1
|
Gao YQ, Tan YJ, Fang JY. Roles of the gut microbiota in immune-related adverse events: mechanisms and therapeutic intervention. Nat Rev Clin Oncol 2025:10.1038/s41571-025-01026-w. [PMID: 40369317 DOI: 10.1038/s41571-025-01026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
Immune checkpoint inhibitors (ICIs) constitute a major breakthrough in the field of cancer therapy; their use has resulted in improved outcomes across various tumour types. However, ICIs can cause a diverse range of immune-related adverse events (irAEs) that present a considerable challenge to the efficacy and safety of these treatments. The gut microbiota has been demonstrated to have a crucial role in modulating the tumour immune microenvironment and thus influences the effectiveness of ICIs. Accumulating evidence indicates that alterations in the composition and function of the gut microbiota are also associated with an increased risk of irAEs, particularly ICI-induced colitis. Indeed, these changes in the gut microbiota can contribute to the pathogenesis of irAEs. In this Review, we first summarize the current clinical challenges posed by irAEs. We then focus on reported correlations between alterations in the gut microbiota and irAEs, especially ICI-induced colitis, and postulate mechanisms by which these microbial changes influence the occurrence of irAEs. Finally, we highlight the potential value of gut microbial changes as biomarkers for predicting irAEs and discuss gut microbial interventions that might serve as new strategies for the management of irAEs, including faecal microbiota transplantation, probiotic, prebiotic and/or postbiotic supplements, and dietary modulations.
Collapse
Affiliation(s)
- Ya-Qi Gao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Jie Tan
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Lerch M, Ramanathan S. The pathogenesis of neurological immune-related adverse events following immune checkpoint inhibitor therapy. Semin Immunol 2025; 78:101956. [PMID: 40294474 DOI: 10.1016/j.smim.2025.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Cancer is a leading cause of morbidity and mortality worldwide. The development of immune checkpoint inhibitors (ICI) has revolutionised cancer therapy, and patients who were previously incurable can now have excellent responses. These therapies work by blocking inhibitory immune pathways, like cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed cell death-1 (PD-1), its ligand PD-L1, and lymphocyte activation gene 3 (LAG-3); which leads to increased anti-tumour immune responses. However, their use can lead to the development of immune-related adverse events (irAEs), which may result in severe disability, interruption of cancer therapy, and even death. Neurological autoimmune sequelae occur in 1-10 % of patients treated with ICIs and can be fatal. They encompass a broad spectrum of diseases, may affect the central and the peripheral nervous system, and include syndromes like encephalitis, cerebellitis, neuropathy, and myositis. In some cases, neurological irAEs can be associated with autoantibodies recognising neuronal or glial targets. In this review, we first describe the key targets in ICI therapy, followed by a formulation of irAEs and their clinical presentations, where we focus on neurological syndromes. We comprehensively formulate the current literature evaluating cell surface and intracellular autoantibodies, cytokines, chemokines, leukocyte patterns, other blood derived biomarkers, and immunogenetic profiles; and highlight their impact on our understanding of the pathogenesis of neurological irAEs. Finally, we describe therapeutic pathways and patient outcomes, and provide an overview on future aspects of ICI cancer therapy.
Collapse
Affiliation(s)
- Magdalena Lerch
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neurology and Concord Clinical School, Concord Hospital, Sydney, Australia.
| |
Collapse
|
3
|
Mitra S, Jang HJ, Kuncheria A, Kang SW, Choi JM, Shim JS, Lee C, Ranchod P, Jindra P, Ramineni M, Patel M, Ripley RT, Groth SS, Blackmon SH, Burt BM, Lee HS. Soluble mesothelin-related peptide as a prognosticator in pleural mesothelioma patients receiving checkpoint immunotherapy. J Thorac Cardiovasc Surg 2025; 169:1082-1095.e4. [PMID: 39395787 PMCID: PMC11949723 DOI: 10.1016/j.jtcvs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Immune checkpoint therapy (ICT) has significantly impacted the treatment of malignant pleural mesothelioma (MPM). Despite some promising results from combination therapies, nearly half of MPM patients do not benefit, underscoring the urgent need for reliable predictive biomarkers. This study assesses the prognostic value of serum soluble mesothelin-related peptide (SMRP) and PD-L1 levels in MPM patients receiving ICT. METHODS We conducted a retrospective analysis of 125 MPM patients treated with ICT by measuring pre-ICT serum levels of SMRP and PD-L1. We also examined the correlation of these serum levels with tumor mRNA expressions of mesothelin and PD-L1. Both univariable and multivariable Cox regression analyses were used to determine independent prognosticators for overall survival (OS). A prospective ICT clinical trial and our historical cohort were included for validation. RESULTS Seventy-seven patients (62%) were treated with either anti-PD-(L)1 monotherapy, and the remaining 38% received combination ICT. Higher pre-ICT SMRP levels were observed in epithelioid MPM compared to nonepithelioid MPM. Serum PD-L1 levels did not differ significantly between the different histologic groups. Univariable analysis identified durable clinical benefit, development of immune-related adverse events, and SMRP levels as significantly associated with OS. Multivariable analysis confirmed SMRP as an independent prognostic factor, with lower levels (≤1.35 nmol/L) correlating with improved OS. The association of high SMRP with worse prognosis was validated in the prospective ICT clinical trial cohort and not in our historical cohort treated without ICT. CONCLUSIONS SMRP is a promising serum biomarker for predicting survival in MPM patients treated with ICT and warrants prospective investigation.
Collapse
Affiliation(s)
- Sonali Mitra
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Allen Kuncheria
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Sung Wook Kang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Jong Min Choi
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Ji Seon Shim
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Claire Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Priyanka Ranchod
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Peter Jindra
- Immune Evaluation Laboratory, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Maheshwari Ramineni
- Department of Pathology, Baylor College of Medicine, Houston, Tex; Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex
| | - Meera Patel
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; Division of Hemato-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Tex
| | - R Taylor Ripley
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Shawn S Groth
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Shanda H Blackmon
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif.
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Division of Hemato-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
4
|
Guo R, Rao PG, Liao BZ, Luo X, Yang WW, Lei XH, Ye JM. Melatonin suppresses PD-L1 expression and exerts antitumor activity in hepatocellular carcinoma. Sci Rep 2025; 15:8451. [PMID: 40069331 PMCID: PMC11897332 DOI: 10.1038/s41598-025-93486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/07/2025] [Indexed: 03/14/2025] Open
Abstract
Melatonin, also known as the pineal hormone, is secreted by the pineal gland and primarily regulates circadian rhythms. Additionally, it possesses immunomodulatory properties and anticancer effects. However, its specific mechanism in hepatocellular carcinoma (HCC) remains unclear, particularly regarding its effect on HCC-mediated immune escape through PD-L1 expression.In this study, in vitro experiments were conducted using Huh7 and HepG2 HCC cells. Melatonin treatment was applied to both cell types to observe changes in malignant phenotypes. Additionally, melatonin-pretreated Huh7 or HepG2 cells were co-cultured with T cells to simulate the tumor microenvironment. The results showed that melatonin inhibited cancer cell proliferation, migration, and invasion, as well as reduced PD-L1 expression in cancer cells, exhibiting similar anti-cancer effects in the co-culture system. In vivo experiments involved establishing ascitic HCC mouse models using H22 cells, followed by subcutaneous tumor models in Balb/c nude and Balb/c wild-type mice. Melatonin inhibited tumor growth and suppressed PD-L1 expression in cancer tissues in both subcutaneous tumor models, and it increased T lymphocyte activity in the spleen of Balb/c wild-type mice. Overall, the in vitro and in vivo experiments demonstrated that melatonin has dual anti-cancer effects in HCC: direct intrinsic anti-cancer activity and enhancement of anti-tumor immunity by reducing PD-L1 expression thereby inhibiting cancer immune escape. Furthermore, a decrease in the expression of the upstream molecule HIF-1α of PD-L1 and an increase in the expression levels of JNK, P38, and their phosphorylated forms were detected. Thus, the mechanism by which melatonin reduces PD-L1 may involve the downregulation of HIF-1α expression or the activation of the MAPK-JNK and MAPK-P38 pathways. This provides new insights and strategies for HCC treatment.
Collapse
Affiliation(s)
- Rui Guo
- Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, No.23 Qingnian Road, Ganzhou City, Jiangxi Province, China.
| | - Pan-Guo Rao
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Xin Luo
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Wen-Wen Yang
- Gannan Medical University, Ganzhou, Jiangxi, China
| | | | - Jun-Ming Ye
- Suzhou Medical College of Soochow University, Suzhou, China.
- Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
5
|
Wang Q, Zhang H, Chen Y, Lv X, Qiao Y, Zhu Q. Impact of baseline glucocorticoids (GCs) on cardiotoxic events and myocardial damage related to immune checkpoint inhibitors: a retrospective clinical research. Expert Opin Drug Saf 2025:1-12. [PMID: 39953683 DOI: 10.1080/14740338.2025.2467814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs)-associated cardiotoxic events (CEs) are of increasing concern. Existing research about glucocorticoids (GCs) on immunotherapy focused on ICIs' efficacy and patients' outcome. The influence of GCs on ICIs-associated CEs and myocardial damage (MD) remains unknown. RESEARCH DESIGN AND METHODS This single-center retrospective study included patients treated with ICIs from 2018 to 2022, with follow-up period ending on 30 June 2023. The incidence, risk factors of ICIs-associated CEs, especially MD were described. Additionally, the impact of baseline GCs was assessed by propensity score matching (PSM) to mitigate intergroup differences and ensure comparability. RESULTS Among 1018 patients, 204 (20.04%) experienced ICIs-associated CEs, including 71 (6.97%) with MD. The mean follow-up time was 40.39 (95% CI 38.47-42.31) weeks. The median time to onset of MD was the shortest at 12.57 weeks (IQR 5.29-25.14). Tumor type, co-medication with platinum and angiogenesis inhibitors may be influential factors of MD. After PSM, the relative risks of CEs (OR 0.4625,95%CI 0.2514-0.7235, p = 0.0020) and MD (OR 0.3254, 95% CI 0.1190-0.8898, p = 0.0378) in GCs1 ≥ 20 mg group were both significantly lower than those in GCs1 < 20 mg. CONCLUSION GCs ≥ 20 mg during the first ICIs treatment cycle is significantly associated with the reduced risks of both ICIs-associated CEs and MD.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Haixia Zhang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, SAR, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, China
| | - Yawen Chen
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lv
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yanli Qiao
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiaoling Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, China
| |
Collapse
|
6
|
Zhang X, Zhang B, Li D, Yang Y, Lin S, Zhao R, Li Y, Peng L. Peripheral blood cell counts as predictors of immune-related adverse events in cancer patients receiving immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol 2025; 16:1528084. [PMID: 39949762 PMCID: PMC11821924 DOI: 10.3389/fimmu.2025.1528084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Background In recent years, immune checkpoint inhibitors (ICIs) have shown significant efficacy in treating various malignancies and have become a key therapeutic approach in cancer treatment. However, while ICIs activate the immune system, they can also induce immune-related adverse events (irAEs). Due to the variability in the frequency and severity of irAEs, clinical management faces a significant challenge in balancing antitumor efficacy with the risk of irAEs. Predicting and preventing irAEs during the early stages of treatment has become a critical research focus in cancer immunotherapy. This study aims to evaluate the predictive value of peripheral blood cell counts for irAEs. Methods Studies meeting the inclusion criteria were identified through database searches. The standardized mean difference (SMD) was used to compare continuous blood cell counts. For studies that did not provide adjusted odds ratios (ORs) and 95% confidence intervals (CIs), crude ORs for categorized blood cell counts were calculated. The study protocol was registered on PROSPERO (CRD42024592126). Results The meta-analysis included 60 studies involving 16,736 cancer patients treated with ICIs. Compared to patients without irAEs, those experiencing irAEs had significantly higher baseline continuous ALC (SMD = 0.12, 95% CI = 0.01-0.24), while ANC (SMD = -0.18, 95% CI = -0.28 to -0.07) and PLR (SMD = -0.32, 95% CI = -0.60 to -0.04) were significantly lower. Similarly, categorized blood cell counts indicated that higher baseline ALC (OR = 2.46, 95% CI = 1.69-3.57) and AEC (OR = 2.05, 95% CI = 1.09-3.85), along with lower baseline NLR (OR = 0.64, 95% CI = 0.50-0.81) and PLR (OR = 0.63, 95% CI = 0.48-0.82), were associated with an increased risk of irAEs. Subgroup analysis further identified cutoff values for ALC (2×10^9/L), NLR (5 or 3), and PLR (180) as better predictors of irAEs. Conclusion Higher baseline ALC and AEC, along with lower baseline ANC, NLR, and PLR, are associated with an increased risk of irAEs. However, further research is needed to determine the optimal cutoff values and to explore the efficacy of blood cell counts in predicting specific types of irAEs. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024592126.
Collapse
Affiliation(s)
- Xinyu Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bei Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Danfei Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yunchao Yang
- Shandong College of Traditional Chinese Medicine, Shandong, Yantai, China
| | - Sen Lin
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ruiqi Zhao
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yijia Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Lisheng Peng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
7
|
Riedel M, Herrmann H, Bartl T, Rossner AM, Tatzber A, Flethe C, Zocholl D, Schmalfeldt B, Sehouli J, Pietzner K. The implementation and side effect management of immune checkpoint inhibitors in gynecologic oncology: a JAGO/NOGGO survey. BMC Cancer 2025; 25:170. [PMID: 39881252 PMCID: PMC11776233 DOI: 10.1186/s12885-025-13432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND The integration of immune checkpoint inhibitors (ICIs) into routine gynecologic cancer treatment requires a thorough understanding of how to manage immune-related adverse events (irAEs) to ensure patient safety. However, reports on real-world clinical experience in the management of ICIs in gynecologic oncology are very limited. The aim of this survey was to provide a real-world overview of the experiences and the current state of irAE management of ICIs in Germany, Switzerland, and Austria. METHODS We designed a questionnaire consisting of 34 items focused on physicans' clinical experiences with ICIs and their management of irAEs. The survey was distributed between October 2022 and May 2023 to medical professionals with experience in the field of gynecologic oncology. RESULTS A total of 221 gynecologists participated in the study. Most respondents (n = 130, 59.1%) were primarily engaged in gynecologic oncology at the time of the survey, with an average of ten years of clinical experience. Individual experiences with regard to irAEs varied significantly. When asked which irAEs they had observed "frequently" or "very frequently", respondents most commonly reported thyroiditis (37.2%), followed by skin reactions (23.6%), and pneumonitis (10.6%). A total of n = 16 (7.4%) reported at least one death of a patient due to irAEs. Feeling "unconfident" or "very unconfident" about managing irAEs was reported by 35.6% (n = 78). With regard to clinical management of adverse events after discontinuation of treatment, 32.4% (n = 68) ceased to inquire about irAEs after six months. CONCLUSION The results of this survey provide valuable insights into physicians' real-world experiences with irAEs associated with ICI treatment. Dealing with serious immune-related and potentially life-threatening side effects has become a routine aspect of clinical practice. Many physicians, however, express a lack of sufficient familiarity with irAEs and their management. Therefore, it is essential to improve medical education, specialized oncological training, and close interdisciplinary collaboration to improve patient care.
Collapse
Affiliation(s)
- Maximilian Riedel
- Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany.
- Department of Obstetrics and Gynecology, TUM University Hospital, Technical University of Munich, Ismaninger Straße 22, D-81675, Munich, Germany.
| | - Helene Herrmann
- Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany
- Department of Gynecology and Obstetrics, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Bartl
- Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Anna-Maria Rossner
- Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany
- Department of Gynecology and Obstetrics, Gynecologic Oncology, St. Josefs-Hospital Wiesbaden GmbH, Affiliated Hospital of Medical University of Mainz, Mainz, Germany
| | - Anna Tatzber
- Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany
- Breast Center, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Chiara Flethe
- Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany
- Department of Gynecology, Center for Oncological Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Dario Zocholl
- Institute of Biometry and Clinical Epidemiology, Charité Medical University Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology and Gynecologic Oncology, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Jalid Sehouli
- Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany
- Department of Gynecology, Center for Oncological Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Klaus Pietzner
- Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany
- Department of Gynecology, Center for Oncological Surgery, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt- Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Crispín JC, Cantaert T, Pinzon-Charry A, Mavilio D, Seri A, Miossec P. Definition of clinical immunology around the globe. Front Immunol 2025; 16:1483391. [PMID: 39935477 PMCID: PMC11810920 DOI: 10.3389/fimmu.2025.1483391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
Immunology has gradually become a core part of many medical specialties. Immune cells and immune mediators are now known to participate in the pathogenesis of a wide variety of diseases and therapies based on the modulation of immune function are increasingly used. Traditionally, clinical immunologists have studied patients with inborn errors of immunity (IEI), previously known as primary immunodeficiencies, and with allergic conditions. More recently, clinical immunology has become involved with a broader array of disorders. The Clinical Immunology Committee of the International Union of Immunological Societies set out to understand how clinical immunologists perceive their specialty to identify similarities and differences in training and practice around the globe. For this purpose, a specific questionnaire was designed and distributed amongst our member societies. More than 500 participants answered the questionnaire, 80% of whom had completed their training. Roughly two thirds of respondents were physicians directly involved in patient care. We found that though the number of diseases and processes in which immune mechanisms are involved has considerably grown, 90% of participants agree with the 1993 World Health Organization definition of Clinical Immunology. We propose that the increased complexity of the field opens a need for multidisciplinary teams of clinicians and basic researchers and for a broader training of specialists.
Collapse
Affiliation(s)
- José C. Crispín
- Clinical Immunology Committee, International Union of Immunological Societies, Berlin, Germany
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Tineke Cantaert
- Clinical Immunology Committee, International Union of Immunological Societies, Berlin, Germany
- Immunology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Alberto Pinzon-Charry
- Clinical Immunology Committee, International Union of Immunological Societies, Berlin, Germany
- Queensland Paediatric Immunology and Allergy Service, Queensland Children’s Hospital, South Brisbane, QLD, Australia
- School of Science, Griffith University, Nathan, QLD, Australia
| | - Domenico Mavilio
- Clinical Immunology Committee, International Union of Immunological Societies, Berlin, Germany
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ahmed Seri
- Clinical Immunology Committee, International Union of Immunological Societies, Berlin, Germany
- Clinical Immunology and Allergy Department, Soba University Hospital, University of Khartoum, Khartoum, Sudan
| | - Pierre Miossec
- Clinical Immunology Committee, International Union of Immunological Societies, Berlin, Germany
- Immunogenomics and Inflammation Research Unit, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
9
|
Pan S, Wang Z. Antiviral therapy can effectively suppress irAEs in HBV positive hepatocellular carcinoma treated with ICIs: validation based on multi machine learning. Front Immunol 2025; 15:1516524. [PMID: 39931579 PMCID: PMC11807960 DOI: 10.3389/fimmu.2024.1516524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Background Immune checkpoint inhibitors have proven efficacy against hepatitis B-virus positive hepatocellular. However, Immunotherapy-related adverse reactions are still a major challenge faced by tumor immunotherapy, so it is urgent to establish new methods to effectively predict immunotherapy-related adverse reactions. Objective Multi-machine learning model were constructed to screen the risk factors for irAEs in ICIs for the treatment of HBV-related hepatocellular and build a prediction model for the occurrence of clinical IRAEs. Methods Data from 274 hepatitis B virus positive tumor patients who received PD-1 or/and CTLA4 inhibitor treatment and had immune cell detection results were collected from Henan Cancer Hospital for retrospective analysis. Models were established using Lasso, RSF (RandomForest), and xgBoost, with ten-fold cross-validation and resampling methods used to ensure model reliability. The impact of influencing factors on irAEs (immune-related adverse events) was validated using Decision Curve Analysis (DCA). Both uni/multivariable analysis were accomplished by Chi-square/Fisher's exact tests. The accuracy of the model is verified in the DCA curve. Results A total of 274 HBV-related liver cancer patients were enrolled in the study. Predictive models were constructed using three machine learning algorithms to analyze and statistically evaluate clinical characteristics, including immune cell data. The accuracy of the Lasso regression model was 0.864, XGBoost achieved 0.903, and RandomForest reached 0.961. Resampling internal validation revealed that RandomForest had the highest recall rate (AUC = 0.892). Based on machine learning-selected indicators, antiviral therapy and The HBV DNA copy number showed a significant correlation with both the occurrence and severity of irAEs. Antiviral therapy notably reduced the incidence of IRAEs and may modulate these events through regulation of B cells. The DCA model also demonstrated strong predictive performance. Effective control of viral load through antiviral therapy significantly mitigates the occurrence of irAEs. Conclusion ICIs show therapeutic potential in the treatment of HBV-HCC. Following antiviral therapy, the incidence of severe irAEs decreases. Even in cases where viral load control is incomplete, continuous antiviral treatment can still mitigate the occurrence of irAEs.
Collapse
Affiliation(s)
| | - Zibing Wang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University
& Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Singer M, Valerin J, Zhang Z, Zhang Z, Dayyani F, Yaghmai V, Choi A, Imagawa D, Abi-Jaoudeh N. Promising Cellular Immunotherapy for Colorectal Cancer Using Classical Dendritic Cells and Natural Killer T Cells. Cells 2025; 14:166. [PMID: 39936958 PMCID: PMC11817869 DOI: 10.3390/cells14030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality around the world. Despite advances in surgery, chemotherapy, and targeted therapies, the prognosis for patients with metastatic or advanced CRC remains poor. Immunotherapies comprising immune checkpoint inhibitors showed disappointing responses in metastatic CRC (mCRC). However, cellular immunotherapy, specifically using classical dendritic cells (cDCs), may hold unique promise in immune recognition for CRC antigens. cDCs are substantial players in immune recognition and are instrumental in orchestrating innate and adaptive immune responses by processing and presenting tumor antigens to effector cells. Natural killer T (NKT) cells are insufficiently studied but unique effector cells because of their ability to bridge innate and adaptive immune reactions and the crosstalk with dendritic cells in cancer. This review explores the therapeutic potential of using both cDCs and NKT cells as a synergistic therapy in CRC, focusing on their biological roles, strategies for harnessing their capabilities, clinical applications, and the challenges within the tumor microenvironment. Both cDCs and NKT cells can be used as a new effective approach for cell-based therapies in cancers to provide a new hope for CRC patients that are challenging to treat.
Collapse
Affiliation(s)
- Mahmoud Singer
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Jennifer Valerin
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA (A.C.)
| | - Zhuoli Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Zigeng Zhang
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - Farshid Dayyani
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA (A.C.)
| | - Vahid Yaghmai
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| | - April Choi
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA (A.C.)
| | - David Imagawa
- Department of Surgery, University of California Irvine, Orange, CA 92697, USA
| | - Nadine Abi-Jaoudeh
- Department of Radiological Sciences, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
11
|
Liu YH, Chen J, Chen X, Liu H. Factors of faecal microbiota transplantation applied to cancer management. J Drug Target 2024; 32:101-114. [PMID: 38174845 DOI: 10.1080/1061186x.2023.2299724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 01/05/2024]
Abstract
The homeostasis of the microbiota is essential for human health. In particular, the gut microbiota plays a critical role in the regulation of the immune system. Thus, faecal microbiota transplantation (FMT), a technology that has rapidly developed in the last decade, has specifically been utilised for the treatment of intestinal inflammation and has recently been found to be able to treat tumours in combination with immunotherapy. FMT has become a breakthrough in enhancing the response rate to immunotherapy in cancer patients by altering the composition of the patient's gut microbiota. This review discusses the mechanisms of faecal microorganism effects on tumour development, drug treatment efficacy, and adverse effects and describes the recent clinical research trials on FMT. Moreover, the factors influencing the efficacy and safety of FMT are described. We summarise the possibilities of faecal transplantation in the treatment of tumours and its complications and propose directions to explore the development of FMT.
Collapse
Affiliation(s)
- Yi-Huang Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
- Research Center of Molecular Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Vitale E, Rizzo A, Maistrello L, Guven DC, Massafra R, Mollica V, Monteiro FSM, Santoni M, Massari F. Sex differences in adverse events among cancer patients receiving immune checkpoint inhibitors: the MOUSEION-07 systematic review and meta-analysis. Sci Rep 2024; 14:28309. [PMID: 39550353 PMCID: PMC11569249 DOI: 10.1038/s41598-024-71746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/30/2024] [Indexed: 11/18/2024] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer treatment, but they are associated with a range of immune-related adverse events (irAEs), and emerging evidence suggests significant sex differences in the incidence, type, and severity of these toxicities, suggesting an influential factor and understanding sex-related differences in irAEs as crucial for optimizing patient care and improving clinical outcomes. In MOUSEION-07 study, we aimed to assess the association between sex and treatment-related adverse events in cancer patients treated with immunotherapy through a large up-to-date meta-analysis of available clinical trials. The present systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis. The protocol was registered with PROSPERO no. CRD42024549518. Sixteen studies encompassing a total of 4658 patients were included, and 2133 adverse effects were highlighted. The analysis observed a not statistically significant difference in terms of immune-related adverse events (irAEs) between males and females (Odds Ratio 1.19; CI 0.88-1.63) and revealed the presence of publication bias (β = -2.53; 95% CI = [-4.03; -1.04]; P = 0.006). Sex differences in immunotherapy-related adverse events are a significant factor in cancer treatment, necessitating a personalized approach to patient care. Further research is needed to fully understand the mechanisms driving these differences and to develop optimized strategies for monitoring and managing irAEs in both females and males.
Collapse
Affiliation(s)
- Elsa Vitale
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Alessandro Rizzo
- S.S.D. C.O.R.O. Bed Management Presa in Carico, TDM, IRCCS Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124, Bari, Italy.
| | | | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Raffaella Massafra
- Scientific Directorate, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fernando Sabino Marques Monteiro
- Latin American Cooperative Oncology Group - LACOG, Porto Alegre, RS, Brazil
- Oncology and Hematology Department, Hospital Sírio-Libanês, Brasilia, DF, Brazil
| | | | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Jia X, Li L, Wang T, Ma X, Li C, Liu M, Tong H, Wang S. Puerarin inhibits macrophage M1 polarization by combining STAT1 to reduce myocardial damage in EAM model mice. Biochem Biophys Res Commun 2024; 733:150702. [PMID: 39298917 DOI: 10.1016/j.bbrc.2024.150702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Myocarditis is an inflammatory lesion of the myocardium that is caused by a variety of factors. At present, treatment of symptoms remains the main clinical intervention, but it cannot reduce the myocarditis damage caused by inflammation. M1 macrophages are thought to contribute significantly to the occurrence and development of inflammation by secreting a large number of proinflammatory factors. Puerarin is an isoflavone derivative isolated from pueraria that can be used as a dietary supplement and exerts wide range of anti-inflammatory and antioxidant effects. However, the mechanism underlying its anti-inflammatory effects needs to be further studied. The objective of this study was to investigate whether puerarin inhibited M1 polarization by affecting the JAK-STAT signaling pathway in a mouse model of autoimmune myocarditis, thus inhibiting the occurrence of inflammation in experimental autoimmune myocarditis (EAM) model mice. The results showed that EAM model mice treated with puerarin showed milder clinical symptoms and inflammatory infiltration than EAM model mice. Puerarin suppressed the in vivo and in vitro JAK1/2-STAT1 signal transduction in macrophages, thus inhibiting M1 polarization, reducing the secretion of proinflammatory factors, and ultimately decreasing IFN-γ and TNF-α levels in vivo, which led to myocardial apoptosis. Thus, puerarin could alleviate myocardial damage caused by inflammation. The conclusion of this study was that puerarin reduced myocardial damage in EAM model mice by regulating the polarization of macrophages toward M1, and this inhibitory effect may be achieved by inhibiting JAK1/2-STAT1 signaling.
Collapse
Affiliation(s)
- Xihui Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical, Qingdao University, Qingdao, China
| | - Ling Li
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Tiantian Wang
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Xiaoran Ma
- Department of Special Medicine, School of Basic Medical, Qingdao University, Qingdao, China
| | - Chenglin Li
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Meng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical, Qingdao University, Qingdao, China
| | - Huimin Tong
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Shuang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical, Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Ma H, Song D, Zhang H, Li T, Jin X. Phenotypic insights into genetic risk factors for immune-related adverse events in cancer immunotherapy. Cancer Immunol Immunother 2024; 74:1. [PMID: 39487892 PMCID: PMC11531409 DOI: 10.1007/s00262-024-03854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Immune-related adverse events (irAEs) pose substantial challenges in the realm of cancer immunotherapy, frequently affecting treatment efficacy and patient safety. To address the urgent need for identifying risk factors associated with irAEs, we conducted a comprehensive phenotype-wide Mendelian randomization analysis (MR-PheWAS). METHODS Utilizing publicly accessible genome-wide association study (GWAS) data, this investigation evaluated the impact of over 5000 exposure variables on susceptibility to irAEs using univariate Mendelian randomization (MR). We categorized these correlations and further explored potential mechanisms by which associated traits might influence irAEs through multivariate MR. RESULTS MR-PheWAS identified numerous risk factors for irAEs, encompassing both previously documented and novel associations. Specifically, we identified 105 traits with probable causal relationships to all-grade irAEs and 119 traits with suggestive associations. For high-grade irAEs, we categorized 122 traits as probably associated and 141 as suggestively associated. Notably, multivariate MR analyses uncovered intricate interactions, particularly highlighting how diabetes impacts all-grade irAEs through mediators such as body mass index and sex hormone-binding globulin. CONCLUSIONS This study has not only identified new risk factors for irAEs but also confirmed several well-established ones. Further investigation is crucial to validate and assess these identified risk factors within clinical trials. A mechanistic understanding of these causal factors is essential for improving the management and prevention of irAEs.
Collapse
Affiliation(s)
- Haochuan Ma
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong Provincial Hospital of Chinese Medicine Postdoctoral Research Workstation, Guangzhou, Guangdong, China
| | - Dili Song
- Integrated Chinese and Western Treatment of Oncology Department, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China
| | - Haibo Zhang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Taidong Li
- Integrated Chinese and Western Treatment of Oncology Department, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China.
- Department of Thoracic Surgery, Central Hospital of Guangdong Provincial Nongken, Zhanjiang, Guangdong, China.
| | - Xing Jin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
15
|
Singh KP, Singh A, Wolkenhauer O, Gupta SK. Regulatory Role of IL6 in Immune-Related Adverse Events during Checkpoint Inhibitor Treatment in Melanoma. Int J Mol Sci 2024; 25:10600. [PMID: 39408929 PMCID: PMC11476582 DOI: 10.3390/ijms251910600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The landscape of clinical management for metastatic melanoma (MM) and other solid tumors has been modernized by the advent of immune checkpoint inhibitors (ICI), including programmed cell death-1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitors. While these agents demonstrate efficacy in suppressing tumor growth, they also lead to immune-related adverse events (irAEs), resulting in the exacerbation of autoimmune diseases such as rheumatoid arthritis (RA), ulcerative colitis (UC), and Crohn's disease (CD). The immune checkpoint inhibitors offer promising advancements in the treatment of melanoma and other cancers, but they also present significant challenges related to irAEs and autoimmune diseases. Ongoing research is crucial to better understand these challenges and develop strategies for mitigating adverse effects while maximizing therapeutic benefits. In this manuscript, we addressed this challenge using network-based approaches by constructing and analyzing the molecular and signaling networks associated with tumor-immune crosstalk. Our analysis revealed that IL6 is the key regulator responsible for irAEs during ICI therapies. Furthermore, we conducted an integrative network and molecular-level analysis, including virtual screening, of drug libraries, such as the Collection of Open Natural Products (COCONUT) and the Zinc15 FDA-approved library, to identify potential IL6 inhibitors. Subsequently, the compound amprenavir was identified as the best molecule that may disrupt essential interactions between IL6 and IL6R, which are responsible for initiating the signaling cascades underlying irAEs in ICI therapies.
Collapse
Affiliation(s)
- Krishna P. Singh
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany; (K.P.S.); (O.W.)
| | - Anuj Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India;
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany; (K.P.S.); (O.W.)
- Department of Biomedical Engineering & Bioinformatics, Chhattisgarh Swami Vivekananda Technical University, Bhilai 491107, India
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Shailendra Kumar Gupta
- Department of Systems Biology & Bioinformatics, University of Rostock, 18051 Rostock, Germany; (K.P.S.); (O.W.)
- Department of Biomedical Engineering & Bioinformatics, Chhattisgarh Swami Vivekananda Technical University, Bhilai 491107, India
| |
Collapse
|
16
|
MAO Y, WANG A, SHENG S, JIA Y, GE X, ZHAI J, WANG J. [A Comparative Study of the Efficacy and Safety of Immune Monotherapy versus
Immunotheray Combined with Chemotherapy in Elderly Patients Aged 75 Years
and Above with Advanced Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:665-673. [PMID: 39492581 PMCID: PMC11534547 DOI: 10.3779/j.issn.1009-3419.2024.101.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The malignant tumor that has the highest global morbidity and death rate is lung cancer, which primarily affects the elderly. The therapy landscape for non-small cell lung cancer (NSCLC) has transformed with the introduction of immune checkpoint inhibitors (ICIs). The purpose of this study was to compare the safety and efficacy of immune monotherapy and immunotheray combined with chemotherapy in patients with advanced NSCLC aged 75 years and above. METHODS This study retrospectively analyzed 111 patients with advanced NSCLC who were at least 75 years old and received treatment at the First or Fifth Medical Centers of the People's Liberation Army General Hospital from January 2018 to October 2022. These patients underwent first-line or second-line treatment, with 70 receiving immunotherapy combined with chemotherapy and 41 receiving immunotherapy alone. Propensity score matching (PSM) was used to match the baseline characteristics of the patients, including age, Eastern Cooperative Oncology Group performance status (ECOG PS) score, and the number of treatment lines. The study endpoints included objective response rate (ORR), progression-free survival (PFS), overall survival (OS), and safety assessment. RESULTS The median OS for the immunotherapy combined with chemotherapy group was 27.87 months, and the median PFS was 11.50 months. The median OS for the immune monotherapy group was 34.93 months, and the median PFS was 17.00 months. There were no significant differences in OS (P=0.722) and PFS (P=0.474) between the two groups, but a significant difference was observed in ORR (P=0.025). After PSM matching, each group comprised 27 patients. The median OS for the immunotherapy combined with chemotherapy group was 17.70 months, the median PFS was 8.97 months. The median OS for the immune monotherapy group was 17.87 months, and the median PFS was 11.53 months. No significant differences were observed in OS (P=0.635), PFS (P=0.878) and ORR (P=0.097). In terms of safety, the overall incidence of adverse events (AEs) before matching was 62.86% in the immunotherapy combined with chemotherapy group, which was higher than 41.46% in the immune monotherapy group (P=0.029), while there was no difference in the incidence of AEs of grade 3 or above between the two groups (P=0.221). After matching, AEs occurred in 17 (62.96%) patients in the immunotherapy combined with chemotherapy group and 13 (48.15%) in the immune monotherapy group. There were no significant differences in the overall incidence of AEs (P=0.273) or the incidence of grade 3 or above (P=0.299) between the two groups. CONCLUSIONS Immunotherapy combined with chemotherapy does not significantly improve OS or PFS in patients with NSCLC aged 75 years and above when compared to immunotherapy alone, and this conclusion was further validated by the analysis after PSM. The safety assessment suggests that before matching, the incidence of AEs of any grade in the immunotherapy combined with chemotherapy group was higher. Still, the two groups had no difference in the incidence of AEs of grade 3 or above. Following matching, the tolerability of the treatment was similar in both groups. According to the safety assessment, the unique circumstances and course of treatment for geriatric patients with advanced NSCLC should be considered.
Collapse
|
17
|
Santo G, Cucè M, Restuccia A, Del Giudice T, Tassone P, Cicone F, Tagliaferri P, Cascini GL. Immune-related [ 18F]FDG PET findings in patients undergoing checkpoint inhibitors treatment: correlation with clinical adverse events and prognostic implications. Cancer Imaging 2024; 24:125. [PMID: 39289716 PMCID: PMC11409779 DOI: 10.1186/s40644-024-00774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Direct comparisons between [18F]FDG PET/CT findings and clinical occurrence of immune-related adverse events (irAEs) based on independent assessments of clinical and imaging features in patients receiving immune checkpoint inhibitors (ICIs) are missing. Our aim was to estimate sites, frequency, and timing of immune-related PET findings during ICIs treatment in patients with melanoma and NSCLC, and to assess their correlation with clinical irAEs. Prognostic implications of immune-related events were also investigated. METHODS Fifty-one patients with melanoma (47%) or NSCLC (53%) undergoing multiple PET examinations during anti-PD1/PDL1 treatment were retrospectively included. Clinical irAEs were graded according to CTCAE v.5.0. Abnormal PET findings suggestive of immune activation were described by two readers blinded to the clinical data. Progression-free survival (PFS) and overall survival (OS) were analyzed with the Kaplan-Meier method in patients stratified according to the presence of irAEs, immune-related PET findings or both. RESULTS Twenty-one patients showed clinical irAEs only (n = 6), immune-related PET findings only (n = 6), or both (n = 9). In patients whose imaging findings corresponded to clinical irAEs (n = 7), a positive correlation between SUVmax and the severity of the clinical event was observed (rs=0.763, p = 0.046). Clinical irAEs occurred more frequently in patients without macroscopic disease than in metastatic patients (55% vs. 23%, p = 0.039). Patients who developed clinical irAEs had a significantly longer PFS than patients who remained clinically asymptomatic, both in the overall cohort (p = 0.011) and in the subgroup of (n = 35) patients with metastatic disease (p = 0.019). The occurrence of immune-related PET findings significantly stratified PFS in the overall cohort (p = 0.040), and slightly missed statistical significance in patients with metastatic disease (p = 0.08). The best stratification of PFS was achieved when all patients who developed immune-related events, either clinically relevant or detected by PET only, were grouped together both in the overall cohort (p = 0.002) and in patients with metastatic disease (p = 0.004). In the whole sample, OS was longer in patients who developed any immune-related events (p = 0.032). CONCLUSION Patients with melanoma or NSCLC under ICI treatment can develop clinical irAEs, immune-related PET findings, or both. The occurrence of immune-related events has a prognostic impact. Combining clinical information with PET assessment improved outcome stratification.
Collapse
Affiliation(s)
- Giulia Santo
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, "Mater Domini" University Hospital, "Magna Graecia" University, Catanzaro, Italy
| | - Maria Cucè
- Medical Oncology Unit, "Mater Domini" University Hospital, Catanzaro, Italy
| | - Antonino Restuccia
- Nuclear Medicine Unit, "Mater Domini" University Hospital, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Translational Medical Oncology Unit, Department of Experimental and Clinical Medicine, "Mater Domini" University Hospital, "Magna Graecia" University, Catanzaro, Italy
| | - Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, "Mater Domini" University Hospital, "Magna Graecia" University, Catanzaro, Italy.
- Nuclear Medicine Unit, "Mater Domini" University Hospital, Catanzaro, Italy.
| | - Pierosandro Tagliaferri
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, "Mater Domini" University Hospital, "Magna Graecia" University, Catanzaro, Italy
| | - Giuseppe Lucio Cascini
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, "Mater Domini" University Hospital, "Magna Graecia" University, Catanzaro, Italy
- Nuclear Medicine Unit, "Mater Domini" University Hospital, Catanzaro, Italy
| |
Collapse
|
18
|
Armstrong A, Tang Y, Mukherjee N, Zhang N, Huang G. Into the storm: the imbalance in the yin-yang immune response as the commonality of cytokine storm syndromes. Front Immunol 2024; 15:1448201. [PMID: 39318634 PMCID: PMC11420043 DOI: 10.3389/fimmu.2024.1448201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
There is a continuous cycle of activation and contraction in the immune response against pathogens and other threats to human health in life. This intrinsic yin-yang of the immune response ensures that inflammatory processes can be appropriately controlled once that threat has been resolved, preventing unnecessary tissue and organ damage. Various factors may contribute to a state of perpetual immune activation, leading to a failure to undergo immune contraction and development of cytokine storm syndromes. A literature review was performed to consider how the trajectory of the immune response in certain individuals leads to cytokine storm, hyperinflammation, and multiorgan damage seen in cytokine storm syndromes. The goal of this review is to evaluate how underlying factors contribute to cytokine storm syndromes, as well as the symptomatology, pathology, and long-term implications of these conditions. Although the recognition of cytokine storm syndromes allows for universal treatment with steroids, this therapy shows limitations for symptom resolution and survival. By identifying cytokine storm syndromes as a continuum of disease, this will allow for a thorough evaluation of disease pathogenesis, consideration of targeted therapies, and eventual restoration of the balance in the yin-yang immune response.
Collapse
Affiliation(s)
- Amy Armstrong
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yuting Tang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Neelam Mukherjee
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Urology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Pathology & Laboratory Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
19
|
Castro-Santos P, Díaz-Peña R. Precision immunotherapy: TRBV9+ T-cell depletion in ankylosing spondylitis. Rheumatology (Oxford) 2024; 63:e251-e252. [PMID: 38305452 DOI: 10.1093/rheumatology/keae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenómica-USC, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenómica-USC, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
20
|
Guo AJ, Deng QY, Dong P, Zhou L, Shi L. Biomarkers associated with immune-related adverse events induced by immune checkpoint inhibitors. World J Clin Oncol 2024; 15:1002-1020. [PMID: 39193157 PMCID: PMC11346067 DOI: 10.5306/wjco.v15.i8.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) constitute a pivotal class of immunotherapeutic drugs in cancer treatment. However, their widespread clinical application has led to a notable surge in immune-related adverse events (irAEs), significantly affecting the efficacy and survival rates of patients undergoing ICI therapy. While conventional hematological and imaging tests are adept at detecting organ-specific toxicities, distinguishing adverse reactions from those induced by viruses, bacteria, or immune diseases remains a formidable challenge. Consequently, there exists an urgent imperative for reliable biomarkers capable of accurately predicting or diagnosing irAEs. Thus, a thorough review of existing studies on irAEs biomarkers is indispensable. Our review commences by providing a succinct overview of major irAEs, followed by a comprehensive summary of irAEs biomarkers across various dimensions. Furthermore, we delve into innovative methodologies such as machine learning, single-cell RNA sequencing, multiomics analysis, and gut microbiota profiling to identify novel, robust biomarkers that can facilitate precise irAEs diagnosis or prediction. Lastly, this review furnishes a concise exposition of irAEs mechanisms to augment understanding of irAEs prediction, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- An-Jie Guo
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Qing-Yuan Deng
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Lian Zhou
- Head and Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing 400000, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|
21
|
Zhang JN, Yang BB, Li LW, Xu H, Wang B, Yi ZL, Zhou XR, Liu H. Multi-omics pan-cancer analysis reveals the prognostic values and immunological functions of PPA2, with a spotlight on breast cancer. Front Immunol 2024; 15:1435502. [PMID: 39176095 PMCID: PMC11338811 DOI: 10.3389/fimmu.2024.1435502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Background Recently, the role of inorganic pyrophosphatase 2 (PPA2) has been remaining merely superficial in many tumors. Hence, the aim was to analyze the potential functions of PPA2 in pan-cancer, focusing on its role in breast cancer. Methods A systematic pan-cancer analysis conducted primarily utilizing various open databases such as TCGA and GTEx. We explored the clinical value of PPA2 as well as various biological functions, including expression levels and subcellular localization, multi-dimensional immune-correlation analysis, co-expression networks, and gene heterogeneity. In addition, we not only verified the function of PPA2 through cell experiments but also analyzed PPA2 at the single-cell level and its drug sensitivity. Results PPA2 is abnormally expressed in various tumors, and it is mainly distributed in mitochondria. Furthermore, the indicators (OS, DSS, DFI, and PFI) of analysis hint that PPA2 exhibits significant prognostic value. At the same time, the genomic heterogeneity (including TMB, MSI, MATH, and NEO) of PPA2 in pan-cancer was analyzed. Across multiple tumors, the results showed a close correlation between PPA2 expression levels and different immune signatures (such as immune cell infiltration). All of these indicate that PPA2 could potentially be applied in the guidance of immunotherapy. We also have demonstrated that PPA2 promoted the process of breast cancer. Finally, some potential therapeutic agents (such as Fulvestrant) targeting the abnormal expression of PPA2 are revealed. Conclusion In conclusion, the results demonstrated the great value of PPA2 in pan-cancer research, as well as its potential as a therapeutic target for breast tumors.
Collapse
Affiliation(s)
- Jia-Ning Zhang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- The Second Surgical Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Bei-Bei Yang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- The Second Surgical Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Lin-Wei Li
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- The Second Surgical Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Hao Xu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- The Second Surgical Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Bin Wang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- The Second Surgical Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Zi-Lu Yi
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- The Second Surgical Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xi-Rui Zhou
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- The Second Surgical Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- The Second Surgical Department of Breast Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
22
|
Sutanto H, Safira A, Fetarayani D. From tumor to tolerance: A comprehensive review of immune checkpoint inhibitors and immune-related adverse events. Asia Pac Allergy 2024; 14:124-138. [PMID: 39220570 PMCID: PMC11365684 DOI: 10.5415/apallergy.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 09/04/2024] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized the treatment landscape for various malignancies by harnessing the body's immune system to target cancer cells. However, their widespread use has unveiled a spectrum of immune-related adverse events, highlighting a critical balance between antitumor immunity and autoimmunity. This review article delves into the molecular immunology of ICIs, mapping the journey from their therapeutic action to the unintended induction of immune-related adverse events. We provide a comprehensive overview of all available ICIs, including cytotoxic T-lymphocyte-associated protein 4, programmed cell death protein 1, programmed death-ligand 1 inhibitors, and emerging targets, discussing their mechanisms of action, clinical applications, and the molecular underpinnings of associated immune-related adverse events. Special attention is given to the activation of autoreactive T cells, B cells, cytokine release, and the inflammatory cascade, which together contribute to the development of immune-related adverse events. Through a molecular lens, we explore the clinical manifestations of immune-related adverse events across organ systems, offering insights into diagnosis, management, and strategies to mitigate these adverse effects. The review underscores the importance of understanding the delicate interplay between enhancing antitumor responses and minimizing immune-related adverse events, aiming to guide future research and the development of next-generation ICIs with improved drug safety profiles.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ardea Safira
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
23
|
Otto F, Seiberl M, Bieler L, Moser T, Kleindienst W, Wallner‐Essl W, Koelblinger P, Wipfler P, Harrer A. Beyond T cell toxicity - Intrathecal chemokine CXCL13 indicating B cell involvement in immune-related adverse events following checkpoint inhibition: A two-case series and literature review. Eur J Neurol 2024; 31:e16279. [PMID: 38556899 PMCID: PMC11235827 DOI: 10.1111/ene.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND AND PURPOSE This study was undertaken to raise awareness of a role of B cells in immune checkpoint inhibitor (ICI)-associated neurological immune-related adverse events (nirAE). METHODS A systematic literature review was made, with case observations of a melanoma and a non-small cell lung cancer (NSCLC) patient who developed ICI-associated nirAE with cerebrospinal fluid (CSF) findings indicating B cell involvement. RESULTS Two patients receiving ipilimumab/nivolumab for melanoma and chemotherapy/pembrolizumab for NSCLC developed nirAE in the form of myocarditis/myositis/myasthenia gravis overlap syndrome (triple M) and cerebellitis plus longitudinal transverse myelitis (c-LETM), respectively. Intrathecal inflammation with chemokine C-X-C motif ligand (CXCL13) elevation was present in both patients; the triple M case had acetylcholine receptor antibodies, antititin reactivity, altered CD4/CD8 T cell ratio in blood, and depressed programmed death-1 (PD-1) expression on CSF T cells; the c-LETM case showed intrathecal antibody production and plasma cells. Both patients insufficiently responded to first-line treatment. The NSCLC case improved upon administration of B cell-depleting therapy with rituximab, whereas the melanoma patient died before escalation therapy was initiated. Literature research revealed one additional ICI-associated LETM case with intrathecal CXCL13 elevation, three cases with ICI-associated aquaporin-4 antibody neuromyelitis spectrum disorder, and evidence of B cell-mediated toxicity based on antibody-mediated immune pathologies in ICI-associated immune-related adverse events. CONCLUSIONS The case observations highlight the plethora of uncertainties in diagnosis and treatment of ICI-associated nirAE, exemplify the heterogeneity of immune mechanisms involved, and suggest a role of B cells, which may be underdiagnosed. Intrathecal CXCL13 may serve as a biomarker of B cell involvement in nirAE, supported by intrathecal immunoglobulin synthesis, presence of plasma cells, and/or recruitment of cognate immune cells.
Collapse
Affiliation(s)
- Ferdinand Otto
- Department of NeurologyChristian‐Doppler University Hospital, Paracelsus Medical University, Center for Cognitive Neuroscience, member of EpiCARESalzburgAustria
| | - Michael Seiberl
- Department of NeurologyChristian‐Doppler University Hospital, Paracelsus Medical University, Center for Cognitive Neuroscience, member of EpiCARESalzburgAustria
| | - Lara Bieler
- Department of NeurologyChristian‐Doppler University Hospital, Paracelsus Medical University, Center for Cognitive Neuroscience, member of EpiCARESalzburgAustria
| | - Tobias Moser
- Department of NeurologyChristian‐Doppler University Hospital, Paracelsus Medical University, Center for Cognitive Neuroscience, member of EpiCARESalzburgAustria
| | - Waltraud Kleindienst
- Department of NeurologyChristian‐Doppler University Hospital, Paracelsus Medical University, Center for Cognitive Neuroscience, member of EpiCARESalzburgAustria
| | - Walter Wallner‐Essl
- Department of NeuroradiologyChristian‐Doppler University Hospital, Paracelsus Medical UniversitySalzburgAustria
| | - Peter Koelblinger
- Department of Dermatology and AllergologyParacelsus Medical UniversitySalzburgAustria
| | - Peter Wipfler
- Department of NeurologyChristian‐Doppler University Hospital, Paracelsus Medical University, Center for Cognitive Neuroscience, member of EpiCARESalzburgAustria
| | - Andrea Harrer
- Department of NeurologyChristian‐Doppler University Hospital, Paracelsus Medical University, Center for Cognitive Neuroscience, member of EpiCARESalzburgAustria
- Department of Dermatology and AllergologyParacelsus Medical UniversitySalzburgAustria
| |
Collapse
|
24
|
Liu C, Ruan Y, Huang R, Fang L, Wu T, Lv Y, Cui L, Liao Y, Wang B, Chen Z, Su D, Ma Y, Han S, Guan X, Cui J, Yao Y, Wang Y, Wang M, Liu R, Zhang Y. Efficacy and safety of immune checkpoint inhibitors in solid tumor patients combined with chronic coronary syndromes or its risk factor: a nationwide multicenter cohort study. Cancer Immunol Immunother 2024; 73:159. [PMID: 38850359 PMCID: PMC11162406 DOI: 10.1007/s00262-024-03747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Although, immune checkpoint inhibitors (ICIs) have been widely applied in the therapy of malignant tumors, the efficacy and safety of ICIs in patients with tumors and pre-existing CAD, especially chronic coronary syndromes (CCS) or their risk factors (CRF), is not well identified. METHODS This was a nationwide multicenter observational study that enrolled participants who diagnosed with solid tumors and received ICIs therapy. The main efficacy indicators were progression-free survival (PFS) and overall survival (OS), followed by objective response rate (ORR) and disease control rate (DCR). Safety was assessed by describing treatment-related adverse events (TRAEs) during ICIs therapy evaluated by the Common Terminology Criteria for Adverse Events 5.0 (CTCAE 5.0). RESULTS In the current research, we retrospectively analyzed the data of 551 patients diagnosed with solid tumors and received ICIs therapy, and these patients were divided into CCS/CRF group and non-CCS/CRF group. Patients with CCS/CRF had more favorable PFS and OS than patients without CCS/CRF (P < 0.001) and the pre-existing CCS/CRF was a protective factor for survival. The ORR (51.8% vs. 39.1%) and DCR (95.8% vs. 89.2%) were higher in CCS/CRF group than in non-CCS/CRF group (P = 0.003, P = 0.006). In this study, there was no significant difference in treatment-related adverse events (TRAEs), including immune-related adverse events (irAEs), between the two groups. CONCLUSIONS We concluded that ICIs appear to have better efficacy in malignant solid tumor patients with pre-existing CCS/CRF and are not accompanied by more serious irAEs.
Collapse
Affiliation(s)
- Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Rui Huang
- Cancer Diagnosis and Treatment Center, Shangluo Central Hospital, Shangluo, China
| | - Lin Fang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Wu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Ying Lv
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yuanyu Liao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Bojun Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Zhuo Chen
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Dan Su
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Yue Ma
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Xin Guan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China
| | - Jie Cui
- Department of Oncology, Daqing Oilfield General Hospital, Daqing, China
| | - Yang Yao
- Department of Oncology Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yao Wang
- Pulmonary and Critical Care Medicine Unit 2, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengmeng Wang
- The Second Department of Oncology, Beidahuang Industry Group General Hospital, Harbin, China
| | - Ruiqi Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin, China.
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China.
| |
Collapse
|
25
|
Benz S, Sherman KA, Dasanu CA, Alvarez-Argote J. Immune checkpoint inhibitor-related adverse events: Real-world experience from a single veterans' affairs medical center. J Oncol Pharm Pract 2024; 30:697-704. [PMID: 37350125 DOI: 10.1177/10781552231184178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are antineoplastic agents associated with a multitude of immune-related adverse events (irAEs). Available data from clinical trials include highly selective patient populations which may limit their applicability to real-world clinical practice. METHODS We present a retrospective cohort study of cancer patients treated with ICI therapy at the Zablocki VA Medical Center between 2014 and 2021. Information on demographics, cancer diagnosis, type of therapy, treatment duration, comorbidities, irAE type, and overall survival were collected. RESULTS We identified 187 patients who received at least one dose of ICI. About half the patients experienced at least one irAE, the most common categories being fatigue, pulmonary, and endocrine irAEs. Approximately half of the irAEs were diagnosed within the first three months of starting ICI therapy, and 60.38% of those who experienced irAEs discontinued ICI therapy. Patients who experienced endocrine or intestinal irAEs had a significantly longer overall survival. CONCLUSION Immune-related complications due to ICI therapy are common and can frequently lead to treatment discontinuation in the real-world setting. Endocrine and intestinal irAEs may correlate with improved survival. The ICI-treated patients who received palliative radiation therapy to the bone had less irAEs, possibly due to immunogenic cell death.
Collapse
Affiliation(s)
- Samantha Benz
- Department of Medicine, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katherine A Sherman
- Department of Research Health, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Constantin A Dasanu
- Lucy Curci Cancer Center, Eisenhower Health, Rancho Mirage, CA, USA
- Department of Medical Oncology and Hematology, University of California in San Diego Health System, San Diego, CA, USA
| | - Juliana Alvarez-Argote
- Division of Hematology-Oncology, Department of Medicine, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
26
|
Ruli TM, Pollack ED, Lodh A, Evers CD, Price CA, Shoreibah M. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma and Their Hepatic-Related Side Effects: A Review. Cancers (Basel) 2024; 16:2042. [PMID: 38893164 PMCID: PMC11171072 DOI: 10.3390/cancers16112042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Primary liver cancer is one of the leading causes of cancer mortality worldwide, with hepatocellular carcinoma (HCC) being the most prevalent type of liver cancer. The prognosis of patients with advanced, unresectable HCC has historically been poor. However, with the emergence of immunotherapy, specifically immune checkpoint inhibitors (ICIs), there is reason for optimism. Nevertheless, ICIs do not come without risk, especially when administered in patients with HCC, given their potential underlying poor hepatic reserve. Given their novelty in the management of HCC, there are few studies to date specifically investigating ICI-related side effects on the liver in patients with underlying HCC. This review will serve as a guide for clinicians on ICIs' role in the management of HCC and their potential side effect profile. There will be a discussion on ICI-related hepatotoxicity, the potential for hepatitis B and C reactivation with ICI use, the potential for the development of autoimmune hepatitis with ICI use, and the risk of gastrointestinal bleeding with ICI use. As ICIs become more commonplace as a treatment option in patients with advanced HCC, it is imperative that clinicians not only understand the mechanism of action of such agents but also understand and are able to identify hepatic-related side effects.
Collapse
Affiliation(s)
- Thomas M. Ruli
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Ethan D. Pollack
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Atul Lodh
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Charles D. Evers
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Christopher A. Price
- Internal Medicine Residency Program, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.D.P.); (A.L.); (C.A.P.)
| | - Mohamed Shoreibah
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
27
|
Costa-da-Silva AC, Villapudua CU, Hoffman MP, Aure MH. Immunomodulation of salivary gland function due to cancer therapy. Oral Dis 2024:10.1111/odi.14972. [PMID: 38696474 PMCID: PMC11530405 DOI: 10.1111/odi.14972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/04/2024]
Abstract
Functional salivary glands (SG) are essential for maintaining oral health, and salivary dysfunction is a persistent major clinical challenge. Several cancer therapies also have off-target effects leading to SG dysfunction. Recent advances highlight the role of SG immune populations in homeostasis, dysfunction and gland regeneration. Here, we review what is known about SG immune populations during development and postnatal homeostasis. We summarize recent findings of immune cell involvement in SG dysfunction following cancer treatments such as irradiation (IR) for head and neck cancers, immune transplant leading to graft-versus-host-disease (GVHD) and immune checkpoint inhibitor (ICI) treatment. The role of immune cells in SG in both homeostasis and disease, is an emerging field of research that may provide important clues to organ dysfunction and lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Ana C. Costa-da-Silva
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Carlos U. Villapudua
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marit H. Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
28
|
Ceccarelli F, Natalucci F, Picciariello L, Cirillo A, Olivieri G, Veroli M, Pisegna S, Ciancarella C, Gelibter A, Picone V, Santini D, Botticelli A, Conti F. Antinuclear antibodies may predict the development of immune-related adverse events in asymptomatic patients treated with immune checkpoint inhibitors: results from a single-center cohort. Clin Exp Med 2024; 24:72. [PMID: 38598028 PMCID: PMC11006777 DOI: 10.1007/s10238-024-01317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 04/11/2024]
Abstract
We aim at investigating the association between subclinical autoimmunity and immune-related adverse events (irAEs) in a cohort of patients treated by immune checkpoint inhibitors for solid metastatic cancer. In the context of an oncology/rheumatology outpatient clinic, we evaluated patients treated with anti-PD-1 or anti-PD-L1. Before treatment, each patient underwent a physical evaluation and a blood sample to identify the presence of a set of autoantibodies. Indeed, all the patients were followed during treatment to identify irAEs and to assess the association with autoantibodies. Fifty-one patients (M/F 16/35; median age 70 years, IQR 16.5) were evaluated; 34.8% of patients showed ANA positivity, 6.5% ENA positivity (anti-SSA), 4.3% Ratest positivity, and 2.1% (one patient) ACPA positivity. During a median period of 21 months (IQR 38.75), 39.2% of patients developed irAEs. Musculo-skeletal manifestations, in particular arthritis, were the most frequent. We found a significant association between the positivity for ANA and the development of irAES (p = 0.03, RR 2.01, 95% CI 1.03-3.92). Furthermore, the progression-free survival was significantly longer in patients developing irAEs compared to those who are not experiencing these events (p = 0.007). This study underlines the potential role of ANA positivity as a predictive biomarker for the development of irAEs.
Collapse
Affiliation(s)
- Fulvia Ceccarelli
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Arthritis Center, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Francesco Natalucci
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Arthritis Center, Rheumatology, Sapienza University of Rome, Rome, Italy.
| | - Licia Picciariello
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Arthritis Center, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Alessio Cirillo
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Giulio Olivieri
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Margherita Veroli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Simona Pisegna
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Claudia Ciancarella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Arthritis Center, Rheumatology, Sapienza University of Rome, Rome, Italy
| | - Alain Gelibter
- Division of Medical Oncology B, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Picone
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Daniele Santini
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Radiological, Oncological and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Conti
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Arthritis Center, Rheumatology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Casagrande S, Sopetto GB, Bertalot G, Bortolotti R, Racanelli V, Caffo O, Giometto B, Berti A, Veccia A. Immune-Related Adverse Events Due to Cancer Immunotherapy: Immune Mechanisms and Clinical Manifestations. Cancers (Basel) 2024; 16:1440. [PMID: 38611115 PMCID: PMC11011060 DOI: 10.3390/cancers16071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The landscape of cancer treatment has undergone a significant transformation with the introduction of Immune Checkpoint Inhibitors (ICIs). Patients undergoing these treatments often report prolonged clinical and radiological responses, albeit with a potential risk of developing immune-related adverse events (irAEs). Here, we reviewed and discussed the mechanisms of action of ICIs and their pivotal role in regulating the immune system to enhance the anti-tumor immune response. We scrutinized the intricate pathogenic mechanisms responsible for irAEs, arising from the evasion of self-tolerance checkpoints due to drug-induced immune modulation. We also summarized the main clinical manifestations due to irAEs categorized by organ types, detailing their incidence and associated risk factors. The occurrence of irAEs is more frequent when ICIs are combined; with neurological, cardiovascular, hematological, and rheumatic irAEs more commonly linked to PD1/PD-L1 inhibitors and cutaneous and gastrointestinal irAEs more prevalent with CTLA4 inhibitors. Due to the often-nonspecific signs and symptoms, the diagnosis of irAEs (especially for those rare ones) can be challenging. The differential with primary autoimmune disorders becomes sometimes intricate, given the clinical and pathophysiological similarities. In conclusion, considering the escalating use of ICIs, this area of research necessitates additional clinical studies and practical insights, especially the development of biomarkers for predicting immune toxicities. In addition, there is a need for heightened education for both clinicians and patients to enhance understanding and awareness.
Collapse
Affiliation(s)
- Silvia Casagrande
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
| | - Giulia Boscato Sopetto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
| | - Giovanni Bertalot
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Multizonal Unit of Pathology, APSS, 38122 Trento, Italy
| | - Roberto Bortolotti
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Vito Racanelli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Internal Medicine, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy
| | - Orazio Caffo
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| | - Bruno Giometto
- Unit of Neurology, Rovereto Hospital, Azienda Provinciale per i Servizi Sanitari-APSS, 38122 Trento, Italy; (S.C.); (B.G.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Department of Psychology and Cognitive Sciences (DIPSCO), University of Trento, 38122 Trento, Italy
| | - Alvise Berti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38122 Trento, Italy; (G.B.S.); (G.B.); (V.R.)
- Center for Medical Sciences (CISMed), University of Trento, 38122 Trento, Italy
- Unit of Rheumatology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy;
| | - Antonello Veccia
- Unit of Oncology, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy; (O.C.); (A.V.)
| |
Collapse
|
30
|
Tittarelli A, Pereda C, Gleisner MA, López MN, Flores I, Tempio F, Lladser A, Achour A, González FE, Durán-Aniotz C, Miranda JP, Larrondo M, Salazar-Onfray F. Long-Term Survival and Immune Response Dynamics in Melanoma Patients Undergoing TAPCells-Based Vaccination Therapy. Vaccines (Basel) 2024; 12:357. [PMID: 38675738 PMCID: PMC11053591 DOI: 10.3390/vaccines12040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer vaccines present a promising avenue for treating immune checkpoint blockers (ICBs)-refractory patients, fostering immune responses to modulate the tumor microenvironment. We revisit a phase I/II trial using Tumor Antigen-Presenting Cells (TAPCells) (NCT06152367), an autologous antigen-presenting cell vaccine loaded with heat-shocked allogeneic melanoma cell lysates. Initial findings showcased TAPCells inducing lysate-specific delayed-type hypersensitivity (DTH) reactions, correlating with prolonged survival. Here, we extend our analysis over 15 years, categorizing patients into short-term (<36 months) and long-term (≥36 months) survivors, exploring novel associations between clinical outcomes and demographic, genetic, and immunologic parameters. Notably, DTHpos patients exhibit a 53.1% three-year survival compared to 16.1% in DTHneg patients. Extended remissions are observed in long-term survivors, particularly DTHpos/M1cneg patients. Younger age, stage III disease, and moderate immune events also benefit short-term survivors. Immunomarkers like increased C-type lectin domain family 2 member D on CD4+ T cells and elevated interleukin-17A were detected in long-term survivors. In contrast, toll-like receptor-4 D229G polymorphism and reduced CD32 on B cells are associated with reduced survival. TAPCells achieved stable long remissions in 35.2% of patients, especially M1cneg/DTHpos cases. Conclusions: Our study underscores the potential of vaccine-induced immune responses in melanoma, emphasizing the identification of emerging biological markers and clinical parameters for predicting long-term remission.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile;
| | - Cristian Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - María A. Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Mercedes N. López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - Iván Flores
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - Fabián Tempio
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
| | - Alvaro Lladser
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile;
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 8580702, Chile
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden;
- Division of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Fermín E. González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, Universidad de Chile, Santiago 8380000, Chile;
| | - Claudia Durán-Aniotz
- Latin American Brain Health Institute (BrainLat), Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibañez, Santiago 7941169, Chile;
| | | | - Milton Larrondo
- Banco de Sangre, Hospital Clínico de la Universidad de Chile, Santiago 8380453, Chile;
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (C.P.); (M.A.G.); (M.N.L.); (I.F.); (F.T.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden;
- Division of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
31
|
Black S, Roach M, Rappuoli R. Primary cancer prevention for cancers with no known infectious etiology: Time for a new paradigm. Vaccine 2024; 42:1906-1909. [PMID: 38365488 DOI: 10.1016/j.vaccine.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Vaccines developed for hepatitis B and human papilloma virus infections have been very successful in reducing the burden of cancer due to these infections. In the past decade, our understanding of the immunology of cancer has greatly improved and important progress has been made in the use of immunotherapy for several cancers. However, for the majority of cancers, an infectious etiology is either unknown or does not exist. Prostate cancer, for which no infectious etiology is known, is the most common cancer in men in the United States. Here we discuss the rationale for developing a preventive vaccine for prostate cancer, discuss a possible approach for further work in this area and a means of testing the effectiveness of a prostate cancer prevention vaccine in a clinical trial.
Collapse
Affiliation(s)
| | - Mack Roach
- Department of Radiation Oncology, University of California San Francisco, USA
| | | |
Collapse
|
32
|
Hu Q, Wang S, Ma L, Sun Z, Liu Z, Deng S, Zhou J. Radiological assessment of immunotherapy effects and immune checkpoint-related pneumonitis for lung cancer. J Cell Mol Med 2024; 28:e17895. [PMID: 37525480 PMCID: PMC10902575 DOI: 10.1111/jcmm.17895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) therapy have revolutionized advanced lung cancer care. Interestingly, the host responses for patients received ICIs therapy are distinguishing from those with cytotoxic drugs, showing potential initial transient worsening of disease burden, pseudoprogression and delayed time to treatment response. Thus, a new imaging criterion to evaluate the response for immunotherapy should be developed. ICIs treatment is associated with unique adverse events, including potential life-threatening immune checkpoint inhibitor-related pneumonitis (ICI-pneumonitis) if treated patients are not managed promptly. Currently, the diagnosis and clinical management of ICI-pneumonitis remain challenging. As the clinical manifestation is often nonspecific, computed tomography (CT) scan and X-ray films play important roles in diagnosis and triage. This article reviews the complications of immunotherapy in lung cancer and illustrates various radiologic patterns of ICI-pneumonitis. Additionally, it is tried to differentiate ICI-pneumonitis from other pulmonary pathologies common to lung cancer such as radiation pneumonitis, bacterial pneumonia and coronavirus disease of 2019 (COVID-19) infection in recent months. Maybe it is challenging to distinguish radiologically but clinical presentation may help.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shaofang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Ma
- Department of Orthopedics, Songzi HospitalRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ziyan Sun
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zilin Liu
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shuang Deng
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jianlin Zhou
- Department of OrthopedicsRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
33
|
He Y, Yu H, Dai S, He M, Ma L, Xu Z, Luo F, Wang L. Immune checkpoint inhibitors break whose heart? Perspectives from cardio-immuno-oncology. Genes Dis 2024; 11:807-818. [PMID: 37692505 PMCID: PMC10491874 DOI: 10.1016/j.gendis.2023.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 03/30/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibody antagonists, which can block cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed death-1/ligand-1 (PD-1/PD-L1) pathways, and other molecules exploited by tumor cells to evade T cell-mediated immune response. ICIs have transformed the treatment landscape for various cancers due to their amazing efficacy. Many anti-tumor therapies, including targeted therapy, radiotherapy, and chemotherapy, combine ICIs to make the treatment more effective. However, the off-target immune activation caused by ICIs may lead to a broad spectrum of immune-related adverse events (irAEs) affecting multiple organ systems. Among irAEs, cardiotoxicity induced by ICIs, uncommon but fatal, has greatly offset survival benefits from ICIs, which is heartbreaking for both patients and clinicians. Consequently, such cardiotoxicity requires special vigilance, and it has become a common challenge both for patients and clinicians. This article reviewed the clinical manifestations and influence of cardiotoxicity from the view of patients and clinicians, elaborated on the underlying mechanisms in conjunction with animal studies, and then attempted to propose management strategies from a cardio-immuno-oncology multidisciplinary perspective.
Collapse
Affiliation(s)
- Yingying He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Hui Yu
- Cardiovascular Department, Mianyang Central Hospital, Mianyang, Sichuan 621000, China
| | - Shuang Dai
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Miao He
- Oncology Department, Deyang People's Hospital, Deyang, Sichuan 618000, China
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ling Ma
- Department of Rheumatology and Immunology, Deyang People's Hospital, Deyang, Sichuan 618000, China
| | - Zihan Xu
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Feng Luo
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Li Wang
- Department of Medical Oncology, Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| |
Collapse
|
34
|
Vaddi A, Hulsebus HJ, O’Neill EL, Knight V, Chan ED. A narrative review of the controversy on the risk of mycobacterial infections with immune checkpoint inhibitor use: does Goldilocks have the answer? J Thorac Dis 2024; 16:1601-1624. [PMID: 38505086 PMCID: PMC10944775 DOI: 10.21037/jtd-23-1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024]
Abstract
Background and Objective Immune checkpoint inhibitors (ICIs) have revolutionized oncologic treatment. Whether ICIs increase susceptibility to or provide protection against mycobacterial infections remains controversial. The objective of this narrative review is to summarize the literature on the link between ICI use and mycobacterial infections-tuberculosis and non-tuberculous mycobacterial (NTM) infections-and to critically discuss evidence linking ICIs with mycobacterial infections, the possible confounders, and, if indeed the ICIs predispose to such infections, the potential mechanisms of how this may occur. Methods We conducted a literature search on PubMed for relevant articles published from 2011 to current time [2024] utilizing specific keywords of "immune checkpoint inhibitors", "programmed cell death protein-1", "PD-1", "programmed death-ligand 1", "PD-L1", "cytotoxic T-lymphocyte-associated protein-4", or "CTLA-4" with that of "non-tuberculous mycobacterial lung disease", "tuberculosis", or "mycobacteria". The bibliographies of identified papers were perused for additional relevant articles. Key Content and Findings Ex vivo studies using human cells indicate that ICIs would be salubrious for the host against mycobacteria. Yet, many case reports associate ICI use with mycobacterial infections, mostly tuberculosis. Potential confounders include immunosuppression from the cancer, concomitant use of immunosuppressive drugs, lung injury and distortion from chemotherapeutics or radiation, and reporting bias. Mice with genetic disruption of the programmed cell death protein-1 (PD-1) gene are paradoxically more susceptible to Mycobacterium tuberculosis (M. tuberculosis). In contrast, mice administered neutralizing antibody to T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) or knocked out for TIM3 gene have greater capacity to control an M. tuberculosis infection. We posit that hosts with greater baseline immunodeficiency are more likely to derive benefit from ICIs against mycobacterial infections than those with more intact immunity, where ICIs are more likely to be detrimental. Conclusions Studies are needed to test the hypothesis that ICIs may either protect or predispose to mycobacterial infections, depending on the baseline host immune status. Prospective studies are required of patients on ICIs that control for potential confounders as anecdotal case reports are insufficient to provide a causal link. Murine studies with ICIs are also required to corroborate or refute studies of mice with genetic disruption of an immune checkpoint.
Collapse
Affiliation(s)
- Akshara Vaddi
- Department of Biology, University of Wisconsin, Madison, WI, USA
| | - Holly J. Hulsebus
- Complement Laboratory, Advance Diagnostics, National Jewish Health, Denver, CO, USA
| | - Emily L. O’Neill
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vijaya Knight
- Clinical and Translational Allergy and Immunology Laboratory, Children’s Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
35
|
Zhang Q, Yang C, Gao X, Dong J, Zhong C. Phytochemicals in regulating PD-1/PD-L1 and immune checkpoint blockade therapy. Phytother Res 2024; 38:776-796. [PMID: 38050789 DOI: 10.1002/ptr.8082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/06/2023]
Abstract
Clinical treatment and preclinical studies have highlighted the role of immune checkpoint blockade in cancer treatment. Research has been devoted to developing immune checkpoint inhibitors in combination with other drugs to achieve better efficacy or reduce adverse effects. Phytochemicals sourced from vegetables and fruits have demonstrated antiproliferative, proapoptotic, anti-migratory, and antiangiogenic effects against several cancers. Phytochemicals also modulate the tumor microenvironment such as T cells, regulatory T cells, and cytokines. Recently, several phytochemicals have been reported to modulate immune checkpoint proteins in in vivo or in vitro models. Phytochemicals decreased programmed cell death ligand-1 expression and synergized programmed cell death receptor 1 (PD-1) monoclonal antibody to suppress tumor growth. Combined administration of phytochemicals and PD-1 monoclonal antibody enhanced the tumor growth inhibition as well as CD4+ /CD8+ T-cell infiltration. In this review, we discuss immune checkpoint molecules as potential therapeutic targets of cancers. We further assess the impact of phytochemicals including carotenoids, polyphenols, saponins, and organosulfur compounds on cancer PD-1/programmed cell death ligand-1 immune checkpoint molecules and document their combination effects with immune checkpoint inhibitors on various malignancies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenying Yang
- Yinzhou Center for Disease Control and Prevention, Ningbo, China
| | - Xingsu Gao
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ju Dong
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Wang Q, Xiao F, Zeng Y, Zhu Q, Zhang H. PD-1/PD-L1 inhibitors-associated cardiac adverse events: a retrospective and real-world study based on the FDA Adverse Event Reporting System (FAERS). Expert Opin Drug Saf 2024; 23:257-267. [PMID: 37070426 DOI: 10.1080/14740338.2023.2203483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/18/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1) inhibitors have reformed the treatment landscape for various malignancies and improved prognosis of patients. However, they also lead to events that although rare may prove to be fatal. RESEARCH DESIGN AND METHODS Data from July 2014 to June 2022 based on FDA Adverse Event Reporting System (FAERS) were analyzed. The signal index reporting odds ratio (ROR) was used to evaluate the correlation between cardiac AEs and given medications. The indications and the median time to onset (TTO) of different PD-1/PD-L1 inhibitors were compared. RESULTS Cardiac AEs are rare but may be fatal with particular profiles in primary tumor, onset time, and especially gender. We identified 11,538 reports that were related to cardiotoxicity of PD-1/PD-L1 inhibitors, in which 178 different preferred terms (PTs) were distinguished, and nivolumab reported the most PTs with signal. All targeted medications showed signals in myocardial disorders and pericardial disorders, which tend to occur in the first 1-2 months. Non-small cell neoplasm was the top and common indication during anti-PD-1 or anti-PD-L1 therapy with cardiotoxicity. CONCLUSIONS This study could help early diagnosis and surveillance of ICIs-related cardiotoxicity.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Fengjiao Xiao
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Yanbin Zeng
- Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Qiaoling Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, China
| | - Haixia Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, China
| |
Collapse
|
37
|
Guitton R, Lambotte O, Chiche L. [Managing cancer immunotherapy toxicities: Challenges and rechallenges for (young) internists]. Rev Med Interne 2024; 45:1-5. [PMID: 38158294 DOI: 10.1016/j.revmed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Affiliation(s)
- R Guitton
- Amicale des jeunes internistes, 15, rue de l'École-de-Médecine, 75005 Paris, France; Service de médecine interne et immunologie clinique, CHRU de Nancy, Nancy, France
| | - O Lambotte
- Inserm, CEA, UMR1184, service de médecine interne immunologie clinique, université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
| | - L Chiche
- Service de médecine interne, hôpital Européen, 6, rue Désirée-Clary, 13003 Marseille, France.
| |
Collapse
|
38
|
Davis T, Fedorov K, Gregos PS, Shapiro LC, Shastri A, Gritsman K, Shah N, Sica RA, Konopleva M, Feldman E, Mantzaris I, Braunschweig I, Verma A, Cooper D, Kornblum N, Goldfinger M. High Dose Cyclophosphamide for the Treatment of Severe Immune Checkpoint Inhibitor Related Adverse Events. JOURNAL OF ONCOLOGY RESEARCH AND THERAPY 2023; 8:10194. [PMID: 39371330 PMCID: PMC11451324 DOI: 10.29011/2574-710x.10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Introduction Immune-related adverse events (irAEs) are a group of autoimmune syndromes that arise following therapy with immune checkpoint inhibitors (ICIs) and are characterized by disinhibition of cell-mediated immunity and decreased self-tolerance. First line treatment of irAEs is typically steroids. Severe irAEs that are refractory to steroids can be life threatening and treatment protocols are an area of unmet need. Standardized clinical guidelines for management of severe corticosteroid refractory irAEs are currently not available and thus are an area of unmet need. Cases We present two patients who were treated with nivolumab and subsequently developed steroid refractory irAEs in the forms of transverse myelitis, arthritis, and peri-engraftment respiratory distress syndrome. Conclusions Treatment with a single high dose of cyclophosphamide resulted in rapid and sustained clinical improvements in two patients experiencing steroid refractory irAEs following ICI therapy. Cyclophosphamide may benefit patients with wide spectrum of irAEs while having a favorable toxicity profile.
Collapse
Affiliation(s)
- Timothy Davis
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kateryna Fedorov
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Peter S Gregos
- Division of Oncology, Department of Internal Medicine, Weill Cornell New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, York, USA
| | - Lauren C Shapiro
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Aditi Shastri
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Kira Gritsman
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Nishi Shah
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - R Alejandro Sica
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Marina Konopleva
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Eric Feldman
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Ioannis Mantzaris
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Ira Braunschweig
- Department of Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, York, USA
| | - Amit Verma
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Dennis Cooper
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Noah Kornblum
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| | - Mendel Goldfinger
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, York, USA
| |
Collapse
|
39
|
Lu Y, Li Q, Xu L, Zheng Y, Wang Y, Liu Y, Zhang R, Liao L, Dong J. Thyroid dysfunction induced by anti-PD-1 therapy is associated with a better progression-free survival in patients with advanced carcinoma. J Cancer Res Clin Oncol 2023; 149:16501-16510. [PMID: 37715029 PMCID: PMC10645623 DOI: 10.1007/s00432-023-05364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE Thyroid dysfunction is the most common immune-related adverse event during anti-programmed cell death 1 (anti-PD-1) therapy. In this study, we monitored patients with advanced malignant tumors who received anti-PD-1 therapy to observe the characteristic of anti-PD-1 therapy-induced thyroid dysfunction and its correlation with prognosis. METHODS Patients with advanced carcinoma treated with anti-PD-1 therapy were evaluated for thyroid function at baseline and after treatment initiation from August 2020 to March 2022. Seventy-three patients were finally included in the study. RESULTS Among these patients, 19 (26.03%) developed thyroid dysfunction after receiving anti-PD-1 therapy. Primary hypothyroidism and thyrotoxicosis were the most common clinical manifestation. Anti-PD-1-induced thyroid dysfunction occurred 63 (26-131) days after administration; thyrotoxicosis appeared earlier than primary hypothyroidism. In Kaplan-Meier survival analysis, the progression-free survival (PFS) of the thyroid dysfunction group was better than that of the no thyroid dysfunction group (227 (95% confidence interval (CI) 50.85-403.15) days vs 164 (95% CI 77.76-250.24) days, p = 0.026). Male patients had better PFS than female patients (213 (95% CI 157.74-268.26) days vs 74 (95% CI 41.23-106.77) days, p = 0.031). In cox proportional hazards regression model, anti-PD-1-induced thyroid dysfunction remained an independent predictor of better PFS (hazard ratio (HR) = 0.339(0.136-0.848), p = 0.021). CONCLUSION Thyroid dysfunction is a common immune-related adverse events in advanced cancer patients treated with anti-PD-1 therapy and predicts a better prognosis. TRIAL REGISTRATION This study was retrospectively registered with Trial ClinicalTrials.gov (NCT05593744) on October 25, 2022.
Collapse
Affiliation(s)
- Yiran Lu
- Department of Endocrinology, Qilu Hospital, Shandong University, Ji-Nan, China
| | - Qingchen Li
- Department of Medical Oncology, Qilu Hospital, Shandong University, Ji-Nan, China
| | - Lusi Xu
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Ji-Nan, China
| | - Yanqing Zheng
- Department of Medical Oncology, Qilu Hospital, Shandong University, Ji-Nan, China
| | - Yanchao Wang
- Department of Medical Oncology, Qilu Hospital, Shandong University, Ji-Nan, China
| | - Ying Liu
- Department of Endocrinology, Qilu Hospital, Shandong University, Ji-Nan, China
| | - Rui Zhang
- Department of Endocrinology, Qilu Hospital, Shandong University, Ji-Nan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Ji-Nan, China.
- Department of Endocrinology and Metabology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Nephrology, Ji-Nan, China.
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Shandong University, Ji-Nan, China.
| |
Collapse
|
40
|
Sada I, Harada Y, Hiyama T, Mizukami M, Kan T, Kawai M, Kiuchi Y. Uveitis associated with immune checkpoint inhibitors or BRAF/MEK inhibitors in patients with malignant melanoma. Melanoma Res 2023; 33:539-546. [PMID: 37788106 DOI: 10.1097/cmr.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The objective of this study was to evaluate the frequency and characteristics of uveitis associated with immune checkpoint inhibitors (ICIs) or BRAF/MEK inhibitors (B/MIs) in patients with malignant melanoma. Patients diagnosed with malignant melanoma who underwent radical or local resection for malignant melanoma, regardless of clinical stage or postoperative adjuvant therapy, at Hiroshima University Hospital from January 2015 to June 2021 were enrolled in a retrospective cohort. The medical records of patients were collected to estimate the prevalence of ocular adverse events. The clinical characteristics of patients who developed uveitis were reviewed. Among 152 patients, 54 and 12 were treated with ICIs and B/MIs, respectively. Four patients developed uveitis; 1 in the ICI group and 3 in the B/MI group, while there were no uveitis cases among patients who did not receive ICIs or B/MIs. Three patients had Vogt-Koyanagi-Harada disease-like findings. Uveitis was improved by steroid therapy with or without oncological treatment interruption. Oncological treatment could be resumed. Patients with melanoma treated with ICIs or B/MIs had a higher risk of uveitis compared with those who did not receive them. Oncological treatment could be resumed in all patients who developed uveitis.
Collapse
Affiliation(s)
- Ikuyo Sada
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University
| | - Yosuke Harada
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University
| | - Tomona Hiyama
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University
| | - Mina Mizukami
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University
| | - Takanobu Kan
- Department of Dermatology, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Mikio Kawai
- Department of Dermatology, Graduate School of Biomedical Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical Sciences, Hiroshima University
| |
Collapse
|
41
|
Liang Y, Wang L, Ma P, Ju D, Zhao M, Shi Y. Enhancing anti-tumor immune responses through combination therapies: epigenetic drugs and immune checkpoint inhibitors. Front Immunol 2023; 14:1308264. [PMID: 38077327 PMCID: PMC10704038 DOI: 10.3389/fimmu.2023.1308264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Epigenetic mechanisms are processes that affect gene expression and cellular functions without involving changes in the DNA sequence. This abnormal or unstable expression of genes regulated by epigenetics can trigger cancer and other various diseases. The immune cells involved in anti-tumor responses and the immunogenicity of tumors may also be affected by epigenomic changes. This holds significant implications for the development and application of cancer immunotherapy, epigenetic therapy, and their combined treatments in the fight against cancer. We provide an overview of recent research literature focusing on how epigenomic changes in immune cells influence immune cell behavior and function, as well as the immunogenicity of cancer cells. And the combined utilization of epigenetic medications with immune checkpoint inhibitors that focus on immune checkpoint molecules [e.g., Programmed Death 1 (PD-1), Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA-4), T cell Immunoglobulin and Mucin Domain (TIM-3), Lymphocyte Activation Gene-3 (LAG-3)] present in immune cells and stromal cells associated with tumors. We highlight the potential of small-molecule inhibitors targeting epigenetic regulators to amplify anti-tumor immune responses. Moreover, we discuss how to leverage the intricate relationship between cancer epigenetics and cancer immunology to create treatment regimens that integrate epigenetic therapies with immunotherapies.
Collapse
Affiliation(s)
- Ying Liang
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lingling Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuhan, China
| | - Peijun Ma
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai, China
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Minggao Zhao
- Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yun Shi
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, United States
| |
Collapse
|
42
|
Zhang H, Xu Z. Gut-lung axis: role of the gut microbiota in non-small cell lung cancer immunotherapy. Front Oncol 2023; 13:1257515. [PMID: 38074650 PMCID: PMC10701269 DOI: 10.3389/fonc.2023.1257515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/03/2023] [Indexed: 11/02/2024] Open
Abstract
Immunotherapy for non-small cell lung cancer (NSCLC) has advanced considerably over the past two decades. In particular, immune checkpoint inhibitors are widely used for treating NSCLC. However, the overall cure and survival rates of patients with NSCLC remain low. Therefore, continuous investigation into complementary treatments is necessary to expand the clinical advantages of immunotherapy to a larger cohort of patients with NSCLC. Recently, the distinctive role of the gut microbiota (GM) in the initiation, progression, and dissemination of cancer has attracted increasing attention. Emerging evidence indicates a close relationship between the gut and lungs, known as the gut-lung axis (GLA). In this review, we aim to provide a comprehensive summary of the current knowledge regarding the connection between the GM and the outcomes of immunotherapy in NSCLC, with particular focus on the recent understanding of GLA. Overall, promising GM-based therapeutic strategies have been observed to improve the effectiveness or reduce the toxicity of immunotherapy in patients with NSCLC, thus advancing the utilization of microbiota precision medicine.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ziyuan Xu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Yang H, Liu Z, Li R, Huang R, Peng X. The association between aspirin use and immune-related adverse events in specific cancer patients receiving ICIs therapy: analysis of the FAERS database. Front Pharmacol 2023; 14:1259628. [PMID: 38035011 PMCID: PMC10686414 DOI: 10.3389/fphar.2023.1259628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background: The promise of immune checkpoint inhibitors (ICIs) therapy in cancer treatment is tempered by the occurrence of immune-related adverse events (irAEs). Many patients undergoing ICIs also take aspirin, but the association between aspirin and irAEs is not well understood. Methods: This study analyzed adverse reaction data associated with the use of ICIs in the US Food and Drug Administration (FDA) Adverse Event Reporting System FDA Adverse Event Reporting System database, from the approval date of each drug until 1 October 2022. Multivariate logistic regression was employed to assess the association of aspirin use with irAEs in patients receiving ICIs. Results: The results indicated that aspirin use was associated with an increased risk of irAEs in a pan-cancer analysis, with a more pronounced association in specific cancer types such as lung cancer, mesothelioma, and pancreatic cancer. However, in lymphoma, aspirin use was associated with a reduced risk of irAEs. Furthermore, aspirin use was associated with an increased risk of certain irAEs, such as anemia, colitis, myocarditis, myositis, pancreatitis, pericarditis, and pneumonia, while it was associated with a reduced risk of rash, Stevens-Johnson syndrome, and thyroiditis. Conclusion: This study has unveiled an association between aspirin use and irAEs in cancer patients receiving ICIs therapy, emphasizing the need for individualized consideration of patients' medication history when devising cancer treatment plans to enhance efficacy and reduce risks.
Collapse
Affiliation(s)
- Huaju Yang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruidan Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rendong Huang
- Hangzhou Linan Guorui Health Industry Investment Co., Ltd., Hangzhou, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Baarslag MA, Heimovaara JH, Borgers JSW, van Aerde KJ, Koenen HJPM, Smeets RL, Buitelaar PLM, Pluim D, Vos S, Henriet SSV, de Groot JWB, van Grotel M, Rosing H, Beijnen JH, Huitema ADR, Haanen JBAG, Amant F, Gierenz N. Severe Immune-Related Enteritis after In Utero Exposure to Pembrolizumab. N Engl J Med 2023; 389:1790-1796. [PMID: 37937778 DOI: 10.1056/nejmoa2308135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Immune checkpoint blockade has become standard treatment for many types of cancer. Such therapy is indicated most often in patients with advanced or metastatic disease but has been increasingly used as adjuvant therapy in those with early-stage disease. Adverse events include immune-related organ inflammation resembling autoimmune diseases. We describe a case of severe immune-related gastroenterocolitis in a 4-month-old infant who presented with intractable diarrhea and failure to thrive after in utero exposure to pembrolizumab. Known causes of the symptoms were ruled out, and the diagnosis of pembrolizumab-induced immune-related gastroenterocolitis was supported by the results of histopathological assays, immunophenotyping, and analysis of the level of antibodies against programmed cell death protein 1 (PD-1). The infant's condition was successfully treated with prednisolone and infliximab.
Collapse
MESH Headings
- Humans
- Infant
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Enteritis/chemically induced
- Enteritis/diagnosis
- Enteritis/drug therapy
- Enteritis/immunology
- Neoplasms/drug therapy
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Immune Checkpoint Inhibitors/administration & dosage
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Failure to Thrive/chemically induced
- Failure to Thrive/immunology
- Diarrhea, Infantile/chemically induced
- Diarrhea, Infantile/immunology
- Gastroenteritis/chemically induced
- Gastroenteritis/diagnosis
- Gastroenteritis/drug therapy
- Gastroenteritis/immunology
- Enterocolitis/chemically induced
- Enterocolitis/diagnosis
- Enterocolitis/drug therapy
- Enterocolitis/immunology
- Programmed Cell Death 1 Receptor/immunology
Collapse
Affiliation(s)
- Manuel A Baarslag
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Joosje H Heimovaara
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Jessica S W Borgers
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Koen J van Aerde
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Hans J P M Koenen
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Ruben L Smeets
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Pauline L M Buitelaar
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Dick Pluim
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Shoko Vos
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Stefanie S V Henriet
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Jan Willem B de Groot
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Martine van Grotel
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Hilde Rosing
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Jos H Beijnen
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Alwin D R Huitema
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - John B A G Haanen
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Frédéric Amant
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| | - Nicole Gierenz
- From the Departments of Pediatrics (M.A.B.), Pediatric Infectious Diseases and Immunology (K.J.A., S.S.V.H.), Pathology (S.V.), and Pediatric Gastroenterology and Hepatology (N.G.), Amalia Children's Hospital, and the Department of Laboratory Medicine, Laboratory Medical Immunology (H.J.P.M.K., R.L.S.), and the Radboudumc Laboratory for Diagnostics (R.L.S.), Radboud University Medical Center, Nijmegen, the Departments of Gynecologic Oncology (J.H.H., F.A.), Medical Oncology (J.S.W.B., J.B.A.G.H.), Pharmacy and Pharmacology (P.L.M.B., H.R., J.H.B., A.D.R.H.), and Pharmacology (D.P.), Antoni van Leeuwenhoek-Netherlands Cancer Institute, Amsterdam, the Department of Medical Oncology, Isala Hospital, Zwolle (J.W.B.G.), the Departments of Pediatric Oncology (M.G.) and Pharmacology (A.D.R.H.), Princess Máxima Center for Pediatric Oncology, and the Departments of Pharmaceutical Sciences (J.H.B.) and Clinical Pharmacy (A.D.R.H.), University Medical Center Utrecht, Utrecht University, Utrecht - all in the Netherlands; and the Department of Oncology, Katholieke Universiteit Leuven (J.H.H., F.A.), and the Division of Gynecologic Oncology, Universitair Ziekenhuis Leuven (F.A.) - both in Leuven, Belgium
| |
Collapse
|
45
|
Kim TW, Bedard PL, LoRusso P, Gordon MS, Bendell J, Oh DY, Ahn MJ, Garralda E, D’Angelo SP, Desai J, Hodi FS, Wainberg Z, Delord JP, Cassier PA, Cervantes A, Gil-Martin M, Wu B, Patil NS, Jin Y, Hoang T, Mendus D, Wen X, Meng R, Cho BC. Anti-TIGIT Antibody Tiragolumab Alone or With Atezolizumab in Patients With Advanced Solid Tumors: A Phase 1a/1b Nonrandomized Controlled Trial. JAMA Oncol 2023; 9:1574-1582. [PMID: 37768658 PMCID: PMC10540058 DOI: 10.1001/jamaoncol.2023.3867] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/24/2023] [Indexed: 09/29/2023]
Abstract
Importance Inhibition of the T-cell immunoreceptor with Ig and ITIM domains (TIGIT)/poliovirus receptor pathway may amplify the antitumor immune response of atezolizumab in programmed death ligand 1-selected tumors. Objective To evaluate the safety and antitumor activity of the anti-TIGIT antibody tiragolumab and its combination with atezolizumab in patients with advanced solid tumors. Design, Setting, and Participants The GO30103 open-label, first-in-human phase 1a/1b dose-escalation and dose-expansion nonrandomized controlled trial was conducted at 13 sites in 6 countries (Australia, Canada, France, Korea, Spain, and the US). The start dates were May 23, 2016, for phase 1a and October 11, 2016, for phase 1b. Patients were aged 18 years or older with measurable disease at baseline. The clinical cutoff date was October 1, 2021. Data analysis was performed on January 24, 2022. Interventions Patients received fixed-dose intravenous tiragolumab on day 1 of each 21-day cycle (2 mg escalating to 1200 mg) in phase 1a, plus fixed-dose intravenous atezolizumab (1200 mg every 3 weeks) in phase 1b. Patients were treated until disease progression, loss of clinical benefit, or development of unacceptable toxicity. Main Outcomes and Measures The primary end points included the safety, tolerability, and recommended phase 2 dose (RP2D) of tiragolumab or combination tiragolumab plus atezolizumab. The secondary end point included the investigator-assessed objective response rate (ORR). Counts and percentages are used for categorical variables, and medians and ranges are used for continuous variables. Results Among the phase 1a (n = 24) and 1b (n = 49) dose-escalation cohorts, the median age was 60 (range, 40-77) and 54 (range, 25-81) years, respectively. More than half of patients were women (14 of 24 [58%] and 25 of 49 [51%]), and more than a third (10 [42%] and 18 [37%]) had received 4 or more prior cancer therapies. No dose-limiting toxicities occurred, and the maximum tolerated dose of tiragolumab was not reached (NR). The most frequent treatment-related adverse events (AEs) were fatigue (5 of 24 [21%]) in phase 1a and pruritus (5 of 49 [10%]) in phase 1b; the majority of AEs were grade 1 or 2. Immune-mediated AEs occurred in 4 of 24 (17%) and 29 of 49 (59%) patients during phases 1a and 1b, respectively (primarily grade 1 or 2). The RP2D of tiragolumab was 600 mg intravenously every 3 weeks, which was tested in phase 1b dose expansion. The confirmed ORR was 0% during phase 1a, with evidence of antitumor activity in 6% of patients (n = 3) during phase 1b. The safety profile of combination tiragolumab plus atezolizumab in phase 1b was similar in the dose-escalation and dose-expansion cohorts. The confirmed ORR was 46% (6 of 13) in the non-small cell lung cancer (NSCLC) cohort (median duration of response [DOR], NR) and 28% (5 of 18) in the esophageal cancer (EC) cohort (median DOR, 15.2 [95% CI, 7.0 to NR] months). Conclusions and Relevance In this nonrandomized controlled trial, tiragolumab was well tolerated with or without atezolizumab; no new safety signals were observed. Preliminary antitumor activity was demonstrated for the combination regimen in patients with cancer immunotherapy-naive metastatic NSCLC or EC. Trial Registration ClinicalTrials.gov Identifier: NCT02794571.
Collapse
Affiliation(s)
- Tae Won Kim
- Department of Oncology, Asan Medical Center, University of Ulsan, Seoul, Korea
| | | | | | | | - Johanna Bendell
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee
- now with F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Do-Youn Oh
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, South Korea
| | | | | | - Sandra P. D’Angelo
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Jayesh Desai
- Department of Cancer Medicine, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | | | - Zev Wainberg
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles
| | | | | | - Andrés Cervantes
- Department of Medical Oncology, Hospital Clinico Universitario de Valencia, Valencia, Spain
| | - Marta Gil-Martin
- Department of Medical Oncology, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Benjamin Wu
- Clinical Pharmacology, Genentech Inc, South San Francisco, California
| | | | - Yanling Jin
- Biostatistics, F. Hoffmann-La Roche Ltd, Mississauga, Ontario, Canada
| | - Tien Hoang
- Clinical Science, Genentech Inc, South San Francisco, California
| | - Diana Mendus
- Clinical Science, Genentech Inc, South San Francisco, California
| | - Xiaohui Wen
- Safety Science, Genentech Inc, South San Francisco, California
| | - Raymond Meng
- Clinical Science, Genentech Inc, South San Francisco, California
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
46
|
Genta S, Lajkosz K, Yee NR, Spiliopoulou P, Heirali A, Hansen AR, Siu LL, Saibil S, Stayner LA, Yanekina M, Sauder MB, Keshavarzi S, Salawu A, Vornicova O, Butler MO, Bedard PL, Razak ARA, Rottapel R, Chruscinski A, Coburn B, Spreafico A. Autoimmune PaneLs as PrEdictors of Toxicity in Patients TReated with Immune Checkpoint InhibiTors (ALERT). J Exp Clin Cancer Res 2023; 42:276. [PMID: 37865776 PMCID: PMC10589949 DOI: 10.1186/s13046-023-02851-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Immune-checkpoint inhibitors (ICI) can lead to immune-related adverse events (irAEs) in a significant proportion of patients. The mechanisms underlying irAEs development are mostly unknown and might involve multiple immune effectors, such as T cells, B cells and autoantibodies (AutoAb). METHODS We used custom autoantigen (AutoAg) microarrays to profile AutoAb related to irAEs in patients receiving ICI. Plasma was collected before and after ICI from cancer patients participating in two clinical trials (NCT03686202, NCT02644369). A one-time collection was obtained from healthy controls for comparison. Custom arrays with 162 autoAg were used to detect IgG and IgM reactivities. Differences of median fluorescent intensity (MFI) were analyzed with Wilcoxon sign rank test and Kruskal-Wallis test. MFI 500 was used as threshold to define autoAb reactivity. RESULTS A total of 114 patients and 14 healthy controls were included in this study. irAEs of grade (G) ≥ 2 occurred in 37/114 patients (32%). We observed a greater number of IgG and IgM reactivities in pre-ICI collections from patients versus healthy controls (62 vs 32 p < 0.001). Patients experiencing irAEs G ≥ 2 demonstrated pre-ICI IgG reactivity to a greater number of AutoAg than patients who did not develop irAEs (39 vs 33 p = 0.040). We observed post-treatment increase of IgM reactivities in subjects experiencing irAEs G ≥ 2 (29 vs 35, p = 0.021) and a decrease of IgG levels after steroids (38 vs 28, p = 0.009). CONCLUSIONS Overall, these results support the potential role of autoAb in irAEs etiology and evolution. A prospective study is ongoing to validate our findings (NCT04107311).
Collapse
Affiliation(s)
- Sofia Genta
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Katherine Lajkosz
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Noelle R Yee
- Toronto General Research Institute, University Health Network Toronto, Toronto, ON, Canada
| | - Pavlina Spiliopoulou
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alya Heirali
- Toronto General Research Institute, University Health Network Toronto, Toronto, ON, Canada
| | - Aaron R Hansen
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Sam Saibil
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Lee-Anne Stayner
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Maryia Yanekina
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Maxwell B Sauder
- Division of Dematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sareh Keshavarzi
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Abdulazeez Salawu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Olga Vornicova
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Marcus O Butler
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Albiruni R Abdul Razak
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Robert Rottapel
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Bryan Coburn
- Toronto General Research Institute, University Health Network Toronto, Toronto, ON, Canada
| | - Anna Spreafico
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
47
|
Zhang ML, Li WX, Wang XY, Zhang H, Wu YL, Yang LQ, Chen XF, Zhang SQ, Chen YL, Feng KR, Tang JF. A gene expression profile-based approach to screen the occurrence and predisposed host characteristics of drug-induced liver injury: a case study of Psoralea corylifolia Linn. Front Chem 2023; 11:1259569. [PMID: 37867998 PMCID: PMC10588485 DOI: 10.3389/fchem.2023.1259569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the most common causes of a drug being withdrawn, and identifying the culprit drugs and the host factors at risk of causing DILI has become a current challenge. Recent studies have found that immune status plays a considerable role in the development of DILI. In this study, DILI-related differentially expressed genes mediated by immunoinflammatory cytokines were obtained from the Gene Expression Omnibus (GEO) database to predict the occurrence of DILI (named the DILI predictive gene set, DILI_PGS), and the predictability of the DILI_PGS was verified using the Connectivity Map (CMap) and LiverTox platforms. The results obtained DILI_PGS from the GEO database could predict 81.25% of liver injury drugs. In addition, the Coexpedia platform was used to predict the DILI_PGS-related characteristics of common host diseases and found that the DILI_PGS mainly involved immune-related diseases and tumor-related diseases. Then, animal models of immune stress (IS) and immunosuppressive (IP) were selected to simulate the immune status of the above diseases. Meanwhile, psoralen, a main component derived from Psoralea corylifolia Linn. with definite hepatotoxicity, was selected as an experimental drug with highly similar molecular fingerprints to three idiosyncratic hepatotoxic drugs (nefazodone, trovafloxacin, and nimesulide) from the same DILI_PGS dataset. The animal experiment results found a single administration of psoralen could significantly induce liver injury in IS mice, while there was no obvious liver function change in IP mice by repeatedly administering the same dose of psoralen, and the potential mechanism of psoralen-induced liver injury in IS mice may be related to regulating the expression of the TNF-related pathway. In conclusion, this study constructed the DILI_PGS with high accuracy to predict the occurrence of DILI and preliminarily identified the characteristics of host factors inducing DILI.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Wei-Xia Li
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Ya-Li Wu
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Liu-Qing Yang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Fei Chen
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Shu-Qi Zhang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ke-Ran Feng
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
| | - Jin-Fa Tang
- The Department of Pharmacy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, Zhengzhou, China
- Henan Provincial Key Laboratory for Clinical Pharmacy of Traditional Chinese Medicine, Zhengzhou, China
- Henan Province Engineering Research Center of Safety Evaluation and Risk Management of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
48
|
Chen Y, Gong L, Gu P, Hua Y, Sun Y, Ni S, Zhou X, Tang Z. Pan-immune-inflammation and its dynamics: predictors of survival and immune-related adverse events in patients with advanced NSCLC receiving immunotherapy. BMC Cancer 2023; 23:944. [PMID: 37803437 PMCID: PMC10557237 DOI: 10.1186/s12885-023-11366-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/04/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVES Pan-immune-inflammation value (PIV) is defined by the neutrophil, platelet, monocyte, and lymphocyte counts and is associated with immune-checkpoint inhibitor (ICI) therapy outcomes in advanced non-small cell lung cancer (aNSCLC). However, PIV is dynamic under therapy and its longitudinal assessment may help predict efficacy. This study investigated the impact of baseline PIV and its dynamics on ICI efficacy and its immune-related adverse events (irAEs). The study additionally attempted to understand the biological significance of PIV. PATIENTS AND METHODS This retrospective study analyzed the clinical data of 269 consecutive patients with aNSCLC. PIV was calculated at baseline and at weeks 3-4 to determine its association with overall survival (OS), progression-free survival (PFS), and irAEs. RESULTS Results revealed that low baseline PIV was positively correlated with the incidence of irAEs. Moreover, a low PIV at baseline was significantly associated with a prolonged PFS (median PFS: 10 vs. 7 months, p = 0.0005) and OS (median OS: 29 vs. 21 months, p < 0.0001). When the PIV at baseline and weeks 3-4 was considered together, its low dynamics correlated with a higher incidence of irAEs (p = 0.001), a longer PFS (median PFS, 9 vs. 6 months, p = 0.012), and a longer OS (median OS; 28 vs. 21 months, p = 0.002). CONCLUSION Thus, PIV at baseline and its dynamics are novel and potent predictors of irAEs, PFS, and OS in patients with aNSCLC receiving immunotherapy. Moreover, the PIV dynamics may be an effective, novel surrogate marker to dynamically observe the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yiqun Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Lingyan Gong
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Pengyang Gu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yiwen Hua
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Yingfang Sun
- Department of Pharmacy, Affiliated Hospital of Nantong University, Pharmacy School of Nantong University, Nantong, 226001, China
| | - Songshi Ni
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Xiaoyu Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Pharmacy School of Nantong University, Nantong, 226001, China.
| |
Collapse
|
49
|
Kiaie SH, Salehi-Shadkami H, Sanaei MJ, Azizi M, Shokrollahi Barough M, Nasr MS, Sheibani M. Nano-immunotherapy: overcoming delivery challenge of immune checkpoint therapy. J Nanobiotechnology 2023; 21:339. [PMID: 37735656 PMCID: PMC10512572 DOI: 10.1186/s12951-023-02083-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Immune checkpoint (ICP) molecules expressed on tumor cells can suppress immune responses against tumors. ICP therapy promotes anti-tumor immune responses by targeting inhibitory and stimulatory pathways of immune cells like T cells and dendritic cells (DC). The investigation into the combination therapies through novel immune checkpoint inhibitors (ICIs) has been limited due to immune-related adverse events (irAEs), low response rate, and lack of optimal strategy for combinatorial cancer immunotherapy (IMT). Nanoparticles (NPs) have emerged as powerful tools to promote multidisciplinary cooperation. The feasibility and efficacy of targeted delivery of ICIs using NPs overcome the primary barrier, improve therapeutic efficacy, and provide a rationale for more clinical investigations. Likewise, NPs can conjugate or encapsulate ICIs, including antibodies, RNAs, and small molecule inhibitors. Therefore, combining the drug delivery system (DDS) with ICP therapy could provide a profitable immunotherapeutic strategy for cancer treatment. This article reviews the significant NPs with controlled DDS using current data from clinical and pre-clinical trials on mono- and combination IMT to overcome ICP therapeutic limitations.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Salehi-Shadkami
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran
- Department of Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Marzieh Azizi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Cai L, Mao J, Wang H, Chen G, Xu X, Yuan Q, Chen W. Application of DNA-based hydrogels as drug delivery system for immunomodulatory therapy. J Drug Deliv Sci Technol 2023; 86:104677. [DOI: 10.1016/j.jddst.2023.104677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
|