1
|
Biandolino F, Libralato G, Manfra L, Rotini A, Prato E. Are polylactic acid (PLA) microplastics a risk to marine organisms? Acute and chronic effects on the amphipods Gammarus aequicauda. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107389. [PMID: 40328022 DOI: 10.1016/j.aquatox.2025.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
Conventional plastics have become a major environmental concern due to their persistence and accumulation in marine ecosystems. Recently, the development of bio-based polymers, such as polylactic acid (PLA), has gained particular attention as an alternative to limit plastic pollution, as these materials can be degraded under certain conditions. This study investigated the ecotoxicity of polylactic acid (PLA) microplastics (38-220 μm) in the marine amphipod Gammarus aequicauda. To achieve this, juvenile amphipods (2-4 mm) were exposed to PLA in acute toxicity tests to assess mortality after 96 hours. In addition, the effects of chronic exposure (60 days) to PLA microplastics were assessed on the growth and fertility (reproduction, embryonic development and aborted eggs). The results showed a low acute effect with a LC₅₀ of 91.57 mgPLA/L, but exposure to sublethal concentrations (5 and 10 mgPLA/L) of MPs resulted in lower growth and reproduction success compared to control ones. The mean time spent by males and females of G. aequicauda in the precopulation and the time of appearance of the first ovigerous females were not affected by PLA exposure. However, the total number of ovigerous females and the total number of neonates per female were significantly reduced at sublethal concentrations of MP-PLA. Finally, reproductive failures (aborted eggs) were higher at 5 and 10 mgPLA/L. The results provide interesting food for thought and underline that although PLA is known as an innovative biodegradable polymer, its impact on marine biota should not be minimized and the use of biodegradable plastics should be strongly cautioned.
Collapse
Affiliation(s)
- Francesca Biandolino
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123, Taranto, Italy.
| | - Giovanni Libralato
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123, Taranto, Italy; Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy; Stazione Zoologica Anton Dohrn, Department of Marine Animal Conservation and Public Engagement, Villa Comunale, 1, 80121 Naples, Italy
| | - Loredana Manfra
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy; Stazione Zoologica Anton Dohrn, Department of Marine Animal Conservation and Public Engagement, Villa Comunale, 1, 80121 Naples, Italy
| | - Alice Rotini
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Ermelinda Prato
- National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123, Taranto, Italy
| |
Collapse
|
2
|
Ujuagu GI, Ejeromedoghene O, Enwemiwe V, Mgbechidinma CL, Omoniyi AO, Oladipo A, Gu J. Exploring the toxicology, socio-ecological impacts and biodegradation of microplastics in Africa: Potentials for resource conservation. Toxicol Rep 2025; 14:101873. [PMID: 39850514 PMCID: PMC11755024 DOI: 10.1016/j.toxrep.2024.101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Achieving upcycling and circularity in the microplastic economy predominantly depends on collecting and sorting plastic waste from the source to the end-user for resource conservation. Microplastics, whether from packaging or non-packaging materials, pose a significant environmental challenge as they are often not prioritized for collection or recycling initiatives. The presence of additives impedes the quality of plastic recyclates and the persistence of microplastics as shredded resultants remain a threat to the aquatic and terrestrial ecosystem and its biodiversity. Despite the increasing global research on microplastics, the success of plastic and microplastic waste management in Africa is yet to be fully attained. Considering the improper disposal, limited recycling and upcycling intervention, lack of policy, and strict laws against plastic waste management defaulters, the ecosystems in Africa remain immensely impacted by several socio-ecological factors leading to the loss of aquatic organisms through reducing fertility and increasing stress. As a ripple consequence, the disruption of economic activities, toxic effects on animal/human health, and climate crisis are among their impact. This review therefore provides comprehensive detail of microplastic production and challenges in Africa, the toxicology concerns, socio-ecological issues associated with microplastic waste management, and insight into approaches to mitigate plastic pollution through recycling, upcycling, bioprocessing and their biodegradation with social insects and microorganisms which may form the basis for adoption by policymakers and researchers, thereby minimizing the consequences of plastic pollution in Africa.
Collapse
Affiliation(s)
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Victor Enwemiwe
- Department of Animal and Environmental Biology, Delta State University, PMB 1, Abraka, Nigeria
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Ahmed Olalekan Omoniyi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Abiodun Oladipo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jintu Gu
- Department of Sociology, Hohai University, Nanjing 211100, China
| |
Collapse
|
3
|
Jiang Q, Xu H, Zong Y, Hua R, Wu X, Xue J. Polyethylene microplastics decrease the bioaccumulation and toxicity of picoxystrobin and azoxystrobin to microalgae Scenedesmus obliquus. MARINE POLLUTION BULLETIN 2025; 218:118185. [PMID: 40403608 DOI: 10.1016/j.marpolbul.2025.118185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 05/03/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
Fungicide residues can interact with microplastics (MPs) in the aquatic environment leading to mixed toxicity on phytoplankton. The investigation of biological effects obtained from combined fungicide and MPs is essential for proper evaluation of the ecological risks. Until now, the mechanisms that how polyethylene (PE) MPs altered the toxicity of picoxystrobin and azoxystrobin on microalgae Scenedesmus obliquus was unknown. Here, the impacts of PE-MPs on freely dissolved concentrations (Cfree) of the 2 fungicides and their toxicity to microalgae growth were assessed after 96 h exposure. We found that the presence of PE-MPs reduced the bioaccumulation of picoxystrobin and azoxystrobin in microalgae through decreasing the fungicide Cfree. Furthermore, inhibition effects on microalgae growth and chlorophyll generation was alleviated significantly in the combination of fungicide and PE-MPs compared with the fungicide alone. Specifically, 400 mg/L of 25 μm PE induced more profound influences than other treatments in terms of decreasing Cfree, promoting growth rate, and increasing chlorophyll content that might be attributed to its higher adsorption capacity for the fungicides. Our results demonstrated the antagonism between the fungicides and PE-MPs, clarifying that PE-MPs functioned in lowering the bioavailability and acte toxicity of the 2 strobilurin fungcides to microalgae via physical adsorption especially under the small size and high level of PE-MPs. This study provides evidences that the existence of MPs is capable of influencing the toxicological behavior of fungicides in the environment, and can be a starting point for more sophisticated mechanism investigation of joint toxicity for fungicides and MPs.
Collapse
Affiliation(s)
- Qingqing Jiang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Huiru Xu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Zong
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Rimao Hua
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jiaying Xue
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food, Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Arif SM, Khan I, Saeed M, Chaudhari SK, Ghorbanpour M, Hasan M, Mustafa G. Exploring omics solutions to reduce micro/nanoplastic toxicity in plants: A comprehensive overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179220. [PMID: 40147233 DOI: 10.1016/j.scitotenv.2025.179220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The proliferation of plastic waste, particularly in the form of microplastics (MPs) and nanoplastics (NPs), has emerged as a significant environmental challenge with profound implications for agricultural ecosystems. These pervasive pollutants accumulate in soil, altering its physicochemical properties and disrupting microbial communities. MPs/NPs can infiltrate plant systems, leading to oxidative stress and cytotoxic effects, which in turn compromise essential physiological functions such as water uptake, nutrient absorption, and photosynthesis. This situation threatens crop yield and health, while also posing risks to human health and food security through potential accumulation in the food chain. Despite increasing awareness of this issue, substantial gaps still remain in our understanding of the physiological and molecular mechanisms that govern plant responses to MP/NP stress. This review employs integrative omics techniques including genomics, transcriptomics, proteomics, metabolomics, and epigenomics to elucidate these responses. High-throughput methodologies have revealed significant genetic and metabolic alterations that enable plants to mitigate the toxicity associated with MPs/NPs. The findings indicate a reconfiguration of metabolic pathways aimed at maintaining cellular homeostasis, activation of antioxidant mechanisms, and modulation of gene expression related to stress responses. Additionally, epigenetic modifications suggest that plants adapt to prolonged plastics exposure, highlighting unexplored avenues for targeted research. By integrating various omics approaches, a comprehensive understanding of molecular interactions and their effects on plant systems can be achieved. This review underscores potential targets for biotechnological and agronomic interventions aimed at enhancing plant resilience by identifying key stress-responsive genes, proteins, and metabolites. Ultimately, this work addresses critical knowledge gaps and highlights the importance of multi-omics strategies in developing sustainable solutions to mitigate the adverse effects of MP/NP pollution in agriculture, thereby ensuring the integrity of food systems and ecosystems.
Collapse
Affiliation(s)
- Samia Muhammad Arif
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saeed
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha 42100, Pakistan
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
5
|
Gao S, Mu X, Li W, Wen Y, Ma Z, Liu K, Zhang C. Invisible threats in soil: Microplastic pollution and its effects on soil health and plant growth. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:158. [PMID: 40202677 DOI: 10.1007/s10653-025-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025]
Abstract
Microplastics (MPs) are a significant environmental contaminant that increasingly threaten soil health and crop productivity in agricultural systems. This review explores the origins, migration patterns, and ecological impacts of MPs within soil environments, specifically examining their influence on soil structure, microbial communities, and nutrient cycles essential for plant growth. Despite the progress in understanding Microplastic (MP) pollution, gaps remain in assessing the long-term implications on soil stability, microbial biodiversity, and crop yield. Through bibliometric and synthesis analyses of recent studies, this paper identifies how MPs disrupt soil physical and chemical processes, alter microbial dynamics, and interfere with carbon and nitrogen cycles, resulting in reduced soil fertility and compromised crop health. Key findings reveal that MPs can infiltrate plant root systems, impair water and nutrient uptake, and even accumulate in plant tissues, causing oxidative stress, cellular dysfunction, and yield reduction. This work emphasizes the urgent need for refined environmental risk assessments and sustainable agricultural practices to mitigate MP pollution. This comprehensive synthesis offers a foundational perspective to guide future research and policy efforts in addressing MPs' environmental and agricultural impacts.
Collapse
Affiliation(s)
- Shuanglong Gao
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Xiaoguo Mu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Wenhao Li
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China.
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China.
| | - Yue Wen
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Zhanli Ma
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Keshun Liu
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| | - Cunhong Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Modern Water-Saving Irrigation of Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832000, Xinjiang, China
- Key Laboratory of Northwest Oasis Water-Saving Agriculture, Ministry of Agriculture and Rural Affairs, Shihezi, 832000, Xinjiang, China
| |
Collapse
|
6
|
Bitton NK, Zucker I, Gruntman M. Microplastic exposure reduces seed germination in a coastal plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179098. [PMID: 40096757 DOI: 10.1016/j.scitotenv.2025.179098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/22/2025] [Accepted: 03/09/2025] [Indexed: 03/19/2025]
Abstract
Plastic contamination presents major environmental threats through its degradation into micro-sized particles that are harmful to a variety of organisms, including plants. Among terrestrial habitats, coastal dunes are likely some of the most plastic-polluted, but very few studies thus far have examined microplastic effects on wild plants native to this habitat. Moreover, current research on microplastics has limited environmental relevancy due to the common use of homogenously shaped un-weathered microplastics in exceeding concentrations. Our research examined the effects of microplastics from biodegradable and non-biodegradable origin, in their pristine (raw) and weathered form, at a concentration of 106 particles per ml, on the native coastal plant Cutandia maritima. We first synthesized engineered microplastics of high environmental relevancy from bulk plastic products. Then, we exposed C. maritima plants to the microplastics in the soil. While no effect was found on the plants following chronic exposure to all microplastic types, weathered plastic reduced seed germination after exposure of the mother plants, suggesting epigenetic modifications might have an effect at the embryo stage. In contrast, direct exposure of microplastics, specifically polylactic acid, facilitated seeds germination. Our results highlight the importance of studying the effects of microplastic on seed germination and raise the ongoing ecological consequences of environmental microplastic coastal contamination, which should be taken into account in regulatory and environmental assessments.
Collapse
Affiliation(s)
- Noy Kaminer Bitton
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Michal Gruntman
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; School of Plant Sciences and Food Security, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
7
|
Dainelli M, Colzi I, Giosa D, Gargiulo G, Lo Passo C, Pernice I, Falsini S, Ristori S, Pignattelli S, Miniati A, Morandi P, Buti M, Vergata C, Coppi A, Gonnelli C, Martinelli F. Coding and non-coding transcripts modulated by transparent and blue PET micro-nanoplastics in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109409. [PMID: 39826345 DOI: 10.1016/j.plaphy.2024.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/20/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025]
Abstract
To get further insights on the micro-nanoplastic (MNP) effects on plants, the aim of this study was to evaluate the response of hydroponically cultivated Arabidopsis thaliana to the presence of differentially colored polyethylene terephthalate (PET) particles. MNP impacts on the root organ were studied at a molecular level, with a special focus on the role of long non-coding RNAs (lncRNAS) in the regulation of gene expression after PET exposure. MNPs of transparent (Tr-PET) and blue (Bl-PET) material at environmentally realistic concentration caused a significant reduction in root length, while only Bl-PET significantly reduced rosette area. MNPs induced oxidative stress markers. Tr-PET upregulated genes involved in signaling of xenobiotics, whereas Bl-PET scarcely affected root transcriptomic profile, activating few gene categories for abiotic stresses. Regarding hormones, genes involved in ABA response were repressed, while brassinosteroid-related genes were differentially regulated by Tr-PET. Both MNPs, but especially Tr-PET, upregulated major latex protein-related genes. Plant molecular response to MNPs was linked to differential abundance of lncRNAs on both comparisons. Tr-PET affected the expression of much more lncRNAs than bl-PET (80 and 11 respectively). These lncRNAs were predicted to interact with several repressed protein-coding genes (i.e. glucosyltransferase UGT2, oxidative stress genes etc.), with possible effects on their regulation. A lncRNA (AT1G09297) interacted with CYP81D8, a key gene of cytochrome P450 gene family involved in xenobiotics detoxification. Two lncRNAs interacted with two members of repressed HSP (HSP90 and HSP17.4) family. Finally, genes involved in redox detoxification and stress responses were inhibited by the interaction with two microplastics-regulated lncRNAs. These data highlighted the need of investigating non-coding RNAs in the future in addition to the mostly studied protein coding transcriptome.
Collapse
Affiliation(s)
| | - Ilaria Colzi
- Department of Biology, University of Florence, Italy
| | - Domenico Giosa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Gaetano Gargiulo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Carla Lo Passo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Ida Pernice
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Sara Falsini
- Department of Biology, University of Florence, Italy
| | - Sandra Ristori
- Department of Chemistry and CSGI, Università degli Studi di Firenze, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Sara Pignattelli
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Alice Miniati
- Department of Biology, University of Florence, Italy
| | | | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| | | | - Andrea Coppi
- Department of Biology, University of Florence, Italy
| | | | | |
Collapse
|
8
|
Medriano CA, Kim S, Kim LH, Bae S. Chronic Exposure of Adult Zebrafish to Polyethylene and Polyester-based Microplastics: Metabolomic and Gut Microbiome Alterations Reflecting Dysbiosis and Resilience. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136691. [PMID: 39642737 DOI: 10.1016/j.jhazmat.2024.136691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
The study explored the ecotoxicological effects of chronic exposure to microplastic (MP) on adult zebrafish, focusing on environmentally relevant concentrations of polyethylene (PE) beads and polyester (PES). High-throughput untargeted metabolomics via UPLC-QToF-MS and 16S metagenomics for gut microbiota analysis were used to assess ecotoxicity in zebrafish exposed to varying concentrations of PE and PES. The VIP (Variable Importance in Projection) scores indicated PE exposure primarily impacted phospholipids, ceramides, and nucleotide-related compounds, while PES exposure led to alterations in lipid-related compounds, chitin, and amino acid derivatives. From MSEA (Metabolite Set Enrichment Analysis) and Mummichog analyses, PE and PES significantly disrupted key metabolomic pathways associated with inflammation, immune responses, and apoptosis, including leukotriene and arachidonic acid metabolism and the formation of putative anti-inflammatory metabolites from EPA. PE caused physical disruption and inflammation of the epithelial barrier, whereas PES affected gut microbiota interactions, impairing digestion and metabolism. Although alpha diversity within the gut microbiome remained stable, beta diversity analysis revealed significant shifts in microbial composition and structure, suggesting a disruption of functional balance and an increased susceptibility to pathogens. Chronic PE and PES exposures induced shifts in the gut microbial community and interaction network with potential increases in pathogenic bacteria and alteration in commensal bacteria, demonstrating the microbiome's resilience and adaptability to stressors of MPs exposure. High-throughput metabolomics and 16S metagenomics revealed potential chronic diseases associated with inflammation, immune system disorders, metabolic dysfunction, and gut dysbiosis, highlighting the complex relationship between gut microbiome resilience and metabolic disruption under MP-induced stress, with significant ecological implications.
Collapse
Affiliation(s)
- Carl Angelo Medriano
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Sungpyo Kim
- Research Institute for Advanced Industrial Technology, Korea University, Republic of Korea
| | - Lan Hee Kim
- Research Institute for Advanced Industrial Technology, Korea University, Republic of Korea; Department of Environmental System Engineering, Korea University, Republic of Korea
| | - Sungwoo Bae
- Department of Environmental System Engineering, Korea University, Republic of Korea.
| |
Collapse
|
9
|
Basu AG, Paul RS, Wang F, Roy S. Impact of microplastics on aquatic flora: Recent status, mechanisms of their toxicity and bioremediation strategies. CHEMOSPHERE 2025; 370:143983. [PMID: 39701309 DOI: 10.1016/j.chemosphere.2024.143983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The accumulation of microplastics (MPs) in aquatic environments has occurred pervasively. The MPs affect almost all the aquatic plants including the aquatic microorganisms, ultimately disturbing the food chain. Aquatic flora attracts MPs due to the formation of several chemical bonds and interactions, including hydrogen bonds, electrostatic, hydrophobic, and van der Waals. Consequently, they hinder plant growth when adsorbed to the plant surfaces. Moreover, the major metabolic processes, including photosynthesis, reproduction, and nutrient uptake, get affected due to the pore-filling of plant tissues and the blockage of sunlight. Subsequently, prolonged exposure to MPs inflicts excessive generation of reactive oxygen species (ROS), ultimately accelerating programmed cell death. However, it has been realized that bioremediation techniques, including phytoremediation, can effectively mitigate MPs pollution by adsorbing or accumulating MPs by 25-80% at the laboratory scale. In this connection, several microorganisms are vital in deteriorating MPs due to their ability to form biofilm over the MPs' surface. Additionally, the secretion of extracellular enzymes such as styrene monooxygenase, styrene oxide isomerase, phenylacetaldehyde dehydrogenase, PETase, etc., facilitates the degradation of MPs. Moreover, the inherent ability of plants to adsorb and accumulate MPs can be utilized to manage the MPs in aquatic ecosystems. However, there is a dearth of literature and comprehensive reviews highlighting the potential of bioremediation strategies. Therefore, apart from addressing the impact of MPs on aquatic flora, this article attempts to elucidate the physical and chemical basis of plant-plastic interaction and the potential strategies aquatic flora including microorganisms employ to mitigate plastic pollution.
Collapse
Affiliation(s)
- Anindita Ghosh Basu
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| | - Rita Som Paul
- Department of Botany, Siliguri College, Siliguri, Dist. Darjeeling, West Bengal, India.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science & Technology, Qingdao, Shandong Province, PR China.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
10
|
Liu M, Hua W, Yu C, Zhang S, Li W, Li C, Peng J, Liu R, Liu H, Qu J. Toxicity mechanism of microplastics on the growth traits and metabolic pathways of Vallisneria natans under different light environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117772. [PMID: 39947062 DOI: 10.1016/j.ecoenv.2025.117772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 03/03/2025]
Abstract
Freshwater plants are threatened by microplastics (MPs). While many studies have reported the effects of MPs on aquatic plants and animals, few have examined the effects of MPs on plant metabolism at different light intensities. We explore cellular, metabolic, and stress responses of Vallisneria natans at different light intensities (0, 20, 90, 160, 280 μmol·m-2·s-1), without and with (50 mg·L-1) MPs. The experiment showed that that the strong light promotes adsorption and accumulation of MPs on leaf and root tissues, affected growth rate, and changed metabolic pathways, inhibited photosynthetic processes, and enhanced oxidative stress responses in V. natans. Metabolomic analysis and experimental validation revealed that the combination of 280 μmol m-2·s-1 and MPs interfered most severely with plant carbon and nitrogen metabolism, lipid metabolism, and amino acid metabolism pathways compared with the combination of 90 μmol m-2·s-1 and MPs. This condition also significantly inhibited the activities of photosynthesis and energy transfer-related regulators and proteins, as well as stimulated oxidative stress-related pathways and exacerbated oxidative stress toxicity responses. The results of the research indicate that the highest light intensity tested can increase the accumulation of MPs, leading to V. natans cell damage, inhibition of photosynthetic metabolism, and the risk of oxidative toxic stress. Our results provide a basis for the analysis of the growth and metabolism processes and risk assessment of aquatic plants under the action of light and MPs.
Collapse
Affiliation(s)
- Meixuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wei Hua
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chungui Yu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siyu Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Chong Li
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China.
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Megha KB, Anvitha D, Parvathi S, Neeraj A, Sonia J, Mohanan PV. Environmental impact of microplastics and potential health hazards. Crit Rev Biotechnol 2025; 45:97-127. [PMID: 38915217 DOI: 10.1080/07388551.2024.2344572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 06/26/2024]
Abstract
Microscopic plastic (microplastic) pollutants threaten the earth's biodiversity and ecosystems. As a result of the progressive fragmentation of oversized plastic containers and products or manufacturing in small sizes, microplastics (particles of a diameter of 5 mm with no lower limit) are used in medicines, personal care products, and industry. The incidence of microplastics is found everywhere in the air, marine waters, land, and even food that humans and animals consume. One of the greatest concerns is the permanent damage that is created by plastic waste to our fragile ecosystem. The impossibility of the complete removal of all microplastic contamination from the oceans is one of the principal tasks of our governing body, research scientists, and individuals. Implementing the necessary measures to reduce the levels of plastic consumption is the only way to protect our environment. Cutting off the plastic flow is the key remedy to reducing waste and pollution, and such an approach could show immense significance. This review offers a comprehensive exploration of the various aspects of microplastics, encompassing their composition, types, properties, origins, health risks, and environmental impacts. Furthermore, it delves into strategies for comprehending the dynamics of microplastics within oceanic ecosystems, with a focus on averting their integration into every tier of the food chain.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - D Anvitha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - S Parvathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - A Neeraj
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - J Sonia
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Thiruvananthapuram, India
| |
Collapse
|
12
|
Riaz K, Yasmeen T, Attia KA, Kimiko I, Arif MS. Phytotoxic Effects of Polystyrene Microplastics on Growth Morphology, Photosynthesis, Gaseous Exchange and Oxidative Stress of Wheat Vary with Concentration and Shape. TOXICS 2025; 13:57. [PMID: 39853055 PMCID: PMC11768867 DOI: 10.3390/toxics13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/26/2025]
Abstract
Microplastics pose a serious ecological threat to agricultural soils, as they are very persistent in nature. Microplastics can enter the soil system in different ways and present different shapes and concentrations. However, little is known about how plants react to microplastics with different concentrations and shapes. To this end, we conducted a factorial pot experiment with wheat (Triticum aestivum L.) in which we mixed polystyrene (PS) in different shapes (bead, fiber and powder) with soil at concentrations of 0, 1, 3 and 5%. Although all shapes of PS significantly reduced morphological growth traits, PS in powder shape was the microplastic that reduced plant height (by 58-60%), fresh biomass (by 54-55%) and dry biomass (by 61-62%) the most, especially at the 3% and 5% concentrations compared with 0% PS. Similar negative effects were also observed for root length and fresh root weight at the 3% and 5% concentrations, regardless of shape. A concentration-dependent reduction in the leaf area index (LAI) was also observed. Interestingly, increasing the PS concentration tended to up-regulate the activity of antioxidant enzymes for all shapes, indicating potential complexity and a highly time-dependent response related to various reactive oxygen species (ROS). Importantly, PS at the 5% concentration caused a significant reduction in chlorophyll pigmentation and photosynthetic rate. For the transpiration rate, stomatal conductance and intercellular CO2 concentration, the negative effects of PS on wheat plants increased with the increase in microplastic concentration for all shapes of PS. Overall, we concluded that PS microplastics at higher concentrations are potentially more devastating to the physiological growth and biochemical attributes of wheat, as evidenced by the negative effects on photosynthetic pigments and gas exchange parameters for all shapes. We recommend further research experiments not only on translocation but also on tissue-specific retention of different sizes in crops to fully understand their impact on food safety.
Collapse
Affiliation(s)
- Komal Riaz
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (K.R.); (T.Y.)
| | - Tahira Yasmeen
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (K.R.); (T.Y.)
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Itoh Kimiko
- Institute of Science and Technology, Niigata University, Ikarashi-2, Nishiku, Niigata 950-2181, Japan;
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (K.R.); (T.Y.)
| |
Collapse
|
13
|
Masciarelli E, Casorri L, Di Luigi M, Beni C, Valentini M, Costantini E, Aielli L, Reale M. Microplastics in Agricultural Crops and Their Possible Impact on Farmers' Health: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 22:45. [PMID: 39857498 PMCID: PMC11765068 DOI: 10.3390/ijerph22010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
The indiscriminate use of plastic products and their inappropriate management and disposal contribute to the increasing presence and accumulation of this material in all environmental zones. The chemical properties of plastics and their resistance to natural degradation lead over time to the production of microplastics (MPs) and nanoplastics, which are dispersed in soil, water, and air and can be absorbed by plants, including those grown for food. In agriculture, MPs can come from many sources (mulch film, tractor tires, compost, fertilizers, and pesticides). The possible effects of this type of pollution on living organisms, especially humans, increase the need to carry out studies to assess occupational exposure in agriculture. It would also be desirable to promote alternative materials to plastic and sustainable agronomic practices to protect the safety and health of agricultural workers.
Collapse
Affiliation(s)
- Eva Masciarelli
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Via R. Ferruzzi, 38/40, 00143 Rome, Italy; (E.M.); (L.C.)
| | - Laura Casorri
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Via R. Ferruzzi, 38/40, 00143 Rome, Italy; (E.M.); (L.C.)
| | - Marco Di Luigi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance Against Accidents at Work, Via di Fontana Candida, 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Claudio Beni
- Research Centre for Engineering and Agro-Food Processing, Council for Agricultural Research and Economics, Via della Pascolare, 16, Monterotondo, 00015 Rome, Italy;
| | - Massimiliano Valentini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics, Via Ardeatina, 546, 00178 Rome, Italy;
| | - Erica Costantini
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| | - Lisa Aielli
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| | - Marcella Reale
- Department Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio”, Via dei Vestini, 66100 Chieti, Italy; (E.C.); (L.A.); (M.R.)
| |
Collapse
|
14
|
Gao M, Li C, Li Y, Wen S, Zhang Y, Liu L, Zhang J, Chen M, Yang J. Integration of ecological restoration and landscape aesthetics: Mechanisms of microplastic retention by optimization of aquatic plants landscape design in urban constructed wetlands - A case study of the living water park in Chengdu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177331. [PMID: 39515391 DOI: 10.1016/j.scitotenv.2024.177331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Microplastic (MP) pollution is prevalent in urban water environments, with increasing evidence of its negative environmental impacts. This study examines the role and mechanisms of aquatic plant landscapes in the ecological remediation of MP (0.05-5 mm) in urban constructed wetland parks, using the Living Water Park in Chengdu as a case study. Over a period of two years, a systematic investigation of MP characteristics, abundance and distribution in the water environment as well as aquatic plant landscapes in the park. Sampling was carried out for the three stages of the Fuhe River before, during and after its flow through the park, and for the water bodies at each step of the water purification system within the Living Water Park, and a total of 66 samples of freshwater microplastics (MPs)were collected at 8 preliminary and 25 official sampling sites selected. MPs were observed in all samples, with higher abundance found in more close-to-natural areas, such as ecological wetlands and streams. Aquatic plants play a crucial role in MP remediation through adsorption, uptake (Mp ≤ 5 μm) and accumulation. A positive correlation was found between MP abundance, aquatic plant species diversity, and public landscape evaluation. More diverse and layered wetland plant configurations exhibited better MP remediation capabilities. The study suggests specific aquatic plant species and combinations for optimal MP remediation, emphasizing the importance and feasibility of aquatic plant landscapes in urban constructed wetland parks. The findings highlight the potential of urban constructed wetland parks for MP remediation and provide important doi:ces for their long-term development and landscape design, proposing strategies from plant combination optimization to integrated landscape design and maintenance.
Collapse
Affiliation(s)
- Mengyao Gao
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yiye Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shu Wen
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanting Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang Liu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mingkun Chen
- Chengdu Institute for Park City Construction and Development, Chengdu, Sichuan 610036, China
| | - Jie Yang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China; Yibin Industrial Tachnology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping Distyict, Yibing, Sichuan 644000, China.
| |
Collapse
|
15
|
Chen G, Pan T, Gao D, Liao H, Wang J. Enhanced competitiveness of Spirodela polyrhiza in co-culture with Salvinia natans under combined exposure to polystyrene nanoplastics and polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176870. [PMID: 39414046 DOI: 10.1016/j.scitotenv.2024.176870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Micro- and nanoplastics (MNPs) and polychlorinated biphenyls (PCBs) are prevalent in the environment and pose potential threats to ecosystems. However, studies on the phytotoxicity of MNPs and PCBs on primary producers are limited. This study investigated the effects of polystyrene nanoplastics (PS-NPs, 10 mg/L) and 2,2',5,5'-tetrachlorobiphenyl (PCB-52, 0.1 mg/L), on the growth of Spirodela polyrhiza and Salvinia natans, and their impact on plant competitive ability under co-culture conditions. Laser confocal microscopy images revealed that PS-NPs accumulated on the leaf and root surfaces of both species. Combined exposure to PS-NPs and PCB-52 significantly inhibited the average specific and relative growth rates (RGR) of both species, reduced chlorophyll a and b levels, and slightly increased carotenoid content, disrupting the photosynthetic system. PCB-52 exacerbated PS-NPs accumulation on plants, leading to increased hydrogen peroxide (H2O2) and superoxide anion (O2-) production in both roots and leaves. This affects the activity of superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA), and the soluble protein content. The combined treatment with PS-NPs and PCB-52 induced greater ecological stress in both species than the treatment with PS-NPs alone. In addition, the combined treatment with PS-NPs and PCB-52 significantly improved the relative yield and competition balance index of S. polyrhiza, indicating that PS-NPs + PCB-52 enhanced the competitive ability of S. polyrhiza when co-cultured with S. natans. This study confirmed the effects of co-exposure to PS-NPs and PCB-52 on aquatic plant growth and species competition, contributing to better insight into the ecological impacts of MNPs and organic pollutants.
Collapse
Affiliation(s)
- Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Ting Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Guo W, Li J, Wu Z, Chi G, Lu C, Ma J, Hu Y, Zhu B, Yang M, Chen X, Liu H. Biodegradable and conventional mulches inhibit nitrogen fixation by peanut root nodules - potentially related to microplastics in the soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136423. [PMID: 39536342 DOI: 10.1016/j.jhazmat.2024.136423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Mulching has been demonstrated to improve the soil environment and promote plant growth. However, the effects of mulching and mulch-derived microplastics (MPs) on nitrogen fixation by root nodules remain unclear. In this study, we investigated the effects of polyethylene (PE) and polylactic acid-polybutylene adipate-co-terephthalate (PLA-PBAT) film mulching on nitrogen fixation by root nodules after 4 years of continuous mulching using 15N tracer technology. Additionally, we examined the relationship between nitrogen fixation and MPs. We found a reduction in the proportion of nitrogen fixation by nodules (54.3 %-58.7 %) due to mulching. This decrease may be attributed to reduced dinitrogenase activity and flavonoid content at the seedling stage caused by mulching, and mulching with PLA-PBAT films significantly decreased the abundance of Bradyrhizobium at maturity. Furthermore, combined analysis of nitrogen-fixing bacteria (nifH) and metabolomes indicated that N-lauroylethanolamine may act as a regulatory signal influencing the root nodule nitrogen fixation process and that mulching resulted in significant changes in its content. The mantel test and PLS-PM suggest that microplastic from mulching may harm root nodule nitrogen fixation. This study reveals the influence of mulching on plant nitrogen uptake and the potential threat of mulch-derived microplastics, with a special focus on root nodule nitrogen fixation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhi Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfeng Wu
- Shandong Peanut Research Institute, Qingdao266100, China
| | - Guangyu Chi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Caiyan Lu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jian Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanyu Hu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bin Zhu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaoyin Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Huiying Liu
- Liaoning Academy of Agricultural Sciences, Shenyang 110161, China.
| |
Collapse
|
17
|
Azeem I, Wang Q, Adeel M, Shakoor N, Zain M, Khan AA, Li Y, Azeem K, Nadeem M, Zhu G, Yukui R. Assessing the combined impacts of microplastics and nickel oxide nanomaterials on soybean growth and nitrogen fixation potential. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136062. [PMID: 39393323 DOI: 10.1016/j.jhazmat.2024.136062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
The excessive presence of polystyrene microplastic (PS-MPx) and nickel oxide nanomaterials (NiO-NPs) in agriculture ecosystem have gained serious attention about their effect on the legume root-nodule symbiosis and biological nitrogen fixation (BNF). However, the impact of these contaminants on the root-nodule symbiosis and biological N2-fixation have been largely overlooked. The current findings highlighted that NiO-NMs at 50 mg kg-1 improved nodule formation and N2-fixation potential, leading to enhanced N2 uptake by both roots and shoots, resulting in increased plant growth and development. While single exposure of PS-MPx (500 mg kg-1) significantly reduced the photosynthetic pigment (8-14 %), phytohormones (9-25 %), nodules biomass (24 %), N2-related enzymes (12-17 %) that ultimately affected the N2-fixation potential. Besides, co-exposure of MPx and NiO at 100 mg kg-1 altered the nodule morphology. Additionally, single and co-exposure of MPx and NiO-NMs at 100 mg kg-1 reduced the relative abundance of Proteobacteria, Gemmatimonadota, Actinobacteria, Firmicutes, and Bacteroidetes is associated with N2-cycling and N2-fixation potential. The findings of this study will contribute to understanding the potential risks posed by MPx and NiO-NMs to leguminous crops in the soil environment and provide scientific insights into the soybean N2-fixation potential.
Collapse
Affiliation(s)
- Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Guangdong, China.
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Adnan Anwar Khan
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Kamran Azeem
- Department of Agronomy, the University of Agricultural Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Yukui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan City, Hebei, China; China Agricultural University Shanghe County Baiqiao Town Science and Technology Courtyard, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
18
|
Xiao L, Peng H, Song Z, Liu H, Dong Y, Lin Z, Gao M. Impacts of root exudates on the toxic response of Chrysanthemum coronarium L. to the co-pollution of nanoplastic particles and tetracycline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124916. [PMID: 39251125 DOI: 10.1016/j.envpol.2024.124916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/20/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Nano polystyrene (PS) particles and antibiotics universally co-exist, posing a threat to crop plants and hence human health, nevertheless, there is limited research on their combined toxic effects along with major influential factors, especially root exudates, on crop plants. This study aimed to investigate the response of Chrysanthemum coronarium L. to the co-pollution of nanoplastics and tetracycline (TC), as well as the effect of root exudates on this response. Based on a hydroponic experiment, the biochemical and physiological indices of Chrysanthemum coronarium L. were measured after 7 days of exposure. Results revealed that the co-pollution of TC and PS caused significant oxidative damage to the plants, resulting in reduced biomass. Amongst the two contaminants, TC played a more prominent role. PS could enter the root tissue, and the uptake of TC and PS by plant roots was synergetic. Malic acid, oxalic acid, and formic acid could explain 65.1% of the variation in biochemical parameters and biomass of the roots. These compounds affected the photosynthesis and biomass of Chrysanthemum coronarium L. by gradually lowering root reactive oxygen species (ROS) and leaf ROS. In contrast, the impact of rhizobacteria on the toxic response of the plants was relatively minor. These findings suggested that root exudates could alleviate the toxic response of plants to the co-pollution of TC and PS. This study enhances our understanding of the role of root exudates, providing insights for agricultural management and ensuring food safety.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Hongchang Peng
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Hanxuan Liu
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Youming Dong
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Zitian Lin
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Minling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
19
|
Chang N, Chen L, Wang N, Cui Q, Qiu T, Zhao S, He H, Zeng Y, Dai W, Duan C, Fang L. Unveiling the impacts of microplastic pollution on soil health: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175643. [PMID: 39173746 DOI: 10.1016/j.scitotenv.2024.175643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Soil contamination by microplastics (MPs) has emerged as a significant global concern. Although traditionally associated with crop production, contemporary understanding of soil health has expanded to include a broader range of factors, including animal safety, microbial diversity, ecological functions, and human health protection. This paradigm shifts underscores the imperative need for a comprehensive assessment of the effects of MPs on soil health. Through an investigation of various soil health indicators, this review endeavors to fill existing knowledge gaps, drawing insights from recent studies conducted between 2021 and 2024, to elucidate how MPs may disrupt soil ecosystems and compromise their crucial functions. This review provides a thorough analysis of the processes leading to MP contamination in soil environments and highlights film residues as major contributors to agricultural soils. MPs entering the soil detrimentally affect crop productivity by hindering growth and other physiological processes. Moreover, MPs hinder the survival, growth, and reproductive rates of the soil fauna, posing potential health risks. Additionally, a systematic evaluation of the impact of MPs on soil microbes and nutrient cycling highlights the diverse repercussions of MP contamination. Moreover, within soil-plant systems, MPs interact with other pollutants, resulting in combined pollution. For example, MPs contain oxygen-containing functional groups on their surfaces that form high-affinity hydrogen bonds with other pollutants, leading to prolonged persistence in the soil environment thereby increasing the risk to soil health. In conclusion, we succinctly summarize the current research challenges related to the mediating effects of MPs on soil health and suggest promising directions for future studies. Addressing these challenges and adopting interdisciplinary approaches will advance our understanding of the intricate interplay between MPs and soil ecosystems, thereby providing evidence-based strategies for mitigating their adverse effects.
Collapse
Affiliation(s)
- Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Wei Dai
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling 712100, China
| | - Chengjiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
20
|
Van de Perre D, Serbruyns L, Coltelli MB, Gigante V, Aliotta L, Lazzeri A, Geerinck R, Verstichel S. Tuning Biodegradation of Poly (lactic acid) (PLA) at Mild Temperature by Blending with Poly (butylene succinate-co-adipate) (PBSA) or Polycaprolactone (PCL). MATERIALS (BASEL, SWITZERLAND) 2024; 17:5436. [PMID: 39597260 PMCID: PMC11595916 DOI: 10.3390/ma17225436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Biobased plastics are fully or partially made from biological resources but are not necessarily biodegradable or compostable. Poly (lactic acid) (PLA), one of the most diffused bioplastics, is compostable in industrial environments, but improving degradation in home composting conditions, in soil and in seawater could be beneficial for improving its end of life and general degradability. Blends obtained by the extrusion of PLA with different amounts of poly (butylene succinate-co-adipate) (PBSA) or poly (caprolactone) (PCL) were characterized in terms of their home composting, soil, marine and freshwater biodegradation. The blending strategy was found to be successful in improving the home compostability and soil compostability of PLA. Thanks to the correlations with morphological characterization as determined by electron microscopy, it was possible to show that attaining an almost co-continuous phase distribution, depending on the composition and melt viscosity of the blend components, can enhance PLA degradation in home composting conditions. Tests in marine and freshwater were also performed, and the obtained results showed that in marine conditions, pure PLA is degradable. A comparison of different tests evidenced that salt dissolved in marine water plays an important role in favoring PLA's degradability.
Collapse
Affiliation(s)
| | - Lynn Serbruyns
- Normec OWS nv, Pantserschipstraat 163, 9000 Ghent, Belgium; (D.V.d.P.); (L.S.)
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.A.); (A.L.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.A.); (A.L.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.A.); (A.L.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (V.G.); (L.A.); (A.L.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Florence, Italy
| | | | - Steven Verstichel
- Normec OWS nv, Pantserschipstraat 163, 9000 Ghent, Belgium; (D.V.d.P.); (L.S.)
| |
Collapse
|
21
|
Courtene-Jones W, Cheung SWH, Thompson RC, Hanley ME. Effect of biodegradable and conventional microplastic exposure in combination with seawater inundation on the coastal terrestrial plant Plantago coronopus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124573. [PMID: 39029863 DOI: 10.1016/j.envpol.2024.124573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Coastal ecosystems face a multitude of pressures including plastic pollution and increased flood risk due to sea level rise and the frequency and severity of storms. Experiments seldom examine multiple stressors such as these, but here we quantified the effect of microplastics (polyethylene terephthalate (PET): a durable plastic and polybutylene adipate terephthalate (PBAT): a biodegradable polymer), in combination with simulated seawater inundation on the coastal species Plantago coronopus. After 35-days exposure to plastic (0.02 g.Kg-1, <300 μm diameter), P. coronopus were flooded to pot height with artificial seawater for 72-h, drained and grown for a further 24-days. Plant mortality, necrosis and photosynthetic efficiency (Fv/Fm) were recorded throughout, with root:shoot biomass and scape production (flower stalks) quantified at harvest. There were significant interactions between microplastics and seawater on the root:shoot ratio; a measure of resource allocation. The allocation to belowground biomass increased significantly under the PET + inundation treatment compared to the PBAT + inundation and the no plastic + inundation treatments, with potential consequences on the capture of water, nutrients and sunlight, which can affect plant performance. Plant necrosis significantly increased, and Fv/Fm declined as a result of seawater inundation. While not significant, plant Fv/Fm responses were influenced by microplastics (17% and 7% reduction in PBAT and PET exposure respectively compared to the no plastic control). Plants mediated this stress response with no discernible treatment-specific effects detected in Fv/Fm 14-days after seawater introduction. Plastic exposure significantly influenced potential reproductive output, with lower average scape numbers across PBAT treatments, but higher in PET treatments. This study highlights the complex interactions and potential for microplastics to present an elevated risk when in combination with additional stressors like seawater flooding; establishing the threat presented to ecosystem resilience in a changing world is a priority.
Collapse
Affiliation(s)
- W Courtene-Jones
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| | - S W H Cheung
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - R C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - M E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| |
Collapse
|
22
|
Li M, Liu G, Cai Y, Guo T, Xu Y, Zhao X, Ji H, Ouyang D, Zhang H. Decreased Sulfamethoxazole Uptake in Lettuce (Lactuca sativa L.) due to Transpiration Inhibition by Polypropylene Microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117201. [PMID: 39426106 DOI: 10.1016/j.ecoenv.2024.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Microplastics and antibiotics are emerging contaminants in agricultural soil that can have negative effects on crops. However, limited research has been conducted on the effects of the polypropylene (PP) microplastic and sulfamethoxazole (SMX) co-exposure on crops, specifically regarding the impact of PP microplastics on SMX uptake and transport in crops. In this study, hydroponic experiments were carried out using lettuce (Lactuca sativa L.), PP microplastics (1.0 g L-1), and SMX (0.5 mg L-1 or 2.5 mg L-1) to investigate the individual and co-exposure effects of PP microplastics and SMX on Lettuce growth, explore the uptake and translocation of SMX in lettuce and elucidate the underlying mechanism of PP microplastic impact on SMX uptake. Results demonstrated that co-exposure to 1.0 g L-1 of PP microplastics and 0.5 mg L-1 of SMX resulted in an enhanced toxic effect. However, no intensified toxic effect on the lettuce was observed when 1.0 g L-1 PP microplastics were added in the presence of 2.5 mg L-1 SMX, indicating that the SMX dominated the toxic effect on lettuce at high concentrations. Additionally, the study found that the water absorption process controlled by the aquaporin and transpiration contributed to the uptake and translocation of SMX in lettuce. When exposed to PP microplastics, no impact was observed on the aquaporin contents of the lettuce while the transpiration rate was significantly decreased by 31.6 % - 44.2 % resulting from microplastics adhered to the root surface. Therefore, in the presence of 2.5 mg L-1 SMX, the SMX uptake in the lettuce root was inhibited by 35.9 % (P < 0.05) when exposed to 1.0 g L-1 PP microplastic. This work deepens our understanding of the behaviour of microplastics and antibiotics in the terrestrial environment.
Collapse
Affiliation(s)
- Mei Li
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Guanlin Liu
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yimin Cai
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Ting Guo
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yangyang Xu
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xinlin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha 410205, China
| | - Haibao Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Da Ouyang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| | - Haibo Zhang
- Sino-Spain Joint Laboratory for Agricultural Environment Emerging Contaminants of Zhejiang Province, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
23
|
He X, Wang Q, Qian Y, Li Z, Feng C. Microplastic accumulation and oxidative stress in sweet pepper (Capsicum annuum Linn.): Role of the size effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124652. [PMID: 39094999 DOI: 10.1016/j.envpol.2024.124652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Microplastics (MPs), which are widely dispersed in terrestrial environments, threaten crop growth and human food security. However, plant accumulation and phytotoxicity related to the size effects of MPs remain insufficiently explored. This study investigated the accumulation and toxicity of two sizes of MPs on Capsicum annuum Linn. (C. annuum) through fluorescence tracing and antioxidant defense system assessment. The results revealed that the size of MPs significantly impacts their accumulation characteristics in C. annuum roots, leading to variations in toxic mechanisms, including oxidative stress and damage. Smaller MPs and higher exposure concentrations result in more pronounced growth inhibition. C. annuum roots have a critical size threshold for the absorption of MPs of approximately 1.2 μm. MPs that enter the root tissue exhibit an aggregated form, with smaller-sized MPs displaying a greater degree of aggregation. MP exposure induces oxidative stress in root tissues, with high concentrations of smaller MPs causing lipid peroxidation. Analysis of the IBR values revealed that C. annuum roots utilize ascorbic acid (ASA) to prevent oxidative damage caused by larger MPs. Conversely, smaller MPs primarily induce superoxide dismutase (SOD) and glutathione (GSH). These results emphasize the significant impact of MP size on plant antioxidant defense response mechanisms, laying the foundation for further investigating the implications for human health.
Collapse
Affiliation(s)
- Xiaokang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Qixuan Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Yibin Qian
- Hainan Research Academy of Environmental Sciences, 571127, Haikou, PR China
| | - Zhenling Li
- The Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
24
|
de Carvalho JGR, Augusto HC, Ferraz R, Delerue-Matos C, Fernandes VC. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. TOXICS 2024; 12:762. [PMID: 39453182 PMCID: PMC11510996 DOI: 10.3390/toxics12100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Microplastic pollution is a problem of increasing concern in food, and while food safety issues around the world are serious, an increasing number of food safety issues related to microplastics have become the focus of people's attention. The presence of microplastics in food is a worldwide problem, and they are present in all kinds of foods, foods of both animal and plant origin, food additives, drinks, plastic food packaging, and agricultural practices. This can cause problems for both humans and the environment. Microplastics have already been detected in human blood, heart, placenta, and breastmilk, but their effects in humans are not well understood. Studies with mammals and human cells or organoids have given perspective about the potential impact of micro(nano)plastics on human health, which affect the lungs, kidneys, heart, neurological system, and DNA. Additionally, as plastics often contain additives or other substances, the potentially harmful effects of exposure to these substances must also be carefully studied before any conclusions can be drawn. The study of microplastics is very complex as there are many factors to account for, such as differences in particle sizes, constituents, shapes, additives, contaminants, concentrations, etc. This review summarizes the more recent research on the presence of microplastic and other plastic-related chemical pollutants in food and their potential impacts on human health.
Collapse
Affiliation(s)
- Juliana G. R. de Carvalho
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
| | - Helga Coelho Augusto
- Cofisa—Conservas de Peixa da Figueira, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Ricardo Ferraz
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| | - Virgínia Cruz Fernandes
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (J.G.R.d.C.); (R.F.)
- Centro de Investigação em Saúde Translacional e Biotecnologia Médica (TBIO)/Rede de Investigação em Saúde (RISE-Health), Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal;
| |
Collapse
|
25
|
Alhaithloul HAS, Alghanem SMS, Alsudays IM, Abbas ZK, Al-Balawi SM, Ali B, Malik T, Javed S, Ali S, Ercisli S, Darwish DBE. Ameliorating arsenic and PVC microplastic stress in barley (Hordeum vulgare L.) using copper oxide nanoparticles: an environmental bioremediation approach. BMC PLANT BIOLOGY 2024; 24:985. [PMID: 39425070 PMCID: PMC11490012 DOI: 10.1186/s12870-024-05661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
The present study investigates the impact of varying concentrations of PVC microplastics (PVC-MPs) - specifically 0 (no PVC-MPs), 2, and 4 mg L- 1 -alongside different arsenic (As) levels of 0 (no As), 150, and 300 mg kg- 1 in the soil, with the concurrent application of copper oxide-nanoparticles (CuO-NPs) at 0 (no CuO -NPs), 25 and 50 µg mL- 1 to barley (Hordeum vulgare L.) plants. This research primarily aims to assess plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, as well as the response of various antioxidants (both enzymatic and non-enzymatic) and their relevant genes expression, proline metabolism, the AsA-GSH cycle, and cellular fractionation within the plants. The findings showed that increased levels of PVC-MPs and As stress in the soil significantly reduced plant growth and biomass, photosynthetic pigments, and gas exchange characteristics. Additionally, PVC-MPs and As stress increased oxidative stress in the roots and shoots, as evidenced by elevated levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL), which in turn stimulated the production of various enzymatic and non-enzymatic antioxidants, gene expression, and sugar content. Furthermore, a notable increase in proline metabolism, the AsA-GSH cycle, and cellular pigmentation was observed. Conversely, the application of CuO-NPs resulted in a substantial improvement in plant growth and biomass, gas exchange characteristics, and the activity of enzymatic and non-enzymatic antioxidants, along with a reduction in oxidative stress. Additionally, CuO-NPs enhanced cellular fractionation while decreasing proline metabolism and the AsA-GSH cycle in H. vulgare plants. These outcomes provide new insights into sustainable agricultural practices and offer significant potential in addressing the critical challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
| | | | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Siham M Al-Balawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Science, Western Sydney University, Penrith, 2751, Australia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, 378, Ethiopia.
- Adjunct Faculty, Division of Research and Development, Lovely Professional University, Phagwara, 144411, India.
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan.
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, TR-25240, Türkiye
| | - Doaa Bahaa Eldin Darwish
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
26
|
Lotz T, Chen W, Su S. Microplastic Transport and Accumulation in Rural Waterbodies: Insights from a Small Catchment in East China. TOXICS 2024; 12:761. [PMID: 39453181 PMCID: PMC11510974 DOI: 10.3390/toxics12100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Microplastic (MP) pollution in agricultural ecosystems is an emerging environmental concern, with limited knowledge of its transport and accumulation in rural waterbodies. This study investigates the distribution and sources of MP in drainage ditches influenced by pond connectivity, land use, and soil properties within a small catchment in Nanjing, East China. Sediment was collected from ditches in 18 sites across forest, agricultural, horticultural, and urban areas. Using laser-directed infrared spectroscopy (LDIR), 922 MP particles were identified. Six materials were dominant: fluororubber (FR), polyethylene terephthalate (PET), polyurethane (PU), acrylonitrile (ACR), chlorinated polyethylene (CPE), and polyethylene (PE). MP concentrations varied by land use and pond connectivity, with ditches above ponds exhibiting higher counts (1700 particles/kg) than those below (1050 particles/kg), indicating that ponds act as MP sinks. The analysis revealed site-specific MP sources, with FR linked to road runoff and PET associated with agricultural practices. Correlations between MP shape and soil properties showed that more compact and filled shapes were more commonly associated with coarser soils. PE particle size was negatively correlated with organic matter. This study highlights the need for targeted strategies to reduce MP pollution in rural landscapes, such as reducing plastic use, ditch maintenance, and improved road runoff management.
Collapse
Affiliation(s)
- Tom Lotz
- School of Computer Engineering, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China;
- Jiangsu Key Laboratory of Data Science & Smart Software, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China
| | - Wenjun Chen
- School of Software Engineering, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China;
- Key Laboratory of Watershed Geographic Science, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shoubao Su
- School of Computer Engineering, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China;
- Jiangsu Key Laboratory of Data Science & Smart Software, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China
- School of Computer, Jiangsu University of Science and Technology, Changhui Road 666, Zhenjiang 212003, China
| |
Collapse
|
27
|
Zhang Y, Ju J, Li M, Ma Z, Lu W, Yang H. Dose-dependent effects of polystyrene nanoplastics on growth, photosynthesis, and astaxanthin synthesis in Haematococcus pluvialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124574. [PMID: 39029865 DOI: 10.1016/j.envpol.2024.124574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Microalgae play an important role in aquatic ecosystems, but the widespread presence of micro- and nano-plastics (MNPs) poses significant threats to them. Haematococcus pluvialis is well-known for its ability to produce the antioxidant astaxanthin when it experiences stress from environmental conditions. Here we examined the effects of polystyrene nanoplastics (PS-NPs) at concentrations of 0.1, 1, and 10 mg/L on H. pluvialis over an 18-day period. Our results show that PS-NPs caused a significant, dose-dependent inhibition of H. pluvialis growth and a reduction in photosynthesis. Furthermore, PS-NPs severely damaged the morphology of H. pluvialis, leading to cell shrinkage, collapse, content release, and aggregation. Additionally, PS-NPs induced a dose-dependent increase in soluble protein content and a decrease in the production of extracellular polymeric substances. These findings indicate that PS-NPs has the potential to adversely affect both the physiology and morphology of H. pluvialis. An increase in reactive oxygen species and antioxidant enzyme activities was also observed, suggesting an oxidative stress response to PS-NPs exposure. Notably, the synthesis of astaxanthin, which is crucial for H. pluvialis's survival under stress, was significantly inhibited in a dose-dependent manner under strong light conditions, along with the down-regulation of genes involved in the astaxanthin biosynthesis pathway. This suggests that PS-NPs exposure reduces H. pluvialis's ability to survive under adverse conditions. This study enhances our understanding of the toxic effects of PS-NPs on microalgae and underscores the urgent need for measures to mitigate MNP pollution to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Min Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhuyi Ma
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenyan Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
28
|
Xu H, Chen C, Pang Z, Zhang G, Zhang W, Kan H. Effects of microplastics concentration on plant root traits and biomass: Experiment and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117038. [PMID: 39277997 DOI: 10.1016/j.ecoenv.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
The impact of microplastics (MPs) on plant growth, particularly root development, remains underexplored. To address this, a laboratory pot experiment and meta-analysis were conducted to assess how varying concentrations of MPs affect plant root growth. In pot experiments, the response of root traits to MPs differed by plant species. For F. arundinacea, a higher addition (1 % and 2 %) of polypropylene (PP) significantly increased the total length, surface area, volume, as well as fine root (<1 mm) surface area and volume. Partial least squares path modeling (PLS-PM) analysis showed that high concentrations of MPs affected plant root growth and plant root biomass by promoting fine root growth. Meta-analysis indicated that MPs increased shoot dry biomass by 32.7 % but reduced root dry biomass by 4.1 % and root length by 14.3 %. Higher concentrations (>0.5 %) of MPs significantly increased root length (35.2 %) and root dry biomass (6.3 %), whereas decreased shoot dry biomass (-8.6 %). Under the lower MPs concentration (<0.5 %), the root length and root dry biomass were decreased by 18.6 % and 11.1 %, respectively, and the shoot dry biomass was increased by 53.2 % compared with the treatment without MPs. The results emphasize the differences in performance between species for different MPs concentrations, implying that there may be future scope to select for species/varieties that are most resilient to the presence of MPs.
Collapse
Affiliation(s)
- Hengkang Xu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, China
| | - Chao Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, China
| | - Zhuo Pang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, China
| | - Guofang Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, China
| | - Weiwei Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, China
| | - Haiming Kan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), No. 9 Shuguang Garden Middle Road, Haidian District, Beijing, China.
| |
Collapse
|
29
|
Meng J, Diao C, Cui Z, Li Z, Zhao J, Zhang H, Hu M, Xu J, Jiang Y, Haider G, Yang D, Shan S, Chen H. Unravelling the influence of microplastics with/without additives on radish (Raphanus sativus) and microbiota in two agricultural soils differing in pH. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135535. [PMID: 39153301 DOI: 10.1016/j.jhazmat.2024.135535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Here we investigated the effects of three types of microplastics (MPs), i.e., PS (P), ABS (B), PVC (V), and each with additive (MPAs) (PA, BA, and VA), on soil health, microbial community, and plant growth in two acidic and slightly alkaline soils. Incubation experiment revealed that although MPs and MPAs consistently stimulated soil nutrients and heavy metals (e.g., Mn, Cu) in weakly alkaline soils, only BA and VA led to increase in soil nutrients and heavy metals in acidic soils. This suggests distinct response patterns in the two soils depending on their initial pH. Concerning microorganisms, MPs and MPAs reduced the assembly degree of bacteria in acidic soils, with a reduction of Chloroflexi and Acidobacteriota but an increase of WPS-2 in VA. Culture experiment showed consistent positive or negative responses in radish seed germination, roots, and antioxidant activity across MPs and MPAs types in both soils, while the responses of seed heavy metals (e.g., Cr, Cd) were consistent in acidic soils but dependent on MPs and MPAs types in alkaline soils. Therefore, our study strongly suggests that the effects of MPs on soil-microbial-plant systems were highly dependent on initial soil characteristics and the types of MPs with plastic additives.
Collapse
Affiliation(s)
- Jun Meng
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Chengmei Diao
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhonghua Cui
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhangtao Li
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Haibo Zhang
- School of Environment and Resources, Zhejiang A&F Forestry University, Hangzhou 311300, China
| | - Minjun Hu
- Agricultural Technology Extension Center, Agriculture and Rural Affairs Bureau of Fuyang District, Hangzhou 311499, China
| | - Jun Xu
- Agricultural Technology Extension Center, Agriculture and Rural Affairs Bureau of Fuyang District, Hangzhou 311499, China
| | - Yugen Jiang
- Agricultural Technology Extension Center, Agriculture and Rural Affairs Bureau of Fuyang District, Hangzhou 311499, China
| | - Ghulam Haider
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Dong Yang
- Quality and Fertilizer Administration Bureau of Zhejiang Province, Hangzhou 310020, China
| | - Shengdao Shan
- Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
30
|
Li Y, Chen Y, Li P, Huang H, Xue K, Cai S, Liao X, Jin S, Zheng D. Microplastics in soil affect the growth and physiological characteristics of Chinese fir and Phoebe bournei seedlings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124503. [PMID: 38977122 DOI: 10.1016/j.envpol.2024.124503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Pot experiments were conducted using Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and Phoebe bournei (Hemsl.) Yang) to investigate whether soil microplastics adversely affect the nurturing and renewal of plantations. Microplastics composed of polyethylene and polypropylene with a size of 48 μm were used. The treatments included a control group (without microplastics) and groups treated with microplastic concentrations of 1% and 2% (w/w). The effects of microplastics on the growth, photosynthetic pigments in leaves, antioxidant systems, and osmotic regulation substances of the seedlings were analysed by measuring the seedling height, ground-line diameter growth, chlorophyll (chlorophyll a, chlorophyll b, and total chlorophyll) contents, antioxidant enzyme (superoxide dismutase, peroxidase, catalase) activities, and malondialdehyde, soluble sugar, and soluble protein levels. The results indicated that treatment with 1% polyethylene microplastics increased the chlorophyll a, total chlorophyll, and soluble protein contents in the leaves of both types of seedlings while inhibiting superoxide dismutase and peroxidase activities in P. bournei seedlings. Treatment with 2% polyethylene or polypropylene microplastics suppressed the chlorophyll a, chlorophyll b, and total chlorophyll contents; superoxide dismutase, peroxidase, and catalase activities; and soluble sugar and soluble protein levels in the leaves of both types of seedlings, resulting in reduced growth in terms of height and ground-line diameter. The physiological effects of polyethylene microplastics were more evident than those of polypropylene at the same concentration. The results demonstrated that microplastics can affect photosynthesis, the antioxidant system, and osmotic regulation in Chinese fir and P. bournei seedlings, thereby inhibiting their normal growth and development. Exposure to 1% (w/w) microplastics triggered stress responses in seedlings, whereas 2% (w/w) microplastics impeded seedling growth.
Collapse
Affiliation(s)
- Yuru Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yifei Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Peiyao Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Haifeng Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Kexin Xue
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Siying Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaoli Liao
- Department of Geography, Minjiang University, Fuzhou, 350108, China.
| | - Shaofei Jin
- Department of Geography, Minjiang University, Fuzhou, 350108, China.
| | - Dexiang Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
31
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
32
|
Li X, Li Z. Perspectives on the Toxic Effects of Micro- and Nanoplastics on the Environment: A Bibliometric Analysis of the 2014 to 2023 Period. TOXICS 2024; 12:676. [PMID: 39330604 PMCID: PMC11435707 DOI: 10.3390/toxics12090676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Over the past decade, micro- and nanoplastics (MNPs) have garnered significant attention due to their frequent detection in and potential toxic effects on the environment and organisms, making them a serious threat to human health. To comprehensively understand the research on MNPs' toxicity, we employed the R language-based Bibliometrix toolkit (version 4.3.0), VOSviewer (version 1.6.11) and CiteSpace (version 6.3.R1) to perform statistical and visual analyses of 3541 articles pertaining to MNPs' toxicity between 2014 and 2023, which were retrieved from the Web of Science Core Collection (WOSCC) database. The analysis revealed that research related to MNPs' toxicity has experienced a rapid increase in recent years. China's particularly prominent influence in the field of MNPs' toxicity is evidenced by its academic exchanges and the establishment of a mature cooperation system with other countries (regions), such as the USA and Germany. Studies related to MNPs' toxicity are primarily published in leading journals, including the Science of the Total Environment, Environmental Pollution, and the Journal of Hazardous Materials. The Chinese Academy of Sciences was identified as the leading institution in terms of research on MNPs' toxicity, contributing 203 papers to the total number of studies published. Keyword co-occurrence and burst analyses indicated that the current research on MNPs' toxicity mainly focuses on the toxic effects of MNPs on aquatic organisms, the combined toxicity of MNPs and other contaminants, and the toxic effects and mechanisms of MNPs. Future research should integrate computational toxicology and toxicomics to enhance our understanding of MNPs' toxicity mechanisms and assess the potential health risks posed by atmospheric MNPs.
Collapse
Affiliation(s)
- Xianhong Li
- Hangzhou Institute of National Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310028, China
- School of Instrumentation and Optoelectronics Engineering, Beihang University, Beijing 100191, China
| | - Zhonghong Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
33
|
Radford F, Horton AA, Felgate S, Lichtschlag A, Hunt J, Andrade V, Sanders R, Evans C. Factors influencing microplastic abundances in the sediments of a seagrass-dominated tropical atoll. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124483. [PMID: 38960123 DOI: 10.1016/j.envpol.2024.124483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Seagrass meadows are one of the world's most diverse ecosystems offering habitats for an extensive array of species, as well as serving as protectors of coral reefs and vital carbon sinks. Furthermore, they modify hydrodynamics by diminishing water flow velocities and enhancing sediment deposition, indicating the potential for microplastic accumulation in their sediments. The build-up of microplastics could potentially have ecological impacts threatening to ecosystems, however little is known about microplastic abundance and controlling factors in seagrass sediments. Here we investigated microplastic characteristics and abundances within sediments underlying four seagrass meadow sites on the Turneffe Atoll, Belize. Sediment cores were collected and sub-sampled to include a range of replicate surface sediments (0-4 cm) and depth cores (sediment depths 0-2, 2-5, 5-10, 10-20 and 20-30 cm). These were analysed using 25 μm resolution μFTIR, with spectral maps processed using siMPle software. Microplastics were prevalent across the sites with an abundance range (limit of detection (LOD) blank-corrected) of < LOD to 17137 microplastics kg-1 dw found on the east side of the atoll. However, their abundances varied greatly between the replicate samples. Polyethylene and polypropylene were the most commonly detected polymers overall, although the dominant polymer type varied between sites. There were no differences in the abundance of microplastics between sites, nor could abundance distributions be explained by seagrass cover. However, abundances of microplastics were highest in sediments with lower proportions of fine grained particles (clay, <4 μm) suggesting that hydrodynamics override seagrass effects. Additionally, no patterns were seen between microplastic abundance and depth of sediment. This suggests that microplastic abundance and distribution in seagrass meadows may vary significantly depending on the specific geographical locations within those meadows, and that more complex hydrodynamic factors influence spatial variability at a localised scale.
Collapse
Affiliation(s)
- Freya Radford
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK; Biospheric Microplastics Research Cluster, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Alice A Horton
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK.
| | - Stacey Felgate
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Anna Lichtschlag
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - James Hunt
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Valdemar Andrade
- Turneffe Atoll Sustainability Association (TASA), 1216 Blue Marlin Boulevard, Belize City, Belize
| | - Richard Sanders
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
| | - Claire Evans
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| |
Collapse
|
34
|
Cui J, Tian H, Qi Y, Hu X, Li S, Zhang W, Wei Z, Zhang M, Liu Z, Abolfathi S. Impact of microplastic residues from polyurethane films on crop growth: Unraveling insights through transcriptomics and metabolomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116826. [PMID: 39106570 DOI: 10.1016/j.ecoenv.2024.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/08/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
The utilisation of coated controlled-release fertilizers (CRFs) leads to the persistence of residual plastic films in agricultural soils, posing a potential threat to crop health. This study investigates the impacts of four residual films (0.39 %, w/w) derived from CRFs in soil, including petrochemical polyether, bio-based polyether, castor oil polyester, and wheat straw polyester polyurethane on wheat growth. This study found that PecPEUR significantly reduced wheat plant height, stem diameter, leaf area, and aboveground fresh weight by 24.8 %, 20.2 %, and 25.7 %. Through an in-depth exploration of transcriptomics and metabolomics, it has been discovered that all residual films disrupted glycolysis-related metabolic pathways in wheat roots, affecting seedling growth. Among them, PecPEUR significantly reduced the fresh weight of aboveground parts by 20.5 %. In contrast, polyester polyurethane residue had no discernible impact on aboveground wheat growth. This was attributed to the enrichment of wheat root genes in jasmonic acid and γ-aminobutyric acid metabolic pathways, thus mitigating oxidative stress, enhancing stress resistance, and ensuring normal plant growth. This study, for the first time, provides comprehensive insights into the effects of polyurethane film residue on wheat seedling growth, underscoring its potential as a promising alternative to conventional plastics in soil.
Collapse
Affiliation(s)
- Jing Cui
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongyu Tian
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yingjie Qi
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, Shandong 276041, China
| | - Xiaomin Hu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shuyue Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Wenrui Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhanbo Wei
- Engineering Laboratory for Green Fertilizers, Chinese Academy of Sciences, Shenyang 110016, China
| | - Min Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhiguang Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Recourses and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| | | |
Collapse
|
35
|
Shirin J, Chen Y, Hussain Shah A, Da Y, Zhou G, Sun Q. Micro plastic driving changes in the soil microbes and lettuce growth under the influence of heavy metals contaminated soil. FRONTIERS IN PLANT SCIENCE 2024; 15:1427166. [PMID: 39323532 PMCID: PMC11422782 DOI: 10.3389/fpls.2024.1427166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) have garnered global attention as emerging contaminants due to their adaptability, durability, and robustness in various ecosystems. Still, studies concerning their combination with heavy metals (HMs), their interactions with soil biota, and how they affect soil physiochemical properties and terrestrial plant systems are limited. Our study was set to investigate the combined effect of HMs (cadmium, arsenic, copper, zinc and lead) contaminated soil of Tongling and different sizes (T1 = 106 µm, T2 = 50 µm, and T3 = 13 µm) of polystyrene microplastics on the soil physiochemical attributes, both bacterial and fungal diversity, compositions, AMF (arbuscular mycorrhizal fungi), plant pathogens in the soil, and their effect on Lactuca sativa by conducting a greenhouse experiment. According to our results, the combination of HMs and polystyrene microplastic (PS-MPs), especially the smaller PS-MPs (T3), was more lethal for the lettuce growth, microbes and soil. The toxicity of combined contaminants directly reduced the physio-biochemical attributes of lettuce, altered the lettuce's antioxidant activity and soil health. T3 at the final point led to a significant increase in bacterial and fungal diversity. In contrast, overall bacterial diversity was higher in the rhizosphere, and fungal diversity was higher in the bulk soil. Moreover, the decrease in MPs size played an important role in decreasing AMF and increasing both bacterial and fungal pathogens, especially in the rhizosphere soil. Functional prediction was found to be significantly different in the control treatment, with larger MPs compared to smaller PS-MPs. Environmental factors also played an important role in the alteration of the microbial community. This study also demonstrated that the varied distribution of microbial populations could be an ecological indicator for tracking the environmental health of soil. Overall, our work showed that the combination of HMs and smaller sizes of MPs was more lethal for the soil biota and lettuce and also raised many questions for further studying the ecological risk of PS-MPs and HMs.
Collapse
Affiliation(s)
- Jazbia Shirin
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Yongjing Chen
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Azhar Hussain Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Yanmei Da
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Guowei Zhou
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Qingye Sun
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Wetland Ecological Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| |
Collapse
|
36
|
Guo S, Xiao G, Chen Y, Zhang J, Zhang B, Ru S, Zhao M. Unraveling the characteristics of microplastics in agricultural soils upon long-term organic fertilizer application: A comprehensive study using diversity indices. CHEMOSPHERE 2024; 364:143235. [PMID: 39218259 DOI: 10.1016/j.chemosphere.2024.143235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microplastics negatively impact soil health and productivity. Organic fertilizers constitute significant contributors of microplastics in agricultural soils. Nevertheless, comprehensive data on the diversity of microplastics in long-term fertilized soils remain unavailable. In this study, we assessed the presence of microplastics in soils subjected to application of three different organic fertilizers (pig manure, chicken manure, and sludge composts) over 12 years, and evaluated the potential ecological risks posed by microplastic accumulation. The average microplastic abundance in soil was 368.88 ± 207.97 (range: 90-910) items/kg. Microplastic abundance differed among fertilization treatments, with substantial increases of 16.67%, 71.67%, and 61.43% upon low to high application of the three treatments, respectively. Overall, the microplastics predominantly comprised fibers (70.94%) and fragments (25.25%), of which a substantial proportion constituted light-colored microplastics (transparent and white). The size of microplastics was mainly concentrated in the 1-2 mm range (39.96%), with rayon, polypropylene, polyester, and polyethylene being identified as the major types. The risk assessment indices of the three treatments were 229.38, 257.64, and 175.89, respectively, and were all classified as level 4 (high risk). The microplastic diversity integrated index and principal component analysis revealed that microplastics were uniformly distributed throughout the 0-20 cm soil depth consequent to tillage activity. Together, these findings provide a comprehensive assessment of microplastic pollution in long-term fertilized soils and serve as a scientific basis for reducing microplastic contamination in agricultural soils.
Collapse
Affiliation(s)
- Sen Guo
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guangmin Xiao
- Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Baogui Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuhua Ru
- Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
37
|
Chen JY, Niu SH, Li HY, Liao XD, Xing SC. Multiomics analysis of the effects of manure-borne doxycycline combined with oversized fiber microplastics on pak choi growth and the risk of antibiotic resistance gene transmission. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134931. [PMID: 38889467 DOI: 10.1016/j.jhazmat.2024.134931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
In this study, oversized microplastics (OMPs) were intentionally introduced into soil containing manure-borne doxycycline (DOX). This strategic approach was used to systematically examine the effects of combined OMP and DOX pollution on the growth of pak choi, analyze alterations in soil environmental metabolites, and explore the potential migration of antibiotic resistance genes (ARGs). The results revealed a more pronounced impact of DOX than of OMPs. Slender-fiber OMPs (SF OMPs) had a more substantial influence on the growth of pak choi than did coarse-fiber OMPs (CF OMPs). Conversely, CF OMPs had a more significant effect on the migration of ARGs within the system. When DOX was combined with OMPs, the negative effects of DOX on pak choi growth were mitigated through the synthesis of indole through the adjustment of carbon metabolism and amino acid metabolism in pak choi roots. In this process, Pseudohongiellaceae and Xanthomonadaceae were key bacteria. During the migration of ARGs, the potential host bacterium Limnobacter should be considered. Additionally, the majority of potential host bacteria in the pak choi endophytic environment were associated with tetG. This study provides insights into the intricate interplay among DOX, OMPs, ARGs, plant growth, soil metabolism, and the microbiome.
Collapse
Affiliation(s)
- Jing-Yuan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hai-Yang Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, Guangdong 510642, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
38
|
Yang H, Zhao H, Mao H, Pu Y, Peng Q, Xu Z, Zhang X, Huang F, Li Z. Lower concentration polyethylene microplastics can influence free-floating macrophyte interactions by combined effects of many weak interactions: A nonnegligible ecological impact. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107028. [PMID: 39047441 DOI: 10.1016/j.aquatox.2024.107028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) are ubiquitous in freshwater ecosystems and their accumulation has been considered an emerging threat. Early research on the effects of MPs on macrophytes primarily focused on the toxicological impacts on individual macrophytes, with several studies suggesting that lower concentrations of MPs have little impact on macrophytes. However, the ecological implications of lower MP concentrations on macrophyte communities remain largely unexplored. Here, we experimented to assess the effects of lower concentrations including 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L of polyethylene (PE) microplastics on Spirodela polyrhiza and Lemna minor, and their community. Our results also indicated that PE concentrations below 100 mg/L had no significant effect on relative growth rate, specific leaf area, Chlorophyll a, Chlorophyll b, Chlorophyll a + b, carotenoid, malondialdehyde (MDA), catalase, and soluble sugar of monocultural S. polyrhiza. However, a lower concentration of PE significantly decreased the MDA of monocultural L. minor and significantly affected the comprehensive index of S. polyrhiza. These findings suggested that lower concentrations of PE can influence interactions between macrophytes maybe due to the cumulative effects of many weak interactions. Additionally, our study showed that 75 mg/L and 100 mg/L PE additions decreased the competitive balance index value of two macrophytes under mixed-culture condition. This result implied that the ecological influence of lower concentration MPs on macrophytes may manifest at the community level rather than at the population level, due to species-specific responses and varying degrees of sensitivity of macrophytes to PE concentrations. Thus, our study emphasizes the need to closely monitor the ecological consequences of emerging contaminants such as MPs accumulation on macrophyte communities, rather than focusing solely on the morphology and physiology of individual macrophytes.
Collapse
Affiliation(s)
- Hui Yang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Hongbo Zhao
- The Forestry Prospect & Design Institute of Hubei Province, Wuhan, 430223, PR China
| | - Hongzhi Mao
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Yunhai Pu
- Wildlife Conservation Chief Station of Hubei Province, Wuhan, PR China
| | - Qiutong Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Zhiyan Xu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China
| | - Xu Zhang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Feng Huang
- Hubei Provincial Academy of Eco-environmental Science (Hubei Eco-environmental Engineering Assessment Center), Wuhan, 430079, PR China
| | - Zhongqiang Li
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resource and Environment, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
39
|
Adamu H, Haruna A, Zango ZU, Garba ZN, Musa SG, Yahaya SM, IbrahimTafida U, Bello U, Danmallam UN, Akinpelu AA, Ibrahim AS, Sabo A, Aljunid Merican ZM, Qamar M. Microplastics and Co-pollutants in soil and marine environments: Sorption and desorption dynamics in unveiling invisible danger and key to ecotoxicological risk assessment. CHEMOSPHERE 2024; 362:142630. [PMID: 38897321 DOI: 10.1016/j.chemosphere.2024.142630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs) and their co-pollutants pose significant threats to soil and marine environments, necessitating understanding of their colonization processes to combat the plastic pandemic and protect ecosystems. MPs can act as invisible carriers, concentrating and transporting pollutants, leading to a more widespread and potentially toxic impact than the presence of either MPs or the pollutants alone. Analyzing the sorption and desorption dynamics of MPs is crucial for understanding pollutants amplification and predicting the fate and transport of pollutants in soil and marine environments. This review provides an in-depth analysis of the sorption and desorption dynamics of MPs, highlighting the importance of considering these dynamics in ecotoxicological risk assessment of MPs pollution. The review identifies limitations of current frameworks that neglect these interactions and proposes incorporating sorption and desorption data into robust frameworks to improve the ability to predict ecological risks posed by MPs and co-pollutants in soil and marine environments. However, failure to address the interplay between sorption and desorption can result in underestimation of the true impact of MPs and co-pollutants, affecting livelihoods and agro-employments, and exacerbate poverty and community disputes (SDGs 1, 2, 3, 8, 9, and 16). It can also affect food production and security (SDG 2), life below water and life on land (DSGs 14 and 15), cultural practices, and natural heritage (SDG 11.4). Hence, it is necessary to develop new approaches to ecotoxicological risk assessment that consider sorption and desorption processes in the interactions between the components in the framework to address the identified limitations.
Collapse
Affiliation(s)
- Haruna Adamu
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria; Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Zaharadden N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria
| | - Suleiman Gani Musa
- Department of Chemistry, Al-Qalam University, 2137, Katsina, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Usman IbrahimTafida
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria
| | - Usman Bello
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria; Biofuel and Biochemical Research Group, Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Seri Iskandar, 32610, Malaysia
| | | | - Adeola Akeem Akinpelu
- Center of Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abubakar Sadiq Ibrahim
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Ahmed Sabo
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
40
|
Liu X, Su H, Wang F, Ma B, Tao Y, Cao K, Shen Y, Zhao W, Wei Y, Wu F. Understanding the Role of Low-Dose Polystyrene Microplastic in Copper Toxicity to Rice Seed (Oryza sativa L.). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1870-1879. [PMID: 38837494 DOI: 10.1002/etc.5928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/14/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
There is still much to learn with respect to the potential for microplastics (MPs) to interact with environmental toxins and biota. In the present study, we investigated the effect of MPs on the toxicity of copper (Cu) to rice seeds (Oryza sativa L.). The 7-day median effective concentration (EC50) value of MPs on rice seed germination was 864 mg/L (95% confidence interval [CI] 839 to 897 mg/L). We found that MPs slightly reduced Cu toxicity to rice seeds. The 7-day EC50 of Cu on rice seed germination increased from 7.29 mg/L (95% CI 7.10-7.52 mg/L) to 7.93 mg/L (95% CI 7.58-8.08 mg/L) in the presence of 20 mg/L MPs. We examined this toxicity reduction phenomenon by investigating the role of MPs in the process of Cu transport, Cu accumulation, and metabolic responses. Further investigation found that the MPs used in the present study hardly adsorbed Cu, but these MPs accumulated on the coats of rice seeds and significantly reduced Cu accumulation in rice seedlings. When Cu concentration was 10 mg/L, the presence of MPs reduced the accumulation of Cu in rice seedlings by 34%. We also found that, compared with only Cu present, the addition of MPs resulted in lower reactive oxygen species accumulation and higher catalase activity and glutathione levels in rice seedlings, which also contributed to Cu toxicity reduction. Collectively, the present study shows that polystyrene MPs have the potential to form associations with plant structures which can ultimately impact heavy metal bioaccessibility and therefore toxicity. Environ Toxicol Chem 2024;43:1870-1879. © 2024 SETAC.
Collapse
Affiliation(s)
- Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Binni Ma
- College of Chemical & Material Engineering, Quzhou University, Quzhou, China
| | - Yanru Tao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Ke Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yaqin Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wensi Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
41
|
Chebbi L, Boughattas I, Helaoui S, Mkhinini M, Jabnouni H, Ben Fadhl E, Alphonse V, Livet A, Giusti-Miller S, Banni M, Bousserrhine N. Environmental microplastic interact with heavy metal in polluted soil from mine site in the North of Tunisia: Effects on heavy metal accumulation, growth, photosynthetic activities, and biochemical responses of alfalfa plants (Medicago saliva L.). CHEMOSPHERE 2024; 362:142521. [PMID: 38857630 DOI: 10.1016/j.chemosphere.2024.142521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
As emerging persistent pollutants, microplastic (MPs) pollution attracted increasing attention worldwide since it is posing several environmental concerns. MPs interact with heavy metals in soil and may provoke damages on soil properties and ultimately impaired plants and human health. The present study aims to evaluate alfalfa plants (Medicago sativa) response after exposure to heavy metal polluted soils from mine site in the North of Tunisia in presence of environmental microplastic. For that, soils were sampled from two sites of Jebel Ressass mine in addition to a control soil. Plants were exposed to the three soils in presence of two increasing rates of microplastics D1 (1 mg/kg of soil) and D2 (100 mg/kg of soil) for 60 days. After harvest, agronomic parameters, chlorophyll content as well as heavy metal accumulation in plants were analyzed. Furthermore, oxidative status was evaluated in terms of malondialdehyde accumulation (MDA), catalase (CAT) activities and glutathion-S-transferase (GST). Overall, our finding highlights that MPs disrupted agronomic parameters and the photosynthetic activities of alfalfa plants. Additionally, our results revealed that the presence of MPs in polluted soils cause an increase on heavy metal accumulation in alfalfa shoots. Biochemical analyses demonstrated that the combined exposure to MPs and heavy metal induced oxidative stress in alfalfa plants by increasing CAT activity and MDA accumulation. The present investigation highlights the ecological risks of microplastics in terrestrial environment.
Collapse
Affiliation(s)
- Lina Chebbi
- LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France; Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Iteb Boughattas
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia; Regional Field Crops Research Center of Beja, IRESA, Tunisia.
| | - Sondes Helaoui
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Marouane Mkhinini
- LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France; Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Hiba Jabnouni
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Eya Ben Fadhl
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia
| | - Vanessa Alphonse
- LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France
| | - Alexandre Livet
- LEESU, Université Paris Est Créteil, Ecole des ponts, Créteil, France
| | | | - Mohamed Banni
- Laboratory of Ecotoxicology and Agrobiodiversity, Higher Institute of Agronomy Chott-Meriem, Sousse University, Tunisia; Higher Institute of Biotechnology, Monastir University, Tunisia
| | | |
Collapse
|
42
|
Christudoss AC, Kundu R, Dimkpa CO, Mukherjee A. Time dependent release of microplastics from disposable face masks poses cyto-genotoxic risks in Allium cepa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116542. [PMID: 38850698 DOI: 10.1016/j.ecoenv.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The use of disposable face masks (DFMs) increased during the COVID-19 pandemic and has become a threat to the environment due to the release of microplastics (MPs). Although many reports have characterized and explored the release of MPs from DFMs and their effects in aquatic ecosystems, there is a lack of investigation into the effects in terrestrial plants. This report aims to fill this research gap by characterizing whole mask leachates (WMLs) collected at different time points and examining their toxicity on Allium cepa, a terrestrial model plant. Various analytical techniques including FE-SEM, FT-IR, and Raman spectroscopy were used to identify MPs in WMLs. The MPs are composed of polypropylene mostly and the concentration of smaller-sized MPs increased with leachate release time. The WMLs showed a MP concentration-dependent cytogenotoxic effect (72 %, 50 %, and 31 %, on 1, 5, and 11-day WMLs, respectively) on A. cepa root cells due to elevated oxidative stress (19 %, 45 %, and 70 %, on 1, 5, and 11-day WMLs, respectively). Heavy metal content of the WMLs was negligible and, thus, not a significant contributor to toxicity in the plant. Overall, this report highlights the fate of DFMs in the environment and their biological impacts in a model plant.
Collapse
Affiliation(s)
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, United States
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
43
|
Gao B, Gao F, Zhang X, Li Y, Yao H. Effects of different sizes of microplastic particles on soil respiration, enzyme activities, microbial communities, and seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173100. [PMID: 38735330 DOI: 10.1016/j.scitotenv.2024.173100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Microplastics (MPs) are emerging pollutants of terrestrial ecosystems. The impacts of MP particle size on terrestrial systems remain unclear. The current study aimed to investigate the effects of six particle sizes (i.e., 4500, 1500, 500, 50, 5, and 0.5 μm) of polyethylene (PE) and polyvinyl chloride (PVC) on soil respiration, enzyme activity, bacteria, fungi, protists, and seed germination. MPs significantly promoted soil respiration, and the stimulating effects of PE were the strongest for medium and small-sized (0.5-1500 μm) particles, while those of PVC were the strongest for small particle sizes (0.5-50 μm). Large-sized (4500 μm) PE and all sizes of PVC significantly improved soil urease activity, while medium-sized (1500 μm) PVC significantly improved soil invertase activity. MPs altered the soil microbial community diversity, and the effects were especially pronounced for medium and small-sized (0.5-1500 μm) particles of PE and PVC on bacteria and fungi and small-sized (0.5 μm) particles of PE on protists. The impacts of MPs on bacteria and fungi were greater than on protists. The seed germination rate of Brassica chinensis decreased gradually with the decrease in PE MPs particle size. Therefore, to reduce the impact of MPs on soil ecosystems, effective measures should be taken to avoid the transformation of MPs into smaller particles in soil environmental management.
Collapse
Affiliation(s)
- Bo Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin 541004, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Fuyun Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Xingfeng Zhang
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st road, Wuhan 430205, People's Republic of China.
| |
Collapse
|
44
|
Saraluck A, Techarang T, Bunyapipat P, Boonchuwong K, Pullaput Y, Mordmuang A. Detection of Microplastics in Human Breast Milk and Its Association with Changes in Human Milk Bacterial Microbiota. J Clin Med 2024; 13:4029. [PMID: 39064070 PMCID: PMC11277308 DOI: 10.3390/jcm13144029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Background: Presently, there is increasing public consciousness regarding the contamination and detection of microplastics (MPs) within the human body, and studies on the detection and characterization of MPs in human breast milk are limited. Objectives: This study aims to investigate the prevalence and characteristics of MPs found in human breast milk and examine the relationship between maternal hygiene practices, complications that may arise during breastfeeding, and the composition of the bacterial microbiota. Methods: Postpartum breast milk was analyzed for MPs using Raman micro-spectroscopy. The relationship between MP detection, maternal hygiene, breastfeeding complications, and bacterial microbiota was examined. In order to identify correlations and differences between groups that had detected and non-detected MPs, statistical analyses were performed, which involved demographic comparisons and correlation network analysis. Results: The mean age of the 59 postpartum women was 28.13 years. We found MPs in 38.98% of breast milk samples (23 of 59), exhibiting diverse morphological and chemical characteristics. Most MP polymers were polypropylene, polyethylene, polystyrene, and polyvinyl chloride. Maternal hygiene and breastfeeding complications differed between the MPs-detected and non-detected groups. Maternal behaviors may influence the presence of microplastics in breast milk, which were associated with these differences. Bacterial microbiota analysis revealed significant taxonomic differences between the MPs-detected and non-detected groups. Staphylococcus and Streptococcus dominated the MPs-detected group, while Enterobacter, Escherichia, Pseudomonas, and Acinetobacter dominated the non-detected group. The MPs-detected group had a more even bacterial distribution, especially Bacteroides. Conclusions: This study found MPs in 38.98% of breast milk samples using Raman micro-spectrometry, with PP, PE, and PVC being the most common. Significant differences in maternal hygiene and breastfeeding complications were found between the groups with and without MPs. Breast milk microbiota may be linked to MP detection. Further study should be conducted to identify the possible maternal-child health.
Collapse
Affiliation(s)
- Apisith Saraluck
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Tachpon Techarang
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Phattarika Bunyapipat
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Khununya Boonchuwong
- Walailak University Hospital, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yupparase Pullaput
- The Center for Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Auemphon Mordmuang
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| |
Collapse
|
45
|
Cao X, Wang C, Luo X, Yue L, White JC, Wang Z, Xing B. Nano- and Microplastics Increase the Occurrence of Bacterial Wilt in Tomato ( Solanum lycopersicum L.). ACS NANO 2024; 18:18071-18084. [PMID: 38924759 DOI: 10.1021/acsnano.4c05875] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Concern over nano- and microplastic contamination of terrestrial ecosystems has been increasing. However, little is known about the effect of nano- and microplastics on the response of terrestrial ecosystems already under biotic stress. Here, nano- and microplastics at 150-500 mg·kg-1 were exposed to tomatoes (Solanum lycopersicum L.), and the results demonstrate that the presence of nano- and microplastics increased the occurrence of bacterial wilt caused by Ralstonia solanacearum in tomatoes as a function of contaminant concentration, surface modification, and size. Our work shows that nanoplastics (30 nm, 250 mg·kg-1) increased the disease incidence by 2.19-fold. The disease severities in amino- and carboxyl-modified nanoplastic treatments were 30.4 and 21.7% higher than that in unmodified nanoplastic treatment, respectively. The severity of disease under the influence of different-sized nano- and microplastic treatments followed the order 30 > 100 nm > 1 > 50 μm. Mechanistically, nanoplastics disrupted the structure of the tomato rhizosphere soil bacterial community and suppressed the induced systemic resistance in tomato; nanoplastics in planta decreased the salicylic acid and jasmonic acid content in tomatoes, thus inhibiting systemic acquired resistance; and microplastics increased the soil water retention, leading to increased pathogen abundance in the rhizosphere. Additionally, the leachates from nano- and microplastics had no effect on disease occurrence or the growth of tomatoes. Our findings highlight a potential risk of nano- and microplastic contamination to agriculture sustainability and food security.
Collapse
Affiliation(s)
- Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xing Luo
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
46
|
Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F. Plastisphere-hosted viruses: A review of interactions, behavior, and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134533. [PMID: 38749241 DOI: 10.1016/j.jhazmat.2024.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
Microbial communities, including bacteria, diatoms, and fungi, colonize plastic surfaces, forming biofilms known as the "plastisphere." Recent research has revealed that plastispheres also host a wide range of viruses, sparking interest in microbial ecology and virology. This shared habitat allows viruses to replicate, interact, infect, and spread, potentially impacting the environment and human health. Consequently, viruses attached to microplastics are now recognized to have broad effects on cellular and immune responses. However, the ecology and implications of viruses hosted in plastisphere habitats remain poorly understood, highlighting their fundamental importance as a subject of study. This review explores various pathways for virus attachment to plastispheres, factors influencing these interactions, their impacts within plastisphere and host-associated environments, and associated issues. It also summarizes current research and identifies knowledge gaps. We anticipate that this paper will help improve our predictive understanding of plastisphere viruses in natural settings and emphasizes the need for more research in real-world environments to advance the field.
Collapse
Affiliation(s)
- Gurusamy Kutralam-Muniasamy
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México.
| | - V C Shruti
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| | - Fermín Pérez-Guevara
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México; Nanoscience & Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de México, México
| |
Collapse
|
47
|
Ren F, Huang J, Yang Y. Unveiling the impact of microplastics and nanoplastics on vascular plants: A cellular metabolomic and transcriptomic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116490. [PMID: 38795417 DOI: 10.1016/j.ecoenv.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
With increasing plastic manufacture and consumption, microplastics/nanoplastics (MP/NP) pollution has become one of the world's pressing global environmental issues, which poses significant threats to ecosystems and human health. In recent years, sharp increasing researches have confirmed that MP/NP had direct or indirect effects on vegetative growth and sexual process of vascular plant. But the potential mechanisms remain ambiguous. MP/NP particles can be adsorbed and/or absorbed by plant roots or leaves and thus cause diverse effects on plant. This holistic review aims to discuss the direct effects of MP/NP on vascular plant, with special emphasis on the changes of metabolic and molecular levels. MP/NP can alter substance and energy metabolism, as well as shifts in gene expression patterns. Key aspects affected by MP/NP stress include carbon and nitrogen metabolism, amino acids biosynthesis and plant hormone signal transduction, expression of stress related genes, carbon and nitrogen metabolism related genes, as well as those involved in pathogen defense. Additionally, the review provides updated insights into the growth and physiological responses of plants exposed to MP/NP, encompassing phenomena such as seed/spore germination, photosynthesis, oxidative stress, cytotoxicity, and genotoxicity. By examining the direct impact of MP/NP from both physiological and molecular perspectives, this review sets the stage for future investigations into the complex interactions between plants and plastic pollutants.
Collapse
Affiliation(s)
- Fugang Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China
| | - Jing Huang
- Department of Vocal Performance, Sichuan Conservatory of Music, Chengdu 610021, China
| | - Yongqing Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
48
|
De Felice B, Gazzotti S, Ortenzi MA, Parolini M. Multi-level toxicity assessment of polylactic acid (PLA) microplastics on the cladoceran Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106966. [PMID: 38815345 DOI: 10.1016/j.aquatox.2024.106966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
The accumulation of plastics waste in the environment has raised a worrisome concern, moving the society to seek out for sustainable solutions, such as the transition from the use of fossil-based, conventional plastics to bioplastics (BPs). However, once in the environment bioplastics have the same probability to accumulate and experience weathering processes than conventional plastics, leading to the formation of microplastics (MPs). However, to date the information on the potential toxicity of MPs originated from the weathering of bioplastics is limited. Thus, this study aimed at investigating the adverse effects induced by the exposure to MPs made of a bioplastic polymer, the polylactic acid (PLA), towards the freshwater cladoceran Daphnia magna. Organisms were exposed for 21 days to three concentrations (0.125 µg/mL, 1.25 µg/mL and 12.5 µg/mL) of PLA microplastics (hereafter PLA-MPs). A multi-level approach was performed to investigate the potential effects through the biological hierarchy, starting from the sub-individual up to the individual level. At the sub-individual level, changes in the oxidative status (i.e., the amount of reactive oxygen species and the activity of antioxidant and detoxifying enzymes) and oxidative damage (i.e., lipid peroxidation) were explored. Moreover, the total caloric content as well as the content of protein, carbohydrate and lipid content assess were used to investigate the effects on energy reserves. At individual level the changes in swimming activity (i.e., distance moved and swimming speed) were assessed. Our results showed that the exposure to PLA-MPs induced a slight modulation in the oxidative status and energy reserves, leading to an increase in swimming behavior of treated individuals compared to control conspecifics. These results suggest that the exposure to MPs made of a bioplastic polymer can induce adverse effects similar to those caused by conventional polymers.
Collapse
Affiliation(s)
- Beatrice De Felice
- University of Milan, Department of Environmental Science and Policy, via Celoria 26, I-20133 Milan, Italy.
| | - Stefano Gazzotti
- University of Milan, Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, via Golgi 19, I-20133 Milan, Italy
| | - Marco Aldo Ortenzi
- University of Milan, Laboratory of Materials and Polymers (LaMPo), Department of Chemistry, via Golgi 19, I-20133 Milan, Italy
| | - Marco Parolini
- University of Milan, Department of Environmental Science and Policy, via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
49
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
50
|
Xiong G, Zhang H, Peng Y, Shi H, Han M, Hu T, Wang H, Zhang S, Wu X, Xu G, Zhang J, Liu Y. Subchronic co-exposure of polystyrene nanoplastics and 3-BHA significantly aggravated the reproductive toxicity of ovaries and uterus in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124101. [PMID: 38710361 DOI: 10.1016/j.envpol.2024.124101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
Both nanoplastics (NPs) and 3-tert-butyl-4-hydroxyanisole (3-BHA) are environmental contaminants that can bio-accumulate through the food chain. However, the combined effects of which on mammalian female reproductive system remain unclear. Here, the female ICR-CD1 mice were used to evaluate the damage effects of ovaries and uterus after NPs and 3-BHA co-treatment for 35 days. Firstly, co-exposure significantly reduced the body weight and organ index of ovaries and uterus in mice. Secondly, combined effects of NPs and 3-BHA exacerbated the histopathological abnormalities to the ovaries and uterus and decreased female sex hormones such as FSH and LH while increased antioxidant activities including CAT and GSH-Px. Moreover, the apoptotic genes, inflammatory cytokines and the key reproductive development genes such as FSTL1 were significantly up-regulated under co-exposure conditions. Thirdly, through transcriptional and bioinformatics analysis, immunofluorescence and western blotting assays, together with molecular docking simulation, we determined that co-exposure up-regulated the FSTL1, TGF-β and p-Smad1/5/9 but down-regulated the expression of BMP4. Finally, the pharmacological rescue experiments further demonstrated that co-exposure of NPs and 3-BHA mainly exacerbated the female reproductive toxicity through FSTL1-mediated BMP4/TGF-β/SMAD signaling pathway. Taken together, our studies provided the theoretical basis of new environmental pollutants on the reproductive health in female mammals.
Collapse
Affiliation(s)
- Guanghua Xiong
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Haiyan Zhang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China; College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Yulin Peng
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Huangqi Shi
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Meiling Han
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Tianle Hu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Hongcheng Wang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Shangrong Zhang
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Xiaoqing Wu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Gaoxiao Xu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China
| | - Jun'e Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Yong Liu
- College of Biology and Food Engineering, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236041, Anhui, China.
| |
Collapse
|