1
|
Chen LY, Hsu CC, Lin CL, Lun Lu M, Chiang HL, Chang MB. Mercury flows in a cement plant adopting circular economy policies. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114808. [PMID: 40252256 DOI: 10.1016/j.wasman.2025.114808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/10/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
The principle of recycling materials has been adopted as part of the cement industry's contribution to the transition from linear to circular economy. This study examines mercury flow in a cement plant and investigates the impact of circular economy policies on mercury emissions. The raw material analysis indicate that steel industry sludge is the main mercury source (40.9 %), followed by limestone (23.0 %) and silica sand (13.4 %). Recycled materials, with a mercury content of 0.267 mg/kg, contribute more mercury than raw materials (0.065 mg/kg). The intermediates in the production process enrich mercury, with raw mill fly ash containing 19.7 mg/kg. Mercury output is primarily via flue gas (98.8 %), with a mass flow rate of 16.34 g/hr, while clinker accounts for only 1.1 %. The emission factor from the raw mill stack is 165 mg Hg/ton clinker, higher than those reported in previous studies. The mass balance is 130 %, within the acceptable range (70-130 %). While adopting circular economy policy is beneficial for waste management, it increases overall mercury emission from cement plants, necessitating improved recycled material quality and air pollution control measures.
Collapse
Affiliation(s)
- Liang Yu Chen
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan
| | - Chia Chi Hsu
- Yilan County Environmental Protection Bureau, Yilan, Taiwan
| | - Chin Lung Lin
- Yilan County Environmental Protection Bureau, Yilan, Taiwan
| | - Ming Lun Lu
- Wisdom Environmental Technical Service and Consultant Company, Taipei, Taiwan
| | - Hung Lin Chiang
- Wisdom Environmental Technical Service and Consultant Company, Taipei, Taiwan
| | - Moo Been Chang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Luo Y, Zhou X, Jiang S, Ding M, Zhao H, Xue Y, Liu X, Ji M. Historical shifts in mercury deposition in northeastern China: From vegetation to human activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126290. [PMID: 40258510 DOI: 10.1016/j.envpol.2025.126290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 04/23/2025]
Abstract
Mercury (Hg) pollution is a pervasive environmental issue that greatly threatens ecosystem and human health. However, the primary natural factors and human-induced phase shifts affecting Hg deposition in typical areas remain unclear. With its long history of industrialization, northeastern China is an important area for Hg pollution research. Here, we constructed an accurate chronological framework using varve counting combined with Hg concentration measurements to reconstruct the high-resolution Hg depositional history of Sihailongwan Maar Lake (SHML) in northeastern China over the past 1400 years. High (low) Hg flux in the SHML sediments was closely linked to an increase (decrease) in broadleaved tree coverage. During the Medieval Climate Anomaly, warming promoted the expansion of broadleaved trees, increasing Hg flux. Conversely, colder climates hindered broadleaved tree growth during the Little Ice Age, reducing Hg flux. However, Hg flux has significantly increased since the Current Warm Period (∼1850 CE) and was strongly correlated with regional population growth, causing a gradual increase in Hg deposition with increasing human activities and decreased natural input. Four-phase regime shifts in Hg flux influenced by anthropogenic activities were identified using the Sequential T-test Analysis of Regime-Shifts algorithm, highlighting the influence of government policies, economic development, and social changes on Hg deposition. This study elucidated the role of vegetation in northeastern China before large-scale human activities and the complex effects of human activities on Hg deposition.
Collapse
Affiliation(s)
- Yong Luo
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Zhou
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Shiwei Jiang
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Min Ding
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hongfei Zhao
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yulu Xue
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Xuanqiao Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Ming Ji
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, Yunnan, 653100, China
| |
Collapse
|
3
|
Adewuyi A. Biogeochemical dynamics and sustainable remediation of mercury in West African water systems. CHEMOSPHERE 2025; 379:144436. [PMID: 40288215 DOI: 10.1016/j.chemosphere.2025.144436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/31/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Pollution of environmental drinking water sources by mercury (Hg) in West Africa is challenging, with the need to develop strategies to understand its biogeochemical transformation and mitigation to provide clean drinking water void of Hg. This review evaluated the biogeochemical cycle of Hg in West African ecology and the mitigation of Hg contamination of drinking water sources in the West African region. The study revealed Hg-bearing mineral deposits and artisanal and small-scale gold mining as major sources of Hg in West African environment. West African countries must develop sustainable methods for removing Hg from water. However, bioremediation (including microbial and phytoremediation) and adsorption are promising methods for purifying Hg-contaminated environmental drinking water sources in West Africa. Microorganisms such as Arbuscular mycorrhizal, E. coli, Fusobacterium sp, Trichoderma viride, Gliocladium arborescens, Bascillus sp. and Brevibacterium cysticus have demonstrated the capacity to remediate Hg from the water system. Furthermore, plant species like Paspalum conjugatum, Cyperus kyllingia, and Lindernia crustacea revealed exciting capacity as phytoremediators of Hg. Activated carbon, clay and mineral clays are abundant resources in West Africa that can function as adsorbents for removing Hg during water treatment. However, future studies should focus on optimizing the field-scale application of bioremediation and adsorption methods as mitigation strategies and their long-term benefits in West Africa. It is essential that the government in West Africa fund initiatives and programmes that support the accomplishment of the Minamata Convention agreement, which favours the attainment of the sustainable development goal (SDG-6).
Collapse
Affiliation(s)
- Adewale Adewuyi
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria; Institute for Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Twining CW, Blanco A, Dutton C, Kainz MJ, Harvey E, Kowarik C, Kraus JM, Martin-Creuzburg D, Parmar TP, Razavi NR, Richoux N, Saboret G, Sarran C, Schmidt TS, Shipley JR, Subalusky AL. Integrating the Bright and Dark Sides of Aquatic Resource Subsidies-A Synthesis. Ecol Lett 2025; 28:e70109. [PMID: 40197707 DOI: 10.1111/ele.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Aquatic and terrestrial ecosystems are linked through the reciprocal exchange of materials and organisms. Aquatic-to-terrestrial subsidies are relatively small in most terrestrial ecosystems, but they can provide high contents of limiting resources that increase consumer fitness and ecosystem production. However, they also may carry significant contaminant loads, particularly in anthropogenically impacted watersheds. Global change processes, including land use change, climate change and biodiversity declines, are altering the quantity and quality of aquatic subsidies, potentially shifting the balance of costs and benefits of aquatic subsidies for terrestrial consumers. Many global change processes interact and impact both the bright and dark sides of aquatic subsidies simultaneously, highlighting the need for future integrative research that bridges ecosystem as well as disciplinary boundaries. We identify key research priorities, including increased quantification of the spatiotemporal variability in aquatic subsidies across a range of ecosystems, greater understanding of the landscape-scale extent of aquatic subsidy impacts and deeper exploration of the relative costs and benefits of aquatic subsidies for consumers.
Collapse
Affiliation(s)
- Cornelia W Twining
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Andreu Blanco
- Centro de Investigación Mariña - Future Oceans Lab, Universidade de Vigo, Vigo, Spain
| | | | - Martin J Kainz
- Research Lab for Aquatic Ecosystem Research and Health, Danube University Krems, Krems an der Donau, Austria
- WasserCluster Lunz-Biological Station, Lunz am See, Austria
| | - Eric Harvey
- Centre de Recherche Sur les Interactions Bassins Versants-Écosystèmes Aquatiques, Université du Québec à Trois-Rivières, Trois-Rivieres, Canada
| | - Carmen Kowarik
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Johanna M Kraus
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, Missouri, USA
| | - Dominik Martin-Creuzburg
- Department of Aquatic Ecology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - Tarn Preet Parmar
- Department of Aquatic Ecology, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
| | - N Roxanna Razavi
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, New York City, New York, USA
| | - Nicole Richoux
- Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa
| | - Gregoire Saboret
- Department of Surface Waters, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Charlie Sarran
- Centre de Recherche Sur les Interactions Bassins Versants-Écosystèmes Aquatiques, Université du Québec à Trois-Rivières, Trois-Rivieres, Canada
| | - Travis S Schmidt
- U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, Montana, USA
| | - J Ryan Shipley
- WSL Swiss Federal Institute of Forest, Snow, and Landscape Research, Birmensdorf, Switzerland
| | | |
Collapse
|
5
|
Jermilova U, Kirk JL, Dastoor A, Schaefer K, Hintelmann HH. Evaluating sources of mercury in Canada's Mackenzie River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178458. [PMID: 39824099 DOI: 10.1016/j.scitotenv.2025.178458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Arctic rivers may be the largest net sources of mercury (Hg) to the Arctic Ocean, yet riverine sources of Hg remain poorly characterized compared to atmospheric processes. This article reviews the current state of knowledge on Hg inputs to the Mackenzie River and Valley in Northern Canada from six point and non-point sources. Point sources include the locations of mines, fossil fuel extraction facilities, and retrogressive permafrost thaw slumps. Non-point sources are assessed through models of Hg release from anthropogenic and wildfire-derived atmospheric Hg deposition (GEM-MACH-Hg), permafrost thaw (SiBCASA), and rainfall-induced soil erosion (RUSLE). Ongoing anthropogenic activity is likely a minor contributor to Hg levels in the Mackenzie Valley as production from the fossil fuel and mining industries have steadily declined over the past two decades. Conversely, Hg inputs from atmospheric deposition, permafrost thaw, and permafrost thaw slumps have increased due to climate change and the re-emission of legacy Hg. The widespread influence of atmospheric Hg deposition makes it the dominant source of Hg to both aquatic and terrestrial systems in the Mackenzie Valley, although soil erosion inputs, while higher, are restricted to regions of steep terrain. Climate-driven increases in terrestrial Hg release, particularly from permafrost degradation and erosion, are emerging as key localized drivers of Hg inputs in the Mackenzie Valley.
Collapse
Affiliation(s)
| | - Jane L Kirk
- Environment and Climate Change Canada (ECCC), Canada
| | - Ashu Dastoor
- Environment and Climate Change Canada (ECCC), Canada
| | - Kevin Schaefer
- National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | | |
Collapse
|
6
|
Solera K, de Freitas F, Lopes VJS, Machado GA, de Andrade RLT, Battirola LD. Honey production in the south by the Legal Amazon: a study on the potential contamination of mercury in apiaries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66422-66434. [PMID: 39627500 DOI: 10.1007/s11356-024-35574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/09/2024] [Indexed: 12/21/2024]
Abstract
Artisanal and small-scale gold mining (MAPEOs) are considered to be one of the main sources of mercury release into the environment. Considering the gold mining activities, this study evaluated the Hg concentration in 27 apiaries (Apis spp.) in the South of the Legal Amazon, Mato Grosso State, Brazil. A total of 243 samples distributed in 81 samples of bees, 81 beeswax, and 81 of honeys, collected between the months of July and November 2022, were analyzed. One bee sample showed Hg concentration above the limit of quantification (68.8 ng g-1), 27 samples were between the limit of detection and limit of quantification (15 samples of bees, 8 of wax and 4 of honey). In all study areas, trace levels of Hg concentration were detected, 12 near MAPEOs areas and 16 near crop areas. It recorded that the honeys analyzed in this study in Mato Grosso are not contaminated by Hg, not offering any risk to consumers of the product. It is noteworthy that the use of bioindicator tools such as bees, beeswax, and honey is effective in relation to Hg monitoring in apiaries. It can also infer that the implementation of beekeeping in areas that will go through experience the process of environmental recovery, after the mining exploitation, is feasible, in line with permanent biomonitoring of the region.
Collapse
Affiliation(s)
- Kleber Solera
- Institute of Natural, Human and Social Sciences, Postgraduate Program in Biotechnology and Biodiversity-Pró-Centro-Oeste, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1.200, Sinop, Mato Grosso, 78557-267, Brazil.
| | - Franciele de Freitas
- Institute of Natural, Human and Social Sciences, Postgraduate Program in Biotechnology and Biodiversity-Pró-Centro-Oeste, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1.200, Sinop, Mato Grosso, 78557-267, Brazil
| | - Vinicius José Santos Lopes
- Institute of Natural, Human and Social Sciences, Postgraduate Program in Biotechnology and Biodiversity-Pró-Centro-Oeste, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1.200, Sinop, Mato Grosso, 78557-267, Brazil
- University Campus of Sinop, Institute of Agricultural and Environmental Sciences, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1.200, Sinop, Mato Grosso, 78557-267, Brazil
| | - Gleyce Alves Machado
- Institute of Biotechnology, Federal University of Catalão, Câmpus I: Av. Dr. Lamartine Pinto de Avelar, 1.120, Catalão, Goiás, 75704-020, Brazil
| | - Ricardo Lopes Tortorela de Andrade
- Institute of Natural, Human and Social Sciences, Postgraduate Program in Biotechnology and Biodiversity-Pró-Centro-Oeste, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1.200, Sinop, Mato Grosso, 78557-267, Brazil
| | - Leandro Dênis Battirola
- Institute of Natural, Human and Social Sciences, Postgraduate Program in Biotechnology and Biodiversity-Pró-Centro-Oeste, Federal University of Mato Grosso, Av. Alexandre Ferronato, 1.200, Sinop, Mato Grosso, 78557-267, Brazil
- Department of Forest Engineering, Faculty of Forest Engineering, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa, 2.367, Cuiabá, Mato Grosso, 78060-900, Brazil
| |
Collapse
|
7
|
Kang H, Liu X, Zhang X, Guo J, Huang J, Ying X, Wang Y, Zhang Q, Kang S. Important accumulated mercury pool in a remote alpine forest and dynamic accumulation revealed by tree rings in China's Qilian Mountains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175441. [PMID: 39151616 DOI: 10.1016/j.scitotenv.2024.175441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Quantification mercury (Hg) pools in forests is crucial for understanding the Hg assimilation, flux and even biogeochemical cycle in forest ecosystems. While several investigations focused on Hg pools among broad-leaved, coniferous and mixed forests, there was still absent information on alpine forest. We sampled soil, moss and various tissues of the dominant Qinghai spruce (Picea crassifolia Kom.) to investigate Hg concentrations and pools, and assess Hg accumulation dynamics in the Qilian Mountains, northwestern China. The mean Hg concentration increased in the following order: trunk wood (1.8 ± 0.7 ng g-1) < branch (4.6 ± 0.8 ng g-1) < root (12.2 ± 2.9 ng g-1) < needle (19.3 ± 5.6 ng g-1) < bark (28.7 ± 9.0 ng g-1) < soil (34.1 ± 7.7 ng g-1) < litterfall (42.9 ± 2.9 ng g-1) < moss (62.5 ± 5.0 ng g-1). The soil contained Hg pools two orders of magnitude higher than vegetation and accounted for 92.2 % of the total Hg pool in the alpine forest ecosystem. Moss, despite representing only 2.7 % of total vegetation biomass, contained a disproportionate 16.7 % of the Hg pool. Although species-specific, aboveground spruce tissues exhibited higher Hg pools in alpine forests compared to other forests in China and America. The dynamic accumulation indicated that increasing atmospheric Hg concentration and enhancing tree productivity contributed to rising Hg assimilation in remote alpine forests, particularly after the 1960s. Our results highlight the relatively high levels of Hg pools in aboveground tree tissues of alpine forest and reveal a significant increase in Hg accumulation. We recommend that when assessing Hg dynamics in forest ecosystems, it is crucial to consider both the variability in atmospheric Hg exposure levels and the forest productivity.
Collapse
Affiliation(s)
- Huhu Kang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaohong Liu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Xinyu Zhang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jie Huang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiufeng Ying
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yabo Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Filimonenko E, Vatutin G, Zherebyatyeva N, Uporova M, Milyaev I, Chausоva E, Gershelis E, Alharbi SA, Samokhina N, Matus F, Soromotin A, Kuzyakov Y. Wildfire effects on mercury fate in soils of North-Western Siberia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175572. [PMID: 39153628 DOI: 10.1016/j.scitotenv.2024.175572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Arctic soils store 49 Gg mercury (Hg) - an extremely toxic heavy metal, whereas soil Hg can be released to the atmosphere by wildfires. For the first time we investigated the effects of wildfires on the fate of soil Hg in North-Western (NW) Siberia based on GIS maps of areas burned during the last 38 years and a field paired comparison of unburned and burned areas in tundra (mosses, lichens, some grasses, and shrubs) and forest-tundra (multi-layered canopy of larch trees, shrubs, mosses, and lichens). These field surveys were deepened by soil controlled burning to assess the Hg losses from organic horizon and mineral soil. The soil Hg stocks in the organic horizon and in the top 10 cm of the mineral soil were 3.3 ± 0.6 and 16 ± 3 mg Hg m-2 for unburned tundra and forest-tundra, respectively. After the burning by wildfires, the soil Hg stocks decreased to 2.4 ± 0.1 and 6.6 ± 0.2 mg Hg m-2 for tundra and forest-tundra, respectively. By the averages annual burned areas in NW Siberia 527 km2, wildfires in tundra and forest-tundra released 0.19 and 2.9 Mg soil Hg per year, respectively, corresponding to 28 % and 59 % of the initial soil Hg stocks. These direct effects of wildfires on Hg volatilization are raised by indirect post-pyrogenic consequences on Hg fate triggered by the vegetation succession and adsorption of atmospheric Hg on the surface of charred biomass. Charred lichens and trees accumulated 4-16 times more Hg compared to the living biomass. Blackened burned vegetation and soil reduced surface albedo and slowly increased soil temperatures in Arctic after wildfires. This created favorable conditions for seeding grasses and shrubs after wildfire and transformed burned high-latitude ecosystems into greener areas, increasing their capacity to trap atmospheric Hg by vegetation, which partly compensate the burning losses of soil Hg.
Collapse
Affiliation(s)
- Ekaterina Filimonenko
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia; Sirius University of Science and Technology, Sirius Federal Area, Olympiysky pr., 1, Russia.
| | - Georgy Vatutin
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia
| | | | - Maria Uporova
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia
| | - Ivan Milyaev
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia
| | | | - Elena Gershelis
- Sirius University of Science and Technology, Sirius Federal Area, Olympiysky pr., 1, Russia
| | - Sulaiman Almwarai Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Natalia Samokhina
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia; Sirius University of Science and Technology, Sirius Federal Area, Olympiysky pr., 1, Russia
| | - Francisco Matus
- Laboratory of Conservation and Dynamic of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environmental Research, Universidad de la Frontera, Temuco, Chile
| | - Andrey Soromotin
- University of Tyumen, Volodarskogo str., 6, Tyumen 625003, Russia
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gottingen, 37077, Gottingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia.
| |
Collapse
|
9
|
Landis JD, Taylor VF, Hintelmann H, Hrenchuk LE. Predicting Behavior and Fate of Atmospheric Mercury in Soils: Age-Dating METAALICUS Hg Isotope Spikes with Fallout Radionuclide Chronometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20009-20018. [PMID: 39487789 DOI: 10.1021/acs.est.4c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Soils accumulate anthropogenic mercury (Hg) from atmospheric deposition to terrestrial ecosystems. However, possible reemission of gaseous elemental mercury (GEM) back to the atmosphere as well as downward migration of Hg with soil leachate influence soil sequestration of Hg in ways not sufficiently understood in global biogeochemical models. Here, we apply fallout radionuclide (FRN) chronometry to understand soil Hg dynamics by revisiting the METAALICUS experiments 20 years after enriched isotope tracers (198Hg, 200Hg, 201Hg, and 202Hg) were applied to two boreal watersheds in northwestern Ontario, Canada. Hg spikes formed well-defined peaks in organic horizons of both watersheds at depths of 3-6 cm and were accurately dated to the year of spike application in 6 of 7 cases (error = -0.8 ± 1.2 years). A seventh site was depleted by ca. 90% of both the 200Hg spike and background Hg, and the spike was dated 16 years older than its application. Robust FRN age models and mass balances demonstrate that loss of Hg is attributable to its specific physicochemical behavior at this site, but more work is required to attribute this to reemission or leaching. This study demonstrates the potential of FRN chronometry to provide insights into Hg accumulation, mobilization, and fate in forest soils.
Collapse
Affiliation(s)
- Joshua D Landis
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Vivien F Taylor
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Holger Hintelmann
- Trent Water Quality Centre, University of Trent, Peterborough, Ontario K9J 7B8, Canada
| | - Lee E Hrenchuk
- IISD Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
| |
Collapse
|
10
|
Eklöf K, von Brömssen C, Huser B, Åkerblom S, Augustaitis A, Veiteberg Braaten HF, de Wit HA, Dirnböck T, Elustondo D, Grandin U, Holubová A, Kleemola S, Krám P, Lundin L, Löfgren S, Markensten H, Moldan F, Pihl Karlsson G, Rönnback P, Valinia S, Vuorenmaa J. Trends in mercury, lead and cadmium concentrations in 27 European streams and rivers: 2000-2020. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124761. [PMID: 39154885 DOI: 10.1016/j.envpol.2024.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Temporal trends for concentrations of mercury (Hg), lead (Pb) and cadmium (Cd) were evaluated from year 2000-2020 in 20 (Hg), 23 (Pb) and 11 (Cd) watercourses in remote forest catchments in Europe. Decreasing trends were observed in 15% (Hg), 39% (Pb) and 45% (Cd) of the watercourses during the period of evaluation. Decreasing trends were mainly observed between 2000 and 2005 for Hg and between 2000 and 2015 for Pb and Cd. For the last five years of the studied time period (2015-2020), more watercourses showed significant increasing, rather than decreasing Hg, Pb and Cd trends. This was interpreted as a legacy effect of metals still retained in catchment soils. The overall negative trends during the earlier part of the study period were likely driven by declining deposition of metals over Europe, especially for Pb and Cd. Other changes related to metal transport and chemistry may have contributed to the observed trends as well, including recovery from acidification and the ongoing browning of surface waters at northern latitudes. Here we found that organic carbon could explain the seasonal variation in Hg and Pb, but was not related the interannual trends. This study highlights the need for long-term monitoring and robust statistical methods that can detect multidirectional, long-term change in water chemistry.
Collapse
Affiliation(s)
- Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden.
| | - Claudia von Brömssen
- Department of Energy and Technology, Applied Statistics and Mathematics, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Brian Huser
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Staffan Åkerblom
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Algirdas Augustaitis
- Faculty of Forest Sciences and Ecology, Agriculture Academy, Vytautas Magnus University, LT-53362, Kaunas dstr., Lithuania
| | | | - Heleen A de Wit
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Thomas Dirnböck
- Ecosystem Research and Environmental Information Management, Environment Agency Austria, Spittelauer Lände5, AT-1090, Vienna, Austria
| | - David Elustondo
- University of Navarra, BIOMA Institute for Biodiversity and the Environment, Irunlarrea 1, 31008, Pamplona, Spain
| | - Ulf Grandin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Adéla Holubová
- Air Quality Department, Czech Hydrometeorological Institute, Košetice Observatory, 394 24, Czech Republic
| | - Sirpa Kleemola
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Pavel Krám
- Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Klárov 3, CZ-11821, Prague, Czech Republic
| | - Lars Lundin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Stefan Löfgren
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Hampus Markensten
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Filip Moldan
- IVL Swedish Environmental Research Institute, P.O. Box 53021, SE-40014, Gothenburg, Sweden
| | - Gunilla Pihl Karlsson
- IVL Swedish Environmental Research Institute, P.O. Box 53021, SE-40014, Gothenburg, Sweden
| | - Pernilla Rönnback
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Salar Valinia
- Ensucon AB, Sankt Eriksgatan 63B, 11234, Stockholm, Sweden
| | - Jussi Vuorenmaa
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| |
Collapse
|
11
|
Vargas A, López JE, Jaimes A, Saldarriaga JF. Phytoremediation of Hg and chlorpyrifos contaminated soils using Phaseolus vulgaris L. with biochar, mycorrhizae, and compost amendments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:478. [PMID: 39412703 DOI: 10.1007/s10653-024-02244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024]
Abstract
Anthropogenic activities, encompassing vast agricultural and industrial operations around the world, exert substantial pressure on the environment, culminating in profound ecological impacts. These activities exacerbate soil contamination problems with pollutants such as mercury (Hg) and chlorpyrifos (CPF) that are notable for their widespread presence and detrimental effects. The objective of this study is to evaluate the phytoremediation potential of Phaseolus vulgaris L., augmented with various combinations of biochar, mycorrhizal, and compost amendments, as a sustainable alternative for the remediation of soils contaminated with Hg and CPF. For this purpose, soil from a mining area with mercury contamination has been taken, to which CPF has been added in different concentrations. Then, previously germinated Phaseolus vulgaris L. seedlings with an average height of 10 cm were planted. Electrical conductivity, pH, organic matter, CPF, and Hg, as well as seedling growth parameters, have been evaluated to determine the processes of absorption of soil contaminants into the plant. A combination of biochar with mycorrhiza has been found to be an optimal choice for CPF and Hg remediation. However, all amendments have proven to be efficient in the remediation processes of the tested contaminants.
Collapse
Affiliation(s)
- Alejandra Vargas
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Julián E López
- Facultad de Arquitectura e Ingeniería, Institución Universitaria Colegio Mayor de Antioquia, Carrera 78 #65-46, 050034, Medellín, Colombia
| | - Adriana Jaimes
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia
| | - Juan F Saldarriaga
- Department of Civil and Environmental Engineering, Universidad de los Andes, Carrera 1Este #19A-40, 111711, Bogotá, Colombia.
| |
Collapse
|
12
|
Ma W. Assessing nonpoint source pollution risk in watersheds using a water-functioning zone approach. ENVIRONMENTAL RESEARCH 2024; 259:119547. [PMID: 38964579 DOI: 10.1016/j.envres.2024.119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
A thorough understanding of the geographical and spatial attributes of nonpoint source pollution risk in watersheds is crucial for conducting nonpoint source pollutant studies and implementing effective scientific administration strategies. The inclusion of a water-related functioning zone was considered during the nonpoint source's pollution risks assessment procedure. Nevertheless, there has not been a thorough investigation into the potential risk of nonpoint sources of pollution to adequately safeguard the quality of water in watersheds having varying capacities to handle contaminants in the water. This research presents an innovative approach for assessing the risk of nonpoint sources contamination. This allows for a quantitative evaluation of the effect of discharges of pollution from a sub-catchment on the quality of water bodies nearby. The nonpoint source losses of nutrients process, as modeled by the Water and Soil Assessment Tool, had been used to assess the hazard of nonpoint source contamination in Le 'a River Watersheds. This assessment happened on both yearly and monthly scales. The findings indicated that the risk of nonpoint source contamination exhibits both seasonal and regional variations and is significantly impacted by the ability of the fluid ecosystem. Elevated nonpoint sources pollutants do not always equate to elevated pollutant dangers. On the other hand, a small amount of nutrients in the nonpoint sources does not indicate an insignificant degree of susceptibility to region risk. Furthermore, by utilizing a risk assessment method that considers the capacity of the water's environment, it is possible to identify variations in risk levels that may be overlooked when solely considering nonpoint sources contaminant losses, and fluid functioning zone. This approach allows for precise regulation of nonpoint sources of pollution administration.
Collapse
Affiliation(s)
- Wanzheng Ma
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
13
|
Aslam MW, Meng B, Ali W, Abrar MM, Abdelhafiz MA, Feng X. Low mercury risks in paddy soils across the Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173879. [PMID: 38857798 DOI: 10.1016/j.scitotenv.2024.173879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Mercury (Hg) is a globally distributed heavy metal. Here, we study Hg concentration and isotopic composition to understand the status of Hg pollution and its sources in Pakistan's paddy soil. The collected paddy soils (n = 500) across the country have an average THg concentration of 22.30 ± 21.74 ng/g. This low mean concentration suggests Hg pollution in Pakistan was not as severe as previously thought. Meanwhile, samples collected near brick kilns and industrial areas were significantly higher in THg than others, suggesting the influence of Hg emitted from point sources in certain areas. Soil physicochemical properties showed typical characteristic of mineral soils due to the study area's arid to semi-arid climate. Hg stable isotopes analysis, depicted mean Δ199Hg of -0.05 ± 0.12‰ and mean δ202Hg -0.45 ± 0.35‰, respectively, for contaminated sites, depicting Hg was primarily sourced from coal combustion by local anthropogenic sources. While uncontaminated sites show mean Δ199Hg of 0.15 ± 0.08‰, mean Δ200Hg of 0.06 ± 0.07‰ and mean δ202Hg of -0.32 ± 0.28‰, implying long-range transboundry Hg transport through wet Hg(II) deposition as a dominant Hg source. This study fills a significant knowledge gap regarding the Hg pollution status in Pakistan and suggests that the Hg risk in Pakistan paddies is generally low.
Collapse
Affiliation(s)
- Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Muhammad Mohsin Abrar
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, 510225 Guangzhou, China; Engineering and Technology Research Center for Agricultural Land Pollution and Integrated Prevention, Guangzhou, China
| | - Mahmoud A Abdelhafiz
- Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
14
|
Peng H, Zhang X, Bishop K, Marshall J, Nilsson MB, Li C, Björn E, Zhu W. Tree Rings Mercury Controlled by Atmospheric Gaseous Elemental Mercury and Tree Physiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39248494 PMCID: PMC11428168 DOI: 10.1021/acs.est.4c05662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Tree rings are an emerging atmospheric mercury (Hg) archive. Questions have arisen, though, regarding their mechanistic controls and reliability. Here, we report contrasting tree-ring Hg records in three collocated conifer species: Norway spruce (Picea abies), Scots pine (Pinus sylvestris), and European larch (Larix decidua), which are from a remote boreal forest. Centennial atmospheric Hg trends at the site, derived from varved lake sediments, peats, and atmospheric monitoring, indicated a steady rise from the 1800s, peaking in the 1970s, and then declining. Prior to ca. 2005, larch and spruce tree rings reproduced the peak in the atmospheric Hg trend, while pine tree rings peaked in the 1930s, likely due to the prolonged sapwood period and ambiguity in the heartwood-sapwood boundary of pine. Since ca. 2005, tree rings from all species showed increasing Hg concentrations in the physiologically active outer rings despite declining atmospheric Hg concentrations. The good agreement between Hg and nitrogen concentrations in active tree-ring cells indicates a similar transport mechanism and cautions against their applicability as atmospheric Hg archives. Our results suggest that tree-ring Hg records are controlled by atmospheric Hg and tree physiology. We provide recommendations for using tree-ring Hg archives that take tree physiology into account.
Collapse
Affiliation(s)
- Haijun Peng
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Xiangwen Zhang
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
- School
of Resources & Environment, Nanchang
University, Nanchang 330031, China
| | - Kevin Bishop
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala SE-75651, Sweden
| | - John Marshall
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Mats B. Nilsson
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Chuxian Li
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
- Institute
of Geography and Oeschger Center for Climate Change Research, University of Bern, Bern 3012, Switzerland
| | - Erik Björn
- Department
of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Wei Zhu
- Department
of Forest Ecology and Management, Swedish
University of Agricultural Sciences, Umeå SE-90183, Sweden
| |
Collapse
|
15
|
Li R, Yan J, Wang C, Yang S, Zhang L, Peng T, Zhu W, Li P, Zhang L, Feng X. Mercury sources, transport, and transformation in rainfall-runoff processes: Mercury isotope approach. WATER RESEARCH 2024; 261:122044. [PMID: 38972237 DOI: 10.1016/j.watres.2024.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Mercury (Hg) in runoff water poses significant ecological risks to aquatic ecosystems that can affect organisms. However, accurately identifying the sources and transformation processes of Hg in runoff water is challenging due to complex natural conditions. This study provides a comprehensive investigation of Hg dynamics in water from rainfall to runoff. The Hg isotope fractionation in water was characterized, which allows accurate quantification of Hg sources, transport, and transformations in rainfall-runoff processes. Δ200Hg and corrected Δ199Hg values can serve as reliable tracers for identifying Hg sources in the runoff water and the variation of δ202Hg can be explained by Hg transformation processes. During runoff migration processes, Hg from rainfall is rapidly absorbed on the land surface, while terrestrial Hg entering the water by the dissolution process becomes the primary component of dissolved mercury (DHg). Besides the dissolution and adsorption, microbial Hg(II) reduction and demethylation of MeHg were dominant processes for DHg in the runoff water that flows through the rice paddies, while photochemical Hg(II) reduction was the dominant process for DHg in the runoff water with low water exchange rates. Particulate Hg (PHg) in runoff water is dominantly originated by the terrestrial material and derived from the dissolution and adsorption process. Tracking sources and transformations of Hg in runoff water during the rainfall-runoff process provides a basis for studying Hg pollution in larger water bodies under complex environmental factors.
Collapse
Affiliation(s)
- Ruolan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Lin Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Tao Peng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå SE-90183, Sweden
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Baldwin AK, Willacker JJ, Johnson BL, Janssen SE, Eagles-Smith CA. Wildfires Influence Mercury Transport, Methylation, and Bioaccumulation in Headwater Streams of the Pacific Northwest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14396-14409. [PMID: 39078944 PMCID: PMC11325654 DOI: 10.1021/acs.est.4c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The increasing frequency and severity of wildfires are among the most visible impacts of climate change. However, the effects of wildfires on mercury (Hg) transformations and bioaccumulation in stream ecosystems are poorly understood. We sampled soils, water, sediment, in-stream leaf litter, periphyton, and aquatic invertebrates in 36 burned (one-year post fire) and 21 reference headwater streams across the northwestern U.S. to evaluate the effects of wildfire occurrence and severity on total Hg (THg) and methylmercury (MeHg) transport and bioaccumulation. Suspended particulate THg and MeHg concentrations were 89 and 178% greater in burned watersheds compared to unburned watersheds and increased with burn severity, likely associated with increased soil erosion. Concentrations of filter-passing THg were similar in burned and unburned watersheds, but filter-passing MeHg was 51% greater in burned watersheds, and suspended particles in burned watersheds were enriched in MeHg but not THg, suggesting higher MeHg production in burned watersheds. Among invertebrates, MeHg in grazers, filter-feeders, and collectors was 33, 48, and 251% greater in burned watersheds, respectively, but did not differ in shredders or predators. Thus, increasing wildfire frequency and severity may yield increased MeHg production, mobilization, and bioaccumulation in headwaters and increased transport of particulate THg and MeHg to downstream environments.
Collapse
Affiliation(s)
- Austin K Baldwin
- US Geological Survey, Idaho Water Science Center, Boise, Idaho 83702, United States
| | - James J Willacker
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331, United States
| | - Branden L Johnson
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331, United States
| | - Sarah E Janssen
- US Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin 53726, United States
| | - Collin A Eagles-Smith
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97331, United States
| |
Collapse
|
17
|
Rosenbaum D, Montaña CG, Zhang Y, Chumchal MM, Saenz D, Schalk CM. Intraspecific Variation in Mercury Contamination of Alligator Snapping Turtles (Macrochelys temminckii). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1903-1913. [PMID: 38804646 DOI: 10.1002/etc.5888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/12/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
Macrochelys temminckii (alligator snapping turtle) is an aquatic turtle endemic to the southeastern United States that was proposed for listing under the Endangered Species Act in 2021. In the present study we analyzed total mercury (THg) concentrations in skeletal muscle, tail clips, and nail tissue of 93 M. temminckii sampled from 14 waterbodies in eastern Texas (USA). Our objectives were to assess (1) the degree of correlation between internal tissue (skeletal muscle and tail clip samples) and keratin (nail samples), (2) the influence of ecological factors (turtle size and waterbody/sampling site) on THg concentrations, and (3) whether THg concentrations were high enough to pose a risk to human consumers. The mean (±SE) THg concentrations of muscle and nail were 1.16 ± 0.08 μg/g dry weight and 4.21 ± 0.24 μg/g dry weight, respectively, and THg concentrations were highly dependent on the sampling site. The THg concentrations of nails were correlated with muscle concentrations (R2 = 0.56, p < 0.001). The effect of body size on THg concentrations varied by sampling site, indicating that size is not a good predictor of Hg concentration across sites. Finally, THg concentrations in M. temminckii of eastern Texas were high enough to pose a potential risk to human health based on US Environmental Protection Agency dietary guidelines. Environ Toxicol Chem 2024;43:1903-1913. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- David Rosenbaum
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, Texas, USA
| | - Carmen G Montaña
- Department of Biology, Stephen F. Austin State University, Nacogdoches, Texas, USA
| | - Yanli Zhang
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, Texas, USA
| | - Matthew M Chumchal
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Daniel Saenz
- US Department of Agriculture Forest Service, Nacogdoches, Texas, USA
| | - Christopher M Schalk
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, Texas, USA
| |
Collapse
|
18
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
19
|
Landis JD, Obrist D, Zhou J, Renshaw CE, McDowell WH, Nytch CJ, Palucis MC, Del Vecchio J, Montano Lopez F, Taylor VF. Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry. Nat Commun 2024; 15:5430. [PMID: 38926366 PMCID: PMC11208417 DOI: 10.1038/s41467-024-49789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Soils are a principal global reservoir of mercury (Hg), a neurotoxic pollutant that is accumulating through anthropogenic emissions to the atmosphere and subsequent deposition to terrestrial ecosystems. The fate of Hg in global soils remains uncertain, however, particularly to what degree Hg is re-emitted back to the atmosphere as gaseous elemental mercury (GEM). Here we use fallout radionuclide (FRN) chronometry to directly measure Hg accumulation rates in soils. By comparing these rates with measured atmospheric fluxes in a mass balance approach, we show that representative Arctic, boreal, temperate, and tropical soils are quantitatively efficient at retaining anthropogenic Hg. Potential for significant GEM re-emission appears limited to a minority of coniferous soils, calling into question global models that assume strong re-emission of legacy Hg from soils. FRN chronometry poses a powerful tool to reconstruct terrestrial Hg accumulation across larger spatial scales than previously possible, while offering insights into the susceptibility of Hg mobilization from different soil environments.
Collapse
Affiliation(s)
- Joshua D Landis
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Daniel Obrist
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, MA, 01854, USA
- Division of Agriculture and Natural Resources, University of California, Davis, CA, 95616, USA
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Carl E Renshaw
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Christopher J Nytch
- Department of Environmental Sciences, University of Puerto Rico - Rio Piedras, San Juan, PR, 00925, USA
| | - Marisa C Palucis
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | | | | | - Vivien F Taylor
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
20
|
Li X, Hu D, Du J, He L. Understanding mercury accumulation in mosses of two subalpine forests in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134266. [PMID: 38626682 DOI: 10.1016/j.jhazmat.2024.134266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
The role of forest ecosystems in the global mercury (Hg) biogeochemical cycle is widely recognized; however, using litterfall as a surrogate to assess the Hg sink function of forests encounters limitations. We investigated the accumulation characteristics and influencing factors of Hg in mosses from two remote subalpine forests in southwestern China. The results indicated that there was high Hg accumulation in subalpine forest mosses, with average concentrations of 82 ± 49 ng g-1 for total mercury (THg) and 1.3 ± 0.8 ng g-1 for methylmercury (MeHg). We demonstrated that the accumulation capacity of Hg in mosses was significantly dependent on species and substrates (micro-habitats), the mosses on tree trunks exhibited significantly elevated Hg accumulation levels (THg 132 ± 56 ng g-1, MeHg 1.6 ± 0.2 ng g-1) compared to mosses in other substrates. The surface morphologies and biochemical components of leaf (phyllidia), such as cation exchange capacity (CEC), pectin, uronic acid, and metallothionein, play a crucial role in the accumulation of Hg by mosses. These findings provide valuable insights into Hg accumulation in forest mosses. Suggesting that the contribution of mosses Hg accumulation should be considered when assessing atmospheric Hg sinks of forests.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Life Science, Sichuan Normal University, No. 1819, Chenglong Road, Chengdu, Sichuan 610101, China.
| | - Dan Hu
- College of Life Science, Sichuan Normal University, No. 1819, Chenglong Road, Chengdu, Sichuan 610101, China.
| | - Jie Du
- Jiuzhaigou Scenic Area Administration, Zhangzha, Jiuzhaigou, Sichuan 623402, China.
| | - Lei He
- College of Life Science, Sichuan Normal University, No. 1819, Chenglong Road, Chengdu, Sichuan 610101, China.
| |
Collapse
|
21
|
Yuan W, Wang X, Lin CJ, Zhang G, Wu F, Liu N, Jia L, Zhang H, Lu H, Dong J, Feng X. Fate and Transport of Mercury through Waterflows in a Tropical Rainforest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4968-4978. [PMID: 38452105 DOI: 10.1021/acs.est.3c09265] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Knowledge gaps of mercury (Hg) biogeochemical processes in the tropical rainforest limit our understanding of the global Hg mass budget. In this study, we applied Hg stable isotope tracing techniques to quantitatively understand the Hg fate and transport during the waterflows in a tropical rainforest including open-field precipitation, throughfall, and runoff. Hg concentrations in throughfall are 1.5-2 times of the levels in open-field rainfall. However, Hg deposition contributed by throughfall and open-field rainfall is comparable due to the water interception by vegetative biomasses. Runoff from the forest shows nearly one order of magnitude lower Hg concentration than those in throughfall. In contrast to the positive Δ199Hg and Δ200Hg signatures in open-field rainfall, throughfall water exhibits nearly zero signals of Δ199Hg and Δ200Hg, while runoff shows negative Δ199Hg and Δ200Hg signals. Using a binary mixing model, Hg in throughfall and runoff is primarily derived from atmospheric Hg0 inputs, with average contributions of 65 ± 18 and 91 ± 6%, respectively. The combination of flux and isotopic modeling suggests that two-thirds of atmospheric Hg2+ input is intercepted by vegetative biomass, with the remaining atmospheric Hg2+ input captured by the forest floor. Overall, these findings shed light on simulation of Hg cycle in tropical forests.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Ge Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Fei Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Huazheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Jinlong Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Cardona GI, Escobar MC, Acosta-González A, Díaz-Ruíz N, Niño-García JP, Vasquez Y, Marrugo-Negrete J, Marqués S. Microbial diversity and abundance of Hg related genes from water, sediment and soil the Colombian amazon ecosystems impacted by artisanal and small-scale gold mining. CHEMOSPHERE 2024; 352:141348. [PMID: 38340998 DOI: 10.1016/j.chemosphere.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The Amazon region abounds in precious mineral resources including gold, copper, iron, and coltan. Artisanal and small-scale gold mining (ASGM) poses a severe risk in this area due to considerable mercury release into the surrounding ecosystems. Nonetheless, the impact of mercury on both the overall microbiota and the microbial populations involved in mercury transformation is not well understood. In this study we evaluated microbial diversity in samples of soil, sediment and water potentially associated with mercury contamination in two localities (Taraira and Tarapacá) in the Colombian Amazon Forest. To this end, we characterized the bacterial community structure and mercury-related functions in samples from sites with a chronic history of mercury contamination which today have different levels of total mercury content. We also determined mercury bioavailability and mobility in the samples with the highest THg and MeHg levels (up to 43.34 and 0.049 mg kg-1, respectively, in Taraira). Our analysis of mercury speciation showed that the immobile form of mercury predominated in soils and sediments, probably rendering it unavailable to microorganisms. Despite its long-term presence, mercury did not appear to alter the microbial community structure or composition, which was primarily shaped by environmental and physicochemical factors. However, an increase in the relative abundance of merA genes was detected in polluted sediments from Taraira. Several Hg-responsive taxa in soil and sediments were detected in sites with high levels of THg, including members of the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi phyla. The results suggest that mercury contamination at the two locations sampled may select mercury-adapted bacteria carrying the merA gene that could be used in bioremediation processes for the region.
Collapse
Affiliation(s)
- Gladys Inés Cardona
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia.
| | - Maria Camila Escobar
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia; Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Natalie Díaz-Ruíz
- Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Yaneth Vasquez
- Chemistry Department, Universidad de Córdoba, Montería, Colombia
| | - José Marrugo-Negrete
- Convergence Science and Technology Cluster, Universidad Central, Bogotá, Colombia
| | - Silvia Marqués
- Department of Biotechnology and Environmental Protection. Estación Experimental Del Zaidín. Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
23
|
Lam WY, Mackereth RW, Mitchell CPJ. Mercury concentrations and export from small central Canadian boreal forest catchments before, during, and after forest harvest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168691. [PMID: 37996028 DOI: 10.1016/j.scitotenv.2023.168691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Northern boreal forests are a strong sink for mercury (Hg), a global contaminant of significant concern to wildlife and human health. Mercury stored in forest soils can be mobilized via runoff and erosion, and under suitable conditions can be methylated to its much more bioaccumulative form, methylmercury. Forest harvesting can affect the mobilization and methylation of Hg, though the direction and magnitude of the impact is unclear or conflicting across previous studies. This study examined 5 harvested and 2 reference watersheds in northwestern Ontario, Canada, before, during, and after harvest to quantify changes in stream total and methylmercury concentration and loads and identified potential landscape and management factors that contribute to differences in stream response. In watersheds where streams were buffered by natural vegetation (≥30 m), no significant changes in total Hg or methylmercury concentrations or loads were observed. Significant increases in methylmercury concentrations and loads were observed downstream of a stream crossing in a watershed where the relatively small stream was unmapped and therefore only buffered by a 3 m machine exclusion zone. These results show that when current best management practices that minimize soil and water disturbance are followed, harvest can have a minimal impact on total and methylmercury loads, even in extensively harvested watersheds. However, there is a need for improved mapping of small streams to ensure best management practices are applied adequately across the landscape.
Collapse
Affiliation(s)
- W Y Lam
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - R W Mackereth
- Centre for Northern Forest Ecosystem Research, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, ON, Canada
| | - C P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| |
Collapse
|
24
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
25
|
Huang H, Mackereth RW, Mitchell CPJ. Impacts of forest harvesting on mercury concentrations and methylmercury production in boreal forest soils and stream sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122966. [PMID: 37981183 DOI: 10.1016/j.envpol.2023.122966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Methylmercury (MeHg) is the most neurotoxic and bioaccumulative form of mercury (Hg) present in the terrestrial and aquatic food sources of boreal ecosystems, posing potential risks to wildlife and human health. Harvesting impacts on Hg methylation and MeHg concentrations in forest soils and stream sediment are not fully understood. In this study, a field investigation was carried out in 4 harvested and 2 unharvested boreal forest watersheds, before and after harvest, to better understand impacts on Hg methylation and MeHg concentration in soils and stream sediment, including their responses to different forest management practices. Changes in total Hg (THg) and MeHg concentrations, first-order potential rate constants for Hg methylation and MeHg demethylation (Kmeth and Kdemeth) as well as total carbon content and carbon-to-nitrogen ratio post-harvest in upland, wetland and riparian soils and stream sediment were assessed and compared. Increases in MeHg production were minimal in upland, wetland or riparian soils after harvest. Sediment in streams with minor buffer protection (∼3 m), greater fractions (>75%) of harvested watershed area and more road construction had significantly increased THg and MeHg concentrations, %-MeHg, Kmeth and total carbon content post-harvest. From these patterns, we infer that inputs of carbon and inorganic Hg into harvest-impacted stream sediment are likely sourced from the harvested upland areas and stimulate in situ MeHg production in stream sediment. These findings indicate the importance of stream sediment as potential MeHg pools in harvested forest watersheds. The findings also demonstrate that forest management practices aiming to mitigate organic matter and Hg inputs to streams can effectively alleviate harvesting impacts on Hg methylation and MeHg concentrations in stream sediment.
Collapse
Affiliation(s)
- Haiyong Huang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Robert W Mackereth
- Centre for Northern Forest Ecosystem Research, Ontario Ministry of Natural Resources and Forestry, Thunder Bay, ON, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| |
Collapse
|
26
|
Tang W, Bai X, Zhou Y, Sonne C, Wu M, Lam SS, Hintelmann H, Mitchell CPJ, Johs A, Gu B, Nunes L, Liu C, Feng N, Yang S, Rinklebe J, Lin Y, Chen L, Zhang Y, Yang Y, Wang J, Li S, Wu Q, Ok YS, Xu D, Li H, Zhang XX, Ren H, Jiang G, Chai Z, Gao Y, Zhao J, Zhong H. A hidden demethylation pathway removes mercury from rice plants and mitigates mercury flux to food chains. NATURE FOOD 2024; 5:72-82. [PMID: 38177223 DOI: 10.1038/s43016-023-00910-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Dietary exposure to methylmercury (MeHg) causes irreversible damage to human cognition and is mitigated by photolysis and microbial demethylation of MeHg. Rice (Oryza sativa L.) has been identified as a major dietary source of MeHg. However, it remains unknown what drives the process within plants for MeHg to make its way from soils to rice and the subsequent human dietary exposure to Hg. Here we report a hidden pathway of MeHg demethylation independent of light and microorganisms in rice plants. This natural pathway is driven by reactive oxygen species generated in vivo, rapidly transforming MeHg to inorganic Hg and then eliminating Hg from plants as gaseous Hg°. MeHg concentrations in rice grains would increase by 2.4- to 4.7-fold without this pathway, which equates to intelligence quotient losses of 0.01-0.51 points per newborn in major rice-consuming countries, corresponding to annual economic losses of US$30.7-84.2 billion globally. This discovered pathway effectively removes Hg from human food webs, playing an important role in exposure mitigation and global Hg cycling.
Collapse
Affiliation(s)
- Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Xu Bai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark.
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
- Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Holger Hintelmann
- Department of Chemistry and School of the Environment, Trent University, Peterborough, Ontario, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Alexander Johs
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luís Nunes
- Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Naixian Feng
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, University of Wuppertal, Wuppertal, Germany
| | - Yan Lin
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, China
| | - Yanan Yang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Jiaqi Wang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Qingru Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Diandou Xu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
| | - Hong Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
| | - Xu-Xiang Zhang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Hongqiang Ren
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhifang Chai
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yuxi Gao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China.
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China.
- Department of Environmental Science, Zhejiang University, Hangzhou, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, China.
| |
Collapse
|
27
|
Bishop K, Li C, Osterwalder S. Plant demethylation in global mercury cycling. NATURE FOOD 2024; 5:15-16. [PMID: 38177224 DOI: 10.1038/s43016-023-00909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Chuxian Li
- Institute of Geography and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Stefan Osterwalder
- Institute of Agricultural Sciences, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Li C, Jiskra M, Nilsson MB, Osterwalder S, Zhu W, Mauquoy D, Skyllberg U, Enrico M, Peng H, Song Y, Björn E, Bishop K. Mercury deposition and redox transformation processes in peatland constrained by mercury stable isotopes. Nat Commun 2023; 14:7389. [PMID: 37968321 PMCID: PMC10652010 DOI: 10.1038/s41467-023-43164-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Peatland vegetation takes up mercury (Hg) from the atmosphere, typically contributing to net production and export of neurotoxic methyl-Hg to downstream ecosystems. Chemical reduction processes can slow down methyl-Hg production by releasing Hg from peat back to the atmosphere. The extent of these processes remains, however, unclear. Here we present results from a comprehensive study covering concentrations and isotopic signatures of Hg in an open boreal peatland system to identify post-depositional Hg redox transformation processes. Isotope mass balances suggest photoreduction of HgII is the predominant process by which 30% of annually deposited Hg is emitted back to the atmosphere. Isotopic analyses indicate that above the water table, dark abiotic oxidation decreases peat soil gaseous Hg0 concentrations. Below the water table, supersaturation of gaseous Hg is likely created more by direct photoreduction of rainfall rather than by reduction and release of Hg from the peat soil. Identification and quantification of these light-driven and dark redox processes advance our understanding of the fate of Hg in peatlands, including the potential for mobilization and methylation of HgII.
Collapse
Affiliation(s)
- Chuxian Li
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Dmitri Mauquoy
- School Geosciences, University of Aberdeen, Scotland, UK
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maxime Enrico
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, TotalEnergies, LFCR, IPREM, Pau, France
| | - Haijun Peng
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Yu Song
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
29
|
Chen C, Huang JH, Li K, Osterwalder S, Yang C, Waldner P, Zhang H, Fu X, Feng X. Isotopic Characterization of Mercury Atmosphere-Foliage and Atmosphere-Soil Exchange in a Swiss Subalpine Coniferous Forest. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15892-15903. [PMID: 37788478 DOI: 10.1021/acs.est.3c03576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
To understand the role of vegetation and soil in regulating atmospheric Hg0, exchange fluxes and isotope signatures of Hg were characterized using a dynamic flux bag/chamber at the atmosphere-foliage/soil interfaces at the Davos-Seehornwald forest, Switzerland. The foliage was a net Hg0 sink and took up preferentially the light Hg isotopes, consequently resulting in large shifts (-3.27‰) in δ202Hg values. The soil served mostly as net sources of atmospheric Hg0 with higher Hg0 emission from the moss-covered soils than from bare soils. The negative shift of δ202Hg and Δ199Hg values of the efflux air relative to ambient air and the Δ199Hg/Δ201Hg ratio among ambient air, efflux air, and soil pore gas highlight that Hg0 re-emission was strongly constrained by soil pore gas evasion together with microbial reduction. The isotopic mass balance model indicates 8.4 times higher Hg0 emission caused by pore gas evasion than surface soil photoreduction. Deposition of atmospheric Hg0 to soil was noticeably 3.2 times higher than that to foliage, reflecting the high significance of the soil to influence atmospheric Hg0 isotope signatures. This study improves our understanding of Hg atmosphere-foliage/soil exchange in subalpine coniferous forests, which is indispensable in the model assessment of forest Hg biogeochemical cycling.
Collapse
Affiliation(s)
- Chaoyue Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- Environmental Geosciences, University of Basel, 4056 Basel, Switzerland
| | - Kai Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Stefan Osterwalder
- Environmental Geosciences, University of Basel, 4056 Basel, Switzerland
- Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
| | - Chenmeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Peter Waldner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
30
|
Landis JD. Age-Dating of Foliage and Soil Organic Matter: Aligning 228Th: 228Ra and 7Be: 210Pb Radionuclide Chronometers over Annual to Decadal Time Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15047-15054. [PMID: 37774356 DOI: 10.1021/acs.est.3c06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The 228Th:228Ra ratios of foliage and organic soil horizons evolve with time following a predictable radioactive decay law and thus provide a new chronometer for absolute age-dating of plant and soil organic matter. Preferential uptake of 228Th (t0.5 = 1.9 years) and 228Ra (t0.5 = 5.9 years) by canopy tree species, ferns, and mosses, drives disequilibrium in the 232Th-228Ra-228Th radioactive decay series within forest vegetation and organic soils. With examples from northeastern USA, we verify a new 228Th:228Ra age model by demonstrating its concordance with the fallout radionuclide chronometer 7Be:210Pb in the 0 to 5-year time frame [R2 = 0.87, RMSE = 0.5 years]. At our locality, canopy tree species assimilate 228Th with a typical initial ratio (228Th:228Ra)0 ∼ 0.3, but in several instances, both deciduous and coniferous tree species show a preference for Th over Ra with (228Th:228Ra)0 exceeding 5. While the 228Th:228Ra system is restricted to organic soil horizons, concordance of 228Th:228Ra with established 7Be:210Pb and 241Am bomb-pulse chronometers establishes a coherent age-dating system of soil organic matter based on three independent chronometers and five particle reactive metals, and spanning 0-200 years in time scale that encompasses both organic and mineral soils to depths of up to 30 cm. Concordance indicates that these metals all follow common processes of organometallic colloid formation and migration and, in conjunction with 14C, may open new opportunities to understand soil pedogenic processes that regulate the storage of carbon and atmospheric metals such as Pb and Hg.
Collapse
Affiliation(s)
- Joshua D Landis
- Department of Earth Sciences, Dartmouth College, 19 Fayerweather Hill Road, Hanover, New Hampshire 03755, United States
| |
Collapse
|
31
|
Richter L, Amouroux D, Tessier E, Fostier AH. Impact of forest fire on the mercury stable isotope composition in litter and soil in the Amazon. CHEMOSPHERE 2023; 339:139779. [PMID: 37567261 DOI: 10.1016/j.chemosphere.2023.139779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Mercury (Hg) emissions from forest fires, especially tropical forests such as the Amazonian forest, were shown to contribute significantly to the atmospheric mercury budget, but new methods are still necessary to improve the traceability and to reduce the great uncertainties related to this emission source. Recent studies have shown that the combustion process can result in Hg stable isotope fractionation that allows tracking coal combustion Hg emissions, as influenced by different factors such as combustion temperature. The main goal of the present study was, therefore, to investigate for the first time the potential of Hg stable isotopes to trace forest fire Hg emissions and pathways. More specifically, small-scale and a large scale prescribed forest fire experiments were conducted in the Brazilian Amazonian forest to study the impact of fire severity on Hg isotopic composition of litter, soil, and ash samples and associated Hg isotope fractionation pathways. In the small-scale experiment, no difference was found in the mercury isotopic composition of the samples collected before and after burning. In contrast, the larger-scale experiment resulted in significant mass dependent fractionation (MDF δ202Hg) in soils and ash suggesting that higher combustion temperature influence Hg isotopic fractionation with the emission of lighter Hg isotopes to the atmosphere and enrichment with heavier Hg in ashes. As for coal combustion, mass independent fractionation was not observed. To our knowledge, these results are the first to highlight the potential of forest fires to cause Hg isotopic fractionation, depending on the fire severity. The results also allowed to establish an isotopic fingerprint for tropical forest fire Hg emissions that corresponds to a mixture of litter and soil Hg isotopic composition (resulting atmospheric δ202Hg, Δ200Hg and Δ199Hg were -1.79 ± 0.24‰, -0.05 ± 0.04‰ and -0.45 ± 0.12‰, respectively).
Collapse
Affiliation(s)
- Larissa Richter
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil
| | - David Amouroux
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France.
| | - Emmanuel Tessier
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France
| | - Anne Hélène Fostier
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
32
|
Méndez-López M, Eimil-Fraga C, Alonso-Vega F, Rodríguez-Soalleiro R, Álvarez-Rodríguez E, Arias-Estévez M, Nóvoa-Muñoz JC. Variation of Hg concentration and accumulation in the soil of maritime pine plantations along a coast-inland transect in SW Europe. ENVIRONMENTAL RESEARCH 2023; 231:116155. [PMID: 37196692 DOI: 10.1016/j.envres.2023.116155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/13/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Climatic conditions have been shown as a major driver of the fate of Hg in forest ecosystems at a global scale, but less is known about climatic effects at shorter scales. This study assesses whether the concentration and pools of Hg in soils collected from seventeen Pinus pinaster stands describing a coastal-inland transect in SW Europe vary along a regional climatic gradient. In each stand, samples of the organic subhorizons (OL, OF + OH) and the mineral soil (up to 40 cm) were collected and some general physico-chemical properties and total Hg (THg) were analyzed. Total Hg was significantly higher in the OF + OH than in the OL subhorizons (98 and 38 μg kg-1, respectively), favored by a greater organic matter humification in the former. In the mineral soil, mean THg values decreased with depth, ranging from 96 μg kg-1 in the 0-5 cm layers to 54 μg kg-1 in the deepest layers (30-40 cm), respectively. The average Hg pool (PHg) was 0.30 mg m-2 in the organic horizons (92% accumulated in the OF + OH subhorizons), and 27.4 mg m-2 in the mineral soil. Changes in climatic factors, mainly precipitation, along the coast-inland transect resulted in a remarkable variation of THg in the OL subhorizons, consistent with their role as the first receiver of atmospheric Hg inputs. The high precipitation rate and the occurrence of fogs in coastal areas characterized by the oceanic influence would explain the higher THg found in the uppermost soil layers of pine stands located close to the coastline. The regional climate is key to the fate of mercury in forest ecosystems by influencing the plant growth and subsequent atmospheric Hg uptake, the atmospheric Hg transference to the soil surface (wet and dry deposition and litterfall) and the dynamics that determine net Hg accumulation in the forest floor.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain.
| | - Cristina Eimil-Fraga
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela. Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Roque Rodríguez-Soalleiro
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela. Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Departamento de Edafología y Química Agrícola, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo S/n, 27002, Lugo, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias. As Lagoas S/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental. Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| |
Collapse
|
33
|
Casagrande GCR, Dambros J, de Andrade EA, Martello F, Sobral-Souza T, Moreno MIC, Battirola LD, de Andrade RLT. Atmospheric mercury in forests: accumulation analysis in a gold mining area in the southern Amazon, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:477. [PMID: 36928432 DOI: 10.1007/s10661-023-11063-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The spatial distribution and dispersion of mercury (Hg) is associated with the structural conditions of the environment, primarily land use and vegetation cover. Man-made emissions of the metal from activities such as artisanal and small-scale gold mining (ASGM) can influence this distribution. Forest ecosystems are of particular importance as they constitute one of the most active environments in the biogeochemical cycle of Hg, and understanding these dynamics is essential to better understand its global cycle. In this study, we determined the content of Hg present in different forest strata (soil, leaf litter, herbaceous, underwood/bush, and arboreal), as well as the relationship between the presence of Hg and the landscape heterogeneity, percentage of gold mines, and ground slope. This study was carried out in tropical forest areas of the southern Brazilian Amazon. Accumulation and transport of Hg between forest strata was assessed in order to understand the influence of these forest environments on Hg accumulation in areas where ASGM occurs. We verified that there is a difference in Hg content between forest strata, indicating that atmospheric Hg is accumulated onto the arboreal stratum and transported vertically to strata below the canopy, i.e., underwood/bush and herbaceous, and subsequently accumulated in the leaf litter and transferred to the soil. Leaf litter was the stratum with the highest Hg content, characterized as a receptor for most of the Hg load from the upper strata in the forest. Therefore, it was confirmed that Hg accumulation dynamics are at play between the areas analyzed due to the proximity of ASGMs in the region. This indicates that the conservation of forest areas plays an important role in the process of atmospheric Hg deposition and accumulation, acting as a mercury sink in areas close to man-made emissions.
Collapse
Affiliation(s)
- Gabriela Cristina Rabello Casagrande
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Juliane Dambros
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Ednaldo Antônio de Andrade
- Institute of Agricultural and Environmental Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil
| | - Felipe Martello
- Vale Institute of Technology-Sustainable Development, Rua Boaventura da Silva, 955, Nazaré, CEP 66055-090, Belém, Pará, Brazil
| | - Thadeu Sobral-Souza
- Department of Botany and Ecology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Maria Inês Cruzeiro Moreno
- Departament of Biological Science, Institute of Biotechnology, Federal University of Catalão, Campus I, Av. Dr. Lamartine Pinto de Avelar, 1120 Setor Universitário, CEP 75704-020, Catalão, Goiás, Brazil
| | - Leandro Dênis Battirola
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil.
- Postgraduate Program in Environmental Science, Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil.
| | - Ricardo Lopes Tortorela de Andrade
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
- Postgraduate Program in Environmental Science, Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil
| |
Collapse
|
34
|
Wang B, Hu H, Bishop K, Buck M, Björn E, Skyllberg U, Nilsson MB, Bertilsson S, Bravo AG. Microbial communities mediating net methylmercury formation along a trophic gradient in a peatland chronosequence. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130057. [PMID: 36179622 DOI: 10.1016/j.jhazmat.2022.130057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Peatlands are generally important sources of methylmercury (MeHg) to adjacent aquatic ecosystems, increasing the risk of human and wildlife exposure to this highly toxic compound. While microorganisms play important roles in mercury (Hg) geochemical cycles where they directly and indirectly affect MeHg formation in peatlands, potential linkages between net MeHg formation and microbial communities involving these microorganisms remain unclear. To address this gap, microbial community composition and specific marker gene transcripts were investigated along a trophic gradient in a geographically constrained peatland chronosequence. Our results showed a clear spatial pattern in microbial community composition along the gradient that was highly driven by peat soil properties and significantly associated with net MeHg formation as approximated by MeHg concentration and %MeHg of total Hg concentration. Known fermentative, syntrophic, methanogenic and iron-reducing metabolic guilds had the strong positive correlations to net MeHg formation, while methanotrophic and methylotrophic microorganisms were negatively correlated. Our results indicated that sulfate reducers did not have a key role in net MeHg formation. Microbial activity as interpreted from 16S rRNA sequences was significantly correlated with MeHg and %MeHg. Our findings shed new light on the role of microbial community in net MeHg formation of peatlands that undergo ontogenetic change.
Collapse
Affiliation(s)
- Baolin Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China.
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Ulf Skyllberg
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Mats B Nilsson
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, E08003 Barcelona, Catalunya, Spain
| |
Collapse
|
35
|
Peraza I, Chételat J, Richardson M, Jung TS, Awan M, Baryluk S, Dastoor A, Harrower W, Kukka PM, McClelland C, Mowat G, Pelletier N, Rodford C, Ryjkov A. Diet and landscape characteristics drive spatial patterns of mercury accumulation in a high-latitude terrestrial carnivore. PLoS One 2023; 18:e0285826. [PMID: 37186585 PMCID: PMC10184919 DOI: 10.1371/journal.pone.0285826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/02/2023] [Indexed: 05/17/2023] Open
Abstract
Limited information exists on mercury concentrations and environmental drivers of mercury bioaccumulation in high latitude terrestrial carnivores. Spatial patterns of mercury concentrations in wolverine (Gulo gulo, n = 419) were assessed across a 1,600,000 km2 study area in relation to landscape, climate, diet and biological factors in Arctic and boreal biomes of western Canada. Hydrogen stable isotope ratios were measured in wolverine hair from a subset of 80 animals to assess the spatial scale for characterizing environmental conditions of their habitat. Habitat characteristics were determined using GIS methods and raster datasets at two scales, the collection location point and a 150 km radius buffer, which was selected based on results of a correlation analysis between hydrogen stable isotopes in precipitation and wolverine hair. Total mercury concentrations in wolverine muscle ranged >2 orders of magnitude from 0.01 to 5.72 μg/g dry weight and varied geographically, with the highest concentrations in the Northwest Territories followed by Nunavut and Yukon. Regression models at both spatial scales indicated diet (based on nitrogen stable isotope ratios) was the strongest explanatory variable of mercury concentrations in wolverine, with smaller though statistically significant contributions from landscape variables (soil organic carbon, percent cover of wet area, percent cover of perennial snow-ice) and distance to the Arctic Ocean coast. The carbon and nitrogen stable isotope ratios of wolverine muscle suggested greater mercury bioaccumulation could be associated with feeding on marine biota in coastal habitats. Landscape variables identified in the modelling may reflect habitat conditions which support enhanced methylmercury transfer to terrestrial biota. Spatially-explicit estimates of wet atmospheric deposition were positively correlated with wolverine mercury concentrations but this variable was not selected in the final regression models. These landscape patterns provide a basis for further research on underlying processes enhancing methylmercury uptake in high latitude terrestrial food webs.
Collapse
Affiliation(s)
- Inés Peraza
- Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Murray Richardson
- Geography and Environmental Studies, Carleton University, Ottawa, Ontario, Canada
| | - Thomas S Jung
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Malik Awan
- Department of Environment, Government of Nunavut, Igloolik, Nunavut, Canada
| | - Steve Baryluk
- Environment and Natural Resources, Government of the Northwest Territories, Inuvik, Northwest Territories, Canada
| | - Ashu Dastoor
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, Quebec, Canada
| | - William Harrower
- Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Piia M Kukka
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada
| | - Christine McClelland
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Garth Mowat
- Ministry of Forests, British Columbia Government, Nelson, British Columbia, Canada
- Department of Earth, Environmental and Geographic Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Nicolas Pelletier
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Christine Rodford
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Andrei Ryjkov
- Environment and Climate Change Canada, Air Quality Research Division, Dorval, Quebec, Canada
| |
Collapse
|
36
|
Åkerblom S, Zdanowicz C, Campeau A, Soerensen AL, Hewitt J. Spatial and temporal variations in riverine mercury in the Mackenzie River Basin, Canada, from community-based water quality monitoring data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158674. [PMID: 36096225 DOI: 10.1016/j.scitotenv.2022.158674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Arctic rivers deliver ~40 t yr-1 of mercury (Hg) to the Arctic Ocean, ~6 % of which is from the Mackenzie River Basin (MRB), a region warming at ~3 times the mean hemispheric rate. How this will affect Hg transfer to ecosystems of the Beaufort Sea is a worrying issue. To help address this question, we analyzed >500 measurements of Hg and other water properties from 22 rivers collected in 2012-2018 by communities of the MRB. This new dataset provides a more comprehensive view of riverine Hg variations across the basin than was previously available. We find that rivers issued from mountains in the western MRB contribute the largest share of Hg in the Mackenzie River, 60-95 % of it being carried as fine suspended solids and probably sourced from riverbank erosion and thaw slumps. In contrast, lowland rivers of the central and eastern MRB contribute larger shares of dissolved Hg (up to 78 %), likely from recent atmospheric deposition through precipitation. Using load modelling constrained by the new water quality dataset, we estimate that the three largest western tributaries (Liard, Peel and Arctic Red rivers) of the Mackenzie contribute 60 % of the annual MRB THg export and DHg export to the Beaufort Sea during freshet, as well as 51 % of DHg export, while supplying 60 % of freshet discharge. Load modelling also reveals a sustained decline in DHg loads of ~13 kg yr-1 between 2001 and 2016 in the lower Mackenzie River, which likely reflect a decreasing trend in atmospheric Hg deposition over most of northwestern Canada during this period. This study highlights the value of community-based water quality monitoring in helping to support assessments of riverine Hg in the MRB in support of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Staffan Åkerblom
- Statistiska centralbyrån (SCB), Statistic Sweden, Stockholm, Sweden.
| | | | - Audrey Campeau
- Department of Earth Sciences, Uppsala University, Sweden; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Sweden
| | - Jack Hewitt
- Department of Earth Sciences, Uppsala University, Sweden
| |
Collapse
|
37
|
Méndez-López M, Gómez-Armesto A, Eimil-Fraga C, Alonso-Vega F, Rodríguez-Soalleiro R, Álvarez-Rodríguez E, Arias-Estévez M, Nóvoa-Muñoz JC. Needle age and precipitation as drivers of Hg accumulation and deposition in coniferous forests from a southwestern European Atlantic region. ENVIRONMENTAL RESEARCH 2022; 215:114223. [PMID: 36063908 DOI: 10.1016/j.envres.2022.114223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Vegetation and climate are critical in the biogeochemical cycle of Hg in forest ecosystems. The study assesses the influence of needle age and precipitation on the accumulation of Hg in needle biomass and its deposition by litterfall in thirty-one pine plantations spread throughout two biogeographical regions in SW Europe. Well-developed branches of Pinus pinaster were sampled and pine needles were classified according to 4 age classes (y0, y1, y2, y3). The concentration of total Hg (THg) was analyzed in the samples and Hg content in needle biomass and its deposition by litterfall were estimated. The concentration of total Hg (THg) increased with needle age ranging from 9.1 to 32.7 μg Hg kg-1 in the youngest and oldest needles, respectively. The rate of Hg uptake (HgR) three years after needle sprouting was 10.2 ± 2.3 μg Hg kg-1 yr-1, but it decreased with needle age probably due to a diminution in photosynthetic activity as needles get older. The average total Hg stored in needle biomass (HgWt) ranged from 5.6 to 87.8 mg Hg ha-1, with intermediate needle age classes (y1 and y2) accounting for 70% of the total Hg stored in the whole needle biomass. The average deposition flux of Hg through needle litterfall (HgLt) was 1.5 μg Hg m-2 yr-1, with the y2 and y3 needles contributing most to the total Hg flux. The spatial variation of THg, HgWt and HgLt decreased from coastal pine stands, characterized by an oceanic climate, to inland pine stands, a feature closely related to the dominant precipitation regime in the study area. Climatic conditions and needle age are the main factors affecting Hg accumulation in tree foliage, and should be considered for an accurate assessment of forest Hg pools at a regional scale and their potential consequences in the functioning of terrestrial ecosystems.
Collapse
Affiliation(s)
- Melissa Méndez-López
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain.
| | - Antía Gómez-Armesto
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Cristina Eimil-Fraga
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002, Lugo, Spain
| | - Flora Alonso-Vega
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Roque Rodríguez-Soalleiro
- Unidad de Gestión Ambiental y Forestal Sostenible, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Departamento de Edafología y Química Agrícola, Escuela Politécnica Superior de Ingeniería, Universidade de Santiago de Compostela, Rúa Benigno Ledo s/n, 27002, Lugo, Spain
| | - Manuel Arias-Estévez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| | - Juan Carlos Nóvoa-Muñoz
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Área de Edafoloxía e Química Agrícola, Facultade de Ciencias, As Lagoas s/n, 32004, Ourense, Spain; Campus da Auga, Universidade de Vigo, Laboratorio de Tecnoloxía e Diagnose Ambiental, Rúa Canella da Costa da Vela 12, 32004, Ourense, Spain
| |
Collapse
|
38
|
Mir Y, Wu S, Ma M, Ran Y, Zhu K, Mangwandi C, Mirza ZA. Mercury contamination in the riparian ecosystem during the reservoir discharging regulated by a mega dam. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4405-4422. [PMID: 35089477 DOI: 10.1007/s10653-022-01205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is extremely poisonous and can be absorbed through touch, inhalation, or consumption. In the living environment, Hg in contaminated sediment can be transferred into grass by the direct absorption through the roots or shoots. The intake of Hg due to Hg emissions may pose a threat to living bodies especially to human beings. The present study aims to provide a novel insight about total mercury (THg) and methyl mercury (MeHg) in a riparian grass (Cynodon dactylon (L).Pers) and sediments during the discharging phase (summertime at 145 m water level) in Three Gorges Reservoir (TGR-China); where C. dactylon is a dominant perennial herb in the riparian zone. Yet, the potential risk of Hg contamination in the riparian ecosystem is not thoroughly assessed in the dam regulated reservoir. This study was conducted in the riparian zones of the reservoir formed by a mega dam (Three Gorge Dam) which regulates the water levels during the summer and winter period in the TGR. Our results showed that riparian sediments were acting as a sink for THg and MeHg. Insignificant correlation of THg and MeHg was found between the amphiphyte C. dactylon and its surrounding sediments in the TGR. Bioconcentration factors values for MeHg were found higher than 1 in all study locations in the riparian zones in TGR, which could be due to action of certain bacteria/purely chemical-based methylation on inorganic form of Hg. Additionally, translocation factor indices also highlighted that the amphiphyte C. dactylon was MeHg accumulator in riparian zones. These results suggested that since riparian sediment was found acting as the sink for THg and MeHg during discharging phase, MeHg contamination in the amphiphyte C. dactylon in riparian zones was not caused by the riparian sediments but by other factors, for instance, the anthropogenic activities in the TGR. Finally, this study leads to conclude that amphiphyte C. dactylon can be used as biomonitoring agent for Hg pollution in the TGR.
Collapse
Affiliation(s)
- Yaseen Mir
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Maohua Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yiguo Ran
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Chirangano Mangwandi
- School of Chemistry and Chemical Engineering, David Kier Building Queen's University Belfast, Belfast, BT95AG, UK
| | - Zakaria Ahmed Mirza
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
39
|
Negrazis L, Kidd KA, Erdozain M, Emilson EJS, Mitchell CPJ, Gray MA. Effects of forest management on mercury bioaccumulation and biomagnification along the river continuum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119810. [PMID: 35940481 DOI: 10.1016/j.envpol.2022.119810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Forest management can alter the mobilization of mercury (Hg) into headwater streams and its conversion to methylmercury (MeHg), the form that bioaccumulates in aquatic biota and biomagnifies through food webs. As headwater streams are important sources of organic materials and nutrients to larger systems, this connectivity may also increase MeHg in downstream biota through direct or indirect effects of forestry on water quality or food web structure. In this study, we collected water, seston, food sources (biofilm, leaves, organic matter), five macroinvertebrate taxa and fish (slimy sculpin; Cottus cognata) at 6 sites representing different stream orders (1-5) within three river basins with different total disturbances from forestry (both harvesting and silviculture). Methylmercury levels were highest in water and some food sources from the basin with moderate disturbance (greater clearcutting but less silviculture). Water, leaves, stoneflies and fish increased in MeHg or total Hg along the river continuum in the least disturbed basin, and there were some dissipative effects of forest management on these spatial patterns. Trophic level (δ15N) was a significant predictor of MeHg (and total Hg in fish) within food webs across all 18 sites, and biomagnification slopes were significantly lower in the basin with moderate total disturbance but not different in the other two basins. The elevated MeHg in lower trophic levels but its reduced trophic transfer in the basin with moderate disturbance was likely due to greater inputs of sediments and of dissolved organic carbon that is more humic, as these factors are known to both increase transport of Hg to streams and its uptake in primary producers but to also decrease MeHg bioaccumulation in consumers. Overall, these results suggest that the type of disturbance from forestry affects MeHg bioaccumulation and trophic transfer in stream food webs and some longitudinal patterns along a river continuum.
Collapse
Affiliation(s)
- Lauren Negrazis
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| | - Karen A Kidd
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada; School of Earth, Environment and Society, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada.
| | - Maitane Erdozain
- Canadian Rivers Institute and Biology Department, University of New Brunswick, 100 Tucker Park Road, Saint John, New Brunswick E2L 4L5, Canada
| | - Erik J S Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. East, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Carl P J Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Michelle A Gray
- Canadian Rivers Institute, Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
40
|
Xu Z, Wang Z, Zhang X. Mapping the forest litterfall mercury deposition in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156288. [PMID: 35644398 DOI: 10.1016/j.scitotenv.2022.156288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Litterfall mercury (Hg) deposition represents one of the biggest Hg inputs to forest ecosystems through assimilation of atmospheric gaseous elemental Hg (Hg0) to foliage. However, due to the availability of litterfall production and Hg concentration data, a comprehensive quantification of litterfall Hg deposition is still lacking in China. In this study, the forest litterfall production of five major forest types in China was modeled by using the random forest (RF) method and multi-source datasets. A substantial nationwide dataset of litterfall Hg concentration was compiled including the investigation of our research group and previous published data. The litterfall Hg flux of forest was quantified by integrating litterfall production map and litterfall Hg concentration data. The nationwide litterfall Hg concentration ranged from 12.75 to 178.00 ng g-1 with a mean of 51.99 ± 34.23 ng g-1. For litterfall production, the mean value was simulated to be 5.07 Mg ha-1 yr-1, with the highest values in tropical areas and the lowest in the northeast and northwest arid regions. The litterfall Hg flux of forest in China was characterized by high in the south and low in the north, ranging from 5.57 to 137.05 μg m-2 yr-1, with an average value of 25.88 ± 12.53 μg m-2 yr-1. Total Hg deposition from forest litterfall in China was estimated to be 27.0 ± 13.0 Mg yr-1, and that of evergreen broadleaf forest, mixed forest, deciduous broadleaf forest, evergreen needleleaf forest and deciduous needleleaf forest were 10.8 ± 5.3 Mg yr-1, 8.5 ± 4.0 Mg yr-1, 6.1 ± 2.6 Mg yr-1, 1.5 ± 1.0 Mg yr-1 and 0.2 ± 0.1 Mg yr-1, respectively. This is the primary quantitative evaluation of the forest litterfall Hg deposition in China, which is essential for understanding the role and status of Chinese forest in the global Hg cycle.
Collapse
Affiliation(s)
- Zehua Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Vieira AMD, Vaňková M, Campos I, Trubač J, Baieta R, Mihaljevič M. Estimation of mercury emissions from the forest floor of a pine plantation during a wildfire in central Portugal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:755. [PMID: 36083387 DOI: 10.1007/s10661-022-10436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) concentrations in soils and Hg releases from soils during wildfires are not well characterised in Portugal, even though wildfire activity continues to increase around the Mediterranean. This study focused on the low to moderate severity wildfire in Pombal (Portugal) in 2019, which consumed 12.5 ha of maritime pine (Pinus pinaster Ait.). We evaluated Hg concentrations in soil profiles and Hg pools in organic horizons to assess the fire-induced Hg emissions. Moreover, impacts of the fire on forest floor properties were estimated. Four soil profiles were sampled, two at the burned area and two at a nearby unburned area. The soil profiles displayed a typical Hg distribution, with higher Hg concentrations (156 µg kg-1) in the organic horizons with a sharp decrease in the mineral layers. The bond between organic matter and Hg was evident along the profiles, with a strong correlation between TOC and Hg. Ratios of Hg/TOC in the surface layers of the soil were similar in all profiles. The mean organic Hg pool at the studied site was calculated at 10.6 g ha-1. The fire did not seem to affect the topsoil properties based on visual indicators and the lack of statistical differences (p > 0.05) among measured fire-sensitive chemical soil properties (pH, CEC, TOC, TS) between the topsoils of the burned and unburned areas. If we consider a hypothetical complete combustion of the organic layer (743 Mg) and unaffected topsoil, we estimated a release of 133 g of Hg from the burned area. The study emphasised the importance of the forest floor for Hg retention and its crucial role in Hg emissions during wildfires in a country increasingly affected by climate change.
Collapse
Affiliation(s)
- Alda Maria Domingues Vieira
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic.
| | - Maria Vaňková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Isabel Campos
- Centre for Environmental and Marine Studies, Department of Environment and Planning, CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jakub Trubač
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Rafael Baieta
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| |
Collapse
|
42
|
Martino M, Tassone A, Angiuli L, Naccarato A, Dambruoso PR, Mazzone F, Trizio L, Leonardi C, Petracchini F, Sprovieri F, Pirrone N, D'Amore F, Bencardino M. First atmospheric mercury measurements at a coastal site in the Apulia region: seasonal variability and source analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68460-68475. [PMID: 35543786 PMCID: PMC9508219 DOI: 10.1007/s11356-022-20505-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
In the framework of the Italian Special Network for Mercury (ISNM) "Reti Speciali", a sampling campaign to monitor atmospheric mercury (Hg) was carried out at Monte Sant'Angelo (MSA). This is a coastal monitoring station in the Apulia region, representative of the Southern Adriatic area, within the Mediterranean basin. This work presents continuous Gaseous Elemental Mercury (GEM) measurements over about three years at MSA, using the Lumex RA-915AM mercury analyzer. The aim was to obtain a dataset suitable for the analysis of Hg concentrations in terms of source and transport variation. Diurnal cycles of GEM were evaluated to observe the influence of local atmospheric temperature and wind speed on potential re-emissions from surrounding sea and soil surfaces. Data were also analyzed in terms of long-range transport, using backward trajectory cluster analysis. The spatial distribution of potential sources, contributing to higher measured GEM values, was obtained employing Potential Source Contribution Function (PSCF) statistics. The influence of major Hg anthropogenic point sources, such as mining activities and coal-fuel power plants, both regionally and continentally, from mainland Europe, was observed. The role of the vegetation GEM uptake in modulating the seasonal GEM variability was also investigated. The potential of wildfire influence over the highest detected GEM levels was further examined using active fire data and the evaluation of the vegetation dryness index during the selected episodes.
Collapse
Affiliation(s)
- Maria Martino
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | - Lorenzo Angiuli
- Apulia Region Environmental Protection Agency (ARPA Puglia), Bari, Italy
| | - Attilio Naccarato
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende, Italy
| | | | - Fiorella Mazzone
- Apulia Region Environmental Protection Agency (ARPA Puglia), Bari, Italy
| | - Livia Trizio
- Apulia Region Environmental Protection Agency (ARPA Puglia), Bari, Italy
| | | | | | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | | |
Collapse
|
43
|
Yu Y, Li Z, Liu Y, Wang F, Liu Y, Zhao J, Li Y, Gao Y, Zhu N. Roles of plant-associated microorganisms in regulating the fate of Hg in croplands: A perspective on potential pathways in maintaining sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155204. [PMID: 35421489 DOI: 10.1016/j.scitotenv.2022.155204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
In heavy metal-contaminated croplands, plant-associated microorganisms play important roles in the adaptation of crops to heavy metals. Plant-associated microbes can interact with Hg and stimulate plant resistance to Hg toxicity, which is crucial for impeding Hg accumulation along the food chain. The roles of rhizosphere microorganisms for the improvement of plant growth and Hg resistance have drawn great research attention. However, the interactions among plant-endophyte-Hg have been neglected although they might be important for in vivo Hg detoxification. In this study, we systematically summarized 1) the roles of plant-associated microorganisms in Hg detoxification and plant growth, 2) Hg methylation and demethylation driven by plant-associated microbes, 3) the relationships between plant-associated microbes and Hg biogeochemical cycling. The possible mechanisms underlying crop-endophyte-Hg interactions were discussed, although limited studies on this aspect are available to date. The challenges and perspectives of plant-endophytes in dampening Hg phytotoxicity and controlling Hg accumulation in croplands were proposed on the basis of the present knowledge. Taken together, this work provides evidence for further understanding the interactions between soil-plant-endophyte-Hg systems and as well as new interpretations and perspectives into regulating the fate of Hg in croplands.
Collapse
Affiliation(s)
- Yue Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yonghua Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030000, Shanxi, China
| | - Fang Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiating Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, & Beijing Metallomics Facility, & National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Nali Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
44
|
Lazarus M, Orct T, Sekovanić A, Skoko B, Petrinec B, Zgorelec Ž, Kisić I, Prevendar Crnić A, Jurasović J, Srebočan E. Spatio-temporal monitoring of mercury and other stable metal(loid)s and radionuclides in a Croatian terrestrial ecosystem around a natural gas treatment plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:481. [PMID: 35668141 DOI: 10.1007/s10661-022-10140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The natural gas industry bears a certain contamination risk to human and biota due to, among others, mercury, arsenic, and naturally occurring radioactive material content in gas. We tracked multiple stabile metal(loid)s and radionuclides within the natural gas treatment plant Molve, Croatia, ecosystem during the last decade through a comprehensive monitoring of soil, earthworms, moss, livestock (blood, milk, hair, urine, and feces from cows), and wildlife animals (brain, muscle, liver, and kidney of European hare and pheasant). The level of mercury and other stable metal(loid)s has shown temporal variation, but without an obvious trend. The found spatial differences in soil and earthworms were based on the differing soil characteristics of the sampled locations and exceeded the maximal allowable concentration of arsenic and zinc for agricultural soil. The status of essential copper, selenium, and zinc in cows, hares, and pheasants inclined towards deficiency. The measured stable metal(loid) levels in soil and animal samples were generally in the same range of values reported in earlier decades from the same area or non-polluted areas across Europe. The consumption of local cow and game products (e.g., milk, meat) can be considered safe for human health, although game offal is advised to be avoided as a food item due to the low risk of lead and cadmium's adverse effects. Although the activity concentrations of some radionuclides in moss were higher than reported for pristine areas, transfer from soil to moss was assessed as average (except for lead-210). Radiological risk to human and biota around the gas treatment plant Molve was estimated as negligible.
Collapse
Affiliation(s)
- Maja Lazarus
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000, Zagreb, Croatia.
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000, Zagreb, Croatia
| | - Ankica Sekovanić
- Radiation Protection Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000, Zagreb, Croatia
| | - Božena Skoko
- Radiation Protection Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000, Zagreb, Croatia
| | - Branko Petrinec
- Radiation Protection Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000, Zagreb, Croatia
| | - Željka Zgorelec
- Department of General Agronomy, Division of Agroecology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - Ivica Kisić
- Department of General Agronomy, Division of Agroecology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000, Zagreb, Croatia
| | - Andreja Prevendar Crnić
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska c. 2, 10000, Zagreb, Croatia
| | - Emil Srebočan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia
| |
Collapse
|
45
|
Udhayakumari D. Review on fluorescent sensors-based environmentally related toxic mercury ion detection. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01138-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Campeau A, Eklöf K, Soerensen AL, Åkerblom S, Yuan S, Hintelmann H, Bieroza M, Köhler S, Zdanowicz C. Sources of riverine mercury across the Mackenzie River Basin; inferences from a combined HgC isotopes and optical properties approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150808. [PMID: 34637879 DOI: 10.1016/j.scitotenv.2021.150808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The Arctic environment harbors a complex mosaic of mercury (Hg) and carbon (C) reservoirs, some of which are rapidly destabilizing in response to climate warming. The sources of riverine Hg across the Mackenzie River basin (MRB) are uncertain, which leads to a poor understanding of potential future release. Measurements of dissolved and particulate mercury (DHg, PHg) and carbon (DOC, POC) concentration were performed, along with analyses of Hg stable isotope ratios (incl. ∆199Hg, δ202Hg), radiocarbon content (∆14C) and optical properties of DOC of river water. Isotopic ratios of Hg revealed a closer association to terrestrial Hg reservoirs for the particulate fraction, while the dissolved fraction was more closely associated with atmospheric deposition sources of shorter turnover time. There was a positive correlation between the ∆14C-OC and riverine Hg concentration for both particulate and dissolved fractions, indicating that waters transporting older-OC (14C-depleted) also contained higher levels of Hg. In the dissolved fraction, older DOC was also associated with higher molecular weight, aromaticity and humic content, which are likely associated with higher Hg-binding potential. Riverine PHg concentration increased with turbidity and SO4 concentration. There were large contrasts in Hg concentration and OC age and quality among the mountain and lowland sectors of the MRB, which likely reflect the spatial distribution of various terrestrial Hg and OC reservoirs, including weathering of sulfate minerals, erosion and extraction of coal deposits, thawing permafrost, forest fires, peatlands, and forests. Results revealed major differences in the sources of particulate and dissolved riverine Hg, but nonetheless a common positive association with older riverine OC. These findings reveal that a complex mixture of Hg sources, supplied across the MRB, will contribute to future trends in Hg export to the Arctic Ocean under rapid environmental changes.
Collapse
Affiliation(s)
- Audrey Campeau
- Department of Earth Sciences, Uppsala University, Sweden; Depatment of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Sweden
| | - Staffan Åkerblom
- Statistiska centralbyrån (SCB), Statistic Sweden, Stockholm, Sweden
| | - Shengliu Yuan
- Water Quality Center, Trent University, Peterborough, Ontario, Canada
| | - Holger Hintelmann
- Water Quality Center, Trent University, Peterborough, Ontario, Canada
| | - Magdalena Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stephan Köhler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
47
|
Li X, Wang X, Yuan W, Lu Z, Wang D. Increase of litterfall mercury input and sequestration during decomposition with a montane elevation in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118449. [PMID: 34740733 DOI: 10.1016/j.envpol.2021.118449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Litterfall mercury (Hg) input has been regarded as the dominant Hg source in montane forest floor. To depict combining effects of vegetation, climate and topography on accumulation of Hg in montane forests, we comprehensively quantified litterfall Hg deposition and decomposition in a serial of subtropical forests along an elevation gradient on both leeward and windward slopes of Mt. Ailao, Southwest China. Results showed that the average litterfall Hg deposition increased from 12.0 ± 4.2 μg m-2 yr-1 in dry-hot valley shrub at 850-1000 m, 14.9 ± 6.8 μg m-2 yr-1 in mixed conifer-broadleaf forest at 1250-2400 m, to 23.1 ± 8.3 μg m-2 yr-1 in evergreen broadleaf forest at 2500-2650 m. Additionally, the windward slope forests had a significantly higher litterfall Hg depositions at the same altitude because the larger precipitation promoted the greater litterfall biomass production. The one-year litter Hg decomposition showed that the Hg mass of litter in dry-hot valley shrub decreased by 29%, while in mixed conifer-broadleaf and evergreen broadleaf forests increased by 22-48%. The dynamics of Hg in decomposing litter was controlled by the temperature mediated litter decomposition rate and the additional adsorption of environmental Hg during decomposition. Overall, our study highlights the litterfall mediated atmospheric mercury inputs and sequestration increase with the montane elevation, thus driving a Hg enhanced accumulation in the high montane forest.
Collapse
Affiliation(s)
- Xianming Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
48
|
Assessment of Mercury Concentrations and Fluxes Deposited from the Atmosphere on the Territory of the Yamal-Nenets Autonomous Area. ATMOSPHERE 2021. [DOI: 10.3390/atmos13010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The problem of mercury input and its further distribution in the Arctic environment is actively debated, especially in recent times, due to the observed processes of permafrost thawing causing the enhanced release of mercury into the Arctic atmosphere and further distribution in the terrestrial and aquatic ecosystem. The atmospheric mercury deposition occurs via dry deposition and wet scavenging by precipitation events. Here we present a study of Hg in wet precipitation on the remote territory of the Russian Arctic; the data were obtained at the monitoring stations Nadym and Salekhard in 2016–2018. Mercury pollution of the Salekhard atmosphere in cold time is mainly determined by regional and local sources, while in Nadym, long-range transport of mercury and local fuel combustion are the main sources of pollutants in the cold season, while internal regional sources have a greater impact on the warm season. Total mercury concentrations in wet precipitation in Nadym varied from <0.5 to 63.3 ng/L. The highest Hg concentrations in the springtime were most likely attributed to atmospheric mercury depletion events (AMDE). The contributions of wet atmospheric precipitation during the AMDE period to the annual Hg deposition were 16.7% and 9.8% in 2016/2017 and 2017/2018, respectively. The average annual volume-weighted Hg concentration (VWC) in the atmospheric precipitation in Nadym is notably higher than the values reported for the remote regions in the Arctic and comparable with the values obtained for the other urbanized regions of the world. Annual Hg fluxes in Nadym are nevertheless close to the average annual fluxes for remote territories of the Arctic zone and significantly lower than the annual fluxes reported for unpolluted sites of continental-scale monitoring networks of the different parts of the world (USA, Europe, and China). The increase of Hg deposition flux with wet precipitation in Nadym in 2018 might be caused by regional emissions of gas and oil combustion, wildfires, and Hg re-emission from soils due to the rising air temperature. The 37 cm increase of the seasonally thawed layer (STL) in 2018 compared to the 10-year average reflects that the climatic changes in the Nadym region might increase Hg(0) evasion, considering a great pool of Hg is contained in permafrost.
Collapse
|
49
|
de Bakker LB, Gasparinetti P, de Queiroz JM, de Vasconcellos ACS. Economic Impacts on Human Health Resulting from the Use of Mercury in the Illegal Gold Mining in the Brazilian Amazon: A Methodological Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211869. [PMID: 34831624 PMCID: PMC8622153 DOI: 10.3390/ijerph182211869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Artisanal small-scale gold mining (ASGM) in the Amazon results in the dumping of tons of mercury into the environment annually. Despite consensus on the impacts of mercury on human health, there are still unknowns regarding: (i) the extent to which mercury from ASGM can be dispersed in the environment until it becomes toxic to humans; and (ii) the economic value of losses caused by contamination becomes evident. The main objective of this study is to propose a methodology to evaluate the impacts of ASGM on human health in different contexts in the Brazilian Amazon. We connect several points in the literature based on hypotheses regarding mercury dispersion in water, its transformation into methylmercury, and absorption by fish and humans. This methodology can be used as a tool to estimate the extent of environmental damage caused by artisanal gold mining, the severity of damage to the health of individuals contaminated by mercury and, consequently, can contribute to the application of fines to environmental violators. The consequences of contamination are evaluated by dose-response functions relating to mercury concentrations in hair and the development of the following health outcomes: (i) mild mental retardation, (ii) acute myocardial infarction, and (iii) hypertension. From disability-adjusted life years and statistical life value, we found that the economic losses range from 100,000 to 400,000 USD per kilogram of gold extracted. A case study of the Yanomami indigenous land shows that the impacts of mercury from illegal gold mining in 2020 totaled 69 million USD, which could be used by local authorities to compensate the Yanomami people.
Collapse
Affiliation(s)
- Leonardo Barcellos de Bakker
- Leonardo B. Bakker Assessoria, São Clemente Street, Rio de Janeiro 254, Rio de Janeiro 22260-004, Brazil
- Correspondence:
| | - Pedro Gasparinetti
- Conservation Strategy Fund, Av. Churchill 129, Rio de Janeiro 20020-050, Brazil;
| | - Júlia Mello de Queiroz
- Julia Queiroz Consultoria Desenvolvimento Verde, Maria Angelica Street, Rio de Janeiro 382, Rio de Janeiro 22461-152, Brazil;
| | - Ana Claudia Santiago de Vasconcellos
- Laboratory of Professional Education in Health Surveillance, Joaquim Venâncio Polytechnic School of Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
50
|
Eklöf K, von Brömssen C, Amvrosiadi N, Fölster J, Wallin MB, Bishop K. Brownification on hold: What traditional analyses miss in extended surface water records. WATER RESEARCH 2021; 203:117544. [PMID: 34419921 DOI: 10.1016/j.watres.2021.117544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Widespread increases in organic matter (OM) content of surface waters, as measured by color and organic carbon (OC), are a major issue for aquatic ecosystems. Long-term monitoring programs revealed the issue of "brownification", with climate change, land cover changes and recovery from acidification all suspected to be major drivers or contributing factors. While many studies have focused on the impact and drivers, fewer have followed up on whether brownification is continuing. As time-series of OM data lengthen, conventional data-analysis approaches miss important information on when changes occur. To better identify temporal OM patterns during three decades (1990-2020) of systematic monitoring, we used generalized additive models to analyze 164 time-series from watercourses located across Sweden. Increases in OC that were widespread during 1990-2010 ceased a decade ago, and most color increases ceased 20 years ago. These findings highlight the need to reassess the understanding of brownification's spatial and temporal extent, as well as the tools used to analyze lengthening time series.
Collapse
Affiliation(s)
- Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden.
| | - Claudia von Brömssen
- Department of Energy and Technology, Applied Statistics and Mathematics, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Nino Amvrosiadi
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden; Department of Bioeconomy and Health, Research Institutes of Sweden, Uppsala SE-75651, Sweden
| | - Jens Fölster
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Marcus B Wallin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|