low molecular weight were an effective way to improve N utilization efficiency in the initial stages of soil incubation and maintain N fixation in the later stages of soil incubation. The future application of the strategy presented by this study would have an important ecological significance for alleviating agricultural N pollution.
Collapse
Affiliation(s)
- Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Xi Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Kui Cheng
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China.
| |
Collapse
|
32
|
Yang F, Tarakina N, Antonietti M. A Stunt of Sustainability: Artificial Humic Substances Can Generate and Stabilize Single Fe 0 Species on Mineral Surfaces. CHEMSUSCHEM 2023; 16:e202300385. [PMID: 37010131 DOI: 10.1002/cssc.202300385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Iron species are omnipresent in fertile soils and contribute to biological and geological redox processes. Here, we show by advanced electron microscopy techniques that an important, but previously not considered iron species, single atom Fe0 stabilized on clay mineral surfaces, is contained in soils when humic substances are present. As the concentration of neutral iron atoms is highest under frost logged soil conditions, their formation can be attributed to the action of a then reductive microbiome. The Fe0 /Fe2+ couple is with -0.04 V standard potential highly suited for natural environmental remediation and detoxification, and its occurrence can help to explain the sustained auto-detoxification of black soils.
Collapse
Affiliation(s)
- Fan Yang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, P. R. China
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Nadezda Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| |
Collapse
|
33
|
Yang F, Yuan Y, Liu Q, Zhang X, Gai S, Jin Y, Cheng K. Artificial humic acid promotes growth of maize seedling under alkali conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121588. [PMID: 37028787 DOI: 10.1016/j.envpol.2023.121588] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Salinization of cropland is one of the major abiotic stresses affecting global agricultural sustainability, posing a serious threat to agricultural productivity and food security. Application of artificial humic acid (A-HA) as plant biostimulants has been increasingly attracting farmers and researchers. However, its regulation of seed germination and growth under alkali stress has rarely received attention. The purpose of this study was to investigate the response of maize (Zea mays L.) seed germination and seedling growth after the addition of A-HA. The effects of A-HA on seed germination, seedling growth, chlorophyll contents and osmoregulation substance under black and saline soil conditions were studied by soaking maize in solutions with and without various concentrations of A-HA. Artificial humic acid treatments significantly increased the seed germination index and dry weight of seedlings. The effects of maize root in absence and presence of A-HA under alkali stress were also evaluated using transcriptome sequencing. GO and KEGG analyzes were performed on differentially expressed genes, and the reliability of transcriptome data was verified by qPCR analysis. Results showed that A-HA significantly activated phenylpropanoid biosynthesis, oxidative phosphorylation pathways and plant hormone signal transduction. Moreover, Transcription factor analysis revealed that A-HA induced the expression of several transcription factors under alkali stress which had a regulatory effect on the alleviation of alkali damage in the root system. Overall, our results suggested that soaking seeds with A-HA can alleviate alkali accumulation and toxicity in maize, constituting a simple and effective strategy to mitigate saline toxicity. These results will provide new insights for the application of A-HA in management to reduce alkali-caused crop loss.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China.
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Qingyu Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Xi Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
34
|
Cai S, Zhang Y, Hu A, Liu M, Wu H, Wang D, Zhang W. Dissolved organic matter transformation mechanisms and process optimization of wastewater sludge hydrothermal humification treatment for producing plant biostimulants. WATER RESEARCH 2023; 235:119910. [PMID: 37001233 DOI: 10.1016/j.watres.2023.119910] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Understanding the composition, transformation and bioactivity of dissolved organic matter (DOM) at the molecular level is crucial for investigating the hydrothermal humification process of wastewater sludge and producing ecological fertilizers. In this study, DOM transformation pathways under alkali-thermal humification treatment (AHT) were characterized by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) in conjunction with molecular reaction network analysis. The effects of DOM on plant growth were examined using hydroponics and transcriptomic analysis. In the wastewater sludge humification process, AHT produced maximum amounts of protein (3260.56 mg/L) and humic acid (5788.24 mg/L) after 12 h. FT-ICR MS results indicated that protein-like structures were prone to continuous oxidation and were ultimately transformed into aromatic N-containing compounds resembling humic substances. Several reactive fragments (such as -C2H2O2, -C3H4O2, and -C4H6O2) formed by the Maillard reaction (MR) were identified as potential precursors to humic acid (HA). In terms of biological effects, DOM12h showed the highest rice germination and growth activity, whereas that produced by AHT for a longer period (> 12 h) displayed phytotoxicity owing to the accumulation of toxic substances. Plant biostimulants (such as amino acids and HAs) in DOM improved energy metabolism and carbohydrate storage in rice seedlings by upregulating the "starch and sucrose metabolism" pathways. Toxic substances (such as pyrrole, pyridine, and melanoidin) in DOM can activate cell walls formation to inhibit abiotic stimuli in rice seedlings through the biosynthesis of phenylpropanoid pathway. These findings provide a theoretical basis for optimizing sludge hydrothermal humification and recovering high-quality liquid fertilizers.
Collapse
Affiliation(s)
- Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Aibin Hu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Ming Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Hanjun Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, Hubei, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Laboratory of High Concentration Refractory Organic Wastewater Treatment Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
35
|
Ore OT, Adeola AO, Fapohunda O, Adedipe DT, Bayode AA, Adebiyi FM. Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59106-59127. [PMID: 37022547 DOI: 10.1007/s11356-023-26809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Humic substances comprise up to 70% of the total organic matter in soils, between 50 and 80% of the dissolved organic matter in water, and about 25% of dissolved organic matter in groundwater. Elucidation of the complex structure and properties of humic substances requires advanced analytical tools; however, they are of fundamental importance in medicine, agriculture, technology, and the environment, at large. Although they are naturally occurring, significant efforts are now being directed into their extraction owing to their relevance in improving soil properties and other environmental applications. In the present review, the different fractions of humic substances were elucidated, underlying the mechanisms by which they function in soils. Furthermore, the extraction processes of humic substances from various feedstock were illustrated, with the alkali extraction technique being the most widely used. In addition, the functional group and elemental composition of humic substances were discussed. The similarities and/or variations in the properties of humic substances as influenced by the source and origin of feedstock were highlighted. Finally, the environmental impacts of humic substances were discussed while highlighting prospects of humic acid production. This review offers enormous potential in identifying these knowledge gaps while recommending the need for inter- and multidisciplinary studies in making extensive efforts toward the sustainable production of humic substances.
Collapse
Affiliation(s)
- Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria.
| | - Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, 001, Ondo State, Nigeria
| | - Oluwaseun Fapohunda
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Demilade T Adedipe
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ajibola A Bayode
- Department of Chemical Science, Faculty of Natural Sciences, Redeemer's University, Ede, PMB 230, Osun State, Nigeria
| | - Festus M Adebiyi
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
- Management and Toxicology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, 002, Nigeria
| |
Collapse
|
36
|
Cao Z, Deng F, Wang R, Li J, Liu X, Li D. Bioaugmentation on humification during co-composting of corn straw and biogas slurry. BIORESOURCE TECHNOLOGY 2023; 374:128756. [PMID: 36801442 DOI: 10.1016/j.biortech.2023.128756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
In order to increase the nutrients and humic acid (HA) contents of corn straw (CS) derived organic fertilizer and recover resources from biogas slurry (BS) simultaneously, the co-composting of CS and BS was carried out with the addition of biochar and microbial agents including lignocellulose degrading and ammonia assimilating bacteria. The results showed that 1 kg straw could treat 2.5 L BS by recovering nutrients and bio-heat introduced evaporation. The bioaugmentation strengthened both the polyphenol and Maillard humification pathways by promoting the polycondensation of precursors (reducing sugars, polyphenols, and amino acids). HA obtained in the microbial-enhanced group (20.83 g/kg), biochar-enhanced group (19.34 g/kg), and combined-enhanced group (21.66 g/kg) were significantly higher than that in the control group (16.26 g/kg). The bioaugmentation achieved directional humification and reduced the loss of C and N by promoting the CN formation of HA. The humified co-compost had nutrient slow-release effect in agricultural production.
Collapse
Affiliation(s)
- Zhenglei Cao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Deng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ruxian Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Engineering, Northeast Agriculture University, Harbin 150030, China
| | - Jiabao Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Wang C, Cheng T, Zhang D, Pan X. Electrochemical properties of humic acid and its novel applications: A tip of the iceberg. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160755. [PMID: 36513238 DOI: 10.1016/j.scitotenv.2022.160755] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The widely existed humic acid (HA) with abundant redox-active groups has been considered to play an important role in biogeochemistry in sediments and soils. Recent studies reported that HA showed great performance in terms of electron transfer capacity (up to HAEDC = 94 mmol e-/mol C, HAEAC = 42 mmol e-/mol C). Since HA is widely available, inexpensive and environmentally friendly, the electrochemistry of HA has been explored to apply in many fields, such as environmental remediation, detection sensor and energy storage. Whereas, these prospective applications of HA and their electrochemical principles were lack of a comprehensive summary. In this review, the electrochemical properties and the prospective electrochemical applications of HA were summarized. Simultaneously, the existing problems like shortages of traditional electrochemical characterization of HA, and future research directions about HA electrochemistry were prospected. This review provides a deeper understanding of HA electrochemistry, and also inspires ideas for environmental remediation, detection sensor and energy storage by exploring the potential application values of HA.
Collapse
Affiliation(s)
- Caiqin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China
| | - Tingfeng Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China.
| |
Collapse
|
38
|
Yang F, Fu Q, Antonietti M. Anthropogenic, Carbon-Reinforced Soil as a Living Engineered Material. Chem Rev 2023; 123:2420-2435. [PMID: 36633446 PMCID: PMC9999422 DOI: 10.1021/acs.chemrev.2c00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, the simple synthesis of artificial humic substances (A-HS) by alkaline hydrothermal processing of waste biomass was described. This A-HS was shown to support water and mineral binding, to change soil structure, to avoid fertilizer mineralization, and to support plant growth. Many of the observed macroscopic effects could, however, not be directly related to the minute amounts of A-HS which have been added, and an A-HS stimulated microbiome was found to be the key for understanding. In this review, we describe such anthropogenic soil in the language of the modern concept of living engineered materials and identify natural and artificial HS as the enabler to set up the interactive microbial system along the interfaces of the mineral grains. In that, old chemical concepts as surface activity, redox mediation, and pH buffering are the base of the system structure build-up and the complex self-adaptability of biological systems. The resulting chemical/biological hybrid system has the potential to address world problems as soil fertility, nutrition of a growing world population, and climate change.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.,Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Markus Antonietti
- Department of Colloid Chemistry,Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
39
|
Sutradhar S, Fatehi P. Latest development in the fabrication and use of lignin-derived humic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:38. [PMID: 36882875 PMCID: PMC9989592 DOI: 10.1186/s13068-023-02278-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Humic substances (HS) are originated from naturally decaying biomass. The main products of HS are humic acids, fulvic acids, and humins. HS are extracted from natural origins (e.g., coals, lignite, forest, and river sediments). However, the production of HS from these resources is not environmentally friendly, potentially impacting ecological systems. Earlier theories claimed that the HS might be transformed from lignin by enzymatic or aerobic oxidation. On the other hand, lignin is a by-product of pulp and paper production processes and is available commercially. However, it is still under-utilized. To address the challenges of producing environmentally friendly HS and accommodating lignin in valorized processes, the production of lignin-derived HS has attracted attention. Currently, several chemical modification pathways can be followed to convert lignin into HS-like materials, such as alkaline aerobic oxidation, alkaline oxidative digestion, and oxidative ammonolysis of lignin. This review paper discusses the fundamental aspects of lignin transformation to HS comprehensively. The applications of natural HS and lignin-derived HS in various fields, such as soil enrichment, fertilizers, wastewater treatment, water decontamination, and medicines, were comprehensively discussed. Furthermore, the current challenges associated with the production and use of HS from lignin were described.
Collapse
Affiliation(s)
- Shrikanta Sutradhar
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
40
|
Wei J, Tu C, Xia F, Yang L, Chen Q, Chen Y, Deng S, Yuan G, Wang H, Jeyakumar P, Bhatnagar A. Enhanced removal of arsenic and cadmium from contaminated soils using a soluble humic substance coupled with chemical reductant. ENVIRONMENTAL RESEARCH 2023; 220:115120. [PMID: 36563980 DOI: 10.1016/j.envres.2022.115120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Soil washing is an efficient, economical, and green remediation technology for removing several heavy metal (loid)s from contaminated industrial sites. The extraction of green and efficient washing agents from low-cost feedback is crucially important. In this study, a soluble humic substance (HS) extracted from leonardite was first tested to wash soils (red soil, fluvo-aquic soil, and black soil) heavily contaminated with arsenic (As) and cadmium (Cd). A D-optimal mixture design was investigated to optimize the washing parameters. The optimum removal efficiencies of As and Cd by single HS washing were found to be 52.58%-60.20% and 58.52%-86.69%, respectively. Furthermore, a two-step sequential washing with chemical reductant NH2OH•HCl coupled with HS (NH2OH•HCl + HS) was performed to improve the removal efficiency of As and Cd. The two-step sequential washing significantly enhanced the removal of As and Cd to 75.25%-81.53% and 64.53%-97.64%, which makes the residual As and Cd in soil below the risk control standards for construction land. The two-step sequential washing also effectively controlled the mobility and bioavailability of residual As and Cd. However, the activities of soil catalase and urease significantly decreased after the NH2OH•HCl + HS washing. Follow-up measures such as soil neutralization could be applied to relieve and restore the soil enzyme activity. In general, the two-step sequential soil washing with NH2OH•HCl + HS is a fast and efficient method for simultaneously removing high content of As and Cd from contaminated soils.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing, 210008, China
| | - Feiyang Xia
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China
| | - Lu Yang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China
| | - Qiang Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China.
| | - Guodong Yuan
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Paramsothy Jeyakumar
- Environmental Science Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland
| |
Collapse
|
41
|
Tian T, Zhang Y, Zhu F, Ke W, Fan J, Liu Z, Xue S. Biosolids and microorganisms synergistically enhance aggregate stability and organic carbon sequestration of bauxite residue. LAND DEGRADATION & DEVELOPMENT 2023; 34:969-980. [DOI: 10.1002/ldr.4509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/16/2022] [Indexed: 06/18/2023]
Abstract
AbstractWeak aggregate stability and low organic carbon content in bauxite residue restrict ecological rehabilitation. To eliminate these restrictions, a 1‐year column experiment was conducted to investigate the effects of introducing biosolids (BS), biosolids plus microorganisms (BSM) into bauxite residue on the aggregate stability, changes of organic carbon content, and growth of ryegrass (Lolium perenne L.) in bauxite residue. Compared with control group (CK), BS and BSM treatments increased dry‐sieve size distributions of bauxite residue aggregates in 2‐1 and 1‐0.25 mm, mean weight diameter (MWD), particle sizes of aggregates, complex Al oxide, and free Fe oxide in bauxite residue. The average particle sizes in bauxite residue following CK, BS, and BSM treatments after the harvest of plants were obtained to be ~121, ~201, and ~272 nm, respectively. In addition, BS and BSM treatments also increased aggregate‐associated humic substances and carbon content in bauxite residue. The carbon contents in bauxite residue following CK, BS, and BSM treatments after the harvest of plants reached ~18.8%, ~42.9%, and ~67.7%, respectively. The plant height, fresh weight, and dry weight of ryegrass following BSM treatment reached the maximum, which were 27.2 cm, 2.83 g, and 0.28 g, respectively. Results demonstrated that aggregate stability and carbon sequestration of bauxite residue were enhanced following amendment application, and the combined application of biosolids and microorganisms is superior than single BS. This implies that BSM treatment has a potential for plant establishment in bauxite residue disposal areas.
Collapse
Affiliation(s)
- Tao Tian
- School of Metallurgy and Environment Central South University Changsha Hunan Province PR China
- School of Chemistry and Environmental Science Xiangnan University Chenzhou Hunan Province PR China
| | - Yufei Zhang
- School of Metallurgy and Environment Central South University Changsha Hunan Province PR China
| | - Feng Zhu
- School of Metallurgy and Environment Central South University Changsha Hunan Province PR China
| | - Wenshun Ke
- School of Metallurgy and Environment Central South University Changsha Hunan Province PR China
| | - Jiarong Fan
- School of Metallurgy and Environment Central South University Changsha Hunan Province PR China
| | - Zheng Liu
- School of Metallurgy and Environment Central South University Changsha Hunan Province PR China
| | - Shengguo Xue
- School of Metallurgy and Environment Central South University Changsha Hunan Province PR China
| |
Collapse
|
42
|
Humic Acids Preparation, Characterization, and Their Potential Adsorption Capacity for Aflatoxin B 1 in an In Vitro Poultry Digestive Model. Toxins (Basel) 2023; 15:toxins15020083. [PMID: 36828398 PMCID: PMC9962053 DOI: 10.3390/toxins15020083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Vermicompost was used for humic acid (HA) preparation, and the adsorption of aflatoxin B1 (AFB1) was investigated. Two forms of HA were evaluated, natural HA and sodium-free HA (SFHA). As a reference, a non-commercial zeolitic material was employed. The adsorbents were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), energy-dispersive X-ray spectroscopy (EDS), zeta potential (ζ-potential), scanning electron microscopy (SEM), and point of zero charge (pHpzc). The adsorbent capacity of the materials when added to an AFB1-contaminated diet (100 µg AFB1/kg) was evaluated using an in vitro model that simulates the digestive tract of chickens. Characterization results revealed the primary functional groups in HA and SFHA were carboxyl and phenol. Furthermore, adsorbents have a highly negative ζ-potential at the three simulated pH values. Therefore, it appears the main influencing factors for AFB1 adsorption are electrostatic interactions and hydrogen bonding. Moreover, the bioavailability of AFB1 in the intestinal section was dramatically decreased when sorbents were added to the diet (0.2%, w/w). The highest AFB1 adsorption percentages using HA and SFHA were 97.6% and 99.7%, respectively. The zeolitic material had a considerable adsorption (81.5%). From these results, it can be concluded that HA and SFHA from vermicompost could be used as potential adsorbents to remove AFB1 from contaminated feeds.
Collapse
|
43
|
Ortega-Martínez E, Chamy R, Jeison D. Formation of Recalcitrant Compounds during Anaerobic Digestion of Thermally Pre-Treated Sludge: A Critical Macromolecular and Structural Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:558. [PMID: 36612886 PMCID: PMC9819852 DOI: 10.3390/ijerph20010558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Thermal hydrolysis, when used as pre-treatment, enhances the anaerobic digestion of sewage sludge; moreover, due to the high temperature normally applied, undesirable recalcitrant compounds via Maillard reactions may also be formed. However, although the appearance of these recalcitrant compounds is widely reported, more information on the formation, structure, and fate of these compounds is still needed. This study was focused on understanding the amount and whereabouts of such compounds during the anaerobic digestion process with thermal pre-treatment in soluble and total phase and advance in its structural identification by analyzing their infrared (IR) spectra. It was found that, even with the improved methane production and COD degradation, at 165 °C for 30 min, humic-like compounds are formed which could not be degraded at the anaerobic digestion step. These compounds account for 25% of the original sludge. Infrared spectroscopy proved to be a powerful technique, permitting their differentiation from the natural humic-like compounds. This research provides new information about the structure of melanoidins at every stage of the thermal hydrolysis pre-treatment and how they contribute to the dissolved organic nitrogen.
Collapse
Affiliation(s)
- Eduardo Ortega-Martínez
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile
| | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2373223, Chile
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso 2362803, Chile
| |
Collapse
|
44
|
Li Y, Chen X, Zhuo Z, Li X, Sun T, Liu P, Lei T. Co-Thermal Oxidation of Lignite and Rice Straw for Synthetization of Composite Humic Substances: Parametric Optimization via Response Surface Methodology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16875. [PMID: 36554757 PMCID: PMC9778861 DOI: 10.3390/ijerph192416875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In this study, Baoqing lignite (BL) and rice straw (RS), which were the representatives of low-rank coal and biomass, were co-thermally oxidized to produce composite humic substances (HS), including humic acid (HA) and fulvic acid (FA). Taking HS content as the output response, the co-thermally oxidizing conditions were optimized through single factor experiment and response surface methodology (RSM). The structures of HA and FA prepared under optimized conditions were analyzed by SEM, UV, and FTIR. Results showed that HS content was clearly influenced by the material ratio, oxidation time, and oxidation temperature, as well as their interactions. The optimized co-thermal oxidization condition was as follows: BL and RS pretreated with a material ratio of 0.53, oxidation time of 59.50 min, and oxidation temperature of 75.63 °C. Through verification, the experimental value (62.37%) had a small relative error compared to the predicted value (62.27%), which indicated that the developed models were fit and accurate. The obtained HA had a tightly packed block structure; FA had a loosely spherical shape. The molecular weight of FA was 2487 Da and HA was 20,904 Da; both had a smaller molecular weight than that reported in other literature. FA showed strong bands at 1720 cm-1, thus confirming the presence of more oxygen-containing functional groups. The appearance of double peaks at 2900~2980 cm-1 indicated that HA contains more aliphatic chains. The co-thermal oxidation of BL and RS gives a new method for the synthesis of HS, and the optimization of co-thermal oxidation conditions will provide fundamental information for the industrialization of composite HS.
Collapse
Affiliation(s)
- Yanling Li
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, Changzhou 213164, China
| | - Xi Chen
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, Changzhou 213164, China
| | - Zhen Zhuo
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, Changzhou 213164, China
| | - Xueqin Li
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, Changzhou 213164, China
- Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, Shanghai 200237, China
| | - Tanglei Sun
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, Changzhou 213164, China
| | - Peng Liu
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, Changzhou 213164, China
| | - Tingzhou Lei
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mines, Changzhou University, Changzhou 213164, China
| |
Collapse
|
45
|
Li Y, Zong Y, Jin X, Guo K, Hu S, Jin P, Wang X. Mechanism of real-time capture of organics by in-situ-formed microbubble flocs to enhance organics removal in hybrid ozonation-coagulation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Tang C, Cheng K, Liu B, Antonietti M, Yang F. Artificial humic acid facilitates biological carbon sequestration under freezing-thawing conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157841. [PMID: 35940269 DOI: 10.1016/j.scitotenv.2022.157841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Freezing-thawing events contribute to the accumulation of soil organic matter and the formation of high fertility black soil. On this base, we explore the influence of the combination of liquid artificial humic acid (LA-HA) and freezing-thawing events on strengthening carbon sequestration in soils. The measurements of the total organic carbon (TOC) and dissolved organic carbon (DOC) content illustrate that the applications of LA-HA indeed largely enhanced the persistent carbon reservoirs during freezing-thawing cycles, and the highest TOC net increment was found as up to 4000 mg/kg (0.36 wt% C with the control treatment versus 0.79 wt% C with 300 mL/kg LA-HA (3LA-HA) treatment after 10 freezing-thawing cycles). Spectral analysis reveals that LA-HA treatments accelerated the formation of additional humic substances under freezing-thawing events, i.e., the transformation of labile carbon to resistant carbon. Finally, the results of highthroughput sequencing corresponding to cbbL gene demonstrate that 3LA-HA functioned to optimizing the community structure of carbon sequestration bacteria and improving the dominant position of part bacteria with strong carbon fixation ability to reduce soil carbon loss after thawing, e.g., Mycolicibacterium gadium and Starkeya novella.
Collapse
Affiliation(s)
- Chunyu Tang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Liu
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces Department of Colloid Chemistry, 14476 Potsdam, Germany
| | - Fan Yang
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
47
|
Zhi Y, Li X, Lian F, Wang C, White JC, Wang Z, Xing B. Nanoscale Iron trioxide catalyzes the synthesis of auxins analogs in artificial humic acids to enhance rice growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157536. [PMID: 35878859 DOI: 10.1016/j.scitotenv.2022.157536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Humic acids (HAs), kinds of valuable active carbon, are critical for improving soil fertility. However, the majority of soils are poor in HAs, arousing the development of artificial HAs. In this study, two iron-based catalysts (nanoscale iron trioxide (nFe2O3) and FeCl3) were used to catalyze the hydrothermal humification of waste corn straw. With the help of ultra-performance liquid chromatography-mass spectrometry, we proposed the specific humification process with the action of catalysis for the first time, which is of great significance for the design, synthesis and application of artificial HAs in the future. Moreover, the growth-promoting effect and mechanisms of the artificial HAs were determined by rice planting in a greenhouse. Results showed that compared to no catalyst treatment, the FeCl3 and nFe2O3 catalysts increased the decomposition rate of macromolecular biomass by 39 and 14 %, respectively, increasing the yield of artificial HAs. During the humification process, nFe2O3 catalysts benefit the formation of many aromatic structure monomers including furfural and hydroxycaproic acids. These monomers were condensed into growth hormone analogs such as vanillin and methionine sulfoxide and were further built in the artificial HAs. Therefore, the artificial HAs from nFe2O3 catalytic treatment promoted the rice growth the best, showing that the resultant germination rate, root activity, and photosynthetic rate of rice increased by 50, 167, and 72 %, respectively; moreover, the uptake and accumulation of water and nutrient by roots as well as the contents of soluble protein and sugar of rice are also significantly increased. This could be ascribed to the upregulated expression of functional genes including OsRHL1, OsZPT5-07, OsSHR2 and OsDCL. Considering both the economic and environmental benefits, we suggested that the artificial HAs, especially that produced with the action of nFe2O3 catalysis, are promising in alleviating environmental stress from waste biomass and sustainably improving agricultural production.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
48
|
Cui H, Wen X, Wu Z, Zhao Y, Lu Q, Wei Z. Insight into complexation of Cd(II) and Cu(II) to fulvic acid based on feature recognition of PARAFAC combined with 2DCOS. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129758. [PMID: 35969950 DOI: 10.1016/j.jhazmat.2022.129758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fulvic acid which could govern the environmental geochemistry behavior of heavy metals is considered as the eco-friendly substances for controlling heavy metal pollutants in environment. Knowledge on the individual fulvic acid ligand is crucial to characterize the effect of fulvic acid on the migration and toxicity of metal pollutants. Herein, fulvic acid substances were analyzed by fluorescence quenching associated with parallel factor analysis (PARAFAC). Three components were identified based on PARAFAC. Furthermore, two-dimensional correlation spectroscopy (2DCOS) associated with complexation model were used to elucidate the Cd(II)- and Cu(II)-binding characteristics of the individual fulvic acid ligand. The Cd(II)- and Cu(II)-binding capability and speed of different fulvic acid ligands were revealed and theoretical guidance and technical support were provided for the practical application. The Cd(II) contaminated soil could be amended with high fulvic acid ligands A1 and Y2 containing composting products and the Cu(II) contaminated soil could be amended with high fulvic acid ligands Y1, T1 and A1 containing composting products to control the pollution and improve the soil condition. Based on these excellent results, the different fulvic acid ligands-contaminants-binding properties was characterized for the theoretical supporting of environmental pollution control.
Collapse
Affiliation(s)
- Hongyang Cui
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Science, Northeast Agricultural University, Heilongjiang 150030, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xin Wen
- College of Life Science, Northeast Agricultural University, Heilongjiang 150030, China
| | - Zhanhai Wu
- College of Life Science, Northeast Agricultural University, Heilongjiang 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Heilongjiang 150030, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Science, Northeast Agricultural University, Heilongjiang 150030, China.
| |
Collapse
|
49
|
Abstract
Globally, phenolic contaminants have posed a considerable threat to agro-ecosystems. Exolaccase-boosted humification may be an admirable strategy for phenolic detoxification by creating multifunctional humic-like products (H-LPs). Nonetheless, the potential applicability of the formed H-LPs in agricultural production is still overlooked. This review describes immobilized exolaccase-enabled humification in eliminating phenolic pollutants and producing artificial H-LPs. The similarities and differences between artificial H-LPs and natural humic substances (HSs) in chemical properties are compared. In particular, the agronomic effects of these reproducible artificial H-LPs are highlighted. On the basis of the above summary, the granulation process is employed to prepare granular humic-like organic fertilizers, which can be applied to field crops by mechanical side-deep fertilization. Finally, the challenges and perspectives of exolaccase-boosted humification for practical applications are also discussed. This review is a first step toward a more profound understanding of phenolic detoxification, soil improvement, and agricultural production by exolaccase-boosted humification. Exolaccase-initiated humification is conductive to phenolic detoxification Multiple humic-like products are created in exolaccase-boosted humification Similarities and differences between artificial and natural humus are disclosed Humic-like products can be used to sustain soil health and increase crop yield
Collapse
|
50
|
Wang L, Chi Y, Du K, Zhou Z, Wang F, Huang Q. Hydrothermal treatment of food waste for bio-fertilizer production: Formation and regulation of humus substances in hydrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155900. [PMID: 35588799 DOI: 10.1016/j.scitotenv.2022.155900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Food waste (FW) poses serious challenges to incineration and composting. Hydrothermal treatment (HTT) is a promising method to produce carbon-rich materials from biomass, including humus substances. In this study, FW containing cellulose, starches, and proteins was treated by HTT to study the formation and regulation of three kinds of humus (i.e., humin, humic acids [HAs], and fulvic acids [FAs]). Ultimate analysis and proximate analyses were conducted to explore the material composition, which was very similar to natural humus. Three kinds of humus were quantified. Optimal temperature (200 °C) and residence time (30 min) for production of HAs were determined based on HAs yield (14.60%). In addition, formation and regulation of humin, HAs and FAs was discussed. The amino acids, peptides, monosaccharides, and HMF obtained by hydrolysis of FW produced important precursors of humus. Moreover, the transfer of nutrient elements was revealed. Nearly 90% of K was dissolved in water. Recovery of N (60%) was relatively stable in hydrochar. Up to 67.61% of P deposited in hydrochar with 12 h.
Collapse
Affiliation(s)
- Lixian Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Yong Chi
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Kun Du
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Zhaozhi Zhou
- Zhejiang Development & Planning Institute, Hangzhou, China.
| | - Fei Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|