1
|
Bitter LC, Kibbee R, Garant T, Örmeci B. Impact of wastewater characteristics and weather events on the N2 and N1 gene target ratios during wastewater surveillance of SARS-CoV-2 at five treatment plants and an upper sewershed location. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179592. [PMID: 40347754 DOI: 10.1016/j.scitotenv.2025.179592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/09/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Recent fluctuations in the N2/N1 gene target ratios of SARS-CoV-2 were observed in wastewater, even when the dominant variant remained unchanged. This suggests that N2/N1 variations are influenced not only by viral mutations but also by external factors. While previous studies examined the effects of wastewater parameters on SARS-CoV-2 concentrations, there remains a knowledge gap regarding their specific impact on different gene targets. The main objective of this study was to identify external factors that contribute to the observed changes in the N2/N1 ratios in wastewater apart from reduced PCR sensitivity caused by mutations in the variants of concern. Examined factors included wastewater characteristics (pH, wastewater temperature, total and volatile solids, and turbidity) and weather events (precipitation, snow cover, and ambient temperature). Composite samples were collected over a 17-month period from five wastewater treatment plants and an upper sewershed location, spanning several seasons and weather events. SARS-CoV-2 RNA concentrations were measured using RT-qPCR using the N1 and N2 gene targets, and advanced statistical analyses were applied to assess trends and correlations. The results indicate that wastewater characteristics and weather events significantly impact the N2/N1 ratios, with additional effects from sewer size, type, and location. No single parameter consistently impacted the N2/N1 ratio across all sites, rather, impacts were site-specific. However, volatile solids and turbidity showed consistent correlations with N2/N1 ratios at all wastewater treatment plants. Understanding these external impacts is essential for accurately interpreting the changes in N2/N1 ratios and improving wastewater-based epidemiology efforts.
Collapse
Affiliation(s)
- Lena Carolin Bitter
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.
| | - Richard Kibbee
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Tim Garant
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
2
|
Länsivaara A, Palmroth M, Kaarela O, Hyöty H, Oikarinen S, Lehto KM. Virus detection in influent, activated sludge, and effluent from municipal wastewater treatment plants using composite and grab samples in Finland. ENVIRONMENTAL RESEARCH 2025; 279:121776. [PMID: 40324624 DOI: 10.1016/j.envres.2025.121776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 04/15/2025] [Accepted: 05/03/2025] [Indexed: 05/07/2025]
Abstract
Wastewater-based surveillance has been commonly used as a monitoring tool for public health. Also, viruses present in wastewater can pose a health risk. In this study, we screened enterovirus, rhinovirus, norovirus GI and GII, pan-adenovirus, and gastroenteritis-causing adenovirus F40/41 in different wastewater sample types using reverse transcription quantitative polymerase chain reaction and quantitative polymerase chain reaction. We analyzed composite influent samples (N = 22), grab influent samples (N = 20), composite effluent samples (N = 78), grab effluent samples (N = 21), and activated sludge samples (N = 34) collected from six municipal wastewater treatment plants in the Pirkanmaa region of Finland. We detected the viruses in the influent to discover if they had the potential to be monitored using wastewater-based surveillance. In addition, we studied viruses in effluent and activated sludge to detect viruses that persisted in treatment processes. Furthermore, all sample types were compared to discover differences in the viral contents of different wastewater sample types. We detected all the studied viruses in influent, while in activated sludge, we detected enterovirus, pan-adenovirus, and adenovirus F40/41, and in effluent enterovirus, norovirus GI and GII, pan-adenovirus, and adenovirus F40/41 were identified. In addition, the relative amount of all the viruses was the highest in the influent. Our study also showed that composite sampling was a more representative and sensitive method for virus monitoring in wastewater than grab sampling, as the relative amount of the viruses present in composite samples was higher than in grab samples. Since we found abundant viruses in effluent, further studies are required to assess their infectivity and potential health risks as environmental pollutants.
Collapse
Affiliation(s)
- Annika Länsivaara
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland
| | - Marja Palmroth
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland
| | - Outi Kaarela
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland.
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, P.O. Box 541, FI-33014, Tampere, Finland; Faculty of Veterinary Medicine, University of Helsinki, Helsingin Yliopisto, P.O. Box 66, FI-00014, Helsinki, Finland
| |
Collapse
|
3
|
Al-Mustapha AI, Tiwari A, Laukkanen-Ninios R, Lehto KM, Oikarinen S, Lipponen A, Pitkänen T, Heikinheimo A. Wastewater based genomic surveillance key to population level monitoring of AmpC/ESBL producing Escherichia coli. Sci Rep 2025; 15:7400. [PMID: 40033002 PMCID: PMC11876440 DOI: 10.1038/s41598-025-91516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we leverage the power of whole genome sequencing (WGS) to screen AmpC- and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli from 77 composite samples obtained from 10 wastewater treatment plants across Finland. We found a high abundance of multidrug-resistant AmpC/ESBL-producing E. coli and significant differences in the diversity of AMR genes between the sampled cities. The in silico analysis of 73 short-read genome sequences shows the clonally diverse isolates consisting of 30 sequence types (STs), including the globally distributed pandemic ST131 clone. The CTX-M ESBL genes were detected in 86.3% (63/73) of the isolates concurrently with the blaTEM-1 (31.5%, 23/73) and blaOXA-1 (9.6%, 7/73) genes. The most prevalent ESBL genes were blaCTX-M-15 (46.6%, 34/73), blaCTX-M-27 (16.4%, 12/73), blaCTX-M-14 (4.1%, 3/73), and blaCTX-M-55 (4.1%, 3/73). Two isolates harboured the carbapenemase resistance gene, blaKPC-2 and blaNDM-1, respectively. In addition, WGS predicted phenotypic resistance against aminoglycosides, beta-lactams, cephalosporins, quinolones, sulfonamides, carbapenems, and polymyxins. The diversity of antibiotic- and stress-resistance genes correlated with the clinical incidence reported in the Finnish AMR report. Core-genome MLST revealed two wastewater genomic clusters but no genomic clusters among human and wastewater ST131 isolates. Our findings suggest the circulation of distinct clonal lineages of AmpC/ESBL-producing E. coli across Finland, with variations in AMR gene diversity and abundance by wellbeing service county. Also, our findings underscore the fact that wastewater surveillance could be key to population-level monitoring of AmpC/ESBL-producing Escherichia coli and can serve as complementary data to guide public health decisions. We propose longitudinal WGS-based epidemiology as an economically feasible approach for global AMR surveillance, pathogen evolution, and prediction of AMR.
Collapse
Affiliation(s)
- Ahmad Ibrahim Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
- Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Kwara State, Ilorin, Nigeria.
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Riikka Laukkanen-Ninios
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi-Maarit Lehto
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Lipponen
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Medicine, Unit of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority, Ruokavirasto, Seinäjoki, Finland
| |
Collapse
|
4
|
Mercier É, D'Aoust PM, Eid W, Hegazy N, Kabir P, Wan S, Pisharody L, Renouf E, Stephenson S, Graber TE, MacKenzie AE, Delatolla R. Sewer transport conditions and their role in the decay of endogenous SARS-CoV-2 and pepper mild mottle virus from source to collection. Int J Hyg Environ Health 2025; 263:114477. [PMID: 39378553 DOI: 10.1016/j.ijheh.2024.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
This study presents a comprehensive analysis of the decay patterns of endogenous SARS-CoV-2 and Pepper mild mottle virus (PMMoV) within wastewaters spiked with stool from infected patients expressing COVID-19 symptoms, and hence explores the decay of endogenous SARS-CoV-2 and PMMoV targets in wastewaters from source to collection of the sample. Stool samples from infected patients were used as endogenous viral material to more accurately mirror real-world decay processes compared to more traditionally used lab-propagated spike-ins. As such, this study includes data on early decay stages of endogenous viral targets in wastewaters that are typically overlooked when performing decay studies on wastewaters harvested from wastewater treatment plants that contain already-degraded endogenous material. The two distinct sewer transport conditions of dynamic suspended sewer transport and bed and near-bed sewer transport were simulated in this study at temperatures of 4 °C, 12 °C and 20 °C to elucidate decay under these two dominant transport conditions within wastewater infrastructure. The dynamic suspended sewer transport was simulated over 35 h, representing typical flow conditions, whereas bed and near-bed transport extended to 60 days to reflect the prolonged settling of solids in sewer systems during reduced flow periods. In dynamic suspended sewer transport, no decay was observed for SARS-CoV-2, PMMoV, or total RNA over the 35-h period, and temperature ranging from 4 °C to 20 °C had no noticeable effect. Conversely, experiments simulating bed and near-bed transport conditions revealed significant decreases in SARS-CoV-2 and total RNA concentrations by day 2, and PMMoV concentrations by day 3. Only PMMoV exhibited a clear trend of increasing decay constant with higher temperatures, suggesting that while temperature influences decay dynamics, its impact may be less significant than previously assumed, particularly for endogenous RNA that is bound to dissolved organic matter in wastewater. First order decay models were inadequate for accurately fitting decay curves of SARS-CoV-2, PMMoV, and total RNA in bed and near-bed transport conditions. F-tests confirmed the superior fit of the two-phase decay model compared to first order decay models across temperatures of 4 °C-20 °C. Finally, and most importantly, total RNA normalization emerged as an appropriate approach for correcting the time decay of SARS-CoV-2 exposed to bed and near-bed transport conditions. These findings highlight the importance of considering decay from the point of entry in the sewers, sewer transport conditions, and normalization strategies when assessing and modelling the impact of viral decay rates in wastewater systems. This study also emphasizes the need for ongoing research into the diverse and multifaceted factors that influence these decay rates, which is crucial for accurate public health monitoring and response strategies.
Collapse
Affiliation(s)
- Élisabeth Mercier
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Patrick M D'Aoust
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Walaa Eid
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Nada Hegazy
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Pervez Kabir
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Shen Wan
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Lakshmi Pisharody
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Elizabeth Renouf
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Sean Stephenson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Alex E MacKenzie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada
| | - Robert Delatolla
- Department of Civil Engineering, University of Ottawa, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
5
|
Wu J, Wang MX, Kalvapalle P, Nute M, Treangen TJ, Ensor K, Hopkins L, Poretsky R, Stadler LB. Multiplexed Detection, Partitioning, and Persistence of Wild-Type and Vaccine Strains of Measles, Mumps, and Rubella Viruses in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21930-21941. [PMID: 39651927 DOI: 10.1021/acs.est.4c05344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Wastewater surveillance of vaccine-preventable diseases may provide early warning of outbreaks and identify areas to target for immunization. To advance wastewater monitoring of measles, mumps, and rubella viruses, we developed and validated a multiplexed RT-ddPCR assay for the detection of their RNA. Because the measles-mumps-rubella (MMR) vaccine is an attenuated live virus vaccine, we also developed an assay that distinguishes between wild-type and vaccine strains of measles in wastewater and validated it using a wastewater sample collected from a facility with an active measles outbreak. We also evaluated the partitioning behavior of the viruses between the liquid and solid fractions of influent wastewater. We found that assaying the liquid fraction of the wastewater resulted in more sensitive detection of the viruses despite the fact that the viral RNA was enriched in the solid fraction due to the low solids content of the influent wastewater. Finally, we investigated the stability of measles, mumps, and rubella RNA in wastewater samples spiked with viruses over 28 days at two different concentrations and two temperatures (4 °C and room temperature) and through freeze-thaw and observed limited viral decay. Our study supports the feasibility of wastewater monitoring for measles, mumps, and rubella viruses for population-level surveillance.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Michael X Wang
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Prashant Kalvapalle
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Michael Nute
- Department of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Todd J Treangen
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Katherine Ensor
- Department of Statistics, Rice University, Houston, Texas 77005, United States
| | - Loren Hopkins
- Houston Health Department, 8000 North Stadium Drive, Houston, Texas 77054, United States
| | - Rachel Poretsky
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Veneri C, Brandtner D, Mancini P, Bonanno Ferraro G, Iaconelli M, Suffredini E, Petrillo M, Leoni G, Paracchini V, Gawlik BM, Marchini A, La Rosa G. Tracking the Spread of the BA.2.86 Lineage in Italy Through Wastewater Analysis. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:449-457. [PMID: 38918335 PMCID: PMC11525314 DOI: 10.1007/s12560-024-09607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
The emergence of new SARS-CoV-2 variants poses challenges to global surveillance efforts, necessitating swift actions in their detection, evaluation, and management. Among the most recent variants, Omicron BA.2.86 and its sub-lineages have gained attention due to their potential immune evasion properties. This study describes the development of a digital PCR assay for the rapid detection of BA.2.86 and its descendant lineages, in wastewater samples. By using this assay, we analyzed wastewater samples collected in Italy from September 2023 to January 2024. Our analysis revealed the presence of BA.2.86 lineages already in October 2023 with a minimal detection rate of 2% which then rapidly increased, becoming dominant by January 2024, accounting for a prevalence of 62%. The findings emphasize the significance of wastewater-based surveillance in tracking emerging variants and underscore the efficacy of targeted digital PCR assays for environmental monitoring.
Collapse
Affiliation(s)
- C Veneri
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - D Brandtner
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - P Mancini
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - G Bonanno Ferraro
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - M Iaconelli
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Petrillo
- Seidor Italy S.r.l., 20129, Milan, Italy
| | - G Leoni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - V Paracchini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - B M Gawlik
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - A Marchini
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - G La Rosa
- National Center for Water Safety (CeNSiA), Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
7
|
Qiu JY, Mah R, Brand LA, Pang X, Barnett M, Diggle M, Tipples G. Impact of Sample Storage Time and Temperature on the Stability of Respiratory Viruses and Enteric Viruses in Wastewater. Microorganisms 2024; 12:2459. [PMID: 39770662 PMCID: PMC11679355 DOI: 10.3390/microorganisms12122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Wastewater-based surveillance (WBS) has been widely used to track SARS-CoV-2 as well as many other viruses in communities during the COVID pandemic and post-pandemic. However, it is still not clear how temperature and storage time would influence the stability of viruses in wastewater. In this study, we assessed the stability of SARS-CoV-2, pepper mild mottle virus (PMMoV), influenza viruses A (IAV) and B (IBV), respiratory syncytial virus (RSV), and enteric viruses in raw wastewater stored at room temperature, 4 °C, and -20 °C for 3 and 6 days. SARS-CoV-2, PMMoV, IAV, and enteric viruses were found to be stable up to 6 days after storing at room temperature or 4 °C. SARS-CoV-2 and RSV were more susceptible to freeze-thaw cycles compared to PMMoV and enteric viruses, which were relatively stable for up to 6 days stored at -20 °C. Low detection of IBV in wastewater made it difficult to evaluate the impact. Based on our findings, we conclude that short-term storage or transportation of wastewater samples within 6 days at ambient temperature or 4 °C is acceptable for the majority of these viruses. Freezing samples at -20 °C for even short periods is not recommended for WBS of respiratory viruses. The data obtained from this study can provide guidance for quality assurance purposes from the operational aspects of wastewater surveillance.
Collapse
Affiliation(s)
- Judy Y. Qiu
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Richardson Mah
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
| | - Logan A. Brand
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Melodie Barnett
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
| | - Mathew Diggle
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| | - Graham Tipples
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada; (R.M.); (M.D.); (G.T.)
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R7, Canada; (L.A.B.); (X.P.)
| |
Collapse
|
8
|
Lee SY, Kim JH, Kang S, Park KC, Cho SM, Salinas CX, Rebolledo L, Benítez HA, Mejías TC, Soutullo A, Juri E, Kim S. Detection of human enteric viral genes in a non-native winter crane fly, Trichocera maculipennis (Diptera) in the sewage treatment facilities at Antarctic stations. Parasit Vectors 2024; 17:485. [PMID: 39582010 PMCID: PMC11587659 DOI: 10.1186/s13071-024-06555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND The Antarctic environment is susceptible to the introduction of non-native species due to its unique ecosystem, which has evolved under geographical isolation and extreme climatic conditions over an extended period. The recent introduction of the non-native winter crane fly, Trichocera maculipennis, to maritime Antarctica may pose a potential threat to the Antarctic ecosystem. In this study, we evaluated the possibility of the mechanical transmission of viruses by T. maculipennis. METHODS We assessed the potential for the mechanical transmission of viruses using next-generation sequencing (NGS), quantitative PCR (qPCR), and virus isolation methods from T. maculipennis (Tm)-related samples (Tm body-wash fluid and Tm body-ground samples) collected from habitats and sewage treatment facilities located at three research stations in Antarctica. RESULTS Virome analysis detected the genomic fragments of human adenovirus (AdV) and human endogenous retrovirus (HERV) in Tm-related samples. These viruses are commonly found in human feces. In addition, plant viruses, such as pepper mild mottle virus (PMMoV) and cucumber green mottle mosaic virus (CGMMV), both known indicators of enteric viruses, were identified in all Tm-related samples, likely originating from wastewater. However, the low quantities of AdV and HERV genomes detected in Tm-related samples through qPCR, coupled with the non-viability of AdV in virus isolation tests, indicate that T. maculipennis has limited potential for mechanical transmission under the conditions in the studies. CONCLUSIONS Our study represents the first evaluation of the potential risk of non-native species serving as vectors for viral pathogens in Antarctica. Although the viruses detected were in relatively low quantities and non-viable, this study highlights the importance of further evaluating the risks associated with non-native species, particularly as the likelihood of their introduction increases to Antarctica due to climate change and increased human activity.
Collapse
Affiliation(s)
- Sook-Young Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Ji Hee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Seunghyun Kang
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Kye Chung Park
- The New Zealand Institute for Plant and Food Research Ltd., Auckland, New Zealand
| | - Sung Mi Cho
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | | | - Lorena Rebolledo
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - Hugo A Benítez
- Millennium Institute Biodiversity of Antarctic and Subantartic Ecosystem (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Villiams, Chile
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Tamara Contador Mejías
- Millennium Institute Biodiversity of Antarctic and Subantartic Ecosystem (BASE), Santiago, Chile
- Cape Horn International Center (CHIC), Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Villiams, Chile
- Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile
| | - Alvaro Soutullo
- Centro Universitario Regional del Este, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Juri
- Instituto Antártico Uruguayo, Montevideo, Uruguay
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea.
| |
Collapse
|
9
|
Farkas K, Fletcher J, Oxley J, Ridding N, Williams RC, Woodhall N, Weightman AJ, Cross G, Jones DL. Implications of long-term sample storage on the recovery of viruses from wastewater and biobanking. WATER RESEARCH 2024; 265:122209. [PMID: 39126986 DOI: 10.1016/j.watres.2024.122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Wastewater-based monitoring has been widely implemented worldwide for the tracking of SARS-CoV-2 outbreaks and other viral diseases. In many surveillance programmes, unprocessed and processed wastewater samples are often frozen and stored for long periods of time in case the identification and tracing of an emerging health threat becomes necessary. However, extensive sample bioarchives may be difficult to maintain due to limitations in ultra-freezer capacity and associated cost. Furthermore, the stability of viruses in such samples has not been systematically investigated and hence the usefulness of bioarchives is unknown. In this study, we assessed the stability of SARS-CoV-2, influenza viruses, noroviruses and the faecal indicator virus, crAssphage, in raw wastewater and purified nucleic aacid extracts stored at -80 °C for 6-24 months. We found that the isolated viral RNA and DNA showed little signs of degradation in storage over 8-24 months, whereas extensive decay viral and loss of qPCR signal was observed during the storage of raw unprocessed wastewater. The most stable viruses were noroviruses and crAssphage, followed by SARS-CoV-2 and influenza A virus. Based on our findings, we conclude that bioarchives comprised of nucleic acid extracts derived from concentrated wastewater samples may be archived long-term, for at least two years, whereas raw wastewater samples may be discarded after one year.
Collapse
Affiliation(s)
- Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Jessica Fletcher
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - James Oxley
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Nicola Ridding
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Nick Woodhall
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Gareth Cross
- Science Evidence Advice Division, Health and Social Services Group, Welsh Government, Cathays Park, Cardiff, CF10 3NQ, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
10
|
Juutinen A, Tiwari A, Hokajärvi AM, Luomala O, Kolehmainen A, Nurmi E, Salmivirta E, Pitkänen T, Lipponen A. The effects of RT-qPCR standards on reproducibility and comparability in monitoring SARS-CoV-2 levels in wastewater. Sci Rep 2024; 14:25582. [PMID: 39462074 PMCID: PMC11513023 DOI: 10.1038/s41598-024-77155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Reverse transcription-quantitative PCR (RT-qPCR) is widely used for monitoring viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in wastewater. Various materials, including plasmid DNA, synthetic nucleic acids, PCR amplicons, genomic DNA, and cDNA, are currently used for SARS-CoV-2 quantification by generating standard curves. We assessed three common standards on quantifying SARS-CoV-2 RNA across nine wastewater treatment plants in Finland, as part of the national wastewater surveillance effort. We pairwise compared RT-qPCR results from 148 wastewater samples, using both IDT (#10006625, IDT, USA) and CODEX standards (#SC2-RNAC-1100, CODEX DNA), and 179 samples using both IDT and EURM019 standards (#EURM-019, European Commission, Joint Research Centre) in our assessment. Amongst the tested standards, the CODEX standard consistently yielded more stable results than either the IDT or EURM019 standards. We found that SARS-CoV-2 levels were higher with the IDT standard (4.36 Log10 GC/100 mL) compared to the CODEX standard (4.05 Log10 GC/100 mL). Similarly, quantification using the IDT standard was higher (5.27 Log10 GC/100 mL) than values obtained with the EURM019 (4.81 Log10 GC/100 mL). SARS-CoV-2 RNA quantified with IDT and CODEX standards exhibited stronger concordance (Spearman's correlation rho median of 0.79) compared to those quantified with IDT and EURM019 standards (rho median of 0.59). This study highlights the significant impact of standard material selection on SARS-CoV-2 RNA quantification, emphasizing the need for harmonization in standard material.
Collapse
Affiliation(s)
- Aapo Juutinen
- Department of Public Health, The Welfare Epidemiology and Monitoring Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki, 00271, Finland
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Ananda Tiwari
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna-Maria Hokajärvi
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Oskari Luomala
- Department of Public Health, The Welfare Epidemiology and Monitoring Unit, Finnish Institute for Health and Welfare, Mannerheimintie 166, Helsinki, 00271, Finland
| | - Aleksi Kolehmainen
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Eveliina Nurmi
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Elisa Salmivirta
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Tarja Pitkänen
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anssi Lipponen
- Department of Public Health, Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland.
- Department of Medicine, Unit of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
11
|
Korajkic A, McMinn BR, Pemberton AC, Kelleher J, Ahmed W. The comparison of decay rates of infectious SARS-CoV-2 and viral RNA in environmental waters and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174379. [PMID: 38955270 PMCID: PMC11290430 DOI: 10.1016/j.scitotenv.2024.174379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Understanding the decay characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater and ambient waters is important for multiple applications including assessment of risk of exposure associated with handling wastewater samples, public health risk associated with recreation in wastewater polluted ambient waters and better understanding and interpretation of wastewater-based epidemiology (WBE) results. We evaluated the decay rates of infectious SARS-CoV-2 and viral RNA in wastewater and ambient waters under temperature regimes representative of seasonal fluctuations. Infectious virus was seeded in autoclaved primary wastewater effluent, final dechlorinated wastewater effluent, lake water, and marine water at a final concentration of 6.26 ± 0.07 log10 plaque forming units per milliliter. Each suspension was incubated at either 4°, 25°, and 37 °C. Samples were initially collected on an hourly basis, then approximately every other day for 15 days. All samples were analyzed for infectious virus via a plaque assay using the Vero E6 cell line, and viral gene copy levels were quantified with the US CDC's N1 and N2 reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. The infectious virus decayed significantly faster (p ≤ 0.0214) compared to viral RNA, which persisted for the duration of the study irrespective of the incubation conditions. The initial loss (within 15 min of seeding) as well as decay of infectious SARS-CoV-2 was significantly faster (p ≤ 0.0387) in primary treated wastewater compared to other water types, but viral RNA did not degrade appreciably in this matrix until day 15. Overall, temperature was the most important driver of decay, and after 24 h, no infectious SARS-CoV-2 was detected at 37 °C in any water type. Moreover, the CDC N2 gene assay target decayed significantly (p ≤ 0.0174) faster at elevated temperatures compared to CDC N1, which has important implications for RT-qPCR assay selection for WBE approach.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States.
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Adin C Pemberton
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct 41 Boggo Road, Qld 4102, Australia
| |
Collapse
|
12
|
Purves K, Reynolds LJ, Sala-Comorera L, Martin NA, Dahly DL, Meijer WG, Fletcher NF. Decay of RNA and infectious SARS-CoV-2 and murine hepatitis virus in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173877. [PMID: 38871327 DOI: 10.1016/j.scitotenv.2024.173877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Wastewater-based epidemiology (WBE) has been an important tool for population surveillance during the COVID-19 pandemic and continues to play a key role in monitoring SARS-CoV-2 infection levels following reductions in national clinical testing schemes. Studies measuring decay profiles of SARS-CoV-2 in wastewater have underscored the value of WBE, however investigations have been hampered by high biosafety requirements for SARS-CoV-2 infection studies. Therefore, surrogate viruses with lower biosafety standards have been used for SARS-CoV-2 decay studies, such as murine hepatitis virus (MHV), but few studies have directly compared decay rates of both viruses. We compared the persistence of SARS-CoV-2 and MHV in wastewater, using 50 % tissue culture infectious dose (TCID50) and reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays to assess infectious virus titre and viral gene markers, respectively. Infectious SARS-CoV-2 and MHV indicate similar endpoints, however observed early decay characteristics differed, with infectious SARS-CoV-2 decaying more rapidly than MHV. We find that MHV is an appropriate infectious virus surrogate for viable SARS-CoV-2, however inconsistencies exist in viral RNA decay parameters, indicating MHV may not be a suitable nucleic acid surrogate across certain temperature regimes. This study highlights the importance of sample preparation and the potential for decay rate overestimation in wastewater surveillance for SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Kevin Purves
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Ireland
| | - Liam J Reynolds
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Ireland
| | - Laura Sala-Comorera
- Section of Microbiology, Virology and Biotechnology, Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - Niamh A Martin
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Ireland
| | - Darren L Dahly
- Health Research Board Clinical Research Facility, University College Cork, Ireland; School of Public Health, University College Cork, Ireland
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute and UCD Conway Institute, University College Dublin, Ireland
| | - Nicola F Fletcher
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Ireland.
| |
Collapse
|
13
|
Länsivaara A, Lehto KM, Hyder R, Janhonen ES, Lipponen A, Heikinheimo A, Pitkänen T, Oikarinen S. Comparison of Different Reverse Transcriptase-Polymerase Chain Reaction-Based Methods for Wastewater Surveillance of SARS-CoV-2: Exploratory Study. JMIR Public Health Surveill 2024; 10:e53175. [PMID: 39158943 PMCID: PMC11369532 DOI: 10.2196/53175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Many countries have applied the wastewater surveillance of the COVID-19 pandemic to their national public health monitoring measures. The most used methods for detecting SARS-CoV-2 in wastewater are quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) and reverse transcriptase-droplet digital polymerase chain reaction (RT-ddPCR). Previous comparison studies have produced conflicting results, thus more research on the subject is required. OBJECTIVE This study aims to compare RT-qPCR and RT-ddPCR for detecting SARS-CoV-2 in wastewater. It also aimed to investigate the effect of changes in the analytical pipeline, including the RNA extraction kit, RT-PCR kit, and target gene assay, on the results. Another aim was to find a detection method for low-resource settings. METHODS We compared 2 RT-qPCR kits, TaqMan RT-qPCR and QuantiTect RT-qPCR, and RT-ddPCR based on sensitivity, positivity rates, variability, and correlation of SARS-CoV-2 gene copy numbers in wastewater to the incidence of COVID-19. Furthermore, we compared 2 RNA extraction methods, column- and magnetic-bead-based. In addition, we assessed 2 target gene assays for RT-qPCR, N1 and N2, and 2 target gene assays for ddPCR N1 and E. Reverse transcription strand invasion-based amplification (RT-SIBA) was used to detect SARS-CoV-2 from wastewater qualitatively. RESULTS Our results indicated that the most sensitive method to detect SARS-CoV-2 in wastewater was RT-ddPCR. It had the highest positivity rate (26/30), and its limit of detection was the lowest (0.06 gene copies/µL). However, we obtained the best correlation between COVID-19 incidence and SARS-CoV-2 gene copy number in wastewater using TaqMan RT-qPCR (correlation coefficient [CC]=0.697, P<.001). We found a significant difference in sensitivity between the TaqMan RT-qPCR kit and the QuantiTect RT-qPCR kit, the first having a significantly lower limit of detection and a higher positivity rate than the latter. Furthermore, the N1 target gene assay was the most sensitive for both RT-qPCR kits, while no significant difference was found between the gene targets using RT-ddPCR. In addition, the use of different RNA extraction kits affected the result when the TaqMan RT-qPCR kit was used. RT-SIBA was able to detect SARS-CoV-2 RNA in wastewater. CONCLUSIONS As our study, as well as most of the previous studies, has shown RT-ddPCR to be more sensitive than RT-qPCR, its use in the wastewater surveillance of SARS-CoV-2 should be considered, especially if the amount of SARS-CoV-2 circulating in the population was low. All the analysis steps must be optimized for wastewater surveillance as our study showed that all the analysis steps including the compatibility of the RNA extraction, the RT-PCR kit, and the target gene assay influence the results. In addition, our study showed that RT-SIBA could be used to detect SARS-CoV-2 in wastewater if a qualitative result is sufficient.
Collapse
Affiliation(s)
- Annika Länsivaara
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rafiqul Hyder
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Finnish Food Authority - Ruokavirasto, Seinäjoki, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
14
|
Williams RC, Perry WB, Lambert-Slosarska K, Futcher B, Pellett C, Richardson-O'Neill I, Paterson S, Grimsley JMS, Wade MJ, Weightman AJ, Farkas K, Jones DL. Examining the stability of viral RNA and DNA in wastewater: Effects of storage time, temperature, and freeze-thaw cycles. WATER RESEARCH 2024; 259:121879. [PMID: 38865915 DOI: 10.1016/j.watres.2024.121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Wastewater-based epidemiology (WBE) has been demonstrably successful as a relatively unbiased tool for monitoring levels of SARS-CoV-2 virus circulating in communities during the COVID-19 pandemic. Accumulated biobanks of wastewater samples allow retrospective exploration of spatial and temporal trends for public health indicators such as chemicals, viruses, antimicrobial resistance genes, and the possible emergence of novel human or zoonotic pathogens. We investigated virus resilience to time, temperature, and freeze-thaw cycles, plus the optimal storage conditions to maintain the stability of genetic material (RNA/DNA) of viral +ssRNA (Envelope - E, Nucleocapsid - N and Spike protein - S genes of SARS-CoV-2), dsRNA (Phi6 phage) and circular dsDNA (crAssphage) in wastewater. Samples consisted of (i) processed and extracted wastewater samples, (ii) processed and extracted distilled water samples, and (iii) raw, unprocessed wastewater samples. Samples were stored at -80 °C, -20 °C, 4 °C, or 20 °C for 10 days, going through up to 10 freeze-thaw cycles (once per day). Sample stability was measured using reverse transcription quantitative PCR, quantitative PCR, automated electrophoresis, and short-read whole genome sequencing. Exploring different areas of the SARS-CoV-2 genome demonstrated that the S gene in processed and extracted samples showed greater sensitivity to freeze-thaw cycles than the E or N genes. Investigating surrogate and normalisation viruses showed that Phi6 remains a stable comparison for SARS-CoV-2 in a laboratory setting and crAssphage was relatively resilient to temperature variation. Recovery of SARS-CoV-2 in raw unprocessed samples was significantly greater when stored at 4 °C, which was supported by the sequencing data for all viruses - both time and freeze-thaw cycles negatively impacted sequencing metrics. Historical extracts stored at -80 °C that were re-quantified 12, 14 and 16 months after original quantification showed no major changes. This study highlights the importance of the fast processing and extraction of wastewater samples, following which viruses are relatively robust to storage at a range of temperatures.
Collapse
Affiliation(s)
- Rachel C Williams
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - William B Perry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | | | - Ben Futcher
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; Department of Oncology, Medical Sciences Division, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Cameron Pellett
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | | | - Steve Paterson
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jasmine M S Grimsley
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK; The London Data Company, London, EC2N 2AT, UK
| | - Matthew J Wade
- UK Health Security Agency, Data Analytics & Surveillance Group, 10 South Colonnade, Canary Wharf, London, E14 4PU, UK
| | - Andrew J Weightman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
15
|
Subroyen S, Pillay L, Bux F, Kumari S. Evaluating storage conditions and enhancement strategies on viral biomarker recovery for WBE applications. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:213-224. [PMID: 39007315 DOI: 10.2166/wst.2024.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
Wastewater-based epidemiology (WBE) is a valuable disease surveillance tool. However, little is known on how factors such as transportation, storage, and wastewater characteristics influence the accuracy of the quantification methods. Hence, this study investigated the impact of storage temperatures and physicochemical characteristics of wastewater on SARS-CoV-2 and influenza A stability using droplet digital PCR. Additionally, strategies to enhance viral recovery were explored. Municipal influent wastewater stored between ±25 and -80 °C was assessed for a period of 84 days to determine viral degradation. Degradation up to 94.1% of influenza A and SARS-CoV-2 was observed in all samples with the highest at ±25 °C. Viral degradation was correlated to the changes in wastewater physicochemical characteristics. The low degradation observed of SARS-CoV-2 in the spiked pellets were indicative of viral adhesion to wastewater solids, which correlated with changes in pH. Ultrasonication frequencies ranging from 4 to 16 kHz, increased SARS-CoV-2 concentrations in the supernatant between 3.30 and 35.65%, indicating viral RNA attachment to wastewater solids. These results highlight the importance of additional pretreatment methods for maximizing RNA recovery from wastewater samples. Based on these findings, it was deduced that wastewater preservation studies are essential, and pretreatment should be included in the WBE methodology.
Collapse
Affiliation(s)
- Sueyanka Subroyen
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Leanne Pillay
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| |
Collapse
|
16
|
Lehto KM, Länsivaara A, Hyder R, Luomala O, Lipponen A, Hokajärvi AM, Heikinheimo A, Pitkänen T, Oikarinen S. Wastewater-based surveillance is an efficient monitoring tool for tracking influenza A in the community. WATER RESEARCH 2024; 257:121650. [PMID: 38692254 DOI: 10.1016/j.watres.2024.121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Around the world, influenza A virus has caused severe pandemics, and the risk of future pandemics remains high. Currently, influenza A virus surveillance is based on the clinical diagnosis and reporting of disease cases. In this study, we apply wastewater-based surveillance to monitor the amount of the influenza A virus RNA at the population level. We report the influenza A virus RNA levels in 10 wastewater treatment plant catchment areas covering 40 % of the Finnish population. Altogether, 251 monthly composite influent wastewater samples (collected between February 2021 and February 2023) were analysed from supernatant fraction using influenza A virus specific RT-qPCR method. During the study period, an influenza A virus epidemic occurred in three waves in Finland. This study shows that the influenza A virus RNA can be detected from the supernatant fraction of 24 h composite influent wastewater samples. The influenza A virus RNA gene copy number in wastewater correlated with the number of confirmed disease cases in the Finnish National Infectious Diseases Register. The median Kendall's τ correlation strength was 0.636 (min= 0.486 and max=0.804) and it was statistically significant in all 10 WTTPs. Wastewater-based surveillance of the influenza A virus RNA is an independent from individual testing method and cost-efficiently reflects the circulation of the virus in the entire population. Thus, wastewater monitoring complements the available, but often too sparse, information from individual testing and improves health care and public health preparedness for influenza A virus pandemics.
Collapse
Affiliation(s)
- Kirsi-Maarit Lehto
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Annika Länsivaara
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Rafiqul Hyder
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Neulaniementie 4, Kuopio 70210, Finland
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Neulaniementie 4, Kuopio 70210, Finland
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Neulaniementie 4, Kuopio 70210, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, FI00014, Finland; Finnish Food Authority, Ruokavirasto, Alvar Aallon katu 5, Seinäjoki 60100, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, THL, Department of Health Security, Neulaniementie 4, Kuopio 70210, Finland; Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, FI00014, Finland
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Arvo Ylpön katu 34, Tampere 33520, Finland.
| |
Collapse
|
17
|
Tiwari A, Lehto KM, Paspaliari DK, Al-Mustapha AI, Sarekoski A, Hokajärvi AM, Länsivaara A, Hyder R, Luomala O, Lipponen A, Oikarinen S, Heikinheimo A, Pitkänen T. Developing wastewater-based surveillance schemes for multiple pathogens: The WastPan project in Finland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171401. [PMID: 38467259 DOI: 10.1016/j.scitotenv.2024.171401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Wastewater comprises multiple pathogens and offers a potential for wastewater-based surveillance (WBS) to track the prevalence of communicable diseases. The Finnish WastPan project aimed to establish wastewater-based pandemic preparedness for multiple pathogens (viruses, bacteria, parasites, fungi), including antimicrobial resistance (AMR). This article outlines WastPan's experiences in this project, including the criteria for target selection, sampling locations, frequency, analysis methods, and results communication. Target selection relied on epidemiological and microbiological evidence and practical feasibility. Within the WastPan framework, wastewater samples were collected between 2021 and 2023 from 10 wastewater treatment plants (WWTPs) covering 40 % of Finland's population. WWTP selection was validated for reported cases of Extended Spectrum Beta-lactamase-producing bacterial pathogens (Escherichia coli and Klebsiella pneumoniae) from the National Infectious Disease Register. The workflow included 24-h composite influent samples, with one fraction for culture-based analysis (bacteria and fungi) and the rest of the sample was reserved for molecular analysis (viruses, bacteria, antibiotic resistance genes, and parasites). The reproducibility of the monitoring workflow was assessed for SARS-CoV-2 through inter-laboratory comparisons using the N2 and N1 assays. Identical protocols were applied to same-day samples, yielding similar positivity trends in the two laboratories, but the N2 assay achieved a significantly higher detection rate (Laboratory 1: 91.5 %; Laboratory 2: 87.4 %) than the N1 assay (76.6 %) monitored only in Laboratory 2 (McNemar, p < 0.001 Lab 1, = 0.006 Lab 2). This result indicates that the selection of monitoring primers and assays may impact monitoring sensitivity in WBS. Overall, the current study recommends that the selection of sampling frequencies and population coverage of the monitoring should be based on pathogen-specific epidemiological characteristics. For example, pathogens that are stable over time may need less frequent annual sampling, while those that are occurring across regions may require reduced sample coverage. Here, WastPan successfully piloted WBS for monitoring multiple pathogens, highlighting the significance of one-litre community composite wastewater samples for assessing community health. The infrastructure established for COVID-19 WBS is valuable for monitoring various pathogens. The prioritization of the monitoring targets optimizes resource utilization. In the future legislative support in target selection, coverage determination, and sustained funding for WBS is recomended.
Collapse
Affiliation(s)
- Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Kirsi-Maarit Lehto
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Dafni K Paspaliari
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Ahmad I Al-Mustapha
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Anniina Sarekoski
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Annika Länsivaara
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Rafiqul Hyder
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Oskari Luomala
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Anssi Lipponen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland.
| | - Sami Oikarinen
- Tampere University, Faculty of Medicine and Health Technology, Tampere, Finland.
| | - Annamari Heikinheimo
- University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland.
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, Kuopio and Helsinki, Finland; University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland.
| |
Collapse
|
18
|
Su L, Lou Y, Li J, Mao H, Li J, Sun Y, Zhou B, Wu G, Huang C, Zhang Y, Chen K. Influence of storage solution, temperature, assay time and concentration on RT-qPCR nucleic acid detection for SARS-CoV-2 detection of SARS-CoV-2 by the RT-qPCR. Biochem Biophys Res Commun 2024; 707:149726. [PMID: 38493747 DOI: 10.1016/j.bbrc.2024.149726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/19/2024]
Abstract
Real-time reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is an important method for the early diagnosis of coronavirus disease 2019 (COVID-19). This study investigated the effects of storage solution, temperature and detection time on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid detection by RT-qPCR. Various concentrations of SARS-CoV-2 were added to inactive and non-inactive storage solution and the viral suspensions were stored at various temperatures (room temperature, 4, -20 and -80 °C). Then, at five different detection time points, the Ct values were determined by RT-qPCR. Active and inactive storage solutions and storage temperature have a great impact on the detection of N gene of SARS-CoV-2 at different concentration corridors but have little impact on the ORF gene. The storage time has a greater impact on the N gene and ORF gene at high concentrations but has no effect on the two genes at low concentrations. In conclusion, storage temperature, storage time and storage status (inactivated, non-inactivated) have no effect on the nucleic acid detection of SARS-CoV-2 at the same concentration. For different concentrations of SARS-CoV-2, the detection of N gene is mainly affected.
Collapse
Affiliation(s)
- Lingxuan Su
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yihan Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Haiyan Mao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianhua Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yi Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Biaofeng Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Chen Huang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
19
|
Porter AM, Hart JJ, Rediske RR, Szlag DC. SARS-CoV-2 wastewater surveillance at two university campuses: lessons learned and insights on intervention strategies for public health guidance. JOURNAL OF WATER AND HEALTH 2024; 22:811-824. [PMID: 38822461 DOI: 10.2166/wh.2024.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/22/2024] [Indexed: 06/03/2024]
Abstract
Wastewater surveillance has been a tool for public health officials throughout the COVID-19 pandemic. Universities established pandemic response committees to facilitate safe learning for students, faculty, and staff. These committees met to analyze both wastewater and clinical data to propose mitigation strategies to limit the spread of COVID-19. This paper reviews the initial efforts of utilizing campus data inclusive of wastewater surveillance for SARS-CoV-2 RNA concentrations, clinical case data from university response teams, and mitigation strategies from Grand Valley State University in West Michigan (population 21,648 students) and Oakland University in East Michigan (population 18,552 students) from November 2020 to April 2022. Wastewater positivity rates for both universities ranged from 32.8 to 46.8%. Peak viral signals for both universities directly corresponded to variant points of entry within the campus populations from 2021 to 2022. It was found that the organization of clinical case data and variability of wastewater testing data were large barriers for both universities to effectively understand disease dynamics within the university population. We review the initial efforts of onboarding wastewater surveillance and provide direction for structuring ongoing surveillance workflows and future epidemic response strategies based on those that led to reduced viral signals in campus wastewater.
Collapse
Affiliation(s)
- Alexis M Porter
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA E-mail:
| | - John J Hart
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA; Department of Chemistry, Oakland University, 146 Library Dr, Rochester, MI 48309, USA
| | - Richard R Rediske
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - David C Szlag
- Department of Chemistry, Oakland University, 146 Library Dr, Rochester, MI 48309, USA
| |
Collapse
|
20
|
Zhang M, Roldan-Hernandez L, Boehm A. Persistence of human respiratory viral RNA in wastewater-settled solids. Appl Environ Microbiol 2024; 90:e0227223. [PMID: 38501669 PMCID: PMC11022535 DOI: 10.1128/aem.02272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Wastewater-based epidemiology has emerged as a valuable tool for monitoring respiratory viral diseases within communities by analyzing concentrations of viral nucleic-acids in wastewater. However, little is known about the fate of respiratory virus nucleic-acids in wastewater. Two important fate processes that may modulate their concentrations in wastewater as they move from household drains to the point of collection include sorption or partitioning to wastewater solids and degradation. This study investigated the decay kinetics of genomic nucleic-acids of seven human respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respiratory syncytial virus (RSV), human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, human rhinovirus (HRV), and influenza A virus (IAV), as well as pepper mild mottle virus (PMMoV) in wastewater solids. Viruses (except for PMMoV) were spiked into wastewater solids and their concentrations were followed for 50 days at three different temperatures (4°C, 22°C, and 37°C). Viral genomic RNA decayed following first-order kinetics with decay rate constants k from 0 to 0.219 per day. Decay rate constants k were not different from 0 for all targets in solids incubated at 4°C; k values were largest at 37°C and at this temperature, k values were similar across nucleic-acid targets. Regardless of temperature, there was limited viral RNA decay, with an estimated 0% to 20% reduction, over the typical residence times of sewage in the piped systems between input and collection point (<1 day). The k values reported herein can be used directly in fate and transport models to inform the interpretation of measurements made during wastewater surveillance.IMPORTANCEUnderstanding whether or not the RNA targets quantified for wastewater-based epidemiology (WBE) efforts decay during transport between drains and the point of sample collection is critical for data interpretation. Here we show limited decay of viral RNA targets typically measured for respiratory disease WBE.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Laura Roldan-Hernandez
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Alexandria Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| |
Collapse
|
21
|
Lipponen A, Kolehmainen A, Oikarinen S, Hokajärvi AM, Lehto KM, Heikinheimo A, Halkilahti J, Juutinen A, Luomala O, Smura T, Liitsola K, Blomqvist S, Savolainen-Kopra C, Pitkänen T. Detection of SARS-COV-2 variants and their proportions in wastewater samples using next-generation sequencing in Finland. Sci Rep 2024; 14:7751. [PMID: 38565591 PMCID: PMC10987589 DOI: 10.1038/s41598-024-58113-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants may have different characteristics, e.g., in transmission, mortality, and the effectiveness of vaccines, indicating the importance of variant detection at the population level. Wastewater-based surveillance of SARS-CoV-2 RNA fragments has been shown to be an effective way to monitor the COVID-19 pandemic at the population level. Wastewater is a complex sample matrix affected by environmental factors and PCR inhibitors, causing insufficient coverage in sequencing, for example. Subsequently, results where part of the genome does not have sufficient coverage are not uncommon. To identify variants and their proportions in wastewater over time, we utilized next-generation sequencing with the ARTIC Network's primer set and bioinformatics pipeline to evaluate the presence of variants in partial genome data. Based on the wastewater data from November 2021 to February 2022, the Delta variant was dominant until mid-December in Helsinki, Finland's capital, and thereafter in late December 2022 Omicron became the most common variant. At the same time, the Omicron variant of SARS-CoV-2 outcompeted the previous Delta variant in Finland in new COVID-19 cases. The SARS-CoV-2 variant findings from wastewater are in agreement with the variant information obtained from the patient samples when visually comparing trends in the sewerage network area. This indicates that the sequencing of wastewater is an effective way to monitor temporal and spatial trends of SARS-CoV-2 variants at the population level.
Collapse
Affiliation(s)
- Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.
- Institute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Aleksi Kolehmainen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna-Maria Hokajärvi
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Kirsi-Maarit Lehto
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Microbiology Unit, Laboratory and Research Division, Finnish Food Authority, Helsinki, Finland
| | - Jani Halkilahti
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aapo Juutinen
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Oskari Luomala
- Infectious Disease Control and Vaccinations Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kirsi Liitsola
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Soile Blomqvist
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Carita Savolainen-Kopra
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Yao Y, Zhu Y, Nogueira R, Klawonn F, Wallner M. Optimal Selection of Sampling Points within Sewer Networks for Wastewater-Based Epidemiology Applications. Methods Protoc 2024; 7:6. [PMID: 38251199 PMCID: PMC10801534 DOI: 10.3390/mps7010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
Wastewater-based epidemiology (WBE) has great potential to monitor community public health, especially during pandemics. However, it faces substantial hurdles in pathogen surveillance through WBE, encompassing data representativeness, spatiotemporal variability, population estimates, pathogen decay, and environmental factors. This paper aims to enhance the reliability of WBE data, especially for early outbreak detection and improved sampling strategies within sewer networks. The tool implemented in this paper combines a monitoring model and an optimization model to facilitate the optimal selection of sampling points within sewer networks. The monitoring model utilizes parameters such as feces density and average water consumption to define the detectability of the virus that needs to be monitored. This allows for standardization and simplicity in the process of moving from the analysis of wastewater samples to the identification of infection in the source area. The entropy-based model can select optimal sampling points in a sewer network to obtain the most specific information at a minimum cost. The practicality of our tool is validated using data from Hildesheim, Germany, employing SARS-CoV-2 as a pilot pathogen. It is important to note that the tool's versatility empowers its extension to monitor other pathogens in the future.
Collapse
Affiliation(s)
- Yao Yao
- Institute for Information Engineering, Ostfalia University of Applied Sciences, Salzdahlumer Str. 46/48, 38302 Wolfenbüttel, Germany;
| | - Yibo Zhu
- Faculty of Civil and Environmental Engineering, Ostfalia University of Applied Sciences, Herbert-Meyer-Str. 7, 29556 Suderburg, Germany; (Y.Z.); (M.W.)
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany;
| | - Frank Klawonn
- Biostatistics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Markus Wallner
- Faculty of Civil and Environmental Engineering, Ostfalia University of Applied Sciences, Herbert-Meyer-Str. 7, 29556 Suderburg, Germany; (Y.Z.); (M.W.)
| |
Collapse
|
23
|
Barrantes K, Chacón-Jiménez L, Rivera-Montero L, Segura-Villalta A, Badilla-Aguilar A, Alfaro-Arrieta E, Rivera-Navarro P, Méndez-Chacón E, Santamaría-Ulloa C. Challenges detecting SARS-CoV-2 in Costa Rican domestic wastewater and river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165393. [PMID: 37433341 DOI: 10.1016/j.scitotenv.2023.165393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
This study presents the development of a SARS-CoV-2 detection method for domestic wastewater and river water in Costa Rica, a middle-income country in Central America. Over a three-year period (November to December 2020, July to November 2021, and June to October 2022), 80 composite wastewater samples (43 influent and 37 effluent) were collected from a Wastewater Treatment Plant (SJ-WWTP) located in San José, Costa Rica. Additionally, 36 river water samples were collected from the Torres River near the SJ-WWTP discharge site. A total of three protocols for SARS-CoV-2 viral concentration and RNA detection and quantification were analyzed. Two protocols using adsorption-elution with PEG precipitation (Protocol A and B, differing in the RNA extraction kit; n = 82) were used on wastewater samples frozen prior to concentration, while wastewater (n = 34) collected in 2022 were immediately concentrated using PEG precipitation. The percent recovery of Bovine coronavirus (BCoV) was highest using the Zymo Environ Water RNA (ZEW) kit with PEG precipitation executed on the same day as collection (mean 6.06 % ± 1.37 %). It was lowest when samples were frozen and thawed, and viruses were concentrated using adsorption-elution and PEG concentration methods using the PureLink™ Viral RNA/DNA Mini (PLV) kit (protocol A; mean 0.48 % ± 0.23 %). Pepper mild mottle virus and Bovine coronavirus were used as process controls to understand the suitability and potential impact of viral recovery on the detection/quantification of SARS-CoV-2 RNA. Overall, SARS-CoV-2 RNA was detected in influent and effluent wastewater samples collected in 2022 but not in earlier years when the method was not optimized. The burden of SARS-CoV-2 at the SJ-WWTP decreased from week 36 to week 43 of 2022, coinciding with a decline in the national COVID-19 prevalence rate. Developing comprehensive nationwide surveillance programs for wastewater-based epidemiology in low-middle-income countries involves significant technical and logistical challenges.
Collapse
Affiliation(s)
- Kenia Barrantes
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| | - Luz Chacón-Jiménez
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| | - Luis Rivera-Montero
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| | | | - Andrei Badilla-Aguilar
- National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
| | - Ernesto Alfaro-Arrieta
- National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
| | - Pablo Rivera-Navarro
- National Water Laboratory of the Costa Rican Institute of Aqueducts and Sewerage, P.O.Box 1097-1200, Cartago, Costa Rica.
| | - Ericka Méndez-Chacón
- School of Statistics, University of Costa Rica, P.O. Box 11501-2060, San José, Costa Rica.
| | | |
Collapse
|
24
|
Thapar I, Langan LM, Davis H, Norman RS, Bojes HK, Brooks BW. Influence of storage conditions and multiple freeze-thaw cycles on N1 SARS-CoV-2, PMMoV, and BCoV signal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165098. [PMID: 37392884 PMCID: PMC10307669 DOI: 10.1016/j.scitotenv.2023.165098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Wastewater-based epidemiology/wastewater-based surveillance (WBE/WBS) continues to serve as an effective means of monitoring various diseases, including COVID-19 and the emergence of SARS-CoV-2 variants, at the population level. As the use of WBE expands, storage conditions of wastewater samples will play a critical role in ensuring the accuracy and reproducibility of results. In this study, the impacts of water concentration buffer (WCB), storage temperature, and freeze-thaw cycles on the detection of SARS-CoV-2 and other WBE-related gene targets were examined. Freeze-thawing of concentrated samples did not significantly affect (p > 0.05) crossing/cycle threshold (Ct) value for any of the gene targets studied (SARS-CoV-2 N1, PMMoV, and BCoV). However, use of WCB during concentration resulted in a significant (p < 0.05) decrease in Ct for all targets, and storage at -80 °C (in contrast to -20 °C) appeared preferable for wastewater storage signal stability based on decreased Ct values, although this was only significantly different (p < 0.05) for the BCoV target. Interestingly, when Ct values were converted to gene copies per influent sample, no significant differences (p > 0.05) were observed in any of the targets examined. Stability of RNA targets in concentrated wastewater against freeze-thaw degradation supports archiving of concentrated samples for use in retrospective examination of COVID-19 trends and tracing SARS-CoV-2 variants and potentially other viruses, and provides a starting point for establishing a consistent procedure for specimen collection and storage for the WBE/WBS community.
Collapse
Affiliation(s)
- Isha Thapar
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA.
| | - Haley Davis
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US-1, Fort Pierce, FL 34946, USA
| | - R Sean Norman
- Department of Environmental Health Sciences, Arnold School of Public Health, South Carolina, 921 Assembly St., Columbia, SC 29208, USA
| | - Heidi K Bojes
- Environmental Epidemiology and Disease Registries Section, Texas Department of State Health Services, Austin, TX 78756, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX 76798, USA
| |
Collapse
|
25
|
Breadner PR, Dhiyebi HA, Fattahi A, Srikanthan N, Hayat S, Aucoin MG, Boegel SJ, Bragg LM, Craig PM, Xie Y, Giesy JP, Servos MR. A comparative analysis of the partitioning behaviour of SARS-CoV-2 RNA in liquid and solid fractions of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165095. [PMID: 37355124 PMCID: PMC10287177 DOI: 10.1016/j.scitotenv.2023.165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
As fragments of SARS-CoV-2 RNA can be quantified and measured temporally in wastewater, surveillance of concentrations of SARS-CoV-2 in wastewater has become a vital resource for tracking the spread of COVID-19 in and among communities. However, the absence of standardized methods has affected the interpretation of data for public health efforts. In particular, analyzing either the liquid or solid fraction has implications for the interpretation of how viral RNA is quantified. Characterizing how SARS-CoV-2 or its RNA fragments partition in wastewater is a central part of understanding fate and behaviour in wastewater. In this study, partitioning of SARS-CoV-2 was investigated by use of centrifugation with varied durations of spin and centrifugal force, polyethylene glycol (PEG) precipitation followed by centrifugation, and ultrafiltration of wastewater. Partitioning of the endogenous pepper mild mottled virus (PMMoV), used to normalize the SARS-CoV-2 signal for fecal load in trend analysis, was also examined. Additionally, two surrogates for coronavirus, human coronavirus 229E and murine hepatitis virus, were analyzed as process controls. Even though SARS-CoV-2 has an affinity for solids, the total RNA copies of SARS-CoV-2 per wastewater sample, after centrifugation (12,000 g, 1.5 h, no brake), were partitioned evenly between the liquid and solid fractions. Centrifugation at greater speeds for longer durations resulted in a shift in partitioning for all viruses toward the solid fraction except for PMMoV, which remained mostly in the liquid fraction. The surrogates more closely reflected the partitioning of SARS-CoV-2 under high centrifugation speed and duration while PMMoV did not. Interestingly, ultrafiltration devices were inconsistent in estimating RNA copies in wastewater, which can influence the interpretation of partitioning. Developing a better understanding of the fate of SARS-CoV-2 in wastewater and creating a foundation of best practices is the key to supporting the current pandemic response and preparing for future potential infectious diseases.
Collapse
Affiliation(s)
- Patrick R Breadner
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Azar Fattahi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Samina Hayat
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Scott J Boegel
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Yuwei Xie
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Science, Baylor University, One Bear Place, Waco, TX 76798, USA
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
26
|
de Araújo Rolo C, Machado BAS, Dos Santos MC, Dos Santos RF, Fonseca MS, Hodel KVS, Silva JR, Nunes DDG, Dos Santos Almeida E, de Andrade JB. Long-term monitoring of COVID-19 prevalence in raw and treated wastewater in Salvador, the largest capital of the Brazilian Northeast. Sci Rep 2023; 13:15238. [PMID: 37709804 PMCID: PMC10502096 DOI: 10.1038/s41598-023-41060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Wastewater-based epidemiology (WBE) becomes an interesting epidemiological approach to monitoring the prevalence of SARS-CoV-2 broadly and non-invasively. Herein, we employ for the first time WBE, associated or not with the PEG 8000 precipitation method, for the detection of SARS-CoV-2 in samples of raw or treated wastewater from 22 municipal wastewater treatment stations (WWTPs) located in Salvador, the fourth most populous city in Brazil. Our results demonstrate the success of the application of WBE for detecting SARS-CoV-2 in both types of evaluated samples, regardless of the usage of PEG 8000 concentration procedure. Further, an increase in SARS-CoV-2 positivity rate was observed in samples collected in months that presented the highest number of confirmed COVID-19 cases (May/2021, June/2021 and January/2022). While PEG 8000 concentration step was found to significantly increase the positivity rate in treated wastewater samples (p < 0.005), a strong positive correlation (r: 0.84; p < 0.002) between non-concentrated raw wastewater samples with the number of new cases of COVID-19 (April/2021-February/2022) was observed. In general, the present results reinforce the efficiency of WBE approach to monitoring the presence of SARS-CoV-2 in either low- or high-capacity WWTPs. The successful usage of WBE even in raw wastewater samples makes it an interesting low-cost tool for epidemiological surveillance.
Collapse
Affiliation(s)
- Carolina de Araújo Rolo
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, 41650-010, Brazil
| | - Matheus Carmo Dos Santos
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Rosângela Fernandes Dos Santos
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Maísa Santos Fonseca
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Jéssica Rebouças Silva
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Danielle Devequi Gomes Nunes
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil
| | - Edna Dos Santos Almeida
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, 41650-010, Brazil
| | - Jailson Bittencourt de Andrade
- SENAI CIMATEC, SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, Salvador, 41650-010, Brazil.
- SENAI CIMATEC, Manufacturing and Technology Integrated Campus, University Center SENAI CIMATEC, Salvador, 41650-010, Brazil.
- Centro Interdisciplinar de Energia e Ambiente - CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil.
| |
Collapse
|
27
|
Liu Y, Kumblathan T, Joyce MA, Tyrrell DL, Tipples G, Pang X, Li XF, Le XC. Multiplex Assays Enable Simultaneous Detection and Identification of SARS-CoV-2 Variants of Concern in Clinical and Wastewater Samples. ACS MEASUREMENT SCIENCE AU 2023; 3:258-268. [PMID: 37600458 PMCID: PMC10152402 DOI: 10.1021/acsmeasuresciau.3c00005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 08/22/2023]
Abstract
The targeted screening and sequencing approaches for COVID-19 surveillance need to be adjusted to fit the evolving surveillance objectives which necessarily change over time. We present the development of variant screening assays that can be applied to new targets in a timely manner and enable multiplexing of targets for efficient implementation in the laboratory. By targeting the HV69/70 deletion for Alpha, K417N for Beta, K417T for Gamma, and HV69/70 deletion plus K417N for sub-variants BA.1, BA.3, BA.4, and BA.5 of Omicron, we achieved simultaneous detection and differentiation of Alpha, Beta, Gamma, and Omicron in a single assay. Targeting both T478K and P681R mutations enabled specific detection of the Delta variant. The multiplex assays used in combination, targeting K417N and T478K, specifically detected the Omicron sub-variant BA.2. The limits of detection for the five variants of concern were 4-16 copies of the viral RNA per reaction. Both assays achieved 100% clinical sensitivity and 100% specificity. Analyses of 377 clinical samples and 24 wastewater samples revealed the Delta variant in 100 clinical samples (nasopharyngeal and throat swab) collected in November 2021. Omicron BA.1 was detected in 79 nasopharyngeal swab samples collected in January 2022. Alpha, Beta, and Gamma variants were detected in 24 wastewater samples collected in May-June 2021 from two major cities of Alberta (Canada), and the results were consistent with the clinical cases of multiple variants reported in the community.
Collapse
Affiliation(s)
- Yanming Liu
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Teresa Kumblathan
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Michael A. Joyce
- Li
Ka Shing Institute of Virology, Department
of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - D. Lorne Tyrrell
- Li
Ka Shing Institute of Virology, Department
of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Graham Tipples
- Li
Ka Shing Institute of Virology, Department
of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry,
University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Provincial
Laboratory for Public Health, Alberta Precision Laboratories, University of Alberta Hospitals, 8440-112 Street, Edmonton, Alberta T6G 2J2, Canada
| | - Xiaoli Pang
- Provincial
Laboratory for Public Health, Alberta Precision Laboratories, University of Alberta Hospitals, 8440-112 Street, Edmonton, Alberta T6G 2J2, Canada
- Department
of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X. Chris Le
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
28
|
Zhao L, Geng Q, Corchis-Scott R, McKay RM, Norton J, Xagoraraki I. Targeting a free viral fraction enhances the early alert potential of wastewater surveillance for SARS-CoV-2: a methods comparison spanning the transition between delta and omicron variants in a large urban center. Front Public Health 2023; 11:1140441. [PMID: 37546328 PMCID: PMC10400354 DOI: 10.3389/fpubh.2023.1140441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Wastewater surveillance has proven to be a valuable approach to monitoring the spread of SARS-CoV-2, the virus that causes Coronavirus disease 2019 (COVID-19). Recognizing the benefits of wastewater surveillance as a tool to support public health in tracking SARS-CoV-2 and other respiratory pathogens, numerous wastewater virus sampling and concentration methods have been tested for appropriate applications as well as their significance for actionability by public health practices. Methods Here, we present a 34-week long wastewater surveillance study that covers nearly 4 million residents of the Detroit (MI, United States) metropolitan area. Three primary concentration methods were compared with respect to recovery of SARS-CoV-2 from wastewater: Virus Adsorption-Elution (VIRADEL), polyethylene glycol precipitation (PEG), and polysulfone (PES) filtration. Wastewater viral concentrations were normalized using various parameters (flow rate, population, total suspended solids) to account for variations in flow. Three analytical approaches were implemented to compare wastewater viral concentrations across the three primary concentration methods to COVID-19 clinical data for both normalized and non-normalized data: Pearson and Spearman correlations, Dynamic Time Warping (DTW), and Time Lagged Cross Correlation (TLCC) and peak synchrony. Results It was found that VIRADEL, which captures free and suspended virus from supernatant wastewater, was a leading indicator of COVID-19 cases within the region, whereas PEG and PES filtration, which target particle-associated virus, each lagged behind the early alert potential of VIRADEL. PEG and PES methods may potentially capture previously shed and accumulated SARS-CoV-2 resuspended from sediments in the interceptors. Discussion These results indicate that the VIRADEL method can be used to enhance the early-warning potential of wastewater surveillance applications although drawbacks include the need to process large volumes of wastewater to concentrate sufficiently free and suspended virus for detection. While lagging the VIRADEL method for early-alert potential, both PEG and PES filtration can be used for routine COVID-19 wastewater monitoring since they allow a large number of samples to be processed concurrently while being more cost-effective and with rapid turn-around yielding results same day as collection.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Robert Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, OH, United States
| | - John Norton
- Great Lakes Water Authority, Detroit, MI, United States
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
29
|
Atoui A, Cordevant C, Chesnot T, Gassilloud B. SARS-CoV-2 in the environment: Contamination routes, detection methods, persistence and removal in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163453. [PMID: 37059142 PMCID: PMC10091716 DOI: 10.1016/j.scitotenv.2023.163453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
The present study reviewed the occurrence of SARS-CoV-2 RNA and the evaluation of virus infectivity in feces and environmental matrices. The detection of SARS-CoV-2 RNA in feces and wastewater samples, reported in several studies, has generated interest and concern regarding the possible fecal-oral route of SARS-CoV-2 transmission. To date, the presence of viable SARS-CoV-2 in feces of COVID-19 infected people is not clearly confirmed although its isolation from feces of six different patients. Further, there is no documented evidence on the infectivity of SARS-CoV-2 in wastewater, sludge and environmental water samples, although the viral genome has been detected in these matrices. Decay data revealed that SARS-CoV-2 RNA persisted longer than infectious particle in all aquatic environment, indicating that genome quantification of SARS-CoV-2 does not imply the presence of infective viral particles. In addition, this review also outlined the fate of SARS-CoV-2 RNA during the different steps in the wastewater treatment plant and focusing on the virus elimination along the sludge treatment line. Studies showed complete removal of SARS-CoV-2 during the tertiary treatment. Moreover, thermophilic sludge treatments present high efficiency in SARS-CoV-2 inactivation. Further studies are required to provide more evidence with respect to the inactivation behavior of infectious SARS-CoV-2 in different environmental matrices and to examine factors affecting SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Ali Atoui
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France.
| | - Christophe Cordevant
- ANSES, Strategy and Programs Department, Research and Reference Division, Maisons-Alfort F-94 700, France
| | - Thierry Chesnot
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| | - Benoît Gassilloud
- ANSES, Nancy Laboratory for Hydrology, Water Microbiology Unit, 40, rue Lionnois, 54 000 Nancy, France
| |
Collapse
|
30
|
Ciannella S, González-Fernández C, Gomez-Pastora J. Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162953. [PMID: 36948304 PMCID: PMC10028212 DOI: 10.1016/j.scitotenv.2023.162953] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus disease 2019 (COVID-19), whose causative agent is the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a pandemic. This virus is predominantly transmitted via respiratory droplets and shed via sputum, saliva, urine, and stool. Wastewater-based epidemiology (WBE) has been able to monitor the circulation of viral pathogens in the population. This tool demands both in-lab and computational work to be meaningful for, among other purposes, the prediction of outbreaks. In this context, we present a systematic review that organizes and discusses laboratory procedures for SARS-CoV-2 RNA quantification from a wastewater matrix, along with modeling techniques applied to the development of WBE for COVID-19 surveillance. The goal of this review is to present the current panorama of WBE operational aspects as well as to identify current challenges related to it. Our review was conducted in a reproducible manner by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews. We identified a lack of standardization in wastewater analytical procedures. Regardless, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approach was the most reported technique employed to detect and quantify viral RNA in wastewater samples. As a more convenient sample matrix, we suggest the solid portion of wastewater to be considered in future investigations due to its higher viral load compared to the liquid fraction. Regarding the epidemiological modeling, the data-driven approach was consistently used for the prediction of variables associated with outbreaks. Future efforts should also be directed toward the development of rapid, more economical, portable, and accurate detection devices.
Collapse
Affiliation(s)
- Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock 79409, TX, USA.
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock 79409, TX, USA; Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain.
| | | |
Collapse
|
31
|
van Boven M, Hetebrij WA, Swart A, Nagelkerke E, van der Beek RF, Stouten S, Hoogeveen RT, Miura F, Kloosterman A, van der Drift AMR, Welling A, Lodder WJ, de Roda Husman AM. Patterns of SARS-CoV-2 circulation revealed by a nationwide sewage surveillance programme, the Netherlands, August 2020 to February 2022. Euro Surveill 2023; 28:2200700. [PMID: 37347416 PMCID: PMC10288829 DOI: 10.2807/1560-7917.es.2023.28.25.2200700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/16/2023] [Indexed: 06/23/2023] Open
Abstract
BackgroundSurveillance of SARS-CoV-2 in wastewater offers a near real-time tool to track circulation of SARS-CoV-2 at a local scale. However, individual measurements of SARS-CoV-2 in sewage are noisy, inherently variable and can be left-censored.AimWe aimed to infer latent virus loads in a comprehensive sewage surveillance programme that includes all sewage treatment plants (STPs) in the Netherlands and covers 99.6% of the Dutch population.MethodsWe applied a multilevel Bayesian penalised spline model to estimate time- and STP-specific virus loads based on water flow-adjusted SARS-CoV-2 qRT-PCR data for one to four sewage samples per week for each of the more than 300 STPs.ResultsThe model captured the epidemic upsurges and downturns in the Netherlands, despite substantial day-to-day variation in the measurements. Estimated STP virus loads varied by more than two orders of magnitude, from ca 1012 virus particles per 100,000 persons per day in the epidemic trough in August 2020 to almost 1015 per 100,000 in many STPs in January 2022. The timing of epidemics at the local level was slightly shifted between STPs and municipalities, which resulted in less pronounced peaks and troughs at the national level.ConclusionAlthough substantial day-to-day variation is observed in virus load measurements, wastewater-based surveillance of SARS-CoV-2 that is performed at high sampling frequency can track long-term progression of an epidemic at a local scale in near real time.
Collapse
Affiliation(s)
- Michiel van Boven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Wouter A Hetebrij
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Arno Swart
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Erwin Nagelkerke
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rudolf Fhj van der Beek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sjors Stouten
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Rudolf T Hoogeveen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Fuminari Miura
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Center for Marine Environmental Studies (CMES), Ehime University, Ehime, Japan
| | - Astrid Kloosterman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anne-Merel R van der Drift
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anne Welling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Willemijn J Lodder
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Institute for Risk Assessment Science (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
32
|
Hassard F, Vu M, Rahimzadeh S, Castro-Gutierrez V, Stanton I, Burczynska B, Wildeboer D, Baio G, Brown MR, Garelick H, Hofman J, Kasprzyk-Hordern B, Majeed A, Priest S, Denise H, Khalifa M, Bassano I, Wade MJ, Grimsley J, Lundy L, Singer AC, Di Cesare M. Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year. PLoS One 2023; 18:e0286259. [PMID: 37252922 PMCID: PMC10228768 DOI: 10.1371/journal.pone.0286259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. METHODS A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. RESULTS We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. CONCLUSIONS Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases.
Collapse
Affiliation(s)
- Francis Hassard
- Cranfield University, Bedfordshire, United Kingdom
- Institute for Nanotechnology and Water Sustainability, University of South Africa, Johannesburg, South Africa
| | - Milan Vu
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Shadi Rahimzadeh
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Victor Castro-Gutierrez
- Cranfield University, Bedfordshire, United Kingdom
- Environmental Pollution Research Centre (CICA), Universidad de Costa Rica, Montes de Oca, Costa Rica
| | - Isobel Stanton
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Beata Burczynska
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Dirk Wildeboer
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Gianluca Baio
- Department of Statistical Science, University College London, London, United Kingdom
| | - Mathew R. Brown
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Hemda Garelick
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Jan Hofman
- Water Innovation & Research Centre, Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Barbara Kasprzyk-Hordern
- Water Innovation & Research Centre, Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Azeem Majeed
- Department of Primary Care & Public Health, Imperial College Faculty of Medicine, London, United Kingdom
| | - Sally Priest
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Hubert Denise
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Mohammad Khalifa
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Irene Bassano
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Matthew J. Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Jasmine Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, London, United Kingdom
| | - Lian Lundy
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
| | - Andrew C. Singer
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Mariachiara Di Cesare
- Department of Natural Science, School of Science and Technology, Middlesex University, London, United Kingdom
- Institute of Public Health and Wellbeing, University of Essex, Colchester, United Kingdom
| |
Collapse
|
33
|
Li Y, Ash KT, Joyner DC, Williams DE, Alamilla I, McKay PJ, Iler C, Green BM, Kara-Murdoch F, Swift CM, Hazen TC. Decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA in raw sewage from university dormitories. Front Microbiol 2023; 14:1144026. [PMID: 37187532 PMCID: PMC10175580 DOI: 10.3389/fmicb.2023.1144026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) RNA has been frequently detected in sewage from many university dormitories to inform public health decisions during the COVID-19 pandemic, a clear understanding of SARS-CoV-2 RNA persistence in site-specific raw sewage is still lacking. To investigate the SARS-CoV-2 RNA persistence, a field trial was conducted in the University of Tennessee dormitories raw sewage, similar to municipal wastewater. Methods The decay of enveloped SARS-CoV-2 RNA and non-enveloped Pepper mild mottle virus (PMMoV) RNA was investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in raw sewage at 4°C and 20°C. Results Temperature, followed by the concentration level of SARS-CoV-2 RNA, was the most significant factors that influenced the first-order decay rate constants (k) of SARS-CoV-2 RNA. The mean k values of SARS-CoV-2 RNA were 0.094 day-1 at 4°C and 0.261 day-1 at 20°C. At high-, medium-, and low-concentration levels of SARS-CoV-2 RNA, the mean k values were 0.367, 0.169, and 0.091 day-1, respectively. Furthermore, there was a statistical difference between the decay of enveloped SARS-CoV-2 and non-enveloped PMMoV RNA at different temperature conditions. Discussion The first decay rates for both temperatures were statistically comparable for SARS-CoV-2 RNA, which showed sensitivity to elevated temperatures but not for PMMoV RNA. This study provides evidence for the persistence of viral RNA in site-specific raw sewage at different temperature conditions and concentration levels.
Collapse
Affiliation(s)
- Ye Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
| | - K. T. Ash
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dominique C. Joyner
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - I. Alamilla
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - P. J. McKay
- Student Health Center, University of Tennessee, Knoxville, TN, United States
| | - C. Iler
- Department of Facilities Services, The University of Tennessee, Knoxville, TN, United States
| | - B. M. Green
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
| | - F. Kara-Murdoch
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - C. M. Swift
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Terry C. Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Bredesen Center, University of Tennessee, Knoxville, TN, United States
- Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
34
|
Zhang S, Shi J, Sharma E, Li X, Gao S, Zhou X, O'Brien J, Coin L, Liu Y, Sivakumar M, Hai F, Jiang G. In-sewer decay and partitioning of Campylobacter jejuni and Campylobacter coli and implications for their wastewater surveillance. WATER RESEARCH 2023; 233:119737. [PMID: 36801582 DOI: 10.1016/j.watres.2023.119737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Campylobacter jejuni and coli are two main pathogenic species inducing diarrhoeal diseases in humans, which are responsible for the loss of 33 million lives each year. Current Campylobacter infections are mainly monitored by clinical surveillance which is often limited to individuals seeking treatment, resulting in under-reporting of disease prevalence and untimely indicators of community outbreaks. Wastewater-based epidemiology (WBE) has been developed and employed for the wastewater surveillance of pathogenic viruses and bacteria. Monitoring the temporal changes of pathogen concentration in wastewater allows the early detection of disease outbreaks in a community. However, studies investigating the WBE back-estimation of Campylobacter spp. are rare. Essential factors including the analytical recovery efficiency, the decay rate, the effect of in-sewer transport, and the correlation between the wastewater concentration and the infections in communities are lacking to support wastewater surveillance. This study carried out experiments to investigate the recovery of Campylobacter jejuni and coli from wastewater and the decay under different simulated sewer reactor conditions. It was found that the recovery of Campylobacter spp. from wastewater varied with their concentrations in wastewater and depended on the detection limit of quantification methods. The concentration reduction of Campylobacter. jejuni and coli in sewers followed a two-phase reduction model, and the faster concentration reduction during the first phase is mainly due to their partitioning onto sewer biofilms. The total decay of Campylobacter. jejuni and coli varied in different types of sewer reactors, i.e. rising main vs. gravity sewer. In addition, the sensitivity analysis for WBE back-estimation of Campylobacter suggested that the first-phase decay rate constant (k1) and the turning time point (t1) are determining factors and their impacts increased with the hydraulic retention time of wastewater.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jiahua Shi
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia; School of Medical, Indigenous and Health Sciences, University of Wollongong, Australia
| | - Elipsha Sharma
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Xuan Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jake O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Lachlan Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Muttucumaru Sivakumar
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Faisal Hai
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
35
|
Hart JJ, Jamison MN, McNair JN, Szlag DC. Frequency and degradation of SARS-CoV-2 markers N1, N2, and E in sewage. JOURNAL OF WATER AND HEALTH 2023; 21:514-524. [PMID: 37119151 DOI: 10.2166/wh.2023.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that is mainly spread through aerosolized droplets containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is excreted in feces by infected individuals. Sewage surveillance has been applied widely to obtain data on the prevalence of COVID-19 in whole communities. We used SARS-CoV-2 gene targets N1, N2, and E to determine the prevalence of COVID-19 at both municipal and building levels. Frequency analysis of wastewater testing indicated that single markers detected only 85% or less of samples that were detected as positive for SARS-CoV-2 with the three markers combined, indicating the necessity of pairing markers to lower the false-negative rate. The best pair of markers in both municipal and building level monitoring was N1 and N2, which correctly identified 98% of positive samples detected with the three markers combined. The degradation rates of all three targets were assessed at two different temperatures (25 and 35 °C) as a possible explanation for observed differences between markers in frequency. Results indicated that all three RNA targets degrade at nearly the same rate, indicating that differences in degradation rate are not responsible for the observed differences in marker frequency.
Collapse
Affiliation(s)
- John J Hart
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - Megan N Jamison
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail: ; The Ohio State University, 281 W Lane Ave, Columbus, OH 43210, USA
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI 49441, USA
| | - David C Szlag
- Oakland University, Department of Chemistry, 146 Library Dr, Rochester, MI 48309, USA E-mail:
| |
Collapse
|
36
|
Saingam P, Li B, Nguyen Quoc B, Jain T, Bryan A, Winkler MKH. Wastewater surveillance of SARS-CoV-2 at intra-city level demonstrated high resolution in tracking COVID-19 and calibration using chemical indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161467. [PMID: 36626989 PMCID: PMC9825140 DOI: 10.1016/j.scitotenv.2023.161467] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 05/12/2023]
Abstract
Wastewater-based epidemiology has proven to be a supportive tool to better comprehend the dynamics of the COVID-19 pandemic. As the disease moves into endemic stage, the surveillance at wastewater sub-catchments such as pump station and manholes is providing a novel mechanism to examine the reemergence and to take measures that can prevent the spread. However, there is still a lack of understanding when it comes to wastewater-based epidemiology implementation at the smaller intra-city level for better granularity in data, and dilution effect of rain precipitation at pump stations. For this study, grab samples were collected from six areas of Seattle between March-October 2021. These sampling sites comprised five manholes and one pump station with population ranging from 2580 to 39,502 per manhole/pump station. The wastewater samples were analyzed for SARS-CoV-2 RNA concentrations, and we also obtained the daily COVID-19 cases (from individual clinical testing) for each corresponding sewershed, which ranged from 1 to 12 and the daily incidence varied between 3 and 64 per 100,000 of population. Rain precipitation lowered viral RNA levels and sensitivity of viral detection but wastewater total ammonia (NH4+-N) and phosphate (PO43--P) were shown as potential chemical indicators to calibrate/level out the dilution effect. These chemicals showed the potential in improving the wastewater surveillance capacity of COVID-19.
Collapse
Affiliation(s)
- Prakit Saingam
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA.
| | - Bo Li
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Tanisha Jain
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Andrew Bryan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Mari K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
37
|
Ahmed W, Bivins A, Stephens M, Metcalfe S, Smith WJM, Sirikanchana K, Kitajima M, Simpson SL. Occurrence of multiple respiratory viruses in wastewater in Queensland, Australia: Potential for community disease surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161023. [PMID: 36539100 PMCID: PMC9759456 DOI: 10.1016/j.scitotenv.2022.161023] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 05/07/2023]
Abstract
The early warning and tracking of COVID-19 prevalence in the community provided by wastewater surveillance has highlighted its potential for much broader viral disease surveillance. In this proof-of-concept study, 46 wastewater samples from four wastewater treatment plants (WWTPs) in Queensland, Australia, were analyzed for the presence and abundance of 13 respiratory viruses, and the results were compared with reported clinical cases. The viruses were concentrated using the adsorption-extraction (AE) method, and extracted nucleic acids were analyzed using qPCR and RT-qPCR. Among the viruses tested, bocavirus (BoV), parechovirus (PeV), rhinovirus A (RhV A) and rhinovirus B (RhV B) were detected in all wastewater samples. All the tested viruses except influenza B virus (IBV) were detected in wastewater sample from at least one WWTP. BoV was detected with the greatest concentration (4.96-7.22 log10 GC/L), followed by Epstein-Barr virus (EBV) (4.08-6.46 log10 GC/L), RhV A (3.95-5.63 log10 GC/L), RhV B (3.74-5.61 log10 GC/L), and PeV (3.17-5.32 log10 GC/L). Influenza viruses and respiratory syncytial virus (RSV) are notifiable conditions in Queensland, allowing the gene copy (GC) concentrations to be compared with reported clinical cases. Significant correlations (ρ = 0.60, p < 0.01 for IAV and ρ = 0.53, p < 0.01 for RSV) were observed when pooled wastewater influenza A virus (IAV) and RSV log10 GC/L concentrations were compared to log10 clinical cases among the four WWTP catchments. The positive predictive value for the presence of IAV and RSV in wastewater was 97 % for both IAV and RSV clinical cases within the four WWTP catchments. The overall accuracy of wastewater analysis for predicting clinical cases of IAV and RSV was 97 and 90 %, respectively. This paper lends credibility to the application of wastewater surveillance to monitor respiratory viruses of various genomic characteristics, with potential uses for increased surveillance capabilities and as a tool in understanding the dynamics of disease circulation in the communities.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | - Mikayla Stephens
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Suzanne Metcalfe
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok 10210, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | | |
Collapse
|
38
|
Tiwari A, Adhikari S, Zhang S, Solomon TB, Lipponen A, Islam MA, Thakali O, Sangkham S, Shaheen MNF, Jiang G, Haramoto E, Mazumder P, Malla B, Kumar M, Pitkänen T, Sherchan SP. Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants. WATER 2023; 15:1018. [DOI: 10.3390/w15061018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | | | - Shuxin Zhang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Mohamed N. F. Shaheen
- Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Giza 2310, Egypt
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Samendra P. Sherchan
- Department of Biology, Morgan State University, Baltimore, MD 11428, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
39
|
Chekkala A, Atasoy M, Williams C, Cetecioglu Z. Statistical Analysis of SARS-CoV-2 Using Wastewater-Based Data of Stockholm, Sweden. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4181. [PMID: 36901194 PMCID: PMC10002411 DOI: 10.3390/ijerph20054181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
An approach based on wastewater epidemiology can be used to monitor the COVID-19 pandemic by assessing the gene copy number of SARS-CoV-2 in wastewater. In the present study, we statistically analyzed such data from six inlets of three wastewater treatment plants, covering six regions of Stockholm, Sweden, collected over an approximate year period (week 16 of 2020 to week 22 of 2021). SARS-CoV-2 gene copy number and population-based biomarker PMMoV, as well as clinical data, such as the number of positive cases, intensive care unit numbers, and deaths, were analyzed statistically using correlations and principal component analysis (PCA). Despite the population differences, the PCA for the Stockholm dataset showed that the case numbers are well grouped across wastewater treatment plants. Furthermore, when considering the data from the whole of Stockholm, the wastewater characteristics (flow rate m3/day, PMMoV Ct value, and SARS-CoV gene copy number) were significantly correlated with the public health agency's report of SARS-CoV-2 infection rates (0.419 to 0.95, p-value < 0.01). However, while the PCA results showed that the case numbers for each wastewater treatment plant were well grouped concerning PC1 (37.3%) and PC2 (19.67%), the results from the correlation analysis for the individual wastewater treatment plants showed varied trends. SARS-CoV-2 fluctuations can be accurately predicted through statistical analyses of wastewater-based epidemiology, as demonstrated in this study.
Collapse
Affiliation(s)
- Aashlesha Chekkala
- Department of Chemical Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- UNLOCK, Wageningen University & Research and Technical University Delft, 6708PB Wageningen, The Netherlands
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Zeynep Cetecioglu
- Department of Chemical Engineering, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, 11421 Stockholm, Sweden
| |
Collapse
|
40
|
Burnet JB, Cauchie HM, Walczak C, Goeders N, Ogorzaly L. Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159401. [PMID: 36240930 PMCID: PMC9554201 DOI: 10.1016/j.scitotenv.2022.159401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 05/28/2023]
Abstract
Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nathalie Goeders
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
41
|
Tiwari A, Adhikari S, Kaya D, Islam MA, Malla B, Sherchan SP, Al-Mustapha AI, Kumar M, Aggarwal S, Bhattacharya P, Bibby K, Halden RU, Bivins A, Haramoto E, Oikarinen S, Heikinheimo A, Pitkänen T. Monkeypox outbreak: Wastewater and environmental surveillance perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159166. [PMID: 36202364 PMCID: PMC9534267 DOI: 10.1016/j.scitotenv.2022.159166] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 04/13/2023]
Abstract
Monkeypox disease (MPXD), a viral disease caused by the monkeypox virus (MPXV), is an emerging zoonotic disease endemic in some countries of Central and Western Africa but seldom reported outside the affected region. Since May 2022, MPXD has been reported at least in 74 countries globally, prompting the World Health Organization to declare the MPXD outbreak a Public Health Emergency of International Concern. As of July 24, 2022; 92 % (68/74) of the countries with reported MPXD cases had no historical MPXD case reports. From the One Health perspective, the spread of MPXV in the environment poses a risk not only to humans but also to small mammals and may, ultimately, spread to potent novel host populations. Wastewater-based surveillance (WBS) has been extensively utilized to monitor communicable diseases, particularly during the ongoing COVID-19 pandemic. It helped in monitoring infectious disease caseloads as well as specific viral variants circulating in communities. The detection of MPXV DNA in lesion materials (e.g. skin, vesicle fluid, crusts), skin rashes, and various body fluids, including respiratory and nasal secretions, saliva, urine, feces, and semen of infected individuals, supports the possibility of using WBS as an early proxy for the detection of MPXV infections. WBS of MPXV DNA can be used to monitor MPXV activity/trends in sewerage network areas even before detecting laboratory-confirmed clinical cases within a community. However, several factors affect the detection of MPXV in wastewater including, but not limited to, routes and duration time of virus shedding by infected individuals, infection rates in the relevant affected population, environmental persistence, the processes and analytical sensitivity of the used methods. Further research is needed to identify the key factors that impact the detection of MPXV biomarkers in wastewater and improve the utility of WBS of MPXV as an early warning and monitoring tool for safeguarding human health. In this review, we shortly summarize aspects of the MPXV outbreak relevant to wastewater monitoring and discuss the challenges associated with WBS.
Collapse
Affiliation(s)
- Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland.
| | - Sangeet Adhikari
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University (OSU), Corvallis, OR, USA
| | - Md Aminul Islam
- COVID-19 Diagnostic Laboratory, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Advanced Molecular Laboratory, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Samendra P Sherchan
- Department of Biology, Morgan State University, Baltimore, MD, USA; Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Ahmad I Al-Mustapha
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria; Department of Veterinary Services, Kwara State Ministry of Agriculture and Rural Development, Ilorin, Kwara State, Nigeria
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Srijan Aggarwal
- Department of Civil, Geological and Environmental Engineering, College of Engineering and Mines, University of Alaska Fairbanks, PO Box 755900, Fairbanks, AK 99775, USA
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN 46556, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, LA, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sami Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Finnish Food Authority, Seinäjoki, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland
| |
Collapse
|
42
|
Rainey AL, Buschang K, O’Connor A, Love D, Wormington AM, Messcher RL, Loeb JC, Robinson SE, Ponder H, Waldo S, Williams R, Shapiro J, McAlister EB, Lauzardo M, Lednicky JA, Maurelli AT, Sabo-Attwood T, Bisesi J. Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T WATER 2023; 3:16-29. [PMID: 37552720 PMCID: PMC9762499 DOI: 10.1021/acsestwater.2c00275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.
Collapse
Affiliation(s)
- Andrew L. Rainey
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Katherine Buschang
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Amber O’Connor
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Deirdre Love
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Alexis M. Wormington
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Julia C. Loeb
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Sarah E. Robinson
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Hunter Ponder
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Sarah Waldo
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Roy Williams
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Jerne Shapiro
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
- Department of Epidemiology, College of Public
Health and Health Professions and College of Medicine, Gainesville,
Florida32611, United States
| | | | - Michael Lauzardo
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Department of Medicine, College of Medicine,
University of Florida, Gainesville, Florida32611,
United States
| | - John A. Lednicky
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Joseph
H. Bisesi
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| |
Collapse
|
43
|
Gao Z, Li P, Lin H, Lin W, Ren Y. Biomarker selection strategies based on compound stability in wastewater-based epidemiology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5516-5529. [PMID: 36418835 PMCID: PMC9684832 DOI: 10.1007/s11356-022-24268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The specific compositions of human excreta in sewage can be used as biomarkers to indicate the disease prevalence, health status, and lifestyle of the population living in the investigated catchment. It is important for guiding and evaluating public health policies as well as promoting human health development. Among several parameters of wastewater-based epidemiology (WBE), the decay of biomarkers during transportation in sewer and storage plays a crucial role in the back-calculation of population consumption. In this paper, we summarized the stability data of common biomarkers in storage at different temperatures and in-sewer transportation. Among them, cardiovascular drugs and antidiabetic drugs are very stable which can be used as biomarkers; most of the illicit drugs are stable except for cocaine, heroin, and tetrahydrocannabinol which could be substituted by their metabolites as biomarkers. There are some losses for part of antibiotics and antidepressants even in frozen storage. Rapid detection of contagious viruses is a new challenge for infectious disease control. With the deeper and broader study of biomarkers, it is expected that the reliable application of the WBE will be a useful addition to epidemiological studies.
Collapse
Affiliation(s)
- Zhihan Gao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Ping Li
- Datansha Branch of Guangzhou Sewage Treatment Co., Ltd, Guangzhou, 510163, China
| | - Han Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institution, Guangzhou, 510006, China.
| |
Collapse
|
44
|
Bonanno Ferraro G, Veneri C, Mancini P, Iaconelli M, Suffredini E, Bonadonna L, Lucentini L, Bowo-Ngandji A, Kengne-Nde C, Mbaga DS, Mahamat G, Tazokong HR, Ebogo-Belobo JT, Njouom R, Kenmoe S, La Rosa G. A State-of-the-Art Scoping Review on SARS-CoV-2 in Sewage Focusing on the Potential of Wastewater Surveillance for the Monitoring of the COVID-19 Pandemic. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:315-354. [PMID: 34727334 PMCID: PMC8561373 DOI: 10.1007/s12560-021-09498-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/21/2021] [Indexed: 05/07/2023]
Abstract
The outbreak of coronavirus infectious disease-2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has rapidly spread throughout the world. Several studies have shown that detecting SARS-CoV-2 in untreated wastewater can be a useful tool to identify new outbreaks, establish outbreak trends, and assess the prevalence of infections. On 06 May 2021, over a year into the pandemic, we conducted a scoping review aiming to summarize research data on SARS-CoV-2 in sewage. Papers dealing with raw sewage collected at wastewater treatment plants, sewer networks, septic tanks, and sludge treatment facilities were included in this review. We also reviewed studies on sewage collected in community settings such as private or municipal hospitals, healthcare facilities, nursing homes, dormitories, campuses, airports, aircraft, and cruise ships. The literature search was conducted using the electronic databases PubMed, EMBASE, and Web Science Core Collection. This comprehensive research yielded 1090 results, 66 of which met the inclusion criteria and are discussed in this review. Studies from 26 countries worldwide have investigated the occurrence of SARS-CoV-2 in sewage of different origin. The percentage of positive samples in sewage ranged from 11.6 to 100%, with viral concentrations ranging from ˂LOD to 4.6 × 108 genome copies/L. This review outlines the evidence currently available on wastewater surveillance: (i) as an early warning system capable of predicting COVID-19 outbreaks days or weeks before clinical cases; (ii) as a tool capable of establishing trends in current outbreaks; (iii) estimating the prevalence of infections; and (iv) studying SARS-CoV-2 genetic diversity. In conclusion, as a cost-effective, rapid, and reliable source of information on the spread of SARS-CoV-2 and its variants in the population, wastewater surveillance can enhance genomic and epidemiological surveillance with independent and complementary data to inform public health decision-making during the ongoing pandemic.
Collapse
Affiliation(s)
- G Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - P Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - M Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - E Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Bonadonna
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - L Lucentini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - A Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - C Kengne-Nde
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | - D S Mbaga
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - G Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - H R Tazokong
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - J T Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - R Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - S Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| | - G La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
45
|
Sridhar J, Parit R, Boopalakrishnan G, Rexliene MJ, Praveen R, Viswananathan B. Importance of wastewater-based epidemiology for detecting and monitoring SARS-CoV-2. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100241. [PMID: 37520919 PMCID: PMC9341170 DOI: 10.1016/j.cscee.2022.100241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 08/01/2023]
Abstract
Coronavirus disease caused by the SARS-CoV-2 virus has emerged as a global challenge in terms of health and disease monitoring. COVID-19 infection is mainly spread through the SARS-CoV-2 infection leading to the development of mild to severe clinical manifestations. The virus binds to its cognate receptor ACE2 which is widely expressed among different tissues in the body. Notably, SARS-CoV-2 shedding in the fecal samples has been reported through the screening of sewage water across various countries. Wastewater screening for the presence of SARS-CoV-2 provides an alternative method to monitor infection threat, variant identification, and clinical evaluation to restrict the virus progression. Multiple cohort studies have reported the application of wastewater treatment approaches and epidemiological significance in terms of virus monitoring. Thus, the manuscript outlines consolidated and systematic information regarding the application of wastewater-based epidemiology in terms of monitoring and managing a viral disease outbreak like COVID-19.
Collapse
Affiliation(s)
- Jayavel Sridhar
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rahul Parit
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | | | - M Johni Rexliene
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Rajkumar Praveen
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| | - Balaji Viswananathan
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, 625021, Tamilnadu, India
| |
Collapse
|
46
|
Tiwari A, Phan N, Tandukar S, Ashoori R, Thakali O, Mousazadesh M, Dehghani MH, Sherchan SP. Persistence and occurrence of SARS-CoV-2 in water and wastewater environments: a review of the current literature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85658-85668. [PMID: 34652622 PMCID: PMC8518268 DOI: 10.1007/s11356-021-16919-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 04/15/2023]
Abstract
As the world continues to cope with the COVID-19 pandemic, emerging evidence indicates that respiratory transmission may not the only pathway in which the virus can be spread. This review paper aims to summarize current knowledge surrounding possible fecal-oral transmission of SARS-CoV-2. It covers recent evidence of proliferation of SARS-CoV-2 in the gastrointestinal tract, as well as presence and persistence of SARS-CoV-2 in water, and suggested future directions. Research indicates that SARS-CoV-2 can actively replicate in the human gastrointestinal system and can subsequently be shed via feces. Several countries have reported SARS-CoV-2 RNA fractions in wastewater systems, and various factors such as temperature and presence of solids have been shown to affect the survival of the virus in water. The detection of RNA does not guarantee infectivity, as current methods such as RT-qPCR are not yet able to distinguish between infectious and non-infectious particles. More research is needed to determine survival time and potential infectivity, as well as to develop more accurate methods for detection and surveillance.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, 70701, Kuopio, Finland
| | - Nati Phan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA
| | | | - Razieh Ashoori
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ocean Thakali
- University of Yamanashi, Takeda, Kofu, Yamanashi, 4-3-11 400-8511, Japan
| | - Milad Mousazadesh
- Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA, 70112, USA.
| |
Collapse
|
47
|
West NW, Vasquez AA, Bahmani A, Khan MF, Hartrick J, Turner CL, Shuster W, Ram JL. Sensitive detection of SARS-CoV-2 molecular markers in urban community sewersheds using automated viral RNA purification and digital droplet PCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157547. [PMID: 35872187 PMCID: PMC9303066 DOI: 10.1016/j.scitotenv.2022.157547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Wastewater based epidemiology (WBE) has emerged as a strategy to identify, locate, and manage outbreaks of COVID-19, and thereby possibly prevent surges in cases, which overwhelm local to global health care networks. The WBE process is based on assaying municipal wastewater for molecular markers of the SARS-CoV-2 virus. Standard processes for purifying viral RNA from municipal wastewater are often time-consuming and require the handling of large quantities of wastewater, negatively affecting throughput, timely reporting, and safety. We demonstrate here an automated, faster system to purify viral RNA from smaller volumes of wastewater but with increased sensitivity for detection of SARS-CoV-2 markers. We document the effectiveness of this new approach by way of comparison to the PEG/NaCl/Qiagen method prescribed by the State of Michigan for SARS-CoV-2 wastewater monitoring and show its application to several Detroit sewersheds. Specifically, compared to the PEG/NaCl/Qiagen method, viral RNA purification using the PerkinElmer Chemagic™ 360 lowered handling time, decreased the amount of wastewater required by ten-fold, increased the amount of RNA isolated per μl of final elution product by approximately five-fold, and effectively removed ddPCR inhibitors from most sewershed samples. For detection of markers on the borderline of viral detectability, we found that use of the Chemagic™ 360 enabled the measurement of viral markers in a significant number of samples for which the result with the PEG/NaCl/Qiagen method was below the level of detectability. The improvement in detectability of the viral markers might be particularly important for early warning to public health authorities at the beginning of an outbreak. Applied to sewersheds in Detroit, the technique enabled more sensitive detection of SARS-CoV-2 markers with good correlation between wastewater signals and COVID-19 cases in the sewersheds. We also discuss advantages and disadvantages of several automated RNA purification systems, made by Promega, PerkinElmer, and ThermoFisher.
Collapse
Affiliation(s)
- Nicholas W West
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Adrian A Vasquez
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Azadeh Bahmani
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Mohammed F Khan
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | - William Shuster
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Jeffrey L Ram
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
48
|
Hayes EK, Stoddart AK, Gagnon GA. Adsorption of SARS-CoV-2 onto granular activated carbon (GAC) in wastewater: Implications for improvements in passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157548. [PMID: 35882338 PMCID: PMC9308143 DOI: 10.1016/j.scitotenv.2022.157548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Based on recent studies, passive sampling is a promising method for detecting SARS-CoV-2 in wastewater surveillance (WWS) applications. Passive sampling has many advantages over conventional sampling approaches. However, the potential benefits of passive sampling are also coupled with apparent limitations. We established a passive sampling technique for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater using electronegative filters. Though, it was evident that the adsorption capacity of the filters constrained their use. This work intends to demonstrate an optimized passive sampling technique for SARS-CoV-2 in wastewater using granular activated carbon (GAC). Through bench-scale batch-adsorption studies and sewershed deployments, we established the adsorption characteristics of SARS-CoV-2 and two human feacal viruses (PMMoV and CrAssphage) onto GAC. A pseudo-second-order model best-described adsorption kinetics for SARS-CoV-2 in either deionized (DI) water and SARS-CoV-2, CrAssphage, and PMMoV in wastewater. In both laboratory batch-adsorption experiments and in-situ sewershed deployments, the maximum amount of SARS-CoV-2 adsorbed by GAC occurred at ~60 h in wastewater. In wastewater, the maximum adsorption of PMMoV and CrAssphage by GAC occurred at ~60 h. In contrast, the adsorption capacity was reached in DI water seeded with SARS-CoV-2 after ~35 h. The equilibrium assay modeled the maximum adsorption quantity (qmax) in wastewater with spiked SARS-CoV-2 concentrations using a Hybrid Langmuir-Freundlich equation, a qmax of 2.5 × 109 GU/g was calculated. In paired sewershed deployments, it was found that GAC adsorbs SARS-CoV-2 in wastewater more effectively than electronegative filters. Based on the anticipated viral loading in wastewater, bi-weekly sampling intervals with deployments up to ~96 h are highly feasible without reaching adsorption capacity with GAC. GAC offers improved sensitivity and reproducibility to capture SARS-CoV-2 RNA in wastewater, promoting a scalable and convenient alternative for capturing viral pathogens in wastewater.
Collapse
Affiliation(s)
- Emalie K Hayes
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Amina K Stoddart
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Graham A Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
49
|
Ma D, Straathof J, Liu Y, Hull NM. Monitoring SARS-CoV-2 RNA in Wastewater with RT-qPCR and Chip-Based RT-dPCR: Sewershed-Level Trends and Relationships to COVID-19. ACS ES&T WATER 2022; 2:2084-2093. [PMID: 37552751 PMCID: PMC9173673 DOI: 10.1021/acsestwater.2c00055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 08/10/2023]
Abstract
We evaluated the performance of reverse transcription quantitative PCR (uniplex and duplex RT-qPCR) and chip-based digital PCR (duplex RT-dPCR) using CDC N1 and CDC N2 assays for longitudinal monitoring of SARS-CoV-2 RNA in influent wastewater samples (n = 281) from three wastewater plants in Ohio from January 2021 to January 2022. Human fecal virus (PMMoV) and wastewater flow rate were used to normalize SARS-CoV-2 concentrations. SARS-CoV-2 measurements and COVID-19 cases were strongly correlated, but normalization effects on correlations varied between sewersheds. SARS-CoV-2 measurements by RT-qPCR were strongly correlated with 7-day moving average COVID-19 cases (average Spearman's ρ = 0.58, p < 0.05). SARS-CoV-2 was detected more frequently in samples with duplex RT-dPCR than with duplex RT-qPCR during periods of low COVID-19 cases. Duplex and uniplex RT-qPCR N1 concentrations were more strongly correlated with cases (ρ = 0.62) than N2 (ρ = 0.52). RT-dPCR correlations (average ρ = 0.21) were weaker than those of RT-qPCR (average ρ = 0.58). We also share practical experience from establishing wastewater surveillance. Per sample, RT-qPCR had a lower cost ($6 vs $18) and sample turnaround time (3-4 h vs 7-9 h) than RT-dPCR. These findings reinforce selection and use of PCR-based wastewater surveillance tools.
Collapse
Affiliation(s)
- Daniel Ma
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
| | - Judith Straathof
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
| | - Yijing Liu
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
| | - Natalie Marie Hull
- Department of Civil, Environmental and Geodetic
Engineering, The Ohio State University, Columbus, Ohio 43210,
United States
- The Sustainability Institute, The Ohio
State University, Columbus, Ohio 43210, United
States
| |
Collapse
|
50
|
Vadde KK, Al-Duroobi H, Phan DC, Jafarzadeh A, Moghadam SV, Matta A, Kapoor V. Assessment of Concentration, Recovery, and Normalization of SARS-CoV-2 RNA from Two Wastewater Treatment Plants in Texas and Correlation with COVID-19 Cases in the Community. ACS ES&T WATER 2022; 2:2060-2069. [PMID: 37552728 PMCID: PMC9128005 DOI: 10.1021/acsestwater.2c00054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/12/2022] [Accepted: 05/04/2022] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to conduct a correlative assessment of SARS-CoV-2 RNA concentrations in wastewater with COVID-19 cases and a systematic evaluation of the effect of using different virus concentration methods and recovery and normalization approaches. We measured SARS-CoV-2 RNA concentrations at two different wastewater treatment plants (WWTPs) in the Bexar County of Texas from October 2020 to May 2021 (32 weeks) using reverse transcription droplet digital PCR (RT-ddPCR). We evaluated three different adsorption-extraction (AE) based virus concentration methods (acidification, addition of MgCl2, or without any pretreatment) using bovine coronavirus (BCoV) as surrogate virus and observed that the direct AE method showed the highest mean recovery. COVID-19 cases were correlated significantly with SARS-CoV-2 N1 concentrations in Salitrillo (ρ = 0.75, p < 0.001) and Martinez II (ρ = 0.68, p < 0.001) WWTPs, but normalizing to a spiked recovery control (BCoV) or a fecal marker (HF183) reduced correlations for both treatment plants. The results generated in this 32-week monitoring study will enable researchers to prioritize the virus recovery method and subsequent correlation studies for wastewater surveillance.
Collapse
Affiliation(s)
- Kiran Kumar Vadde
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Haya Al-Duroobi
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Duc C. Phan
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Arash Jafarzadeh
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Sina V. Moghadam
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| | - Akanksha Matta
- Department of Chemistry, University of
Texas at San Antonio, San Antonio, Texas 78249, United
States
| | - Vikram Kapoor
- School of Civil & Environmental Engineering, and
Construction Management, University of Texas at San Antonio,
San Antonio, Texas 78249, United States
| |
Collapse
|