1
|
Lin X, Bao D, Sun Q, Feng Z, Hu X, Zhang X, Zhu Y. Optimization and validation of a multi-residue method for analyzing organic UV absorbers in human urine by UHPLC-MS/MS. Talanta 2025; 293:128031. [PMID: 40174365 DOI: 10.1016/j.talanta.2025.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Organic UV absorbers (OUVAs) have gained increasing public concern over the past several years due to their potential adverse effects on humans. The currently available methods for determining OUVAs in humans are typically designed to detect only a limited number of these compounds and lack sufficient sensitivity. In this study, we established a simple and sensitive analytical method that combines liquid-liquid extraction (LLE) with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the determination of 24 OUVAs and metabolites in human urine samples. This method efficiently analyzes a variety of OUVAs, including benzophenones, benzotriazoles, cinnamates, salicylates, camphor derivatives, triazines, dibenzoylmethane, and aminobenzoic acid derivative. Two extraction approaches, solid-phase extraction (SPE) and LLE, along with various extraction solvents and extraction times were investigated to optimize sample treatment with the aim of achieving high recoveries and minimizing matrix effects. The recoveries of 24 target analytes at three spiked levels (0.02, 0.5 and 2.5 ng/mL) ranged from 70.4 % to 130 %. The lower limits of quantification were 0.004 ng/mL to 0.028 ng/mL for benzophenones, 0.005 ng/mL to 0.012 ng/mL for benzotriazoles, 0.004 ng/mL to 0.026 ng/mL for cinnamates, 0.013 ng/mL to 0.031 ng/mL for salicylates, 0.003 ng/mL to 0.009 ng/mL for camphor derivatives, 0.01 ng/mL to 0.015 ng/mL for triazines, 0.006 ng/mL for dibenzoylmethane, and 0.017 ng/mL for aminobenzoic acid derivative. This is the first study to present a valuable method for the simultaneous determination of multiple urinary OUVAs using a single preprocessing method and dual injection. The analytical method was used for the analysis of OUVAs in 48 urine samples collected from healthy individuals. Eighteen OUVAs were detected, with detection rates ranging from 2.08 % to 100 %, indicating widespread exposure to these compounds among the Chinese population.
Collapse
Affiliation(s)
- Xiao Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Dejun Bao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Zhuangzhuang Feng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiaojian Hu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
2
|
Wu X, Zhou C, Wang J, Cao M, Wang L, Liang Y. Reproductive toxicity and parental transmission effects of 4-methylbenzylidene camphor (4-MBC) exposure in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107334. [PMID: 40157257 DOI: 10.1016/j.aquatox.2025.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/02/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
4-methylbenzylidene camphor (4-MBC), a commonly used UV absorber, is frequently detected in aquatic environment. So far the reproductive toxicity of parental 4-MBC exposure and its effects on gonadal development in offsprings are not clear. In the present study, male and female adult F0 zebrafish were exposed to 100 nM 4-MBC for 14 consecutive days. Our data showed that 4-MBC exposure resulted in gonadal damage in the parental gonads and decreased egg production in females and sperm viability in males. In addition, exposure to 4-MBC resulted in increased levels of estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) in females and decreased testosterone (T) in males, suggesting the estrogenic and antiandrogenic effects of 4-MBC. Parental 4-MBC exposure did not change the hatchability and mortality of the F1 generation, but caused significantly decreased heart rate and gonadal developmental retardation in 60 dpf fish by interfering with the HPG axis. Therefore, 4-MBC exposure to adult zebrafish caused gonadal damage and reduced reproductive performance in the parental generation, which was sex-dependent and caused intergenerational toxicity to the F1 generation. The present study provides new insights into the ecological risks of 4-MBC and its potential contribution to adverse reproductive outcomes in humans.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chenyu Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jing Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
3
|
Li J, Zhao C, Li J, Zheng D, Yang Q, Zhang P, Wang X, Xiao Y, Zhou Z, Cui E, Xie W. Spatial distribution and seasonal variations of typical UV filter and insect repellent personal care products in a coastal resort area in Qingdao, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 380:126574. [PMID: 40449712 DOI: 10.1016/j.envpol.2025.126574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/03/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
The occurrence, concentration, spatial distribution, seasonal variations, and ecotoxicological risks of six typical UV filter and insect repellent personal care products (PCPs) were evaluated in multiple environmental matrices (river/estuary/wetland water, seawater, beach sands, local WWTP water and sludges) in a coastal resort area in Qingdao, China. Target PCPs were widely detected, with significantly higher levels in the summer across all matrices. Insect repellents (max=841.49 ng/L for diethyltoluamide [DEET]) were typically found in higher concentrations in natural waters than UV filters (max=356.24 ng/L for octocrylene [OC]), with oxybenzone (BP3) present in trace levels (generally below 1 ng/L). Seawater exhibited low-level PCPs (mostly below 100 ng/L in total), while high concentrations found in several estuaries suggest potential direct input of relevant PCPs. All target PCPs were present in beach sands (below 50 ng/g dry weight for individual PCP). Natural/constructed wetlands showed minimal removal effects. Insect repellents, particularly DEET (13.97-919.69 ng/L), were abundant in wastewater treatment plant (WWTP) influents, while OC levels were high in sludges (max=3842.44 ng/g dry weight). Secondary biological treatment substantially removed PCPs despite increases in the primary aerated grit tank. Significant correlations (p<0.05) were found between various matrices, such as sands and adjacent seawater for OC, and WWTP water and sludge for 2-ethylhexyl 4-methoxycinnamate (EHMC). Ecotoxicological risk assessments revealed no-to-medium risks at most sites for individual PCPs, with higher risks in the summer; during this period, river/estuary waters demonstrated higher total risks than seawater, with beach-adjacent seawater showing elevated risks, and several estuaries showed greater risks than their upper reaches. The findings underscore the necessity for research on UV filter and insect repellent PCPs and their associated risks in coastal resort areas.
Collapse
Affiliation(s)
- Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chunyao Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jiajia Li
- Jining Institute for Food and Drug Control, Jining 272025, China
| | - Duan Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qinlin Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Peiyang Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Xiaoheng Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhenchao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Erping Cui
- Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China.
| |
Collapse
|
4
|
Gao M, Liu Y, Gao L, Weng J, Ai Q, Yang Q, Liu Y, Xu M, Zhao B, Zheng M. Human exposure and health risks to ultraviolet filters in personal care products marketed in China. ENVIRONMENTAL RESEARCH 2025; 279:121886. [PMID: 40383423 DOI: 10.1016/j.envres.2025.121886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/24/2025] [Accepted: 05/16/2025] [Indexed: 05/20/2025]
Abstract
Ultraviolet (UV) filters are emerging contaminants of great concern that are widely used in personal care products (PCPs). In this study, the concentrations of 15 UV filters in six types of PCP marketed in China were analyzed and the health risks posed by their internal and external exposure were evaluated. 2-ethylhexyl-4-methoxycinnamate (EHMC) presented the highest median concentration of 3150 ng/g in PCPs, followed by 2-ethylhexyl salicylate (109 ng/g) and octocrylene (OC, 95.1 ng/g). The total UV filter concentrations were considerably higher in sunscreens than other PCPs. Total external dermal exposure to UV filters in sunscreen was higher than the total estimated daily dietary intake of UV filters. A physiologically based toxicokinetic model to predict internal UV filter concentrations after sunscreen application for 1 d showed that EHMC had the highest predicted maximum concentration in venous blood at 0.0770 ng/mL, only one order of magnitude lower than the reference dose. The predicted maximum UV filter concentrations were higher for high-lipid-content tissues than venous blood, consistent with UV filters being lipophilic. OC, EHMC and homosalate made large contributions to the toxic activity assay results, and thus should receive more attention than other UV filters.
Collapse
Affiliation(s)
- Mengqi Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jiyuan Weng
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qiaofeng Ai
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qianling Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
5
|
Singh S, Mourya D, Patel SK, Shukla S, Kumar V, Kotian SY, Yadav AK, Pandey A, Dwivedi A, Tripathi A. Photoprotective efficacy of Sunset Yellow via inhibition of type-I and type-II pathway under exposure of sunlight. Photochem Photobiol 2025; 101:550-564. [PMID: 38899585 DOI: 10.1111/php.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
Exposure to phototoxicants and photosensitizers can result in the generation of reactive oxygen species (ROS), leading to oxidative stress, DNA damage, and various skin-related issues such as aging, allergies, and cancer. While several photo-protectants offer defense against ultraviolet radiation (UV-R), their effectiveness is often limited by photo-instability. Sunset Yellow (SY), an FDA-approved food dye, possesses significant UV-R and visible light absorption properties. However, its photoprotective potential has remained unexplored. Our investigation reveals that SY exhibits remarkable photostability for up to 8 h under both UV-R and sunlight. Notably, SY demonstrates the ability to quench ROS, including singlet oxygen (1O2), superoxide radicals (O 2 · - ), and hydroxyl radicals (·OH) induced by rose bengal, riboflavin and levofloxacin, respectively. Moreover, SY proves effective in protecting against the apoptotic and necrotic cell death induced by the phototoxicant chlorpromazine (CPZ) in HaCaT cells. Further, it was observed that SY imparts photoprotection by inhibiting intracellular ROS generation and calcium release. Genotoxicity evaluation provides additional evidence supporting SY's photoprotective effects against CPZ-induced DNA damage. In conclusion, these findings underscore the potential of SY as a promising photoprotective agent against the toxic hazards induced by phototoxicants, suggesting its prospective application in the formulation of broad-spectrum sunscreens.
Collapse
Affiliation(s)
- Saurabh Singh
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Durgesh Mourya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Drug and chemical toxicology group (FEST), CSIR- Indian Institute of Toxicology Research, Lucknow, India
| | - Sunil Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sachin Shukla
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vijay Kumar
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sumana Y Kotian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- ASSIST-group Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Akhilesh K Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- ASSIST-group Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Alok Pandey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Drug and chemical toxicology group (FEST), CSIR- Indian Institute of Toxicology Research, Lucknow, India
| | - Ashish Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
- Photobiology Laboratory, Drug and Chemical Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Anurag Tripathi
- Food Toxicology Group, CSIR- Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Gautam K, Singh S, Vamadevan B, Anbumani S. Molecular response of earthworm, Eisenia fetida to Oxybenzone (Benzophenone-3) exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179265. [PMID: 40158332 DOI: 10.1016/j.scitotenv.2025.179265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Benzophenone-type ultraviolet filters recently received significant attention to overlook regulatory agencies' safety potential due to their toxicological implications on humans and the environment. The present study has been carried out to explore the toxicity of Benzophenone-3 (BP-3) in earthworm Eisenia fetida. Low-level long-term exposure defiles earthworm health through elevated ROS and its detrimental impact on reproductive organs and reproduction. Based on KEGG and GO analysis, global transcriptomics reveals differentially expressed gene transcripts affecting key signaling pathways. Further validation by q-PCR showed significant upregulated expression of genes involved in stress (CuZn-SOD, CAT), metabolism (GST), reproduction and gametogenesis (ANN and Piwi-2), and endocrine (EcR) functions. Interestingly, lower concentrations of BP-3 are biologically effective in exhibiting a non-linear concentration-response pattern towards the expression of reproduction and endocrine function genes. In addition, BP-3, through soil exposure, significantly alters the gut microbiome by inducing changes in bacterial diversity, while fungal diversity remains unaffected. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes have significantly affected phyla, whereas Ascomycota and Basidiomycota remain dominant, suggesting their potential role in metabolizing or tolerating the BP-3 contamination. The findings highlight the molecular consequences of BP-3 exposure in earthworms and indicate the broader environmental impacts of benzophenone-type organic UV filters on terrestrial biota. The information could also be helpful for chemical risk assessment in soil ecotoxicology.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukhveer Singh
- System Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; System Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India.
| |
Collapse
|
7
|
Payá-García M, Rodríguez-Muñiz GM, Moreno-Torres M, Moro E, Santos-Juanes L, Amat AM, Gil S, Castell JV, Lhiaubet-Vallet V, Miranda MA. The acyl glucuronide of 2-(4-diethylamino-2-hydroxybenzoyl)benzoic acid: Synthesis, structural assignment, occurrence as a human phase II metabolite of Uvinul® A Plus and acute aquatic toxicity. CHEMOSPHERE 2025; 376:144305. [PMID: 40088695 DOI: 10.1016/j.chemosphere.2025.144305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
This work was undertaken to address the potential environmental impact of the UVA filter Uvinul® A Plus (DHHB) upon its biotransformation in humans. For this purpose, the putative human metabolite 3 was prepared by a three-step synthetic sequence involving the initial Koenigs-Knorr reaction of 2-(4-diethylamino-2-hydroxybenzoyl)benzoic acid (DHB) with acetobromo-α-d-glucuronic acid methyl ester, which afforded the corresponding peracetylated DHB-acyl glucuronide (1). Subsequent enzymatic deprotection with amano lipase A (LAS) led to the 2-(4-diethylamino-2-hydroxybenzoyl)benzoyl-β-D-glucuronide methyl ester (2). Final deprotection of compound 2 was achieved with porcine liver esterase (PLE), giving the target 2-(4-diethylamino-2-hydroxybenzoyl)benzoyl-β-D-glucuronide (3). The synthesized DHB-acyl glucuronide 3 was identical to the key phase II metabolite of DHHB in human hepatocytes. Acute toxicity of 2 and 3 was evaluated by means of the Aliivibrio fischeri bioluminescence inhibition assay, obtaining EC50 values of 22.1 mg L-1 and 105.1 mg L-1, respectively. According to the toxicity categories established by international consensus and considering that feasible concentrations of solar filters in aquatic ecosystems are several orders of magnitude lower, the glucuronide derivative of DHHB could in principle be considered as non-hazardous to the aquatic environment.
Collapse
Affiliation(s)
- María Payá-García
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022-Valencia, Spain
| | - Gemma M Rodríguez-Muñiz
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022-Valencia, Spain
| | - Marta Moreno-Torres
- Department Biochemistry & Molecular Biology, University of Valencia, 46010-Valencia, Spain; Experimental Hepatology Joint Research Unit, Instituto de Investigación Sanitaria Hospital La Fe (IIS La Fe), 46026-Valencia, Spain; CIBERehd, Instituto de Salud Carlos III (ISCIII), 28029-Madrid, Spain
| | - Erika Moro
- Department Biochemistry & Molecular Biology, University of Valencia, 46010-Valencia, Spain; Experimental Hepatology Joint Research Unit, Instituto de Investigación Sanitaria Hospital La Fe (IIS La Fe), 46026-Valencia, Spain
| | - Lucas Santos-Juanes
- Departamento de Ingeniería Textil y Papelera (DITEXPA), Universitat Politècnica de València, 03801-Alcoy, Spain
| | - Ana M Amat
- Departamento de Ingeniería Textil y Papelera (DITEXPA), Universitat Politècnica de València, 03801-Alcoy, Spain
| | - Salvador Gil
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain
| | - José V Castell
- Department Biochemistry & Molecular Biology, University of Valencia, 46010-Valencia, Spain; Experimental Hepatology Joint Research Unit, Instituto de Investigación Sanitaria Hospital La Fe (IIS La Fe), 46026-Valencia, Spain; CIBERehd, Instituto de Salud Carlos III (ISCIII), 28029-Madrid, Spain
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022-Valencia, Spain.
| | - Miguel A Miranda
- Instituto Universitario Mixto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022-Valencia, Spain.
| |
Collapse
|
8
|
Najafi A, Heidary M, Martinez RM, Baby AR, Morowvat MH. Microalgae-based sunscreens as green and sustainable cosmetic products. Int J Cosmet Sci 2025; 47:213-222. [PMID: 39295125 DOI: 10.1111/ics.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024]
Abstract
Recently, microalgal biotechnology has attained great acceptance among various researchers and industries for the green and sustainable production of different bioactive compounds. They provide multiple metabolites and molecules, making them an ideal candidate for cosmetic formulators and cosmeceutical companies. Nevertheless, numerous microalgae strains have never been studied for their pharmaceutical, nutritional and cosmeceutical purposes. Even less, only some have been cultivated on a large scale for bioactive compound production. Here, we have studied the cosmetic and cosmeceutical potentials of different microalgal strains for sunscreen as adjuvants and boosters in a green, carbon-neutral and sustainable platform. Other bioactive compounds were exploited, and the available products in the market and the published patents were also reviewed. From our review, it will be possible to combine the fundamental and practical aspects of microalgal biotechnology toward a greener and more sustainable future for the cosmetic/cosmeceutical areas of the photoprotection scenario.
Collapse
Affiliation(s)
- Asal Najafi
- Department of Pharmacology and Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobina Heidary
- Department of Pharmacology and Toxicology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mohammad Hossein Morowvat
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Sarti C, Falcon L, Cincinelli A, Martellini T, Chianella I. Development of molecularly imprinted polymer-based electrochemical sensors for the detection of UV filters in aquatic ecosystems. Talanta 2025; 285:127375. [PMID: 39671997 DOI: 10.1016/j.talanta.2024.127375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
The presence of organic UV filters (OUVAs) has been detected worldwide in aquatic ecosystems. These pollutants, originating from various anthropogenic sources, can persist and transform within wastewater treatment plants (WWTPs), posing a potential environmental hazard. In this framework, this research presents electrochemical sensors based on molecularly imprinted polymers (MIPs) for the selective detection of Benzophenone-3 (BP-3) and Octocrylene (OC), two of the OUVA most spread in the aquatic environment, to overcome the analytical challenges related to the quantification of this class of contaminants in wastewater samples. Key parameters, including the selection of the electropolymerization conditions, the template washing, polymer surface blocking, and analyte re-binding conditions, were optimized to maximize the selectivity and sensitivity. Electrochemical detection was performed using electrochemical impedance spectroscopy (EIS) supported by an electrochemical probe. In addition, cross-reactivity tests were carried out in the presence of possible interferents, selected based on their size, chemical structure, and occurrence in wastewater samples. The sensors demonstrated significant selectivity and sensitivity for the target analytes, with detection limits of 30 nM for BP-3 and 1 nM for OC, while tests on complex wastewater samples showed recovery rates of 77 % and 101 % for BP-3 and OC, respectively. The study yielded interesting results that could lead to a specific, cost-effective approach to enable widespread monitoring and support early detection of these increasingly relevant contaminants in wastewater samples.
Collapse
Affiliation(s)
- Chiara Sarti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Surface Engineering and Precision Centre, Faculty of Engineering and Applied Sciences, Cranfield University, MK43 0AL, Bedford, United Kingdom.
| | - Lea Falcon
- Surface Engineering and Precision Centre, Faculty of Engineering and Applied Sciences, Cranfield University, MK43 0AL, Bedford, United Kingdom
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA) unità locale Università degli Studi di Firenze, Via della Lastruccia, 3-13, 50019, Sesto Fiorentino, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Iva Chianella
- Surface Engineering and Precision Centre, Faculty of Engineering and Applied Sciences, Cranfield University, MK43 0AL, Bedford, United Kingdom
| |
Collapse
|
10
|
Verhagen R, Veal C, O’Malley E, Gallen M, Sturm K, Bartkow M, Kaserzon S. Impact of ultraviolet filters and polycyclic aromatic hydrocarbon from recreational activities on water reservoirs in southeast Queensland Australia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:674-682. [PMID: 39953706 PMCID: PMC11864206 DOI: 10.1093/etojnl/vgaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 02/17/2025]
Abstract
Water reservoirs and lakes are gaining popularity for recreation activities as populations increase and green spaces become in high demand. However, these activities may cause contamination to critical water resources. This study investigates the impact of recreational activities on the presence and concentration of polycyclic aromatic hydrocarbons (PAHs) and ultraviolet (UV) filters in drinking water reservoirs in Southeast Queensland, Australia. Polydimethylsiloxane passive samplers were used to monitor 14 lakes over a 3-year period, focusing on seasonal variations and the influence of recreational activities such as petrol-powered boating and swimming. A total of 15 PAHs and six UV filters were detected, with chrysene (97%) and octyl salicylate (34%) being the most prevalent PAH and UV filter, respectively. Polycyclic aromatic hydrocarbon levels were statistically significantly higher in lakes permitting petrol-powered boating, especially during summer (p = 0.005 to 0.05). Lake Maroon and Lake Moogerah were the only sites that showed significantly higher PAH levels in summer (3.9 ± 1.1 and 4.0 ± 1.2 ng L-1, respectively) than winter (1.6 ± 0.61 and 1.5 ± 0.84, respectively). Ultraviolet filters were generally detected in higher levels in lakes allowing swimming, with Lake Moogerah and Lake Sommerset measuring UV filter concentrations of 20 ± 4.1 and 20 ± 11 ng L-1 in summer, respectively. Other lakes that do not permit swimming, such as Lake Maroon and Lake Samsonvale, also exhibited elevated UV filter levels, suggesting illegal swimming. These findings highlight the complexity of PAH and UV filter presence, influenced by multiple factors including lake size, recreational activity type, and seasonal variations. The levels of individual PAHs and UV filters in this study were below established freshwater guidelines. However, when considering their bioaccumulation potential and mixture toxicity, mitigating the impact of these substances on our environment and the organisms within it should be of priority.
Collapse
Affiliation(s)
- Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, Australia
| | - Cameron Veal
- Seqwater, Ipswich, QLD, Australia
- School of Civil Engineering, The University of Queensland, St Lucia, QLD, Australia
| | - Elissa O’Malley
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD, Australia
| | - Michael Gallen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, Australia
| | | | | | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, Australia
- Queensland Public Health and Scientific Services Division, Queensland Health, Herston, QLD, Australia
| |
Collapse
|
11
|
Carneiro RB, Nika MC, Gil-Solsona R, Diamanti KS, Thomaidis NS, Corominas L, Gago-Ferrero P. A critical review of wastewater-based epidemiology as a tool to evaluate the unintentional human exposure to potentially harmful chemicals. Anal Bioanal Chem 2025; 417:495-511. [PMID: 39422714 PMCID: PMC11700037 DOI: 10.1007/s00216-024-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool to gather epidemiological insights at the community level, providing objective data on population exposure to harmful substances. A considerable portion of the human exposure to these potentially harmful chemicals occurs unintentionally, unlike substances such as pharmaceuticals, illicit drugs, or alcohol. In this context, this comprehensive review analyzes WBE studies focused on classes of organic chemicals to which humans are unintentionally exposed, namely organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFAS), benzotriazoles and benzothiazoles, phthalates and terephthalates, benzophenones, pesticides, bisphenols, and parabens. The review highlights some advantages of WBE for public health surveillance, e.g., non-invasive analysis, predictive capability, nearly real-time data, population-wide insights, no ethical approval, and unbiased sampling. It also discusses challenges and future research directions in WBE regarding exposure to harmful chemicals from various sources. The review emphasizes the critical role of wastewater sampling, sample preparation, quality control, and instrumental analysis in achieving accurate and reliable results. Furthermore, it examines the selection of human biomarkers for WBE studies and explores strategies to link WBE with human biomonitoring (HBM), which together enhance both the precision and effectiveness of exposure assessments.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Chromatography, São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| | - Maria-Christina Nika
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Rubén Gil-Solsona
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Konstantina S Diamanti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Lluís Corominas
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Catalonia, Spain
- University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Catalonia, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
12
|
Martinović M, Nešić I, Bojović D, Žugić A, Blagojević S, Blagojević S, Tadić VM. Plant-Based Sunscreen Emulgel: UV Boosting Effect of Bilberry and Green Tea NaDES Extracts. Gels 2024; 10:825. [PMID: 39727583 DOI: 10.3390/gels10120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Natural deep eutectic solvents (NaDES) were employed for the extraction of bilberry and green tea leaves. This study explored the incorporation of these NaDES extracts into various carrier systems: hydrogels, emulsions, and emulgels stabilized with hydroxyethyl cellulose or xanthan gum. The results demonstrated that, when combined with synthetic UV filters, the NaDES extracts significantly enhanced the SPF and improved the antioxidant properties of the formulation. Although NaDES extracts cannot fully replace synthetic UV filters (homosalate, ethylhexyl methoxycinnamate, and benzophenone-4), they can serve as effective UV boosters, significantly enhancing the SPFs of formulations containing UV filters. Hence, the SPF of the formulation could be improved without increasing the concentrations of synthetic filters. Moreover, NaDES extracts, unlike UV filters, significantly increased the antioxidant potential of the formulations. Among the carriers, hydrogels with xanthan gum and emulgels with hydroxyethyl cellulose achieved the highest SPFs when containing both NaDES extracts and synthetic filters. A texture analysis further revealed that the NaDES extracts positively impacted the mechanical properties of the formulations by increasing their cohesiveness, thus enhancing their physical stability under mechanical pressure. These findings pave the way for further research into NaDES-based formulations, including in vivo testing, to optimize and confirm their efficacy on human skin and validate NaDES extracts as eco-friendly ingredients in cosmetics, with antioxidant and UV boosting potential.
Collapse
Affiliation(s)
- Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Djindjića 81, 18108 Niš, Serbia
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Niš, Boulevard Dr. Zorana Djindjića 81, 18108 Niš, Serbia
| | - Dragica Bojović
- Faculty for Food Technology, Food Safety and Ecology, University of Donja Gorica, Oktoih 1, 20000 Podgorica, Montenegro
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research "Dr. Josif Pančić", Tadeuša Koscuška 1, 11000 Belgrade, Serbia
| | - Slavica Blagojević
- Department of Physical Chemistry and Instrumental Methods, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski Trg 12/V, 11158 Beograd, Serbia
| | - Vanja M Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research "Dr. Josif Pančić", Tadeuša Koscuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Sobańska AW, Sobański AM. Organic Sunscreens-Is Their Placenta Permeability the Only Issue Associated with Exposure During Pregnancy? In Silico Studies of Sunscreens' Placenta Permeability and Interactions with Selected Placental Enzymes. Molecules 2024; 29:5836. [PMID: 39769924 PMCID: PMC11728689 DOI: 10.3390/molecules29245836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
One of the functions of placenta is to protect the fetus against harmful xenobiotics. Protective mechanisms of placenta are based on enzymes, e.g., antioxidant enzymes from the glutathione S-transferases group (GST) or human N-acetyltransferase 2 (NAT2). Many organic sunscreens are known to cross biological barriers-they are detected in mother's milk, semen, umbilical cord blood or placental tissues. Some organic sunscreens are able to cross the placenta and to interfere with fetal development; they are known or suspected endocrine disruptors or neurotoxins. In this study, 16 organic sunscreens were investigated in the context of their placenta permeability and interactions with gluthatione S-transferase and human N-acetyltransferase 2 enzymes present in the human placenta. Binary permeability models based on discriminant analysis and artificial neural networks proved that the majority of studied compounds are likely to cross the placenta by passive diffusion. Molecular docking analysis suggested that some sunscreens show stronger affinity for glutathione S-transferase and human N-acetyltransferase 2 that native ligands (glutathione and Coenzyme A for GST and NAT2, respectively)-it is therefore possible that they are able to reduce the enzyme's protective activity. It was established that sunscreens bind to the studied enzymes mainly by alkyl, hydrogen bonds, van der Waals, π-π, π-alkyl and π-sulfur interactions. To conclude, sunscreens may become stressors affecting humans by different mechanisms and at different stages of development.
Collapse
Affiliation(s)
- Anna W. Sobańska
- Department of Analytical Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | | |
Collapse
|
14
|
Dai H, He S, Han J, Xing B. Mask Wearers at Risk of Inhaling Respirable Hazards from Leave-On Facial Cosmetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21464-21474. [PMID: 39602556 DOI: 10.1021/acs.est.4c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Previous research has widely overlooked the respiratory risks associated with cosmetic powder, a type of mixed particulate matter with intricate chemical compositions, especially in the context of wearing masks. This study investigated the inhalation risks posed by five face powders, focusing on both particulate matter (minerals and primary microplastics) and soluble components (preservatives and organic UV filters). Wearing masks significantly increased the inhalation risk of face powders, with exposure levels influenced by factors such as particle size, density, and composition. Additionally, different samples demonstrated irregular behavioral patterns when exposed to various human tissue environments. Soluble components analysis revealed that multiple additives dissolved in six body fluids, with a higher degree of release observed in the respiratory tract fluid compared to the digestive tract fluid. The alveoli may serve as a specific target for exposure to organic UV filters due to the solubilization effect of pulmonary surfactants. These findings revealed the importance of considering both particulate matter and soluble components when assessing respiratory and digestive exposure risks from cosmetic powders. Furthermore, understanding the interactions between cosmetic particles and body fluids, as well as potential synergistic toxic effects, is crucial for ensuring the safety of cosmetic products and safeguarding public health.
Collapse
Affiliation(s)
- Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan He
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
15
|
Gautam K, Anbumani S. Understudied and underestimated impacts of organic UV filters on terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176008. [PMID: 39236826 DOI: 10.1016/j.scitotenv.2024.176008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/28/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Organic UV filters (OUVFs) are vital components in various personal care products (PCPs) and commercial goods, with the annual consumption estimated at 10,000 tons. Consequently, the unavoidable use of OUVFs in PCPs and other unregulated commercial applications could present a considerable risk to human and environmental health. These chemical entities enter terrestrial ecosystems through wastewater discharge, agriculture, atmospheric deposition, and recreational activities. Compared to aqueous ecosystems, the effects of OUVFs on terrestrial environments should be more studied and potentially underestimated. The present review addresses the abovementioned gap by summarizing 189 studies conducted between 2006 and 2024, focusing on the analytical measures, occurrence, and ecotoxicological effects of OUVFs on terrestrial ecosystems. These studies underscore the harmful effects of certain OUVFs on the development, reproduction, and endocrine systems of terrestrial organisms, highlighting the necessity for comprehensive toxicological assessments to understand their impacts on non-target species in terrestrial ecosystems. Besides, by underscoring the ecological effects of OUVFs, this review aims to guide future research and inform regulatory measures to mitigate the risks posed by these widespread contaminants. Meanwhile, interdisciplinary research is essential, integrating environmental science, toxicology, ecology, and chemistry to tackle OUVF challenges in terrestrial ecosystems.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Sobańska AW, Banerjee A, Roy K. Organic Sunscreens and Their Products of Degradation in Biotic and Abiotic Conditions-In Silico Studies of Drug-Likeness and Human Placental Transport. Int J Mol Sci 2024; 25:12373. [PMID: 39596438 PMCID: PMC11595199 DOI: 10.3390/ijms252212373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
A total of 16 organic sunscreens and over 160 products of their degradation in biotic and abiotic conditions were investigated in the context of their safety during pregnancy. Drug-likeness and the ability of the studied compounds to be absorbed from the gastrointestinal tract and cross the human placenta were predicted in silico using the SwissADME software (for drug-likeness and oral absorption) and multiple linear regression and "ARKA" models (for placenta permeability expressed as fetus-to-mother blood concentration in the state of equilibrium), with the latter outperforming the MLR models. It was established that most of the studied compounds can be absorbed from the gastrointestinal tract. The drug-likeness of the studied compounds (expressed as a binary descriptor, Lipinski) is closely related to their ability to cross the placenta (most likely by a passive diffusion mechanism). The organic sunscreens and their degradation products are likely to cross the placenta, except for very bulky and highly lipophilic 1,3,5-triazine derivatives; an avobenzone degradation product, 1,2-bis(4-tert-butylphenyl)ethane-1,2-dione; diethylamino hydroxybenzoyl hexyl benzoate; and dimerization products of sunscreens from the 4-methoxycinnamate group.
Collapse
Affiliation(s)
- Anna W. Sobańska
- Department of Analytical Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Arkaprava Banerjee
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| |
Collapse
|
17
|
Zhang Y, Chang F, Junaid M, Ju H, Qin Y, Yin L, Liu J, Zhang J, Diao X. Distribution, sources, ecological and human health risks of organic ultraviolet filters in coastal waters and beach deposits in Hainan, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124610. [PMID: 39053805 DOI: 10.1016/j.envpol.2024.124610] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Organic ultraviolet filters (OUVFs) are extensively incorporated into both cosmetic items and industrial products and have been commonly found in water ecosystems. This study aims to examine the environmental levels, sources, ecological and human health risks of 14 commonly used OUVFs both in coastal water and beach deposit samples collected from the nearshore regions of Hainan Island and the South China Sea. This is first study highlighting the contamination of OUVFs in Hainan Island and utilizing economic and tourism data to confirm the potential source of OUVF pollution in costal aquatic and coastal ecosystem. Along the coastal tourist regions of Hainan Island, the median concentrations in coastal waters and beach deposits of these OUVFs fall within the range from 1.2 to 53.2 ng/L and 0.2-17.0 ng/g dw, respectively. In coastal water and beach deposit, the concentration of BP-3 was the highest, with median concentrations of 53.2 ng/L and 17.0 ng/g dw, respectively. Regarding human health risks, the daily intake of all 14 OUVFs through swimming was found to be 40-48 ng/kg/day. Ecological risk assessment indicates that BP-3 presents a medium risk for marine microalgae with a concurrent low risk for corals. The correlation analysis underscores a substantial interrelation of OUVFs in both coastal waters and beach deposits with various economic indicators, including annual rainfall, overnight tourists, total hotel rooms (unit), room occupancy rate, and sewage treatment capacity.
Collapse
Affiliation(s)
- Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Fengtong Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Hanye Ju
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Lianzheng Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jin Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; College of Life Science, Hainan Normal University, Haikou, 571158, China
| | - Xiaoping Diao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
18
|
Kuhlmann L, Göen T, Hiller J. Toxicokinetics of 2-ethylhexyl salicylate (EHS) and its seven metabolites in humans after controlled single dermal exposure to EHS. Arch Toxicol 2024; 98:3259-3268. [PMID: 39134695 PMCID: PMC11402844 DOI: 10.1007/s00204-024-03827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/24/2024] [Indexed: 09/17/2024]
Abstract
The chemical UV filter 2-ethylhexyl salicylate (EHS) is used in various personal-care products. The dermal and oral metabolism of EHS have already been targeted by different studies. However, toxicokinetic data after a single dermal exposure to EHS was missing. In our study, three volunteers were dermally exposed to a commercial EHS-containing sunscreen for 9 h with an application dose of 2 mg sunscreen per cm2 body surface area. The exposure was performed indoors, and sunscreen was applied on about 75% of the total skin area. Complete urine voids were collected over 72 h and eight blood samples were drawn from each subject. Urine samples were analyzed for EHS and seven known metabolites (5OH-EHS, 4OH-EHS, 2OH-EHS, 6OH-EHS, 4oxo-EHS, 5oxo-EHS, and 5cx-EPS) by online-SPE UPLC MS/MS. The peaks of urinary elimination occurred 10-11 h after application. The elimination half-lives (Phase 1) were between 6.6 and 9.7 h. The dominant urinary biomarkers were EHS itself, followed by 5OH-EHS, 5cx-EPS, 5oxo-EHS, and 4OH-EHS. 2OH-EHS, 6OH-EHS, and 4oxo-EHS were detected only in minor amounts. An enhanced analysis of conjugation species revealed marginal amounts of unconjugated metabolites and up to 40% share of sulfate conjugates for 5OH-EHS, 5oxo-EHS, and 5cx-EPS. The results demonstrated a delayed systemic resorption of EHS via the dermal route. Despite an extensive metabolism, the parent compound occurred as main urinary parameter. The delayed dermal resorption as well as the slow elimination of EHS indicate an accumulation up to toxicological relevant doses during daily repeated dermal application to large skin areas.
Collapse
Affiliation(s)
- Laura Kuhlmann
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Thomas Göen
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Julia Hiller
- Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 9-11, 91054, Erlangen, Germany.
| |
Collapse
|
19
|
Singer DL, MacManus-Spencer LA. Quantifying the sediment sorption of organic ultraviolet filter chemicals using solvophobic theory. CHEMOSPHERE 2024; 366:143446. [PMID: 39384137 DOI: 10.1016/j.chemosphere.2024.143446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Hydrophobic organic chemicals (HOCs) that enter the aquatic environment often negatively impact organisms, endangering aquatic biodiversity. Understanding sediment sorption equilibria for these chemicals can properly direct mitigation efforts. In addition, many HOCs of environmental concern lack sufficient environmental fate data to adequately assess their risk to ecosystems and humans. In this study, a sorption method addressing solvophobic effects was used to quantify the sorption of an HOC of current environmental concern, OD-PABA (padimate O, 2-ethylhexyl-4-(dimethylamino)benzoate), to a variety of sediments. OD-PABA is an organic ultraviolet filter chemical used in commercial sun protection products; it has been shown to exhibit cytotoxic effects and is known to photochemically transform under natural sunlight conditions. Given its commercial use, it enters the aquatic environment via recreational use and wastewater treatment plant effluent. OD-PABA is strongly hydrophobic; to mitigate the adsorption of OD-PABA to the container walls during sorption experiments, a precise concentration of methanol was used to avoid solvophobic effects. This sorption method was used to determine the sorption capacities for OD-PABA of four sediment samples, each with unique geochemical characteristics. Sediment-water distribution coefficients (Kd) were quantified and were normalized to various sediment characteristics to assess the main driving force(s) for sorption of OD-PABA. Organic carbon content was found to be a main driving force, with organic carbon-normalized distribution coefficients (log Koc) ranging from 4.4 to 4.6 for sediments with total organic carbon (TOC) > 10%); the clay fraction was also found to be important, especially for sediments with low TOC. The sorption of para-aminobenzoic acid (PABA), a water-soluble analog of OD-PABA was also investigated to assess the experimental approach, yielding a log Koc of 2.1 for the sediment with the greatest TOC.
Collapse
Affiliation(s)
- Daniel L Singer
- Department of Chemistry, Union College, Schenectady, NY 12308, USA.
| | | |
Collapse
|
20
|
Ju YR, Su CR, Chen CF, Shih CF, Gu LS. Single and mixture toxicity of benzophenone-3 and its metabolites on Daphnia magna. CHEMOSPHERE 2024; 366:143536. [PMID: 39419330 DOI: 10.1016/j.chemosphere.2024.143536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Benzophenone-3 (BP-3) is one of the organic ultraviolet (UV) filters widely used in personal care products, resulting in its ubiquitous occurrence in aquatic systems. This study discovered the potential risks of benzophenone-3 and its metabolites (BP-1 and BP-8) in aquatic environments. This study investigated the toxicity of three single BPs and their mixtures' effects on the survival of Daphnia magna. All three BP types were found to have toxic effects on D. magna, with median effective concentration (EC50) values of 22.55 mg/L for BP-1, 1.89 mg/L for BP-3, and 2.36 mg/L for BP-8, after 48 h of exposure. When the three BPs were binary and ternary mixtures, the EC50 values fell within 2.74-32.26 mg/L. Binary and tertiary mixtures of the three BPs indicated no strong synergistic or antagonistic effects. The mixture toxicity predictions using the classical mixture concept of concentration addition and measured toxicity data showed good predictability. The ecological risks of BPs were assessed using the maximum measured environmental concentrations of BPs collected from a river in Taiwan, divided by their respective predicted no-effect concentration (PNEC) values derived from the assessment factor (AF) method. The result showed a low ecological risk for the sum of three BPs. However, BP-3 had the highest potential risk, while BP-1 was the lowest among the three BPs. Therefore, BP-3 should pay attention to long-term environmental monitoring and management. This study provides valuable information for establishing scientifically-based water quality criteria for BPs and evaluating and managing the potential risk of BPs in the aquatic environment.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan.
| | - Chang-Rui Su
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Cheng-Fu Shih
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Li-Siang Gu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| |
Collapse
|
21
|
Venezia V, Pota G, Argenziano R, Alfieri ML, Moccia F, Ferrara F, Pecorelli A, Esposito R, Di Girolamo R, D'Errico G, Valacchi G, Luciani G, Panzella L, Napolitano A. Design of a hybrid nanoscaled skin photoprotector by boosting the antioxidant properties of food waste-derived lignin through molecular combination with TiO 2 nanoparticles. Int J Biol Macromol 2024; 280:135946. [PMID: 39332570 DOI: 10.1016/j.ijbiomac.2024.135946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
TiO2 nanoparticles loaded with pistachio shell lignin (8 % and 29 % w/w) were prepared by a hydrothermal wet chemistry approach. The efficient interaction at the molecular level of the biomacromolecule and inorganic component was demonstrated by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Visible (UV-Vis), Fourier transform infrared (FT-IR), dynamic light scattering (DLS), and electron paramagnetic resonance (EPR) analysis. The synergistic combination of lignin and TiO2 nanoparticles played a key role in the functional properties of the hybrid material, which exhibited boosted features compared to the separate organic and inorganic phase. In particular, the hybrid TiO2-lignin nanoparticles showed a broader UV-Vis protection range and remarkable antioxidant performance in aqueous media. They could also better protect human skin explants from the DNA damaging effect of UV radiations compared to TiO2 as indicated by lower levels of p-H2A.X, a marker of DNA damage, at 6 h from exposure. In addition, the samples could protect the skin against the structural damage occurring 24 h post UV radiations by preventing the loss of keratin 10. These results open new perspectives in the exploitation of food-waste derived phenolic polymers for the design of efficient antioxidant materials for skin photoprotection in a circular economy perspective.
Collapse
Affiliation(s)
- Virginia Venezia
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy
| | - Giulio Pota
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Rita Argenziano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy
| | - Rodolfo Esposito
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Borsari 46, I-44121 Ferrara, Italy; Plants for Human Health Institute, NC Research Campus, NC State University, 600 Laureate Wy., Kannapolis, NC 28081, USA; Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy.
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy
| |
Collapse
|
22
|
Yang F, Yuan T, Ao J, Gao L, Shen Z, Zhou J, Wang B, Pan X. Human exposure risk of organic UV filters: A comprehensive analysis based on primary exposure pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116800. [PMID: 39096691 DOI: 10.1016/j.ecoenv.2024.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
The exposure of organic UV filters has been increasingly confirmed to induce adverse effects on humans. However, the critical exposure pathway and the vulnerable population of organic UV filters are not clearly identified. This paper attempts to evaluate the health risk of commonly used organic UV filters from various exposure routes based on comprehensive analysis strategy. The estimated daily intakes (EDI) and hazard quotient (HQ) values of organic UV filters through four pathways (dermal exposure, indoor dust, indoor air, and drinking water) for various age groups were determined. Although the total HQ values (0.01-0.4) from comprehensive exposure of organic UV filters were below risk threshold (1.0), infants were identified as the most vulnerable population, with EDI (75.71 ng/kg-bw/day) of 2-3 times higher than that of adults. Additionally, the total EDI values of individual exposure pathways were estimated and ranked as follows: indoor air (138.44 ng/kg-bw/day) > sunscreen application (37.2 ng/kg-bw/day) > drinking water (21.87 ng/kg-bw/day) > indoor dust (9.24 ng/kg-bw/day). Moreover, we successfully tailored the Sankey diagram to depict the EDI proportion of individual organic UV filters from four exposure pathways. It was noted that EHMC (ethylhexyl methoxycinnamate) and EHS (ethylhexyl salicylate) dominated the contribution of EDI (72 %) via indoor air exposure routes. This study serves as a crucial reference for enhancing public health risk awareness concerning organic UV filters, with a special focus on the vulnerable populations such as infants and children.
Collapse
Affiliation(s)
- Fan Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201100, China.
| | - Junjie Ao
- Xinhua Hospital affiliated to Shanghai Jiao Tong University, Shanghai 201100, China
| | - Li Gao
- School of Resource and Environment, Ningxia University, Yinchuan 750021, China
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201100, China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| | - Jinyang Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Beili Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201100, China
| | - Xiaolei Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201100, China
| |
Collapse
|
23
|
Hrabáková K, Hložek T, Bosáková Z, Tůma P. Hydrophobic eutectic solvents for surface water treatment with a focus on benzophenone type UV filters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116528. [PMID: 38820821 DOI: 10.1016/j.ecoenv.2024.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Effective removal of organic UV filters from aquatic environmental compartments and swimming waters is very important because these substances are hazardous to humans and wildlife at low concentrations and act as endocrine disruptors. Therefore, the aim of the present article is to determine the extraction efficiencies of hydrophobic deep eutectic solvents (HDES) for the selected UV filters based on benzophenone structure (benzophenone, 2,4-dihydroxybenzophenone, 2,2´,4,4´-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2´-dihydroxy-4-methoxybenzophenone, 4-methacryloxy-2-hydroxybenzophenone) from aqueous matrices. For this purpose, six HDESs based on dl-menthol in combination with caprylic, decanoic and lauric acid are prepared and compared with referent terpene solvents such as terpineol and linalool. The effect of various parameters such as HDES composition, volume ratio, frequency and shaking time are studied. The highest extraction efficiency is shown by HDES of menthol:caprylic acid (1:1) composition at the aqueous:organic phase volume ratio of 1:1, shaking frequency of 1500 rpm and shaking time of 15 min. The achieved extraction efficiencies are higher than 99.6 % for all benzophenones studied in the purification of stagnant pond water, swimming pool water and river water samples. After a simple and fast sample treatment, the residual levels of benzophenones in the waters are controlled by a newly developed sensitive HPLC-MS/MS method with LOQs in the range of 0.7 - 5.0 ng/mL.
Collapse
Affiliation(s)
- Kateřina Hrabáková
- Charles University, Faculty of Science, Department of Analytical Chemistry, Albertov 6, Prague 2 128 43, Czech Republic
| | - Tomáš Hložek
- Charles University, Third Faculty of Medicine, Department of Hygiene, Ruská 87, Prague 10 100 00, Czech Republic
| | - Zuzana Bosáková
- Charles University, Faculty of Science, Department of Analytical Chemistry, Albertov 6, Prague 2 128 43, Czech Republic.
| | - Petr Tůma
- Charles University, Third Faculty of Medicine, Department of Hygiene, Ruská 87, Prague 10 100 00, Czech Republic.
| |
Collapse
|
24
|
Pellacani G, Lim HW, Stockfleth E, Sibaud V, Brugués AO, Saint Aroman M. Photoprotection: Current developments and controversies. J Eur Acad Dermatol Venereol 2024; 38 Suppl 5:12-20. [PMID: 38924160 DOI: 10.1111/jdv.19677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/16/2023] [Indexed: 06/28/2024]
Abstract
This review aimed at summarizing some of the key points that were discussed during the photoprotection session at the International Forum of Dermatology in 2022. This international conference was designed to address prominent topics of clinical dermatology in a holistic way, allowing to articulate multiple viewpoints. Therefore, this review does not claim to be exhaustive, but is instead intended to give an overview of recent developments and ongoing controversies in the field of photoprotection. Cumulative ultraviolet radiation (UVR) exposure is the major aetiological factor in the development of photoageing, photoimunosuppression and photocarcinogenesis. UVA (320-400 nm) penetrates into the dermis and damages DNA and other intracellular and acellular targets primarily by generating reactive oxygen species (ROS). It is the major contributor to photoageing, characterized by fine and coarse wrinkles, dyspigmentation and loss of elasticity. UVB (290-320 nm) is responsible for sunburns through direct damage to DNA by the formation of 6-4 cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts. Both UVA and UVB exposure increase the risk of basal cell carcinoma, squamous cell carcinoma and melanoma. In recent years, visible light (VL; 400-700 nm) has also been implicated in the exacerbation of conditions aggravated by sun exposure such as hyperpigmentation and melasma. Photoprotection is a critical health strategy to reduce the deleterious effects of UVR and VL. Comprehensive photoprotection strategies include staying in the shade when outdoors, wearing photoprotective clothing including a wide-brimmed hat, and sunglasses, and the use of sunscreen. Due to the absorption of UV filters, the safety of sunscreens has been questioned. Newer sunscreens are becoming available with filters with absorption even beyond the UV spectrum, offering enhanced protection compared with older products. Prevention of photocarcinogenesis, sun-induced or sunlight-exacerbated hyperpigmentary conditions and drug-induced photosensitivity is an important reason for adopting comprehensive photoprotection strategies.
Collapse
Affiliation(s)
| | - Henry W Lim
- Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| | - Eggert Stockfleth
- Klinik für Dermatologie, Venerologie und Allergologie, St. Josef-Hospital, Ruhr-Universität Bochum, Bochum, Germany
| | - Vincent Sibaud
- Department of Oncodermatology, Claudius Regaud Institute and University Cancer Institute Toulouse Oncopole, Toulouse, France
| | - Ariadna Ortiz Brugués
- Department of Oncodermatology, Claudius Regaud Institute and University Cancer Institute Toulouse Oncopole, Toulouse, France
- Laboratoires Dermatologiques Avène, Pierre Fabre Dermo-Cosmétique, Les Cauquillous, Lavaur, France
| | - Markéta Saint Aroman
- Medical Direction Dermo-Cosmétique & Personal Care, Pierre Fabre Group, Toulouse, France
| |
Collapse
|
25
|
Rafeletou A, Niemi JVL, Lagunas-Rangel FA, Liu W, Kudłak B, Schiöth HB. The exposure to UV filters: Prevalence, effects, possible molecular mechanisms of action and interactions within mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:170999. [PMID: 38458461 DOI: 10.1016/j.scitotenv.2024.170999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Substances that can absorb sunlight and harmful UV radiation such as organic UV filters are widely used in cosmetics and other personal care products. Since humans use a wide variety of chemicals for multiple purposes it is common for UV filters to co-occur with other substances either in human originating specimens or in the environment. There is increasing interest in understanding such co-occurrence in form of potential synergy, antagonist, or additive effects of biological systems. This review focuses on the collection of data about the simultaneous occurrence of UV filters oxybenzone (OXYB), ethylexyl-methoxycinnamate (EMC) and 4-methylbenzylidene camphor (4-MBC) as well as other classes of chemicals (such as pesticides, bisphenols, and parabens) to understand better any such interactions considering synergy, additive effect and antagonism. Our analysis identified >20 different confirmed synergies in 11 papers involving 16 compounds. We also highlight pathways (such as transcriptional activation of estrogen receptor, promotion of estradiol synthesis, hypothalamic-pituitary-gonadal (HPG) axis, and upregulation of thyroid-hormone synthesis) and proteins (such as Membrane Associated Progesterone Receptor (MAPR), cytochrome P450, and heat shock protein 70 (Hsp70)) that can act as important key nodes for such potential interactions. This article aims to provide insight into the molecular mechanisms on how commonly used UV filters act and may interact with other chemicals.
Collapse
Affiliation(s)
- Alexandra Rafeletou
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jenni Viivi Linnea Niemi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
26
|
Yu Q, Wang G, Shao Z, Sun Y, Yang Z. Changes in life history parameters and expression of key genes of Brachionus plicatilis exposed to a combination of organic and inorganic ultraviolet filters. CHEMOSPHERE 2024; 358:142213. [PMID: 38697570 DOI: 10.1016/j.chemosphere.2024.142213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The increasing use of ultraviolet filters has become an emerging contaminant on the coast, posing potential ecological risks. Rotifers are essential components of marine ecosystems, serving as an association between primary producers and higher-level consumers. These organisms frequently encounter ultraviolet filters in coastal waters. This study aimed to assess the comprehensive effects of organic ultraviolet filters, specifically 2-ethylhexyl-4-methoxycinnamate (EHMC), and inorganic ultraviolet filters, namely, titanium dioxide nanoparticles (TiO2 NPs), on the rotifer Brachionus plicatilis. We exposed B. plicatilis to multiple combinations of different concentrations of EHMC and TiO2 NPs to observe changes in life history parameters and the expression of genes related to reproduction and antioxidant responses. Our findings indicated that increased EHMC concentrations significantly delayed the age at first reproduction, reduced the total offspring, and led to considerable alterations in the expression of genes associated with reproduction and stress. Exposure to TiO2 NPs resulted in earlier reproduction and decreased total offspring, although these changes were not synchronised in gene expression. The two ultraviolet filters had a significant interaction on the age at first reproduction and the total offspring of rotifer, with these interactions extending to the first generation. This research offers new insights into the comprehensive effects of different types of ultraviolet filters on rotifers by examining life history parameters and gene expression related to reproduction and stress, highlighting the importance of understanding the impacts of sunscreen products on zooplankton health.
Collapse
Affiliation(s)
- Qingqing Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Gongyuan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhihao Shao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
27
|
Bruhns T, Sánchez-Girón Barba C, König L, Timm S, Fisch K, Sokolova IM. Combined effects of organic and mineral UV-filters on the lugworm Arenicola marina. CHEMOSPHERE 2024; 358:142184. [PMID: 38697569 DOI: 10.1016/j.chemosphere.2024.142184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Pollution from personal care products, such as UV-filters like avobenzone and nano-zinc oxide (nZnO), poses a growing threat to marine ecosystems. To better understand this hazard, especially for lesser-studied sediment-dwelling marine organisms, we investigated the physiological impacts of simultaneous exposure to nZnO and avobenzone on the lugworm Arenicola marina. Lugworms were exposed to nZnO, avobenzone, or their combination for three weeks. We assessed pollutant-induced metabolic changes by measuring key metabolic intermediates in the body wall and coelomic fluid, and oxidative stress by analyzing antioxidant levels and oxidative lesions in proteins and lipids of the body wall. Exposure to UV filters resulted in shifts in the concentrations of Krebs' cycle and urea cycle intermediates, as well as alterations in certain amino acids in the body wall and coelomic fluid of the lugworms. Pathway enrichment analyses revealed that nZnO induced more pronounced metabolic shifts compared to avobenzone or their combination. Exposure to avobenzone or nZnO alone prompted an increase in tissue antioxidant capacity, indicating a compensatory response to restore redox balance, which effectively prevented oxidative damage to proteins or lipids. However, co-exposure to nZnO and avobenzone suppressed superoxide dismutase and lead to accumulation of lipid peroxides and methionine sulfoxide, indicating oxidative stress and damage to lipids and proteins. Our findings highlight oxidative stress as a significant mechanism of toxicity for both nZnO and avobenzone, especially when combined, and underscores the importance of further investigating the fitness implications of oxidative stress induced by these common UV filters in benthic marine organisms.
Collapse
Affiliation(s)
- Torben Bruhns
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Candela Sánchez-Girón Barba
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany; Department of Life Sciences, Imperial College London, Exhibition Road SW7 2AZ London, United Kingdom
| | - Lilian König
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Stefan Timm
- Department of Plant Physiology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Kathrin Fisch
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Seestraße 15, 18119 Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Str. 21, 18059 Rostock, Germany.
| |
Collapse
|
28
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Exposure to UV-B filter octylmethoxycinnamate and human health effects: Focus on endocrine disruptor actions. CHEMOSPHERE 2024; 358:142218. [PMID: 38704047 DOI: 10.1016/j.chemosphere.2024.142218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Human skin is the first line of photoprotection against UV radiation. However, despite having its defence mechanisms, the photoprotection that the skin exerts is not enough. To protect human skin, the inclusion of UV filters in the cosmetic industry has grown significantly as a photoprotection strategy. Octylmethoxycinnamate, also designated by octinoxate, or 2-ethylhexyl-4-methoxycinnamate (CAS number: 5466-77-3) is one of the most widely used UV-B filter in the cosmetic industry. The toxic effects of OMC have alarmed the public, but there is still no consensus in the scientific community about its use. This article aims to provide an overview of the UV filters' photoprotection, emphasizing the OMC and the possible negative effects it may have on the public health. Moreover, the current legislation will be addressed. In summary, the recommendations should be rethought to assess their risk-benefit, since the existing literature warns us to endocrine-disrupting effects of OMC. Further studies should be focus on the toxicity of OMC alone, in mixture and should consider its degradation products, to improve the knowledge of its risk assessment as EDC.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
29
|
Popiół J, Gunia-Krzyżak A, Słoczyńska K, Piska K, Kocot N, Żelaszczyk D, Krupa A, Wójcik-Pszczoła K, Marona H, Pękala E. In vitro safety evaluation of (6-methoxy-9-oxo-9 H-xanthen-2-yl)methyl ( E)-3-(2,4-dimethoxyphenyl)acrylate (K-116) - the novel potential UV filter designed by means of a double chromophore strategy. Xenobiotica 2024; 54:266-278. [PMID: 38819995 DOI: 10.1080/00498254.2024.2363332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
The use of topical photoprotection is necessary to reduce adverse effects caused by excessive exposure to ultraviolet radiation. Despite the high standards set for UV filters, many of them may contribute to the occurrence of adverse effects. The newly synthesised compound K-116, the (E)-cinnamoyl xanthone derivative, could be an alternative. We conducted extended in vitro safety evaluation of compound K-116. The research included assessment of irritation potential on skin tissue, evaluation of penetration through the epidermis, and assessment of phototoxicity, and mutagenicity. Additionally, the eco-safety of compound K-116 was evaluated, including an examination of its degradation pathway in the Cunninghamella echinulata model, as well as in silico simulation of the toxicity of both the parent compound and its degradation products. The research showed that compound K-116 tested in future application conditions is deprived of skin irritant potential additionally it does not penetrate through the epidermis. Results showed that K-116 concentrate is not phototoxic and not mutagenic. The eco-safety studies showed that it undergoes biodegradation in 27% in Cunninghamella echinulata model. The parent compound and formed metabolite are less toxic than reference UV filters (octinoxate and octocrylene).
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Kocot
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Kraków, Poland
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
30
|
Chen HC, Huang YF, Wu CT. Concentrations, compositional profiles, and health risks of benzophenones among the Taiwanese population based on analysis of 23 daily consumed foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134077. [PMID: 38574654 DOI: 10.1016/j.jhazmat.2024.134077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/15/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
In this study, we analyzed the occurrence and distribution of 11 benzophenone-type ultraviolet filters (BPs) in 893 food samples spanning 7 food categories in Taiwan. We conducted a Monte Carlo simulation to determine the carcinogenic and noncarcinogenic risks of BPs. The results indicated that cornflakes had the highest mean level of BPs (103 ng/g), followed by bread (101 ng/g) and pastries (59 ng/g). BP was the most prevalent category, followed by 4-methylbenzophenone (4-MBP), 2-hydroxybenzophenone, and benzophenone-3. Estimation of the lifetime cancer risk (LTCR) of BP (average life expectancy of 80 years) placed them in the 50th and 97.5th percentiles [P50 (P97.5)] LTCR of 1.9 × 10-7 (5.7 × 10-6), indicating that BP in food poses a low renal hazard to the Taiwanese population. The noncarcinogenic risk of BPs was evaluated using a hazard quotient and combined margin of exposure (MOET), revealing a P50 (P97.5) hazard index of < 1 for BP, 4-MBP, and methyl-2-benzoylbenzoate. Although the P50 MOET values for all age groups were within the moderate range of concern, with a more conservative extreme (P2.5), the MOET values for the 0-3, 3-6, and 6-12 age groups fell below 100, indicating a high concern for renal degeneration and hyperplasia.
Collapse
Affiliation(s)
- Hsin-Chang Chen
- Department of Chemistry, College of Science, Tunghai University, Taichung, Taiwan
| | - Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chen-Ting Wu
- Institute of Food Safety and Health Science Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
31
|
Li B, Yao Z, Wei D, Guo L, Ma Z, Li C. Uptake, accumulation and metabolism of UV-320 in vegetables and its impact on growth and quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171228. [PMID: 38402974 DOI: 10.1016/j.scitotenv.2024.171228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
UV-320 is classified as a Substance of Very High Concern (SVHC) by the European Chemicals Agency and has attracted significant attention due to its presence in the environment. Understanding the uptake, translocation and metabolic patterns of UV-320 in vegetables is essential for assessing their ability to bioaccumulate and potential risks to human health. In this study, we investigated the uptake and translocation of UV-320 in lettuce and radish by hydroponic experiments. The results showed that the root concentration factors (Croot/Csolution, RCF) of lettuce and radish were in the range of 47.9 to 464 mL/g and 194 to 787 mL/g, respectively. The transfer factors (Cshoot/Croot, TF) were observed to be 0.001-0.012 for lettuce and 0.02-0.05 for radish. Additionally, non-targeted screening identified twelve phase I and one phase II metabolites of UV-320 in vegetables, which were confirmed based on their molecular formulas and structures. The metabolic pathways involving oxidation, ketonylation and deamination were proposed in vegetables. Also, we have observed that UV-320 inhibits the growth of vegetables. Meanwhile, we evaluated the health risk of UV-320 in lettuce and radish and found that the consumption of lettuce is relatively safe, while the consumption of radish has a risk of HQ >1 for both adults and children, which should be seriously considered. This study provides valuable insights into the behavior and ecological risks of UV-320 in the environment.
Collapse
Affiliation(s)
- Bingru Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhenzhen Yao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dizhe Wei
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Linlin Guo
- Shanghai AB Sciex Analytical Instrument Trading Co, Ltd, Beijing 100015, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
32
|
Kisielinski K, Hockertz S, Hirsch O, Korupp S, Klosterhalfen B, Schnepf A, Dyker G. Wearing face masks as a potential source for inhalation and oral uptake of inanimate toxins - A scoping review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:115858. [PMID: 38537476 DOI: 10.1016/j.ecoenv.2023.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 04/12/2024]
Abstract
BACKGROUND From 2020 to 2023 many people around the world were forced to wear masks for large proportions of the day based on mandates and laws. We aimed to study the potential of face masks for the content and release of inanimate toxins. METHODS A scoping review of 1003 studies was performed (database search in PubMed/MEDLINE, qualitative and quantitative evaluation). RESULTS 24 studies were included (experimental time 17 min to 15 days) evaluating content and/or release in 631 masks (273 surgical, 228 textile and 130 N95 masks). Most studies (63%) showed alarming results with high micro- and nanoplastics (MPs and NPs) release and exceedances could also be evidenced for volatile organic compounds (VOCs), xylene, acrolein, per-/polyfluoroalkyl substances (PFAS), phthalates (including di(2-ethylhexyl)-phthalate, DEHP) and for Pb, Cd, Co, Cu, Sb and TiO2. DISCUSSION Of course, masks filter larger dirt and plastic particles and fibers from the air we breathe and have specific indications, but according to our data they also carry risks. Depending on the application, a risk-benefit analysis is necessary. CONCLUSION Undoubtedly, mask mandates during the SARS-CoV-2 pandemic have been generating an additional source of potentially harmful exposition to toxins with health threatening and carcinogenic properties at population level with almost zero distance to the airways.
Collapse
Affiliation(s)
- Kai Kisielinski
- Social Medicine, Emergency Medicine and Clinical Medicine (Surgery), Private Practice, 40212 Düsseldorf, Germany.
| | - Stefan Hockertz
- Toxicology, Pharmacology, Immunology, tpi consult AG, Haldenstr. 1, CH 6340 Baar, Switzerland
| | - Oliver Hirsch
- Department of Psychology, FOM University of Applied Sciences, 57078 Siegen, Germany
| | - Stephan Korupp
- Surgeon, Emergency Medicine, Private Practice, 52070 Aachen, Germany
| | - Bernd Klosterhalfen
- Institute of Pathology, Dueren Hospital, Roonstrasse 30, 52351 Dueren, Germany
| | - Andreas Schnepf
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Gerald Dyker
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
33
|
Lam TK, Law JCF, Leung KSY. Hybrid radical coupling during MnO 2-mediated transformation of a mixture of organic UV filters: Chemistry and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170121. [PMID: 38232841 DOI: 10.1016/j.scitotenv.2024.170121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Manganese oxide (MnO2) is one of the most abundant metal oxides, and it is renowned for its ability to degrade various phenolic micropollutants. However, under MnO2-mediated transformation, BP-3 transforms into 12 different radical-coupled transformation products (TPs) out of 15 identified TPs. These radical-coupled TPs are reported with adverse environmental impacts. This study explored the effects of MnO2 on organic UV filter mixtures and different water constituents (i.e., bicarbonate ion (HCO3-), humic acid (HA) and halide ions) in terms of degradation efficiency and transformation chemistry. When a mixture of benzophenone-3 (BP-3) and avobenzone (AVO) underwent transformation by MnO2, hybrid radical-coupled TPs derived from both organic UV filters were generated. These hybrid radical-coupled TPs were evaluated by an in silico prediction tool and Vibrio fischeri bioluminescence inhibition assay (VFBIA). Results showed that these TPs were potentially toxic to aquatic organisms, even more so than their parent compounds. The higher the concentration of HCO3-, HA, chloride ion (Cl-) and bromide ion (Br-), the greater the reduction in the efficiencies of degrading BP-3 and AVO. Contrastingly, in the presence of iodide ion (I-), degradation efficiencies of BP-3 and AVO were enhanced; however, iodinated TPs and iodinated radical-coupled TPs were formed, with questionable toxicity. This study has revealed the environmental risks of hybrid radical-coupled TPs, iodinated TPs and iodinated radical-coupled TPs when the organic UV filters BP-3 and AVO are transformed by MnO2.
Collapse
Affiliation(s)
- Tsz-Ki Lam
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, PR China.
| |
Collapse
|
34
|
Schierano-Marotti G, Altamirano GA, Oddi S, Gomez AL, Meyer N, Muñoz-de-Toro M, Zenclussen AC, Rodríguez HA, Kass L. Branching morphogenesis of the mouse mammary gland after exposure to benzophenone-3. Toxicol Appl Pharmacol 2024; 484:116868. [PMID: 38382712 DOI: 10.1016/j.taap.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Pubertal mammary branching morphogenesis is a hormone-regulated process susceptible to exposure to chemicals with endocrine disruptive capacity, such as the UV-filter benzophenone-3 (BP3). Our aim was to assess whether intrauterine or in vitro exposure to BP3 modified the branching morphogenesis of the female mouse mammary gland. For this, pregnant mice were dermally exposed to BP3 (0.15 or 50 mg/kg/day) from gestation day (GD) 8.5 to GD18.5. Sesame oil treatment served as control. Changes of the mammary glands of the offspring were studied on postnatal day 45. Further, mammary organoids from untreated mice were cultured under branching induction conditions and exposed for 9 days to BP3 (1 × 10-6 M, 1 × 10-9 M, or 1 × 10-12 M with 0.01% ethanol as control) to evaluate the branching progression. Mice that were exposed to BP3 in utero showed decreased mRNA levels of progesterone receptor (PR) and WNT4. However, estradiol and progesterone serum levels, mammary histomorphology, proliferation, and protein expression of estrogen receptor alpha (ESR1) and PR were not significantly altered. Interestingly, direct exposure to BP3 in vitro also decreased the mRNA levels of PR, RANKL, and amphiregulin without affecting the branching progression. Most effects were found after exposure to 50 mg/kg/day or 1 × 10-6 M of BP3, both related to sunscreen application in humans. In conclusion, exposure to BP3 does not impair mammary branching morphogenesis in our models. However, BP3 affects PR transcriptional expression and its downstream mediators, suggesting that exposure to BP3 might affect other developmental stages of the mammary gland.
Collapse
Affiliation(s)
- Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sofia Oddi
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Nicole Meyer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Horacio A Rodríguez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
35
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Effects associated with exposure to the emerging contaminant octyl-methoxycinnamate (a UV-B filter) in the aquatic environment: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:55-72. [PMID: 38146151 DOI: 10.1080/10937404.2023.2296897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
36
|
Li M, Ivantsova E, Liang X, Martyniuk CJ. Neurotoxicity of Benzotriazole Ultraviolet Stabilizers in Teleost Fishes: A Review. TOXICS 2024; 12:125. [PMID: 38393220 PMCID: PMC10891865 DOI: 10.3390/toxics12020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Plastic additives that maintain integrity have been extensively studied for potential toxicity to fish; however, chemicals that protect polymers from (artificial) UV degradation are less studied. Benzotriazole UV stabilizers (BUVSs) are the most widely used UV stabilizers in plastics and are often used in sunscreens, cosmetics, paint, and food packaging. BUVSs can negatively affect aquatic wildlife when released into the environment via plastic degradation. In this review, we summarize the distribution of BUVSs globally and discuss neurotoxicological endpoints measured in fish to understand how these plastic additives can affect the neurological health of teleost fishes. BUVSs have been detected in aquatic environments at concentrations ranging from 0.05 up to 99,200 ng/L. Studies show that BUVSs affect behavioral responses and acetylcholinesterase activity, indicators of neurotoxicity. Our computational analysis using transcriptome data suggests certain pathways associated with neurodegeneration are responsive to exposure to BUVSs, like "Complement Activation in Alzheimer's Disease". Based on our review, we identify some research needs for future investigations: (1) molecular studies in the central nervous system to define precise mechanisms of neurotoxicity; (2) a wider range of tests for assessing aberrant behaviors given that BUVSs can affect the activity of larval zebrafish; and (3) histopathology of the nervous system to accompany biochemical analyses. These data are expected to enhance understanding of the neurotoxicity potential of benzotriazoles and other plastic additives.
Collapse
Affiliation(s)
- Mengli Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Emma Ivantsova
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (M.L.); (X.L.)
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
37
|
Fatima N, Yaqoob S, Rana S, Hameed A, Mirza MR, Jabeen A. In vitro photoprotective potential of aryl-sandwiched (thio)semicarbazones against UVA mediated cellular and DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112841. [PMID: 38194816 DOI: 10.1016/j.jphotobiol.2024.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The most prevalent solar ultraviolet radiation is ultraviolet-A (UVA) radiation. It is the inducer of reactive oxygen species (ROS), a potent mediator of inflammation and photocarcinogenesis. Regular application of sunscreens containing UVA filters is an effective preventive measure in mitigating the risk associated with the formation of dermal carcinoma. Therefore, the development of new photoprotective agents is of great need. The current work examined the in vitro photoprotection of the aryl-linked (thio)semicarbazone derivatives against UVA-mediated DNA damage, inflammation, reactive nitrogen species (RNS), and ROS. Except for the inflammatory cytokine assay, which was carried out on the human monocytic leukemia (THP-1) cell line, all tests were conducted on the human dermal fibroblast (BJ) cell line. In comparison to benzophenone (reference compound), the compound (2Z, 2'Z)-2,2'-(1,3-Phenylenebis (methanylylidene)) bis (hydrazine-1-carbothioamide) (DD-21) demonstrated considerable protection against UVA-induced damage. Compared to the UVA-irradiated control, DD-21 significantly decreased the levels of nitric oxide (NO) and ROS (p < 0.001). In the presence of DD-21, the release of UVA-induced pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), was also significantly reduced (p < 0.05). Moreover, it was observed that DD-21 protected the cells from UVA-mediated DNA strand breaks and also inhibited the formation of cyclobutane pyrimidine dimers (CPDs) upon comparison to the UVA-exposed control cells (p < 0.001). In conclusion, the findings of this study revealed that DD-21 exhibits remarkable photoprotective properties, thus demonstrating its potential as a candidate UVA filter.
Collapse
Affiliation(s)
- Noor Fatima
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Sana Yaqoob
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Abdul Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Munazza Raza Mirza
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
38
|
D'Amico M, Kallenborn R, Scoto F, Gambaro A, Gallet JC, Spolaor A, Vecchiato M. Chemicals of Emerging Arctic Concern in north-western Spitsbergen snow: Distribution and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168401. [PMID: 37939944 DOI: 10.1016/j.scitotenv.2023.168401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Personal care products contain chemicals that are considered of emerging concern in the Arctic. In this study, a selected group of personal care products was investigated in the snowpack on north-western Spitsbergen. We report a preliminary study on the spatial and seasonal distribution of 13 ingredients commonly found in personal care products, including fragrance materials, UV filters, BHT and BPA. Possible sources and deposition processes are discussed. Experimental analyses utilizing GC-MS/MS, were complemented with outputs from the HYSPLIT transport and dispersion model. The results reveal the presence of all selected compounds in the snow, both in proximity to and distant from the research village of Ny-Ålesund. For some of these chemicals this is the first time their presence is reported in snow in Svalbard. These chemicals show different partitioning behaviours between the particulate and dissolved phases, affecting their transport and deposition processes. Additionally, concentrations of certain compounds vary across different altitudes. It is observed the relevance of long-range atmospheric transport during winter at most sites, and, regardless of the proximity to human settlements, snow concentrations can be influenced by long-distance sources. This study highlights the need for detailed information on CEACs' physical-chemical properties, considering their potential impact on fresh and marine waters during the snowmelt under climate change.
Collapse
Affiliation(s)
- Marianna D'Amico
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway; Department of Arctic Technology (AT), University Centre in Svalbard (UNIS), 9176 Longyearbyen, Svalbard, Norway
| | - Federico Scoto
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Atmospheric Sciences and Climate - National Research Council (ISAC-CNR), Campus Ecotekne, 73100 Lecce, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | | | - Andrea Spolaor
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy
| | - Marco Vecchiato
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Via Torino 155, 30172 Venezia-Mestre, Venice, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Via Torino 155, 30172 Venezia-Mestre, Venice, Italy.
| |
Collapse
|
39
|
Grant GJ, Kohli I, Mohammad TF. A narrative review of the impact of ultraviolet radiation and sunscreen on the skin microbiome. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12943. [PMID: 38288770 DOI: 10.1111/phpp.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/18/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND The human skin microbiome is a dynamic ecosystem that plays an important role in skin health. The skin microbiome has been implicated in numerous diseases, and our knowledge surrounding it continues to evolve. A better understanding of the interactions between the environment and the skin microbiome will lead to improvements in skin health. METHODS This article reviews the published literature surrounding the impact of ultraviolet radiation (UVR) and sunscreen on the skin microbiome. RESULTS Skin microbes are differentially impacted by UVR, and alterations in the microbiome can be detected following UVR exposure. These changes are related to direct bactericidal effects, alterations in the cutaneous metabolome, and changes in the cutaneous immune system. UV filters used in sunscreen have been shown to have bactericidal effects, and many compounds used in sunscreen emulsions can also negatively impact cutaneous microbes. CONCLUSION A healthy microbiome has been shown to produce compounds that help protect the skin from UVR, and sunscreen has the potential to reduce the diversity of the skin microbiome. This indicates that designing sunscreen products that both provide protection against UVR and preserve the skin microbiome may offer additional benefits to skin health when compared with traditional sunscreen products.
Collapse
Affiliation(s)
- Garett J Grant
- Department of Internal Medicine, Transitional Year Residency Program, Henry Ford Hospital, Detroit, Michigan, USA
| | - Indermeet Kohli
- The Henry W Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan, USA
| | - Tasneem F Mohammad
- The Henry W Lim, MD, Division of Photobiology and Photomedicine, Department of Dermatology, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
40
|
Fan LX, Chen L, Zhang HY, Xu WH, Wang XL, Xu S, Wang YZ. Dual Photo-Responsive Diphenylacetylene Enables PET In-Situ Upcycling with Reverse Enhanced UV-Resistance and Strength. Angew Chem Int Ed Engl 2023; 62:e202314448. [PMID: 37938175 DOI: 10.1002/anie.202314448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
A novel in situ chemical upcycling strategy for plastic waste is proposed by the customized diphenylacetylene monomer with dual photo-response. That is, diphenylacetylene reactive monomers are in situ inserted into the macromolecular chain of polyethylene terephthalate (PET) plastics/fibers through one-pot transesterification of slight-depolymerization and re-polymerization. On the one hand, the diphenylacetylene group absorbs short-wave high-energy UV rays and then releases long-wave low-energy harmless fluorescence. On the other hand, the UV-induced photo-crosslinking reaction among diphenylacetylene groups produces extended π-conjugated structure, resulting in a red-shift (due to decreased HOMO-LUMO separation) in the UV absorption band and locked crosslink points between PET chains. Therefore, with increasing UV exposure time, the upcycled PET plastics exhibit reverse enhanced UV resistance and mechanical strength (superior to original performance), instead of serious UV-photodegradation and damaged performance. This upcycling strategy at oligomer-scale not only provides a new idea for traditional plastic recycling, but also solves the common problem of gradual degradation of polymer performance during use.
Collapse
Affiliation(s)
- Li-Xia Fan
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lin Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hua-Yu Zhang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wen-Hao Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiu-Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
41
|
Huang Y, Wang P, Peng W, Law JCF, Zhang L, Shi H, Zhang Y, Leung KSY. Co-exposure to organic UV filters and phthalates and their associations with oxidative stress levels in children: A prospective follow-up study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167433. [PMID: 37774881 DOI: 10.1016/j.scitotenv.2023.167433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Children are highly vulnerable to environmental pollutants, especially endocrine-disrupting chemicals (EDCs). Previous research has linked both organic UV filters and phthalates exposure to adiposity and pubertal development in children. Nevertheless, the individual and collective effects of these chemicals on this population remain poorly understood. In this study, twelve organic UV filters and metabolites, six phthalate metabolites and two oxidative stress biomarkers were analyzed in a prospective follow-up study in Shanghai, China after a baseline study conducted 1.5 years earlier. Results revealed a positive association between exposure to individual organic UV filters or their mixture and levels of 8-OHdG (β ranging from 0.242 to 0.588, P < 0.05), a marker of oxidative DNA damage. BP-3 and OD-PABA made a greater contribution to oxidative DNA damage than other UV filters. Levels of 8-OHdG were also positively correlated with single phthalate metabolites and their mixture, with MnBP and MMP contributing the most. Stratified analysis found that these associations were mainly observed in girls. Our mixture analysis revealed cumulative risks of oxidative DNA damage when there was co-exposure to these two kinds of EDCs. These results underscore the importance of considering the risks associated with organic UV filters and the necessity of evaluating the effects of all these pollutants, both individually and in mixtures.
Collapse
Affiliation(s)
- Yanran Huang
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, P. R. China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weiyu Peng
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Liyi Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, China.
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
42
|
Chen XJ, Bai CW, Sun YJ, Huang XT, Zhang BB, Zhang YS, Yang Q, Wu JH, Chen F. pH-Driven Efficacy of the Ferrate(VI)-Peracetic Acid System in Swift Sulfonamide Antibiotic Degradation: A Deep Dive into Active Species Evolution and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20206-20218. [PMID: 37965750 DOI: 10.1021/acs.est.3c06370] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In the realm of wastewater treatment, the power of ferrate (Fe(VI)) and peracetic acid (PAA) as oxidants stands out. But their combined might is where the enhancement truly lies. Their collaborative effect intensifies, but the underlying mechanics, especially across varying pH levels and pollutant types, still lurks in obscurity. Our study delved into the sophisticated oxidation interplay among Fe(VI)-PAA, Fe(VI)-H2O2, and standalone Fe(VI) systems. Notably, at a pH of 9.0, boasting a kinetic constant of ∼0.127 M-1·s-1, the Fe(VI)-PAA system annihilated the pollutant sulfamethoxazole, outpacing its counterparts by a staggering 48.73-fold when compared to the Fe(VI)-H2O2 system and 105.58-fold when using Fe(VI) individually. The behavior of active species─such as the dynamic •OH radicals and high-valent iron species (Fe(IV)/Fe(V))─shifted with pH variations, leading to distinct degradation pathways. Our detailed exploration pinpoints the behaviors of certain species across pH levels from 3.0 to 9.0. In more acidic environments, the •OH species proved indispensable for the system's reactivity. Conversely, as the pH inclined, degradation was increasingly steered by high-valent iron species. This intensive probe demystifies Fe(VI) interactions, deepening our understanding of the capabilities of the Fe(VI)-centered system and guiding us toward cleaner water solutions. Importantly, pH value, often underappreciated, holds the reins in organic wastewater decontamination. Embracing this key player is vital as we strategize for more expansive systems in upcoming ventures.
Collapse
Affiliation(s)
- Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Bin-Bin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Shuo Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
43
|
Lam TK, Law JCF, Leung KSY. Hazardous radical-coupled transformation products of benzophenone-3 formed during manganese dioxide treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166481. [PMID: 37611723 DOI: 10.1016/j.scitotenv.2023.166481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Radical-coupled transformation products (TPs) have been identified as the byproducts of various transformation processes, including both natural attenuation and artificial treatments, of phenolic micropollutants. Benzophenone-3 (BP-3), an organic UV filter of emerging concern, has been previously reported with ubiquitous occurrence in the natural environment and water bodies. Current research has demonstrated how TPs are formed from BP-3 when it is treated with manganese oxide (MnO2). The ecological and toxicological risks of these TPs have also been assessed. Polymerization of BP-3 through radical coupling was observed as the major pathway by which BP-3 is transformed when treated with MnO2. These radical-coupled TPs haven't shown further degradation after formation, suggesting their potential persistence once occurred in the environment. In silico experiments predict the radical-coupled TPs will increase in mobility, persistence and ecotoxicity. If true, they also represent an ever-increasing threat to the environment, ecosystems and, most immediately, aquatic living organisms. In addition, radical-coupled TPs produced by MnO2 transformation of BP-3 have shown escalated estrogenic activity compared to the parent compound. This suggests that radical coupling amplifies the toxicological impacts of parent compound. These results provide strong evidence that radical-coupled TPs with larger molecular sizes are having potential adverse impacts on the ecosystem and biota.
Collapse
Affiliation(s)
- Tsz-Ki Lam
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, P. R. China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, P. R. China.
| |
Collapse
|
44
|
Mozas-Blanco S, Rodríguez-Gil JL, Kalman J, Quintana G, Díaz-Cruz MS, Rico A, López-Heras I, Martínez-Morcillo S, Motas M, Lertxundi U, Orive G, Santos O, Valcárcel Y. Occurrence and ecological risk assessment of organic UV filters in coastal waters of the Iberian Peninsula. MARINE POLLUTION BULLETIN 2023; 196:115644. [PMID: 37922592 DOI: 10.1016/j.marpolbul.2023.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
This study aimed to assess the presence of 21 UVFs and metabolites in coastal regions of the Iberian Peninsula, to evaluate their environmental risk, and identify possible influential factors affecting their measured concentrations. Sampling was carried out in spring and summer to assess possible seasonal variations. UVFs were detected in 43 of the 46 sampling sites. Only 5 were found above LOD: BP4, OC, BP3 and metabolites BP1 and BP8. Samples collected in Mar Menor had the greatest variety of compounds per sample and the highest cumulative concentrations. The risk was characterized using Risk Quotients (RQ). BP1 showed a Low environmental Risk in 2 sites while for OC the RQ indicated a Moderate Risk in 22 points. The variables that contribute most to the variation are population density, sampling season, whether it was an open bay or not, and level of urbanization. The presence of WWTPs had a lower influence.
Collapse
Affiliation(s)
- Sandra Mozas-Blanco
- Research Group on Human and Environmental Risk (RISAMA), Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, 28922 Alcorcón, Madrid, Spain
| | - José Luis Rodríguez-Gil
- Research Group on Human and Environmental Risk (RISAMA), Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain; IISD - Experimental Lakes Area, Winnipeg, MB R3B 0T4, Canada; Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2M6, Canada.
| | - Judit Kalman
- Research Group on Human and Environmental Risk (RISAMA), Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, 28922 Alcorcón, Madrid, Spain
| | - Gerard Quintana
- Institute of Environmental Assessment and Water Research, Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC). Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Díaz-Cruz
- Institute of Environmental Assessment and Water Research, Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC). Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Isabel López-Heras
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Salomé Martínez-Morcillo
- Toxicology Unit, Veterinary School, University of Extremadura, Avda. de la Universidad s/n, 10003 Caceres, Spain
| | - Miguel Motas
- Department of Toxicology, Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Veterinary, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain.
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, 01006 Vitoria-Gasteiz, Alava, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academy, 20 College Road, Discovery Tower, Singapore, Singapore
| | - Osvaldo Santos
- Environmental Health Institute, Faculty of Medicine, University of Lisbon, Portugal
| | - Yolanda Valcárcel
- Research Group on Human and Environmental Risk (RISAMA), Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, 28922 Alcorcón, Madrid, Spain
| |
Collapse
|
45
|
Onyango DO, Selman BG, Rose JL, Ellison CA, Nash JF. Comparison between endocrine activity assessed using ToxCast/Tox21 database and human plasma concentration of sunscreen active ingredients/UV filters. Toxicol Sci 2023; 196:25-37. [PMID: 37561120 PMCID: PMC10613966 DOI: 10.1093/toxsci/kfad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Sunscreen products are composed of ultraviolet (UV) filters and formulated to reduce exposure to sunlight thereby lessening skin damage. Concerns have been raised regarding the toxicity and potential endocrine disrupting (ED) effects of UV filters. The ToxCast/Tox21 program, that is, CompTox, is a high-throughput in vitro screening database of chemicals that identify adverse outcome pathways, key events, and ED potential of chemicals. Using the ToxCast/Tox21 database, octisalate, homosalate, octocrylene, oxybenzone, octinoxate, and avobenzone, 6 commonly used organic UV filters, were found to have been evaluated. These UV filters showed low potency in these bioassays with most activity detected above the range of the cytotoxic burst. The pathways that were most affected were the cell cycle and the nuclear receptor pathways. Most activity was observed in liver and kidney-based bioassays. These organic filters and their metabolites showed relatively weak ED activity when tested in bioassays measuring estrogen receptor (ER), androgen receptor (AR), thyroid receptor, and steroidogenesis activity. Except for oxybenzone, all activity in the endocrine assays occurred at concentrations greater than the cytotoxic burst. Moreover, except for oxybenzone, plasma concentrations (Cmax) measured in humans were at least 100× lower than bioactive (AC50/ACC) concentrations that produced a response in ToxCast/Tox21 assays. These data are consistent with in vivo animal/human studies showing weak or negligible endocrine activity. In sum, when considered as part of a weight-of-evidence assessment and compared with measured plasma concentrations, the results show these organic UV filters have low intrinsic biological activity and risk of toxicity including endocrine disruption in humans.
Collapse
Affiliation(s)
- David O Onyango
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - Bastian G Selman
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - Jane L Rose
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - Corie A Ellison
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| | - J F Nash
- Global Product Stewardship, The Procter & Gamble Company, Mason, Ohio 45040, USA
| |
Collapse
|
46
|
Diffey B. When should sunscreen be applied: The balance between health benefit and adverse consequences to humans and the environment. Int J Cosmet Sci 2023; 45 Suppl 1:45-51. [PMID: 37799082 DOI: 10.1111/ics.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/30/2022] [Accepted: 02/08/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE To propose a strategy for using sunscreens that optimizes the balance between skin health and adverse effects to humans and the environment. METHODS A model was developed to explore the relationship between sunscreen usage and personal sun exposure throughout the year in populations resident at different latitudes. RESULTS There is little biological justification in terms of skin health for applying sunscreen over the 4-6 winter months at latitudes of 45° N and higher, whereas year-round sunscreen is advised at latitudes of 30° N and lower. Avoiding sunscreen application at times when it is biologically unnecessary results in an annual reduction in sunscreen use of 25%. Furthermore, using products containing UV filters over the winter months at more northerly latitudes could lead to a higher number of people with vitamin D deficiency. The single largest use of sunscreen is on a sun-seeking holiday and encouragement to make more use of clothing and shade would appreciably reduce the sunscreen burden to the environment. CONCLUSION We need to use sunscreens wisely so that we gain the health benefit from their use while at the same time limiting possible harm to ourselves and the environment.
Collapse
Affiliation(s)
- Brian Diffey
- Translational and Clinical Research Institute (Dermatology), Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
47
|
Liu Y, Gao L, Ai Q, Qiao L, Li J, Lyu B, Zheng M, Wu Y. Concentrations, Profiles, and Health Risks of Organic Ultraviolet Filters in Eight Food Categories Determined through the Sixth Chinese Total Diet Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13366-13374. [PMID: 37647541 DOI: 10.1021/acs.est.3c03888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Ultraviolet (UV) filters are emerging contaminants that have been found in high concentrations in human tissues. Food intake is generally considered to be the primary route of human exposure to contaminants. In this study, 184 composite food samples, prepared from 4268 individual samples in eight categories collected from 23 Chinese provinces for the sixth Chinese total diet study, were analyzed. The total and median UV filter concentrations in food samples were 1.5-68.3 and 7.9 ng/g wet weight, respectively. The highest median concentrations were found in decreasing order in meat, cereals, and legumes. In total, 15 UV filters were analyzed. 2-Ethylhexyl salicylate, homosalate, and 2-ethylhexyl-4-methoxycinnamate were dominant and made median contributions of 34.1%, 22.6%, and 14.5%, respectively, and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol contributed the median of 0.03%, of the total UV filter concentrations. The estimated total daily UV filter intake in animal-origin foods and total UV filter concentration in human milk from the same province were significantly correlated (r = 0.44, p < 0.05). Predicted absorption, distribution, metabolism, and elimination properties led to 10 UV filters being prioritized as most likely to be retained in human tissues. The prioritization results and toxicity assessments indicated that octocrylene and 2-ethylhexyl-4-methoxycinnamate have stronger effects in vivo and therefore require more attention than others.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Qiao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014); NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| |
Collapse
|
48
|
Tkalec Ž, Runkel AA, Kosjek T, Horvat M, Heath E. Contaminants of emerging concern in urine: a review of analytical methods for determining diisocyanates, benzotriazoles, benzothiazoles, 4-methylbenzylidene camphor, isothiazolinones, fragrances, and non-phthalate plasticizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95106-95138. [PMID: 37597142 PMCID: PMC10482756 DOI: 10.1007/s11356-023-29070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Human biomonitoring (HBM) frameworks assess human exposure to hazardous chemicals. In this review, we discuss and summarize sample preparation procedures and analytical methodology for six groups of chemicals of emerging concern (CECs), namely diisocyanates, benzotriazoles, benzothiazoles, 4-methylbenzylidene camphor, isothiazolinones, fragrances, and non-phthalate plasticizers, which are increasingly detected in urine, however, are not yet widely included in HBM schemes, despite posing a risk to human health. The sample preparation procedures depend largely on the chemical group; however, solid-phase extraction (SPE) is most often used due to the minimized sample handling, lower sample volume, and generally achieving lower limits of quantification (LOQs) compared to other extraction techniques. In terms of sample analysis, LC-based methods generally achieve lower limits of quantification (LOQs) compared to GC-based methods for the selected six groups of chemicals owing to their broader chemical coverage. In conclusion, since these chemicals are expected to be more frequently included in future HBM studies, it becomes evident that there is a pressing need for rigorous quality assurance programs to ensure better comparability of data. These programs should include the reporting of measurement uncertainty and facilitate inter-laboratory comparisons among the reporting laboratories. In addition, high-resolution mass spectrometry should be more commonly employed to enhance the specificity and selectivity of the applied analytical methodology since it is underrepresented in HBM. Furthermore, due to the scarcity of data on the levels of these CECs in urine, large population HBM studies are necessary to gain a deeper understanding of the associated risks.
Collapse
Affiliation(s)
- Žiga Tkalec
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Agneta Annika Runkel
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Tina Kosjek
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Ester Heath
- Department of Environmental Sciences (O2), Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia.
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
49
|
Hong S, Peng Z, Wu M, Nie Y, Yi Y, Cai H, Zhang XZ. Human-Hair-Derived Natural Particles as Multifunctional Sunscreen for Effective UV Protection. ACS NANO 2023; 17:14943-14953. [PMID: 37485891 DOI: 10.1021/acsnano.3c03504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Excessive ultraviolet (UV) radiation can lead to a series of skin problems. Although commercial sunscreens can protect skin from UV-induced damage to an extent, the side effects caused by such products are still worrisome. Here, inspired by the natural photoprotection effect of human hair, we extracted the multifunctional particles from human hair as sunscreens for UV protection. Both in vitro and in vivo results indicate that hair-derived particles (HDPs) could effectively protect skin from UV radiation. Besides, HDPs retain the antioxidant capability of melanin in hair, which avoids UV-induced oxidative damage. In addition, the unique shape of HDPs can prevent them from penetrating into the skin, thus avoiding potential toxicity. Moreover, owing to their mesoporous structure, the particles can also be used as drug carriers. With the loading of octocrylene, the particles are more effective in blocking UV radiation. This study provides an ingenious tactic for the design and development of sunscreens from a natural substance.
Collapse
Affiliation(s)
- Sheng Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Yichu Nie
- Translational Medicine Research Institute, First People's Hospital of Foshan, Foshan 528000, People's Republic of China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
50
|
He T, Tsui MMP, Mayfield AB, Liu PJ, Chen TH, Wang LH, Fan TY, Lam PKS, Murphy MB. Organic ultraviolet filter mixture promotes bleaching of reef corals upon the threat of elevated seawater temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162744. [PMID: 36907390 DOI: 10.1016/j.scitotenv.2023.162744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/13/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Global reef degradation is a critical environmental health issue that has triggered intensive research on ocean warming, but the implications of emerging contaminants in coral habitats are largely overlooked. Laboratory experiments assessing organic ultraviolet (UV) filter exposure have shown that these chemicals negatively affect coral health; their ubiquitous occurrence in association with ocean warming may pose great challenges to coral health. We investigated both short- (10-day) and long-term (60-day) single and co-exposures of coral nubbins to environmentally relevant organic UV filter mixtures (200 ng/L of 12 compounds) and elevated water temperatures (30 °C) to investigate their effects and potential mechanisms of action. The initial 10-day exposure of Seriatopora caliendrum resulted in bleaching only under co-exposure conditions (compounds + temperature). The 60-day mesocosm study entailed the same exposure settings with nubbins of three species (S. caliendrum, Pocillopora acuta and Montipora aequituberculata). Bleaching (37.5 %) and mortality (12.5 %) of S. caliendrum were observed under UV filter mixture exposure. In the co-exposure treatment, 100 % S. caliendrum and P. acuta bleached associating with 100 % and 50 % mortality, respectively, and significant increase of catalase activities in P. acuta and M. aequituberculata nubbins were found. Biochemical and molecular analyses indicated significant alteration of oxidative stress and metabolic enzymes. The results suggest that upon the adverse effects of thermal stress, organic UV filter mixture at environmental concentrations can cause bleaching in corals by inducing a significant oxidative stress and detoxification burden, suggesting that emerging contaminants may play a unique role in global reef degradation.
Collapse
Affiliation(s)
- Tangtian He
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Mirabelle M P Tsui
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Anderson B Mayfield
- Khaled bin Sultan Living Oceans Foundation, 130 Severn Ave., Annapolis, MD 21403, USA
| | - Pi-Jen Liu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 944, Taiwan, ROC
| | - Te-Hao Chen
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Li-Hsueh Wang
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Tung-Yung Fan
- National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan, ROC
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Margaret B Murphy
- State Key Laboratory in Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|