1
|
Guendouz S, Kwiatek O, Kirtzalidou A, Katsifa A, Gianniou M, Ancuceanu C, Ghiță M, Mortasivu CL, Zdravkova A, Kostov I, Ivanova E, Bărbuceanu F, Tasioudi KE, Bataille A. Genomic analysis of peste des petits ruminants virus in Europe: Common origin for emergence in Greece, Romania, and Bulgaria. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 132:105774. [PMID: 40449822 DOI: 10.1016/j.meegid.2025.105774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/26/2025] [Accepted: 05/27/2025] [Indexed: 06/03/2025]
Abstract
Outbreaks of the highly pathogenic small ruminant disease peste des petits ruminants (PPR) were reported in Greece and Romania in July 2024, and central Bulgaria in November 2024. The origin and the link between these outbreaks are not clear. In this study, genome sequences of PPR virus were obtained from samples collected by veterinary authorities in the first farms notified as infected in the three European countries. Genomic analyses confirmed that the emergence of PPR across Europe has a common origin, pointing towards an introduction from Northern Africa, although additional sequencing from the virus currently circulating globally is needed to confirm this hypothesis. More sequencing from the different outbreaks in Europe could also help to resolve the pathway of PPR transmission between and within European countries. Multiple nucleotide and amino acid differences separate the genomes from Europe from other sequences, with potential impact on the functionality of viral proteins to be investigated.
Collapse
Affiliation(s)
- Samia Guendouz
- ASTRE, University of Montpellier, CIRAD, INRAE, F-34398 Montpellier, France; CIRAD, UMR ASTRE, F-34398 Montpellier, France
| | - Olivier Kwiatek
- ASTRE, University of Montpellier, CIRAD, INRAE, F-34398 Montpellier, France; CIRAD, UMR ASTRE, F-34398 Montpellier, France
| | - Aikaterini Kirtzalidou
- National Reference Laboratory for Peste des Petits Ruminants, Department of Molecular Diagnostics, FMD, Virological, Rickettsial & Exotic diseases, Directorate of Veterinary Center of Athens, Ministry of Rural Development and Food, 25, Neapoleos str, 15341, Agia Paraskevi, Athens, Greece
| | - Angeliki Katsifa
- National Reference Laboratory for Peste des Petits Ruminants, Department of Molecular Diagnostics, FMD, Virological, Rickettsial & Exotic diseases, Directorate of Veterinary Center of Athens, Ministry of Rural Development and Food, 25, Neapoleos str, 15341, Agia Paraskevi, Athens, Greece
| | - Maria Gianniou
- Animal Health Directorate, Directorate General of Veterinary Services, Ministry of Rural Development and Food, 47 Veranzerou street, 10438 Athens, Greece
| | | | - Mona Ghiță
- Institute for Diagnosis and Animal Health, Bucharest, Romania
| | | | - Anna Zdravkova
- Animal Health Department, Bulgarian Food Safety Agency, Sofia, Bulgaria
| | | | - Emilia Ivanova
- National Diagnostic and Research Veterinary Medical Institute, Sofia, Bulgaria
| | - Florica Bărbuceanu
- Institute for Diagnosis and Animal Health, Bucharest, Romania; Faculty of Veterinary Medicine, Bucharest, Romania
| | - Konstantia E Tasioudi
- National Reference Laboratory for Peste des Petits Ruminants, Department of Molecular Diagnostics, FMD, Virological, Rickettsial & Exotic diseases, Directorate of Veterinary Center of Athens, Ministry of Rural Development and Food, 25, Neapoleos str, 15341, Agia Paraskevi, Athens, Greece
| | - Arnaud Bataille
- ASTRE, University of Montpellier, CIRAD, INRAE, F-34398 Montpellier, France; CIRAD, UMR ASTRE, F-34398 Montpellier, France.
| |
Collapse
|
2
|
Wen B, Chang W, Yang L, Lv D, Wang L, Wang L, Xu Y, Hu J, Ding K, Xue Q, Qi X, Yang B, Wang J. The long noncoding RNA APR attenuates PPRV infection-induced accumulation of intracellular iron to inhibit membrane lipid peroxidation and viral replication. mBio 2025; 16:e0012725. [PMID: 40126010 PMCID: PMC11980570 DOI: 10.1128/mbio.00127-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 03/25/2025] Open
Abstract
Peste des petits ruminants virus (PPRV) is an important pathogen that has long been a significant threat to small ruminant productivity worldwide. Iron metabolism is vital to the host and the pathogen. However, the mechanism underlying host-PPRV interactions from the perspective of iron metabolism and iron-mediated membrane lipid peroxidation has not been reported thus far. In this study, we identified a novel host long-noncoding RNA (lncRNA), APR, that impairs PPRV infectivity by sponging miR-3955-5p, a negative microRNA (miRNA) that directly targets the gene encoding the ferritin-heavy chain 1 (FTH1) protein. Importantly, we demonstrated that PPRV infection causes aberrant cellular iron accumulation by increasing transferrin receptor (TFRC) expression and that iron accumulation induces reticulophagy and ferroptosis, which benefits PPRV replication. Moreover, PPRV infection enhanced the localization of cellular iron on the endoplasmic reticulum (ER) and caused ER membrane damage by promoting excess lipid peroxidation to induce reticulophagy. Interestingly, APR decreased PPRV infection-induced accumulation of intracellular Fe2+ via miR-3955-5p/FTH1 axis and ultimately inhibited reticulophagy and ferroptosis. Additionally, our results indicate that interferon regulatory factor 1 promotes APR transcription by positively regulating APR promoter activity after PPRV infection. Taken together, our findings revealed a new pattern of PPRV-host interactions, involving noncoding RNA regulation, iron metabolism, and iron-related membrane lipid peroxidation, which is critical for understanding the host defense against PPRV infection and the pathogenesis of PPRV.IMPORTANCEMany viruses have been demonstrated to engage in iron metabolism to facilitate their replication and pathogenesis. However, the mechanism by which PPRV interacts with host cells from the perspective of iron metabolism, or iron-mediated membrane lipid peroxidation, has not yet been reported. Our data provide the first direct evidence that PPRV infection induces aberrant iron accumulation to promote viral replication and reveal a novel host lncRNA, APR, as a regulator of iron accumulation by promoting FTH1 protein expression. In this study, PPRV infection increased cellular iron accumulation by increasing TFRC expression, and more importantly, iron overload increased viral infectivity as well as promoted ER membrane lipid peroxidation by enhancing the localization of cellular iron on the ER and ultimately induced ferroptosis and reticulophagy. Furthermore, a host factor, the lncRNA APR, was found to decrease cellular iron accumulation by sponging miR-3955-5p, which directly targets the gene encoding the FTH1 protein, thereby attenuating PPRV infection-induced ferroptosis and reticulophagy and inhibiting PPRV infection. Taken together, the results of the present study provide new insight into our understanding of host-PPRV interaction and pathogenesis from the perspective of iron metabolism and reveal potential targets for therapeutics against PPRV infection.
Collapse
Affiliation(s)
- Bo Wen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Wenchi Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Lulu Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Daiyue Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
- China Institute of Veterinary Drug Control, Beijing, Beijing, China
| | - Lizhen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Yanzhao Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Ke Ding
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, Beijing, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| | - Bo Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Khulape SA, Choudhary SS, Jyotsana B, Prakash V, Rakshit S, Sahoo A. Synonymous codon usage influences the transmission of peste des petits ruminants (PPR) virus in camels. Vet Res Commun 2024; 48:4043-4049. [PMID: 39167257 DOI: 10.1007/s11259-024-10503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Peste des petits ruminants virus (PPRV) is an infectious pathogen; causing highly contagious, acute febrile, and economically important disease of small ruminants. The virus is known to have intrinsic ability to adapt new hosts and to cross the species barrier. The incidence of PPR has already been reported in unusual host species such as camels, bovines, and wild animals from spill-over or natural infection. Still, there are elementary gaps in our knowledge of the extent of susceptibility of camel to PPRV and the adaptability of PPRV to camel. The present study delineates the potential role of preferential codon usage patterns responsible for adaptation, host immune evasion, and transmission of PPRV to unusual hosts like old world camel species namely, dromedary and bactrian camel. The results indicate codon usage of the PPRV genome is functioned by an interplay of mutational pressure and natural selection to exhort the adaptation and fitness of PPRV in probable hosts. The indices of natural selection like the relative codon deoptimization index (RCDI) and codon adaptation index (CAI) predict the ability of PPRV to adapt and evolve in camel species. The analysis also depicts the potential role of the CpG depletion mechanism employed by PPRV to evade host adaptive immune response. The report emphasizes the need for a comprehensive national PPR surveillance plan in unusual hosts like camels for the successful implementation of the PPR Global Eradication Programme (PPR- GEP).
Collapse
Affiliation(s)
| | | | - Basanti Jyotsana
- ICAR-National Research Centre on Camel, Bikaner, 334 001, Rajasthan, India
| | - Ved Prakash
- ICAR-National Research Centre on Camel, Bikaner, 334 001, Rajasthan, India
| | - Shantanu Rakshit
- ICAR-National Research Centre on Camel, Bikaner, 334 001, Rajasthan, India
| | - Artabandhu Sahoo
- ICAR-National Research Centre on Camel, Bikaner, 334 001, Rajasthan, India
| |
Collapse
|
4
|
Awaz S, Maqsood I, Rahman HU, Ali MI, Khan B, Muhammad G, Shah IA, Azam A, Hidayat A, Nizam AF. Molecular characterization of Peste des petits ruminants virus (PPRV) in sheep and goats and risk factors associated with it in selected districts of Khyber Pakhtunkhwa-Pakistan. Mol Biol Rep 2024; 51:1032. [PMID: 39352412 DOI: 10.1007/s11033-024-09910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Peste des Petits Ruminants (PPR) is an economically significant transboundary viral disease of sheep and goats caused by the PPRV virus, affecting annual losses of 1.45-2.10 billion US dollars globally. We designed the current study to evaluate the positive cases, molecular characterization, phylogenetic analysis, and risk factors correlated with the disease in various districts of Khyber Pakhtunkhwa, Pakistan, with the aim of contributing to these strategies. METHODS AND RESULTS A total of 384 samples from three selected districts, i.e., Peshawar, Charsadda and Chitral (n = 128 each), were collected, and the virus was investigated by using the sandwich ELISA, while the N gene of the virus was used as a target for molecular detection via RT-PCR. The confirmed samples were then sequenced, and phylogenetic analysis was performed. According to our findings, the highest positive cases was found in district Peshawar (50.87%), followed by Charsadda and Chitral (24.56%), respectively, while risk factor analysis showed that certain categories, such as species, sex, and age less than two years, have higher risk (P < 0.05) in contrast to their respective categories. Furthermore, sequencing and phylogenetic analysis of representative samples showed that the PPRV strains in the current study clustered in lineage IV, which is circulating in the small ruminant population of Asia, the Middle East, and African countries. Comparative residue analysis highlighted the mutation by representing 242 variable sites out of 371 locations. CONCLUSIONS PPRV has foremost importance in Pakistan because the virus was detected in a considerable number of samples, and most of which were sourced from subsidiary areas where veterinary services are not prioritized.
Collapse
Affiliation(s)
- Saira Awaz
- Department of Zoology, Shaheed Benazir Bhutto Women University, Charsadda Road, Peshawar, Pakistan
| | - Iram Maqsood
- Department of Zoology, Shaheed Benazir Bhutto Women University, Charsadda Road, Peshawar, Pakistan.
| | - Hanif Ur Rahman
- Virology Section, Center of Microbiology and Biotechnology, Veterinary Research Institute Bacha Khan Chowk, Peshawar, Pakistan
| | - Muhammad Ijaz Ali
- Center of Microbiology and Biotechnology, Veterinary Research Institute Bacha Khan Chowk, Peshawar, Pakistan
| | - Baitullah Khan
- Center of Microbiology and Biotechnology, Veterinary Research Institute Bacha Khan Chowk, Peshawar, Pakistan
| | - Gul Muhammad
- Center of Microbiology and Biotechnology, Veterinary Research Institute Bacha Khan Chowk, Peshawar, Pakistan
| | - Imtiaz Ali Shah
- Center of Microbiology and Biotechnology, Veterinary Research Institute Bacha Khan Chowk, Peshawar, Pakistan
| | - Asima Azam
- Department of Zoology, Shaheed Benazir Bhutto Women University, Charsadda Road, Peshawar, Pakistan
| | - Ayesha Hidayat
- Department of Zoology, Shaheed Benazir Bhutto Women University, Charsadda Road, Peshawar, Pakistan
| | - Almas Faryal Nizam
- Department of Zoology, Shaheed Benazir Bhutto Women University, Charsadda Road, Peshawar, Pakistan
| |
Collapse
|
5
|
Bayir T, Gürcan İS. Space-time cluster analysis and maximum entropy modeling of Peste des petits ruminants (PPR) in Türkiye. Trop Anim Health Prod 2024; 56:290. [PMID: 39331161 DOI: 10.1007/s11250-024-04180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Peste des petits ruminants (PPR) is an economically important highly serious transboundary disease that mainly occurs in small ruminants such as sheep and goats. The aim of this study was to identify the probability of risk and and space-time clusters of Peste des Petits Ruminants (PPR) in Türkiye. The occurrence of PPR in Türkiye from 2017 to 2019 was investigated in this study using spatial analysis based on geographic information system (GIS). Between these dates, it was determined that 337 outbreaks and 18,467 cases. The highest number of outbreaks were detected in the Central Anatolia region. It was determined that PPR is seen more intensely in sheep compared to goats in Türkiye. In this study, 34 environmental variables (19 bioclimatic, 12 precipitation, altitude and small livestock density variables) were used to explore the environmental influences on PPR outbreak by maximum entropy modeling (Maxent). The clusters of PPR in Türkiye were identified using the retrospective space-time scan data that were computed using the space-time permutation model. A PPR prediction model was created using data on PPR outbreaks combination with environmental variables. Nineteen significant (p < 0.001) space-time clusters were determined. It was discovered that the variables altitude, sheep density, precipitation in june, and average temperature in the warmest season made important contributions to the model and the PPR outbreak may be strongly related with these variables. In this study, PPR in Türkiye has been characterized significantly spatio-temporal and enviromental factors. In this context, the disease pattern and obtained these findings will contribute to policymakers in the prevention and control of the disease.
Collapse
Affiliation(s)
- Tuba Bayir
- Department of Biometrics, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye, Turkey.
| | - İsmayil Safa Gürcan
- Department of Biostatistics, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye, Turkey
| |
Collapse
|
6
|
Sun M, Wang C, Luo H, Chen Y, Qu G, Chen J, Li L, Zhang M, Xue Q. Development and characterization of a novel nanobody with SRMV neutralizing activity. Microb Cell Fact 2024; 23:45. [PMID: 38341572 PMCID: PMC10858559 DOI: 10.1186/s12934-024-02311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Peste des petits ruminants (PPR) is an acute, contact infectious disease caused by the small ruminant morbillivirus (SRMV), and its morbidity in goats and sheep can be up to 100% with significant mortality. Nanobody generated from camelid animals such as alpaca has attracted wide attention because of its unique advantages compared with conventional antibodies. The main objective of this study was to produce specific nanobodies against SRMV and identify its characteristics. To obtain the coding gene of SRMV-specific nanobodies, we first constructed an immune phage-displayed library from the VHH repertoire of alpaca that was immunized with SRMV-F and -H proteins. By using phage display technology, the target antigen-specific VHHs can be obtained after four consecutive rounds of biopanning. Results showed that the size of this VHH library was 2.26 × 1010 CFU/mL and the SRMV-F and -H specific phage particles were greatly enriched after four rounds of biopanning. The positive phage clones were selected and sequenced, and total of five independent different sequences of SRMV-specific nanobodies were identified. Subsequently, the DNA fragments of the five nanobodies were cloned into E. coli BL21(DE3), respectively, and three of them were successfully expressed and purified. Specificity and affinity towards inactivated SRMV of these purified nanobodies were then evaluated using the ELISA method. Results demonstrated that NbSRMV-1-1, NbSRMV-2-10, and NbSRMV-1-21 showed no cross-reactivity with other antigens, such as inactivated BTV, inactivated FMDV, His-tag labeled protein, and BSA. The ELISA titer of these three nanobodies against inactivated SRMV was up to 1:1000. However, only NbSRMV-1-21 displayed SRMV neutralizing activity at a maximum dilution of 1:4. The results indicate that the nanobodies against SRMV generated in this study could be useful in future applications. This study provided a novel antibody tool and laid a foundation for the treatment and detection of SRMV.
Collapse
Affiliation(s)
- Miao Sun
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Changjiang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Huaye Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yanfei Chen
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jian Chen
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Ling Li
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China
| | - Min Zhang
- Tech-Bank Food Corporation Limited, Nanjing, China
| | - Qinghong Xue
- Department of Viral Biologics, China Institute of Veterinary Drug Control, Beijing, China.
| |
Collapse
|
7
|
Carrera-Faja L, Yesson C, Jones BA, Benfield CTO, Kock RA. An Integrated Ecological Niche Modelling Framework for Risk Mapping of Peste des Petits Ruminants Virus Exposure in African Buffalo ( Syncerus caffer) in the Greater Serengeti-Mara Ecosystem. Pathogens 2023; 12:1423. [PMID: 38133306 PMCID: PMC10747384 DOI: 10.3390/pathogens12121423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious viral disease of small ruminants that threatens livelihoods and food security in developing countries and, in some cases, wild ungulate species conservation. The Greater Serengeti-Mara Ecosystem (GSME) encompasses one of the major wildlife populations of PPR virus (PPRV)-susceptible species left on earth, although no clinical disease has been reported so far. This study aimed to gain further knowledge about PPRV circulation in the GSME by identifying which factors predict PPRV seropositivity in African buffalo (Syncerus caffer). Following an ecological niche modeling framework to map host-pathogen distribution, two models of PPRV exposure and buffalo habitat suitability were performed using serological data and buffalo censuses. Western Maasai Mara National Reserve and Western Serengeti National Park were identified as high-risk areas for PPRV exposure in buffalo. Variables related to wildlife-livestock interaction contributed to the higher risk of PPRV seropositivity in buffalo, providing supportive evidence that buffalo acquire the virus through contact with infected livestock. These findings can guide the design of cost-effective PPRV surveillance using buffalo as a sentinel species at the identified high-risk locations. As more intensive studies have been carried out in Eastern GSME, this study highlights the need for investigating PPRV dynamics in Western GSME.
Collapse
Affiliation(s)
- Laura Carrera-Faja
- Wildlife Conservation Medicine Research Group, Departament de Medicina i Cirurgia Animal, Universitat Autònoma de Barcelona, Edifici V, Travessera dels Turons, 08193 Cerdanyola del Vallès, Spain
| | - Chris Yesson
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK;
| | - Bryony A. Jones
- WOAH Collaborating Centre in Risk Analysis and Modelling, Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, Surrey KT15 3NB, UK;
| | - Camilla T. O. Benfield
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy;
| | - Richard A. Kock
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
8
|
Crofts F, Al-Majali A, Gerring D, Gubbins S, Hicks H, Campbell D, Wilson S, Chesang L, Stuke K, Cordel C, Parida S, Batten C. Evaluation of a novel liquid stabilised peste des petits ruminants vaccine: Safety and immunogenic efficacy in sheep and goats in the field in Jordan. Vaccine X 2023; 15:100363. [PMID: 37583870 PMCID: PMC10423892 DOI: 10.1016/j.jvacx.2023.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
A novel liquid stabiliser was tested with the Nigeria 75/1 Peste des Petit Ruminants (PPR) vaccine over two field studies carried out in sheep and goats. PPR seronegative sheep and goats were selected from farms surrounding Amman, Jordan and were vaccinated with either a stabilised liquid PPR vaccine that had been formulated 3 months prior to use and stored at 2-8 °C or a reconstituted lyophilised PPRV vaccine reconstituted on the day of vaccination. Sera were taken immediately before vaccination and at approximately 1.5, 3 and 6 months following vaccination, then subsequently tested using IDVet ID Screen® PPR competition ELISA and Serum Neutralisation tests to determine the presence of PPRV anti-N antibodies and neutralising antibodies, respectively. It was observed that the liquid-stabilised vaccine was able to provide comparable antibody responses in both species to those induced by the lyophilized vaccine. The ability to store liquid stabilised PPRV vaccine for field use would positively impact PPRV eradication efforts.
Collapse
Affiliation(s)
- Fraser Crofts
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| | - Ahmad Al-Majali
- Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
- Subregional Office for the Gulf Cooperation Council States and Yemen, Food and Agriculture Organization of the United Nations (FAO), Abu Dhabi 62072, United Arab Emirates
| | - David Gerring
- Arecor Therapeutics PLC, Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Simon Gubbins
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| | - Hayley Hicks
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| | - Dana Campbell
- Dana Campbell Consultants Ltd, 15 Justice Park, Oxton, Lauderdale TD2 6NZ, United Kingdom
| | - Steve Wilson
- GALVmed, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
- GALVmed, Doherty Building, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, United Kingdom
| | - Lizzie Chesang
- GALVmed, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Kristin Stuke
- GALVmed, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Claudia Cordel
- GALVmed, International Livestock Research Institute (ILRI), Swing One, Naivasha Road, Nairobi, Kenya
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom
| |
Collapse
|
9
|
Milovanović M, Dietze K, Wernery U, Hoffmann B. Investigation of Potency and Safety of Live-Attenuated Peste des Petits Ruminant Virus Vaccine in Goats by Detection of Cellular and Humoral Immune Response. Viruses 2023; 15:1325. [PMID: 37376624 DOI: 10.3390/v15061325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/27/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The peste des petits ruminant (PPR) virus is a transboundary virus found in small domestic ruminants that causes high morbidity and mortality in naive herds. PPR can be effectively controlled and eradicated by vaccinating small domestic ruminants with a live-attenuated peste des petits ruminant virus (PPRV) vaccine, which provides long-lasting immunity. We studied the potency and safety of a live-attenuated vaccine in goats by detecting their cellular and humoral immune responses. Six goats were subcutaneously vaccinated with a live-attenuated PPRV vaccine according to the manufacturer's instructions, and two goats were kept in contact. Following vaccination, the goats were monitored daily, and we recorded their body temperature and clinical score. Heparinized blood and serum were collected for a serological analysis, and swab samples and EDTA blood were collected to detect the PPRV genome. The safety of the used PPRV vaccine was confirmed by the absence of PPR-related clinical signs, a negative pen-side test, a low virus genome load as detected with RT-qPCR on the vaccinated goats, and the lack horizontal transmission between the in-contact goats. The strong humoral and cellular immune responses detected in the vaccinated goats showed that the live-attenuated PPRV vaccine has a strong potency in goats. Therefore, live-attenuated vaccines against PPR can be used to control and eradicate PRR.
Collapse
Affiliation(s)
- Milovan Milovanović
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Klaas Dietze
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates
| | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| |
Collapse
|
10
|
Schmitz KS, Eblé PL, van Gennip RGP, Maris-Veldhuis MA, de Vries RD, van Keulen LJM, de Swart RL, van Rijn PA. Pathogenesis of wild-type- and vaccine-based recombinant peste des petits ruminants virus (PPRV) expressing EGFP in experimentally infected domestic goats. J Gen Virol 2023; 104. [PMID: 36757863 DOI: 10.1099/jgv.0.001828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Peste des petits ruminants virus (PPRV) is a highly contagious morbillivirus related to measles and canine distemper virus, mostly affecting small ruminants. The corresponding PPR disease has a high clinical impact in goats and is characterized by fever, oral and nasal erosions, diarrhoea and pneumonia. In addition, massive infection of lymphoid tissues causes lymphopaenia and immune suppression. This results in increased susceptibility to secondary bacterial infections, explaining the observed high mortality in some outbreaks. We studied the pathogenesis of PPR by experimental inoculation of Dutch domestic goats with a recombinant virulent PPRV strain modified to express EGFP and compared it to an EGFP-expressing vaccine strain of PPRV. After intratracheal inoculation with virulent PPRV, animals developed fever, viraemia and leucopaenia, and shed virus from the respiratory and gastro-intestinal tracts. Macroscopic evaluation of fluorescence at the peak of infection 7 days post-inoculation (dpi) showed prominent PPRV infection of the respiratory tract, lymphoid tissues, gastro-intestinal tract, mucosae and skin. Flow cytometry of PBMCs collected over time demonstrated a cell-associated viraemia mediated by infected lymphocytes. At 14 dpi, pathognomonic zebra stripes were detected in the mucosa of the large intestine. In contrast, vaccine strain-inoculated goats remained largely macroscopically fluorescence negative and did not present clinical signs. A low-level viraemia was detected by flow cytometry, but at necropsy no histological lesions were observed. Animals from both groups seroconverted as early as 7 dpi and sera efficiently neutralized virulent PPRV in vitro. Combined, this work presents a study of the pathogenesis of wild type- and vaccine-based PPRV in its natural host. This study shows the strength of recombinant EGFP-expressing viruses in fluorescence-guided pathogenesis studies.
Collapse
Affiliation(s)
| | - Phaedra L Eblé
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | | | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands
| | - Lucien J M van Keulen
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre of Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Oyedele HA, Bodjo CS, Diallo H, Gelaw HB, Baziki JDD, Chitsungo E, Boukary CRM, Fikru H, Oladosu GA, Nwankpa N. Evaluation of monoclonal antibodies in immunofluorescence assay for rapid quality control of Peste des petits ruminants (PPR) vaccine. Small Rumin Res 2023. [DOI: 10.1016/j.smallrumres.2022.106865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Milovanović M, Dietze K, Joseph S, Wernery U, Kumar A, Kinne J, Patteril NG, Hoffmann B. The Experimental Infection of Goats with Small Ruminant Morbillivirus Originated from Barbary Sheep. Pathogens 2022; 11:pathogens11090991. [PMID: 36145423 PMCID: PMC9502496 DOI: 10.3390/pathogens11090991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Peste des Petits Ruminants (PPR) is a transboundary contagious disease in domestic small ruminants. Infections with the small ruminant morbillivirus (SRMV) were regularly found in wildlife, with unknown roles in PPR epidemiology. In order to access infection dynamics and virulence, we infected German Edelziege goats intranasally with a SRMV isolate that originated from Barbary sheep from an outbreak in the United Arab Emirates. Six goats were infected with cell culture-isolated SRMV, and two goats were kept in contact. Goats were daily monitored, and clinical score was recorded. EDTA blood, nasal, conjunctival and rectal swab samples were collected for the detection of SRMV genome load and serum for serological analysis. Short incubation period in infected (4 to 5 dpi) as well as in contact goats (9 dpi) was followed by typical clinical signs related to PPR. The highest viral load was detectable in conjunctival and nasal swab samples with RT-qPCR and rapid pen-side test. Specific antibodies were detected at 7 dpi in infected and 14 dpi in contact goats. In general, high virulence and easy transmission of the virus originated from wildlife in domestic goats was observed. The virus isolate belongs to Asian lineage IV, genetically related to Chinese and Mongolian strains.
Collapse
Affiliation(s)
- Milovan Milovanović
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Klaas Dietze
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
| | - Sunitha Joseph
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates
| | - Ajith Kumar
- Hatta Conservation Area, Q4W5+3JJ-Unnamed Road, Dubai P.O. Box 597, United Arab Emirates
| | - Joerg Kinne
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates
| | | | - Bernd Hoffmann
- Friedrich-Loeffler-Institut, Südufer 10, 17943 Greifswald-Insel Riems, Germany
- Correspondence:
| |
Collapse
|
13
|
Peste des Petits Ruminants in Central and Eastern Asia/West Eurasia: Epidemiological Situation and Status of Control and Eradication Activities after the First Phase of the PPR Global Eradication Programme (2017–2021). Animals (Basel) 2022; 12:ani12162030. [PMID: 36009619 PMCID: PMC9404448 DOI: 10.3390/ani12162030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Peste des petits ruminants (PPR) is a highly contagious viral disease of domestic and wild small ruminants. The disease is endemic to large parts of Africa, the Middle East and Asia and causes severe socioeconomic losses, especially in developing countries reliant on small ruminant value chains. Currently, PPR is the only animal disease targeted by the Global Eradication Programme (PPR GEP), which aims to eradicate the disease by 2030. Following the end of the first five-year phase of the PPR GEP, the goal of this review is to provide an update on the status of the eradication progress in one of the nine regions targeted for coordinated action in the PPR Global Control and Eradication Strategy, denominated Central Asia/West Eurasia. In addition to the original nine countries, regional meetings and activities have involved four additional countries based on shared epidemiological features, which are also reviewed here. The considered area spans from Eastern Europe to East Asia and features remarkable variability in terms of both PPR presence and enacted control efforts. The achievements and constraints encountered at regional and national levels are discussed, thus providing useful data for tailoring the next steps of the eradication programme to the peculiarities of the region. Abstract Peste des petits ruminants (PPR) is a highly contagious infectious disease of small ruminants caused by peste des petits ruminants virus (PPRV). PPR poses a significant threat to sheep and goat systems in over 65 endemic countries across Africa, the Middle East and Asia. It is also responsible for devastating outbreaks in susceptible wildlife, threatening biodiversity. For these reasons, PPR is the target of the Global Eradication Programme (PPR GEP), launched in 2016, which is aimed at eradicating the disease by 2030. The end of the first five-year phase of the PPR GEP (2017–2021) provides an ideal opportunity to assess the status of the stepwise control and eradication process. This review analyses 13 countries belonging to Eastern Europe, Transcaucasia, and Central and East Asia. Substantial heterogeneity is apparent in terms of PPR presence and control strategies implemented by different countries. Within this region, one country is officially recognised as PPR-free, seven countries have never reported PPR, and two have had no outbreaks in the last five years. Therefore, there is real potential for countries in this region to move forward in a coordinated manner to secure official PPR freedom status and thus reap the trade and socioeconomic benefits of PPR eradication.
Collapse
|
14
|
Urbanization and Habitat Characteristics Associated with the Occurrence of Peste des Petits Ruminants in Africa. SUSTAINABILITY 2022. [DOI: 10.3390/su14158978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
As a highly contagious viral disease, peste des petits ruminants (PPR) can cause severe socio-economic impacts in developing countries due to its threat to sheep and goat production. Previous studies have identified several risk factors for PPR at the individual or herd level. However, only a few studies explored the impacts of landscape factors on PPR risk, particularly at a regional scale. Moreover, risk factor analyses in Africa usually focused on sub-Saharan Africa while neglecting northern Africa. Based on regional occurrence data during 2006–2018, we here explored and compared the risk factors, with a focus on factors related to ruminant habitats, for the occurrence of PPR in sub-Saharan and northern Africa. Our results demonstrated different risk factors in the two regions. Specifically, habitat fragmentation was negatively correlated with PPR occurrence in sub-Saharan Africa, while positively correlated with PPR occurrence in northern Africa. Moreover, urbanization showed a positive association with PPR occurrence in sub-Saharan Africa. Our study is among the first, to our knowledge, to compare the risk factors for PPR in sub-Saharan and northern Africa and contributes to a better understanding of the effects of habitat characteristics on PPR occurrence at a regional scale.
Collapse
|
15
|
Isolation and Molecular Characterization of Peste des Petits Ruminants Virus from Outbreaks in Southern Ethiopia, 2020. Adv Virol 2022; 2022:5329898. [PMID: 35677589 PMCID: PMC9168182 DOI: 10.1155/2022/5329898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/18/2022] Open
Abstract
Peste des petits ruminants (PPR) is one of the most important transboundary diseases of small ruminants. In this study, nasal and oral swabs (n = 24) were collected from sheep (n = 7) and goats (n = 17) with clinical signs in southern Ethiopia in March 2020. PPR virus was isolated on Vero dog cells expressing the signaling lymphocyte activation molecule (VDS) and screened using RT-qPCR. Positive samples were confirmed by conventional RT-PCR followed by sequencing of a partial nucleoprotein (N) gene segment. Results revealed that 54% (n = 13/24) of the tested samples were PPRV-positive Phylogenetic analysis revealed that the viruses belonged to lineage IV and lineage II. The lineage IV viruses were similar, although not identical, to other lineage IV viruses previously reported in Ethiopia and other East African countries while the lineage II viruses have been reported for the first time in Ethiopia showed a high nucleotide identity (99.06%) with the vaccine (Nigeria 75/1) that is currently used in Ethiopia for the prevention of PPR. Further investigations are therefore recommended in order to fully understand the true nature of the lineage II PPRVs in Ethiopia.
Collapse
|
16
|
Easy Express Extraction (Triple E)-A Universal, Electricity-Free Nucleic Acid Extraction System for the Lab and the Pen. Microorganisms 2022; 10:microorganisms10051074. [PMID: 35630515 PMCID: PMC9144652 DOI: 10.3390/microorganisms10051074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/27/2022] Open
Abstract
The complexity of the current nucleic acid isolation methods limits their use outside of the modern laboratory environment. Here, we describe a fast and affordable method (easy express extraction, called TripleE) as a centrifugation-free and electricity-free nucleic acid isolation method. The procedure is based on the well-established magnetic-bead extraction technology using an in-house self-made magnetic 8-channel and a rod cover. With this extraction system, nucleic acids can be isolated with two simple and universal protocols. One method was designed for the extraction of the nucleic acid in resource-limited “easy labs”, and the other method can be used for RNA/DNA extraction in the field for so-called molecular “pen-side tests”. In both scenarios, users can extract up to 8 samples in 6 to 10 min, without the need for any electricity, centrifuges or robotic systems. In order to evaluate and compare both methods, clinical samples from various viruses (African swine fever virus; lumpy skin disease virus; peste des petits ruminants virus; bluetongue virus), matrices and animals were tested and compared with standard magnetic-bead nucleic acid extraction technology based on the KingFisher platform. Hence, validation data were generated by evaluating two DNA viruses as well as one single-stranded and one double-stranded RNA virus. The results showed that the fast, easy, portable and electricity-free extraction protocols allowed rapid and reliable nucleic acid extraction for a variety of viruses and most likely also for other pathogens, without a substantial loss of sensitivity compared to standard procedures. The speed and simplicity of the methods make them ideally suited for molecular applications, both within and outside the laboratory, including limited-resource settings.
Collapse
|
17
|
Nooruzzaman M, Akter MN, Begum JA, Begum S, Parvin R, Giasuddin M, Islam MR, Lamien CE, Cattoli G, Dundon WG, Chowdhury EH. Molecular insights into peste des petits ruminants virus identified in Bangladesh between 2008 and 2020. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105163. [PMID: 34848354 DOI: 10.1016/j.meegid.2021.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
An in-depth knowledge of the molecular evolution of the peste des petits ruminants virus (PPRV) is critical for the success of the current global eradication program. For this reason, a molecular evolutionary analysis of PPRVs circulating in Bangladesh over a decade (2008-2020) was performed. The complete genome sequencing of three PPRV isolates from 2008 (BD2), 2015 (BD12) and 2017 (BD17) as well as full length nucleocapsid (N), matrix (M) and fusion (F) gene sequencing of seven more samples from 2015 to 2020 was performed. Phylogenetic analysis classified all ten PPRVs from Bangladesh as members of lineage IV and showed that they were closely related to PPRV strains detected in China and Tibet during 2007-2008, and India during 2014-2018. Time scale Bayesian Maximum Clade Credibility (MCC) phylogenetic analysis of the three complete genomes revealed a mean Time to Most Recent Common Ancestor (TMRCA) of 2000. Comparative deduced amino acid residue analysis at various functional motifs of PPRVs related to virus structure and function, virulence and host adaptation, receptor binding sites and polymerase activity revealed conserved residues among the PPRVs from Bangladesh. In total sixteen epitopes were predicted from four immunogenic proteins i.e. N, M, F and haemagglutinin (H). Interestingly, the predicted epitopes from the N and M proteins shared conserved epitopes with two vaccine strains currently being used, indicating that the strains from Bangladesh could be potentially used as alternative local vaccines.
Collapse
Affiliation(s)
- Mohammed Nooruzzaman
- Department of Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Nazia Akter
- Department of Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jahan Ara Begum
- Department of Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shahana Begum
- Department of Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; Department of Physiology, Faculty of Veterinary, Animal & Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Giasuddin
- Animal Health Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Charles E Lamien
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - William G Dundon
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | |
Collapse
|
18
|
Li L, Wu J, Cao X, He J, Liu X, Shang Y. Analysis and Sequence Alignment of Peste des Petits Ruminants Virus ChinaSX2020. Vet Sci 2021; 8:vetsci8110285. [PMID: 34822658 PMCID: PMC8623451 DOI: 10.3390/vetsci8110285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
The peste des petits ruminants virus (PPRV) mainly infects goats and sheep and causes a highly contagious disease, PPR. Recently, a PPRV strain named ChinaSX2020 was isolated and confirmed following an indirect immunofluorescence assay and PCR using PPRV-specific antibody and primers, respectively. A sequencing of the ChinaSX2020 strain showed a genome length of 15,954 nucleotides. A phylogenetic tree analysis showed that the ChinaSX2020 genome was classified into lineage IV of the PRRV genotypes. The genome of the ChinaSX2020 strain was found to be closely related to PPRVs isolated in China between 2013 and 2014. These findings revealed that not a variety of PRRVs but similar PPRVs were continuously spreading and causing sporadic outbreaks in China.
Collapse
|
19
|
Mahapatra M, Neto MM, Khunti A, Njeumi F, Parida S. Development and Evaluation of a Nested PCR for Improved Diagnosis and Genetic Analysis of Peste des Petits Ruminants Virus (PPRV) for Future Use in Nascent PPR Eradication Programme. Animals (Basel) 2021; 11:3170. [PMID: 34827902 PMCID: PMC8614562 DOI: 10.3390/ani11113170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious viral disease of small ruminants caused by PPR virus (PPRV). PPR is endemic in Asia, the Middle East and across large areas of Africa and is currently targeted for global eradication by 2030. The virus exists as four different lineages that are usually limited to specific geographical areas. However, recent reports of spread of PPRV, in particular of lineage IV viruses to infection-free countries and previously PPR endemic areas are noteworthy. A rapid and accurate laboratory diagnosis and reports on its epidemiological linkage for virus spread play a major role in the effective control and eradication of the disease. Currently, molecular assays, including conventional reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR (RT-qPCR) are usually used for diagnosis of PPR while the sequencing of part of the nucleocapsid gene is usually carried out for the viral lineage identification. However, it is difficult to diagnose and sequence the genetic material if the animal excreted a low level of virus at the initial stage of infection or if the PPRV is degraded during the long-distance transportation of samples to the reference laboratories. This study describes the development of a novel nested RT-PCR assay for the detection of the PPRV nucleic acid by targeting the N-protein gene, compares the performance of the assay with the existing conventional RT-PCR and also provides good-quality DNA suitable for sequencing in order to identify circulating lineages. The assay was evaluated using cell culture propagated PPRVs, field samples from clinically infected animals and samples from experimentally infected animals encompassing all four lineages (I-IV) of PPRV. This assay provides a solution with an easy, accurate, rapid and cost-effective PPR diagnostic and partial genome sequencing for use in resource-limited settings.
Collapse
Affiliation(s)
- Mana Mahapatra
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (M.M.); (M.M.N.); (A.K.)
| | - Martin Mayora Neto
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (M.M.); (M.M.N.); (A.K.)
| | - Asha Khunti
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (M.M.); (M.M.N.); (A.K.)
| | - Felix Njeumi
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy;
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (M.M.); (M.M.N.); (A.K.)
- Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy;
| |
Collapse
|
20
|
Amanova Z, Zhugunissov K, Barakbayev K, Kondybaeva Z, Sametova Z, Shayakhmetov Y, Kaissenov D, Dzhekebekov K, Zhunushov A, Abduraimov Y, Zakarya K, Bulatov Y. Duration of Protective Immunity in Sheep Vaccinated with a Combined Vaccine against Peste des Petits Ruminants and Sheep Pox. Vaccines (Basel) 2021; 9:vaccines9080912. [PMID: 34452037 PMCID: PMC8402523 DOI: 10.3390/vaccines9080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
In this study, the ability of the combined vaccine against peste des petits ruminants (PPR) (Nigeria strain 75/1) and sheep pox (SPP) (NISKhI strain) to form a protective immune response for 12 months in Kazakh breed fine-fleeced sheep aged 6–12 months was demonstrated. The duration of the protective immunity of immunized sheep from PPR and from SPP was evaluated using a serum neutralization test (SNT), followed by testing of the resistance of vaccinated sheep to infection with the field strain Kentau-7 of the PPRV and the virulent strain A of the SPPV. The PPR antibody response was additionally measured by c-ELISA. A single immunization of sheep with a combined vaccine in a volume of 2.0 mL, containing the PPR and SPP vaccine viruses in the titers of 103.0 TCID50/mL, provided reliable protection of animals from two infections simultaneously for 12 months (observation period). At the same time, in sheep immunized with the combined vaccine, antibodies of PPRV persisted for up to 12 months, with slight fluctuations. The combined vaccine induced 100% clinical protection against the field strain of PPRV and the virulent strain of SPPV in immunized sheep for up to 12 months, while unvaccinated animals became ill with the manifestation of clinical signs specific to PPRV and SPPV.
Collapse
Affiliation(s)
- Zhanat Amanova
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
- Correspondence: ; Tel.: +7-(701)-415-63-79
| | - Kuandyk Zhugunissov
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| | - Kainar Barakbayev
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| | - Zhanat Kondybaeva
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| | - Zhanna Sametova
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| | - Yeraly Shayakhmetov
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| | - Dastan Kaissenov
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| | - Kuanysh Dzhekebekov
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| | - Asankadyr Zhunushov
- Institute of Biotechnology, National Academy of Sciences of the Kyrgyz Republic, Bishkek 720071, Kyrgyzstan;
| | - Yergaly Abduraimov
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| | - Kunsulu Zakarya
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| | - Yerbol Bulatov
- Research Institute Biological Safety Problems, Gvardeiskiy 080409, Kazakhstan; (K.Z.); (K.B.); (Z.K.); (Z.S.); (Y.S.); (D.K.); (K.D.); (Y.A.); (K.Z.); (Y.B.)
| |
Collapse
|
21
|
Fakri FZ, Bamouh Z, Elmejdoub S, Elkarhat Z, Tadlaoui K, Chen W, Bu Z, Elharrak M. Long term immunity against Peste Des Petits Ruminants mediated by a recombinant Newcastle disease virus vaccine. Vet Microbiol 2021; 261:109201. [PMID: 34399299 DOI: 10.1016/j.vetmic.2021.109201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
Peste des Petits Ruminants (PPR) is a highly contagious and often fatal disease of sheep and goats. Conventional live vaccines have been successfully used in endemic countries however, there are not completely safe and not allowing differentiation between vaccinated and infected animals (DIVA). In this study, a recombinant Newcastle disease virus (NDV) expressing the hemagglutinin of PPRV (NDV-PPRVH) was evaluated on small ruminants by serology response in sheep and goats, experimental infection in goats and immunity duration in sheep. The NDV-PPRVH vaccine injected twice at 28 days' interval, provided full protection against challenge with a virulent PPR strain in the most sensitive species and induced significant neutralizing antibodies. Immunological response in goats was slightly higher than sheep and the vaccine injected at 108.0 50 % egg infective dose/mL allowed anti-PPRV antibodies that lasted at least 12 months as shown by antibody response monitoring in sheep. The NDV vector presented a limited replication in the host and vaccinated animals remained negative when tested by cELISA based on PPRV nucleoprotein allowing DIVA. This recombinant vaccine appears to be a promising candidate in a free at risk countries and may be an important component of the global strategy for PPR eradication.
Collapse
Affiliation(s)
- F Z Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - S Elmejdoub
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Z Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - W Chen
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - Z Bu
- Key Laboratory of Veterinary Public Health of Ministry of Agriculture and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, 150001, China.
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
22
|
Ahmed S, Hosny WAEW, Mahmoud M, Mahmoud MAEF. Isolation and identification of peste des petits ruminants virus from goats in Egyptian governorates. Vet World 2021; 14:926-932. [PMID: 34083942 PMCID: PMC8167518 DOI: 10.14202/vetworld.2021.926-932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim The peste des petits ruminants (PPR) is a highly contagious disease of small ruminants which negatively affects animal production and the socioeconomic status of farmers. Peste des petits ruminants virus (PPRV) encodes eight proteins, with the viral fusion protein (F) playing a role in virus virulence and stimulating an effective protective immune response. This study aimed to isolate and complete the identification of PPRV circulating in goats in different Egyptian governorates and perform molecular characterization of the PPRV F gene. Materials and Methods Samples were collected from unvaccinated animals with clinical signs suggestive of PPR. A total of 256 sera were tested for the detection of PPRV antibodies using a competitive enzyme-linked immunosorbent assay (c-ELISA) kit, while 214 samples of blood buffy coat preparation, animal swabs (nasal, ocular, and saliva), and fecal and tissue samples were tested for the detection of the PPRV antigen using an antigen-capture ELISA kit. Molecular diagnosis, gene cloning, blast analysis, and phylogenetic analysis were performed for the molecular characterization of PPRV. Results The seroprevalence results of PPRV antibodies in the tested sera showed a total of 67.9% positive samples. The rates of PPR antigen recorded by the antigen-capture ELISA in the swabs (nasal and ocular) and tissue samples were 44.3%, 46.8%, and 43.5%, respectively, with saliva swabs having the highest rate of PPRV positivity (76.4%) and fecal samples having the lowest (33.3%). Molecular characterization of the PPRV Vero cell culture revealed that the circulating PPRV strain belongs to the IV lineage. Blast analysis of the PPRV F gene showed 96.7% identity with the PPRV strain Egypt-2014 fusion protein (F) gene, KT006589.1, differing by 43 single-nucleotide polymorphisms. Conclusion The results of this study indicate that the emerging PPRV belongs to the IV lineage among small ruminant animals. The findings also indicate the need for an innovative strategy to control and eliminate this disease based on a regularly administered and effective vaccine, a test to distinguish between infected and vaccinated animals, and the need for further study on the protein structure and PPRV F gene expression, which should help us to understand the molecular evolution of the virus and control and eliminate PPR disease.
Collapse
Affiliation(s)
- Sahar Ahmed
- Department of Cell Biology, Genetic Engineering and Biotechnology Research Dvision, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Wafaa Abd El Wahab Hosny
- ELISA Unit and Virus Strains Bank, Animal Health Research Institute, Agriculture Research Centre, Dokki, Giza, Egypt
| | - Mervat Mahmoud
- ELISA Unit and Virus Strains Bank, Animal Health Research Institute, Agriculture Research Centre, Dokki, Giza, Egypt
| | - Mohammed Abd El-Fatah Mahmoud
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre. Dokki Giza, Egypt
| |
Collapse
|
23
|
Idoga ES, Armson B, Alafiatayo R, Ogwuche A, Mijten E, Ekiri AB, Varga G, Cook AJC. A Review of the Current Status of Peste des Petits Ruminants Epidemiology in Small Ruminants in Tanzania. Front Vet Sci 2020; 7:592662. [PMID: 33324702 PMCID: PMC7723822 DOI: 10.3389/fvets.2020.592662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious viral disease of sheep and goats with high mortality. The disease is of considerable economic importance in countries such as Tanzania, where small ruminant products are important for sustainable livelihoods. This review assesses current knowledge regarding the epidemiology of PPRV in Tanzania, highlighting the challenges with respect to control and suggesting possible interventions. Thirty-three articles were identified after literature searches using Google Scholar and PubMed. Studies revealed that PPRV is endemic in sheep and goats in Tanzania, although seropositivity has also been reported in cattle, camels, buffalo, Grant's gazelle, wildebeest and impala, but with no clinical manifestation. Three lineages (lineage II to IV) of PPRV have been identified in Tanzania, implying at least two separate introductions of the virus. Diagnosis of PPR in Tanzania is mostly by observation of clinical signs and lesions at post mortem. Risk factors in Tanzania include age, sex, species, and close contact of animals from different farms/localities. Although there is an efficacious vaccine available for PPR, poor disease surveillance, low vaccine coverage, and uncontrolled animal movements have been the bane of control efforts for PPR in Tanzania. There is need for collaborative efforts to develop interventions to control and eradicate the disease. The establishment of a national reference laboratory for PPR, conduct of surveillance, the development of high-quality DIVA vaccines, as well as execution of a carefully planned national vaccination campaign may be key to the control and subsequent eradication of PPR in Tanzania and achieving the global goal of eradicating PPR by 2030.
Collapse
Affiliation(s)
- Enokela S. Idoga
- Department of Veterinary Physiology, Biochemistry and Pharmacology, University of Jos, Jos, Nigeria
| | - Bryony Armson
- vHive, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Ruth Alafiatayo
- vHive, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Adah Ogwuche
- Zoetis-ALPHA Initiative, Zoetis, Zaventem, Belgium
| | - Erik Mijten
- Zoetis-ALPHA Initiative, Zoetis, Zaventem, Belgium
| | - Abel B. Ekiri
- vHive, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | | | - Alasdair J. C. Cook
- vHive, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
24
|
Perceptions and practices among Zambian sheep and goat traders concerning small ruminant health and disease. PLoS One 2020; 15:e0233611. [PMID: 32569297 PMCID: PMC7307758 DOI: 10.1371/journal.pone.0233611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/08/2020] [Indexed: 11/19/2022] Open
Abstract
Trade in animals and animal products is a key factor in the transmission of infectious diseases. Livestock traders play an important role in this process, yet there is little knowledge of traders’ perceptions of animal disease or their associated actions. The aim of this study was to investigate perceptions and practices of Zambian small ruminant traders with regard to sheep and goat health and disease. It also analysed how existing perceptions and practices might affect risks of disease transmission through trade. A case study was performed at the two largest small livestock markets in Zambia: the Lusaka market in the capital and the Kasumbalesa market near the border with the Democratic Republic of Congo. Semi-structured interviews with 47 traders performed in April-May and September 2018 represent the core material. Zambian small ruminant traders frequently trade animals that have clinical signs of disease, either because they appear unaware or indifferent to the associated risks, experience financial constraints or assign responsibility for disease prevention to other value chain actors. In their decision about whether or not to sell a visibly sick small ruminant, traders appear to consider whether the clinical sign is perceived as ‘natural’ or the result of an illness, whether the buyer is aware of the animal’s health condition, and whether the animal is sold for consumption or breeding purposes. Traders appear to regard the veterinary certificate required to transport small ruminants in Zambia as proof of health, placing the responsibility for potential disease in traded animals on the veterinary authorities. In their description of a model trader, taking good care of and being sensitive to customer needs was emphasized, indicating that an efficient way to encourage traders to change their behaviour is to influence customer demands. In contrast to the focus in previous studies on identifying and filling knowledge gaps, the present study show that lack of knowledge is not central to why traders engage in disease-transmitting behaviour. Greater awareness of other reasons for certain perceptions and practices could lead to the formulation of risk communication strategies and mitigation measures that are relevant for the local context, as well as alternative strategies for changing trader behaviour.
Collapse
|
25
|
Ahaduzzaman M. Peste des petits ruminants (PPR) in Africa and Asia: A systematic review and meta-analysis of the prevalence in sheep and goats between 1969 and 2018. Vet Med Sci 2020; 6:813-833. [PMID: 32529792 PMCID: PMC7738735 DOI: 10.1002/vms3.300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) is a prevalent viral disease of sheep and goats that impacts productivity and international animal trade. Despite the substantial economic consequences related to PPR, little is known about the prevalence of this disease at the broad geographical levels. OBJECTIVE The present study aimed to use a systematic approach to assess the regional prevalence of PPR in sheep and goats, and the associated factors that contribute to prevalence estimates. METHODS Published articles on PPR in sheep and goats were searched in PubMed, Web of Science, Scopus, Google Scholar and the reference lists of articles reporting the prevalence from 1 January 1969 to 31 December 2018. Articles were selected using inclusion and exclusion criteria. Since the heterogeneity among the studies was significant, pooled prevalences were estimated by a random effect meta-analysis model. RESULTS Data on the prevalence of PPR were obtained from Africa and Asia, where the pooled prevalence estimates were 40.99% (95% CI: 37.20%-44.79%) and 38.43% (95% CI: 35.64%-41.22%) respectively. Overall, the estimated pooled prevalence at Africa-Asia level in sheep was 39.31% (95% CI: 35.75%-42.88%) and in goats was 39.57% (95% CI: 36.66%-42.48%). Significant heterogeneity (I2 > 80%) was noted in most pooled estimates. CONCLUSION The results on the regional prevalence estimates of PPR presented here will be useful in raising awareness and advocating for Governments to engage in initiatives to eradicate PPR and prevent it from spreading to other continents.
Collapse
Affiliation(s)
- Md Ahaduzzaman
- Department of Medicine & Surgery, Chattogram Veterinary & Animal Sciences University (CVASU), Chattogram, Bangladesh
| |
Collapse
|
26
|
Cano-Terriza D, Jiménez-Martín D, Jiménez-Ruiz S, Paniagua J, Caballero-Gómez J, Guerra R, Franco JJ, García-Bocanegra I. Serosurvey of Peste des Petits Ruminants in southern Spain. Transbound Emerg Dis 2020; 67:3033-3037. [PMID: 32374929 DOI: 10.1111/tbed.13602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 11/29/2022]
Abstract
Peste des Petits Ruminants (PPR) is a highly infectious disease caused by a virus member of the genus Morbillivirus, which mainly affects goats, sheep and wild ruminants. It is considered one of the most significant transboundary infectious diseases and represents an animal health concern in developing countries. Spain is considered a PPR-free country. Nevertheless, given its geographical proximity to countries in North Africa where PPR virus (PPRV) has been circulating in recent years, the south of Spain can be considered a risk area for the introduction of PPRV. The aim of the present study was to assess circulation of PPRV in domestic and wild ruminant species in this country. During the period 2015-2017, a total of 910 sera from domestic, wild and captive ruminants were analysed using a commercial blocking ELISA to detect antibodies against PPRV. None of the 910 (0.0%; 95% CI: 0.0-0.3) animals tested were positive for anti-PPRV antibodies. To the best of our knowledge, this is the first serosurvey study of PPR in Spain. The results indicate absence of circulating PPRV in the south of Spain during the study period. Due to the risk of PPRV introduction into European countries of the Mediterranean basin, epidemiological surveillance should be maintained and extended in this region.
Collapse
Affiliation(s)
| | | | - Saul Jiménez-Ruiz
- Animal Health Department, University of Cordoba, Cordoba, Spain.,Health & Biotechnology (SaBio) Group, Spanish Wildlife Research Institute (IREC, CSIC-UCLM-JCCCM), Ciudad Real, Spain
| | - Jorge Paniagua
- Animal Health Department, University of Cordoba, Cordoba, Spain
| | - Javier Caballero-Gómez
- Animal Health Department, University of Cordoba, Cordoba, Spain.,Infectious Diseases Unit and Clinical Virology and Zoonoses Unit, Maimonides Institute for Biomedical Research, Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | | | | | | |
Collapse
|
27
|
Prajapati M, Dou Y, Zhu X, Zhao S, Alfred N, Li Y, Zhang Z. Development of an Enzyme-Linked Immunosorbent Assay Based on CD150/SLAM for the Detection of Peste des Petits Ruminant Virus. Front Vet Sci 2020; 7:196. [PMID: 32411735 PMCID: PMC7198758 DOI: 10.3389/fvets.2020.00196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Peste des petits ruminant (PPR) is an economically important severe viral disease of small ruminants that affects primarily the respiratory and digestive tract. Specific detection of the PPR virus (PPRV) antigen plays an important role in the disease control and eradication program. In this study, an indirect enzyme-linked immunosorbent assay (ELISA) based on the recombinant goat signaling lymphocyte activation molecule (SLAM) as the capture ligand was successfully developed for the detection of the PPRV antigen (PPRV SLAM-iELISA). The assay was highly specific for PPRV with no cross-reactions among foot and mouth disease virus, Orf virus, sheep pox virus, and goat pox virus and had a sensitivity with a detection limit of 1.56 × 101 TCID50/reaction (50 μl). Assessment of 136 samples showed that the developed PPRV SLAM-iELISA was well correlated with real-time RT-qPCR assays and commercially available sandwich ELISA for detection of PPRV and showed relative sensitivity and specificity of 93.75 and 100.83%, respectively. These results suggest that the developed PPRV SLAM-iELISA is suitable for specific detection of the PPRV antigen. This study demonstrated for the first time that the goat SLAM, the cellular receptor for PPRV, can be used for the development of a diagnostic method for the detection of PPRV.
Collapse
Affiliation(s)
- Meera Prajapati
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,CAAS-ILRI Joint Laboratory for Ruminant Disease Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China.,Animal Health Research Division, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Yongxi Dou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xueliang Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuaiyang Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Niyokwishimira Alfred
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanmin Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,CAAS-ILRI Joint Laboratory for Ruminant Disease Control, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Lanzhou, China
| |
Collapse
|
28
|
Murr M, Hoffmann B, Grund C, Römer-Oberdörfer A, Mettenleiter TC. A Novel Recombinant Newcastle Disease Virus Vectored DIVA Vaccine against Peste des Petits Ruminants in Goats. Vaccines (Basel) 2020; 8:vaccines8020205. [PMID: 32354145 PMCID: PMC7348985 DOI: 10.3390/vaccines8020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Peste des petits ruminants virus (PPRV, species: small ruminant morbillivirus) is the causative agent of the eponymous notifiable disease, the peste des petits ruminants (PPR) in wild and domestic sheep and goats. Mortality rates vary between 50% and 100%, causing significant losses of estimated 1.5 to 2 billion US Dollars per year. Live-attenuated PPRV vaccine strains are used in the field for disease prevention, but the application of a more thermostable vaccine enabling differentiation between infected and vaccinated animals (DIVA) would be highly desirable to achieve the goal of global disease eradication. We generated a recombinant Newcastle disease virus (rNDV) based on the live-attenuated NDV Clone 30 that expresses the surface protein hemagglutinin (H) of PPRV strain Kurdistan/11 (rNDV_HKur). In vitro analyses confirmed transgene expression as well as virus replication in avian, caprine, and ovine cells. Two consecutive subcutaneous vaccinations of German domestic goats with rNDV_HKur prevented clinical signs and hematogenic dissemination after an intranasal challenge with virulent PPRV Kurdistan/11. Virus shedding by different routes was reduced to a similar extent as after vaccination with the live-attenuated PPRV strain Nigeria 75/1. Goats that were either not vaccinated or inoculated with parental rNDV were used as controls. In summary, we demonstrate in a proof-of-concept study that an NDV vectored vaccine can protect against PPR. Furthermore, it provides DIVA-applicability and a high thermal tolerance.
Collapse
Affiliation(s)
- Magdalena Murr
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
- Correspondence: ; Tel.: +49-38351-7-1629
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
29
|
Mahapatra M, Selvaraj M, Parida S. Comparison of Immunogenicity and Protective Efficacy of PPR Live Attenuated Vaccines (Nigeria 75/1 and Sungri 96) Administered by Intranasal and Subcutaneous Routes. Vaccines (Basel) 2020; 8:vaccines8020168. [PMID: 32268574 PMCID: PMC7349158 DOI: 10.3390/vaccines8020168] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022] Open
Abstract
Following the successful eradication of rinderpest, the World Organization of Animal Health (OIE) and the Food and Agriculture Organization (FAO) have set a goal to eradicate peste des petits ruminants (PPR) globally by 2030. Vaccination is being taken forward as the key strategy along with epidemiological surveillance to target vaccination efforts and eradicate the disease. PPR is highly contagious and is generally spread by aerosolized droplets and close contact. Currently, two live attenuated vaccines (Nigeria 75/1 and Sungri 96) are in use, and administered subcutaneously to prevent transmission of PPR and protect vaccinated animals. Though the target cells that support primary replication of PPR vaccine strains are largely unknown, it is hypothesized that the immune response could be intensified following intranasal vaccine delivery as this route mimics the natural route of infection. This study aims to compare the immunogenicity and protective efficacy of the two currently available live attenuated PPR vaccines following subcutaneous and intranasal routes of vaccination in target species. Groups of five goats were vaccinated with live attenuated PPR vaccines (Nigeria 75/1 and Sungri 96) by either the subcutaneous or intranasal route, and 28 days later challenged intranasally with virulent PPR virus. All vaccinated animals regardless of vaccination route produced PPRV-specific antibodies post-vaccination. Following challenge, all goats were protected from clinical disease, and vaccination was considered to have induced sterilizing immunity. This study demonstrates that the intranasal route of vaccination is as effective as the subcutaneous route of vaccination when using available live attenuated PPR vaccines.
Collapse
|
30
|
Fernandez Aguilar X, Mahapatra M, Begovoeva M, Kalema-Zikusoka G, Driciru M, Ayebazibwe C, Adwok DS, Kock M, Lukusa JPK, Muro J, Marco I, Colom-Cadena A, Espunyes J, Meunier N, Cabezón O, Caron A, Bataille A, Libeau G, Parekh K, Parida S, Kock R. Peste des Petits Ruminants at the Wildlife-Livestock Interface in the Northern Albertine Rift and Nile Basin, East Africa. Viruses 2020; 12:v12030293. [PMID: 32156067 PMCID: PMC7150925 DOI: 10.3390/v12030293] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1970] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
In the recent past, peste des petits ruminants (PPR) emerged in East Africa causing outbreaks in small livestock across different countries, with evidences of spillover to wildlife. In order to understand better PPR at the wildlife-livestock interface, we investigated patterns of peste des petits ruminants virus (PPRV) exposure, disease outbreaks, and viral sequences in the northern Albertine Rift. PPRV antibodies indicated a widespread exposure in apparently healthy wildlife from South Sudan (2013) and Uganda (2015, 2017). African buffaloes and Uganda kobs <1-year-old from Queen Elizabeth National Park (2015) had antibodies against PPRV N-antigen and local serosurvey captured a subsequent spread of PPRV in livestock. Outbreaks with PPR-like syndrome in sheep and goats were recorded around the Greater Virunga Landscape in Kasese (2016), Kisoro and Kabale (2017) from western Uganda, and in North Kivu (2017) from eastern Democratic Republic of the Congo (DRC). This landscape would not be considered typical for PPR persistence as it is a mixed forest-savannah ecosystem with mostly sedentary livestock. PPRV sequences from DRC (2017) were identical to strains from Burundi (2018) and confirmed a transboundary spread of PPRV. Our results indicate an epidemiological linkage between epizootic cycles in livestock and exposure in wildlife, denoting the importance of PPR surveillance on wild artiodactyls for both conservation and eradication programs.
Collapse
Affiliation(s)
- Xavier Fernandez Aguilar
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK, (M.B.); (N.M.); (R.K.)
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr. NW, Calgary, AB T2N 4Z6, Canada
- Correspondence:
| | - Mana Mahapatra
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK, (M.M.); (K.P.); (S.P.)
| | - Mattia Begovoeva
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK, (M.B.); (N.M.); (R.K.)
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Gladys Kalema-Zikusoka
- Conservation Through Public Health, Plot 3 Mapera Lane, Uring Crescent, P.O. Box 75298 Entebbe, Uganda;
| | - Margaret Driciru
- Uganda Wildlife Authority (UWA), Plot 7 Kira Road, P.O. Box 3530 Kampala, Uganda;
| | - Chrisostom Ayebazibwe
- NADDEC Ministry of Agriculture, Animal Industries and Fisheries, P.O. Box 102 Entebbe, Uganda;
| | - David Solomon Adwok
- Central Veterinary Diagnostic Laboratories, Ministry of Animal Resources and Fisheries, P.O. Box 126 Juba, South Sudan;
| | - Michael Kock
- Consultant Field Veterinary Programme, Formerly: Wildlife Conservation Society, 2300 Southern Boulevard Bronx, NY 10460, USA;
| | - Jean-Paul Kabemba Lukusa
- Regional Gorilla Conservation Employees Health Program, MGVP Inc., Goma 00243, Democratic Republic of the Congo;
| | - Jesus Muro
- Daktari, La Solana 35, AD700 Escaldes, Andorra;
| | - Ignasi Marco
- Servei d’Ecopatologia de Fauna Salvatge (Sefas) and Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (I.M.); (A.C.-C.); (J.E.)
| | - Andreu Colom-Cadena
- Servei d’Ecopatologia de Fauna Salvatge (Sefas) and Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (I.M.); (A.C.-C.); (J.E.)
| | - Johan Espunyes
- Servei d’Ecopatologia de Fauna Salvatge (Sefas) and Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (I.M.); (A.C.-C.); (J.E.)
- Research and Conservation Department, Zoo de Barcelona. Parc de la Ciutadella s/n, 08003 Barcelona, Spain
| | - Natascha Meunier
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK, (M.B.); (N.M.); (R.K.)
| | - Oscar Cabezón
- Servei d’Ecopatologia de Fauna Salvatge (Sefas) and Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (I.M.); (A.C.-C.); (J.E.)
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alexandre Caron
- CIRAD, UMR ASTRE, F–34398 Montpellier, France; (A.C.); (A.B.); (G.L.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
- Veterinary Faculty, Eduardo Mondlane University, Maputo 1102, Mozambique
| | - Arnaud Bataille
- CIRAD, UMR ASTRE, F–34398 Montpellier, France; (A.C.); (A.B.); (G.L.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Genevieve Libeau
- CIRAD, UMR ASTRE, F–34398 Montpellier, France; (A.C.); (A.B.); (G.L.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Krupali Parekh
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK, (M.M.); (K.P.); (S.P.)
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK, (M.M.); (K.P.); (S.P.)
| | - Richard Kock
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK, (M.B.); (N.M.); (R.K.)
| |
Collapse
|
31
|
Fine AE, Pruvot M, Benfield CTO, Caron A, Cattoli G, Chardonnet P, Dioli M, Dulu T, Gilbert M, Kock R, Lubroth J, Mariner JC, Ostrowski S, Parida S, Fereidouni S, Shiilegdamba E, Sleeman JM, Schulz C, Soula JJ, Van der Stede Y, Tekola BG, Walzer C, Zuther S, Njeumi F. Eradication of Peste des Petits Ruminants Virus and the Wildlife-Livestock Interface. Front Vet Sci 2020; 7:50. [PMID: 32232059 PMCID: PMC7082352 DOI: 10.3389/fvets.2020.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/21/2020] [Indexed: 01/08/2023] Open
Abstract
Growing evidence suggests that multiple wildlife species can be infected with peste des petits ruminants virus (PPRV), with important consequences for the potential maintenance of PPRV in communities of susceptible hosts, and the threat that PPRV may pose to the conservation of wildlife populations and resilience of ecosystems. Significant knowledge gaps in the epidemiology of PPRV across the ruminant community (wildlife and domestic), and the understanding of infection in wildlife and other atypical host species groups (e.g., camelidae, suidae, and bovinae) hinder our ability to apply necessary integrated disease control and management interventions at the wildlife-livestock interface. Similarly, knowledge gaps limit the inclusion of wildlife in the FAO/OIE Global Strategy for the Control and Eradication of PPR, and the framework of activities in the PPR Global Eradication Programme that lays the foundation for eradicating PPR through national and regional efforts. This article reports on the first international meeting on, "Controlling PPR at the livestock-wildlife interface," held in Rome, Italy, March 27-29, 2019. A large group representing national and international institutions discussed recent advances in our understanding of PPRV in wildlife, identified knowledge gaps and research priorities, and formulated recommendations. The need for a better understanding of PPRV epidemiology at the wildlife-livestock interface to support the integration of wildlife into PPR eradication efforts was highlighted by meeting participants along with the reminder that PPR eradication and wildlife conservation need not be viewed as competing priorities, but instead constitute two requisites of healthy socio-ecological systems.
Collapse
Affiliation(s)
- Amanda E Fine
- Wildlife Conservation Society, Health Program, Bronx, NY, United States
| | - Mathieu Pruvot
- Wildlife Conservation Society, Health Program, Bronx, NY, United States
| | | | - Alexandre Caron
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France.,Veterinary Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division for Nuclear Applications in Food and Agriculture, International Atomic Energy Agency, Seibersdorf, Austria
| | - Philippe Chardonnet
- ASTRE, University of Montpellier, CIRAD, INRA, Montpellier, France.,Antelope Specialist Group, International Union for Conservation of Nature, Species Survival Commission, Gland, Switzerland
| | | | - Thomas Dulu
- State Department of Livestock, Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya
| | - Martin Gilbert
- Department of Population Medicine and Diagnostic Services, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Richard Kock
- Royal Veterinary College, University of London, London, United Kingdom
| | - Juan Lubroth
- Animal Health Service, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Jeffrey C Mariner
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | | | - Satya Parida
- Vaccine Differentiation Department, Pirbright Institute, Woking, United Kingdom
| | - Sasan Fereidouni
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | | | - Jonathan M Sleeman
- US Geological Survey, National Wildlife Health Center, Madison, WI, United States.,Working Group on Wildlife, Office International des Epizooties/World Organisation for Animal Health, Paris, France
| | - Claudia Schulz
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Jean-Jacques Soula
- FAO-OIE GEP PPR Secretariat, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Berhe G Tekola
- Office of the Director, Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Chris Walzer
- Wildlife Conservation Society, Health Program, Bronx, NY, United States.,Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Steffen Zuther
- Association for the Conservation of Biodiversity of Kazakhstan, Nur-Sultan, Kazakhstan.,Frankfurt Zoological Society, Frankfurt, Germany
| | - Felix Njeumi
- FAO-OIE GEP PPR Secretariat, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | |
Collapse
|
32
|
Bamouh Z, Fakri F, Jazouli M, Safini N, Omari Tadlaoui K, Elharrak M. Peste des petits ruminants pathogenesis on experimental infected goats by the Moroccan 2015 isolate. BMC Vet Res 2019; 15:452. [PMID: 31842890 PMCID: PMC6916009 DOI: 10.1186/s12917-019-2164-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/06/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) is a viral disease of major economic importance on small ruminants. Goats are usually known to be more susceptible to the disease. Infection chronology, virus circulation, and the disease early detection need to be better understood. This study evaluates the tissue tropism and pathogenesis of PPR following experimental infection of goats using a lineage IV virus, the most dominant in the world originated from Asia. PPRV infection was experimentally induced in 4 six-month-old goats by intra-nasal and intravenous route of cell virus suspension and from infectious mashed tissue. The clinical signs were observed and goats were euthanized at predetermined clinical score level for post-mortem examinations and PPRV detection by RT-PCR. Clinical signs of infection were present, pyrexia, serous-mucopurulent nasal discharges, coughing, diarrhea and asthenia, for both cell virus suspension and infectious mashed tissue. PPRV genome was highly detected in swabs and tissues with clinical signs dominated by pulmonary attack and digestive symptoms secondary. RESULTS Results of this study indicates that PPRV is an invasive infection in animals that in a short period, less than 10 days, invade all vital organs. On live animals, early diagnostic may be easily done on lacrimal and rectal swabs. CONCLUSION The experimental PPRV-infection model using the cell virus suspension is suitable for vaccine evaluation as a standard model.
Collapse
Affiliation(s)
- Z. Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| | - F. Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| | - M. Jazouli
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| | - N. Safini
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| | - K. Omari Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| | - M. Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, 28810 Mohammedia, Morocco
| |
Collapse
|
33
|
Tounkara K, Kwiatek O, Niang M, Abou Kounta Sidibe C, Sery A, Dakouo M, Salami H, Lo MM, Ba A, Diop M, El Mamy AB, El Arbi AS, Barry Y, Isselmou E, Habiboullah H, Lella AS, Doumbia B, Gueya MB, Savadogo J, Ouattara L, Minougou G, Libeau G, Bataille A. Genetic Evidence for Transboundary Circulation of Peste Des Petits Ruminants Across West Africa. Front Vet Sci 2019; 6:275. [PMID: 31497607 PMCID: PMC6713047 DOI: 10.3389/fvets.2019.00275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Peste des Petits Ruminants (PPR) is a viral disease affecting predominantly small ruminants. Due to its transboundary nature, regional coordination of control strategies will be key to the success of the on-going PPR eradication campaign. Here, we aimed at exploring the extent of transboundary movement of PPR in West Africa using phylogenetic analyses based on partial viral gene sequences. We collected samples and obtained partial nucleoprotein gene sequence from PPR-infected small ruminants across countries within West Africa. This new sequence data was combined with publically available data from the region to perform phylogenetic analyses. A total of fifty-five sequences were obtained in a region still poorly sampled. Phylogenetic analyses showed that the majority of virus sequences obtained in this study were placed within genetic clusters regrouping samples from multiple West African countries. Some of these clusters contained samples from countries sharing borders. In other cases, clusters grouped samples from very distant countries. Our results suggest extensive and recurrent transboundary movements of PPR within West Africa, supporting the need for a regional coordinated strategy for PPR surveillance and control in the region. Simple phylogenetic analyses based on readily available data can provide information on PPR transboundary dynamics and, therefore, could contribute to improve control strategies. On-going and future projects dedicated to PPR should include extensive genetic characterization and phylogenetic analyses of circulating viral strains in their effort to support the campaign for global eradication of the disease.
Collapse
Affiliation(s)
- Kadidia Tounkara
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ. Montpellier, CIRAD, INRA, Montpellier, France.,Laboratoire Central Vétérinaire, Bamako, Mali
| | - Olivier Kwiatek
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ. Montpellier, CIRAD, INRA, Montpellier, France
| | | | | | - Amadou Sery
- Laboratoire Central Vétérinaire, Bamako, Mali
| | | | - Habib Salami
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ. Montpellier, CIRAD, INRA, Montpellier, France.,Laboratoire National d'Elevage et de Recherches Vétérinaires (LNERV), Institut Sénégalais de Recherches Agricoles, Dakar-Hann, Sénégal
| | - Modou Moustapha Lo
- Laboratoire National d'Elevage et de Recherches Vétérinaires (LNERV), Institut Sénégalais de Recherches Agricoles, Dakar-Hann, Sénégal
| | - Aminata Ba
- Laboratoire National d'Elevage et de Recherches Vétérinaires (LNERV), Institut Sénégalais de Recherches Agricoles, Dakar-Hann, Sénégal
| | - Mariame Diop
- Laboratoire National d'Elevage et de Recherches Vétérinaires (LNERV), Institut Sénégalais de Recherches Agricoles, Dakar-Hann, Sénégal
| | - Ahmed Bezeid El Mamy
- Office National de Recherches et de Développement de l'Elevage, Nouakchott, Mauritania
| | - Ahmed Salem El Arbi
- Office National de Recherches et de Développement de l'Elevage, Nouakchott, Mauritania
| | - Yahya Barry
- Office National de Recherches et de Développement de l'Elevage, Nouakchott, Mauritania
| | - Ekaterina Isselmou
- Office National de Recherches et de Développement de l'Elevage, Nouakchott, Mauritania
| | | | - Abdellahi Salem Lella
- Office National de Recherches et de Développement de l'Elevage, Nouakchott, Mauritania
| | - Baba Doumbia
- Office National de Recherches et de Développement de l'Elevage, Nouakchott, Mauritania
| | - Mohamed Baba Gueya
- Office National de Recherches et de Développement de l'Elevage, Nouakchott, Mauritania
| | - Joseph Savadogo
- Ministère des Ressources Animales et Halieutiques, Ouagadougou, Burkina Faso
| | - Lassina Ouattara
- Ministère des Ressources Animales et Halieutiques, Ouagadougou, Burkina Faso
| | - Germaine Minougou
- Ministère des Ressources Animales et Halieutiques, Ouagadougou, Burkina Faso
| | - Geneviève Libeau
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ. Montpellier, CIRAD, INRA, Montpellier, France
| | - Arnaud Bataille
- CIRAD, UMR ASTRE, Montpellier, France.,ASTRE, Univ. Montpellier, CIRAD, INRA, Montpellier, France
| |
Collapse
|
34
|
Host Cellular Receptors for the Peste des Petits Ruminant Virus. Viruses 2019; 11:v11080729. [PMID: 31398809 PMCID: PMC6723671 DOI: 10.3390/v11080729] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Peste des Petits Ruminant (PPR) is an important transboundary, OIE-listed contagious viral disease of primarily sheep and goats caused by the PPR virus (PPRV), which belongs to the genus Morbillivirus of the family Paramyxoviridae. The mortality rate is 90–100%, and the morbidity rate may reach up to 100%. PPR is considered economically important as it decreases the production and productivity of livestock. In many endemic poor countries, it has remained an obstacle to the development of sustainable agriculture. Hence, proper control measures have become a necessity to prevent its rapid spread across the world. For this, detailed information on the pathogenesis of the virus and the virus host interaction through cellular receptors needs to be understood clearly. Presently, two cellular receptors; signaling lymphocyte activation molecule (SLAM) and Nectin-4 are known for PPRV. However, extensive information on virus interactions with these receptors and their impact on host immune response is still required. Hence, a thorough understanding of PPRV receptors and the mechanism involved in the induction of immunosuppression is crucial for controlling PPR. In this review, we discuss PPRV cellular receptors, viral host interaction with cellular receptors, and immunosuppression induced by the virus with reference to other Morbilliviruses.
Collapse
|
35
|
Peste des Petits Ruminants Virus Nucleocapsid Protein Inhibits Beta Interferon Production by Interacting with IRF3 To Block Its Activation. J Virol 2019; 93:JVI.00362-19. [PMID: 31167907 PMCID: PMC6675899 DOI: 10.1128/jvi.00362-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Peste des petits ruminants is a highly contagious animal disease affecting small ruminants, which threatens both small livestock and endangered susceptible wildlife populations in many countries. The causative agent, peste des petits ruminants virus (PPRV), often causes acute immunosuppression in its natural hosts during infection. Here, for the first time, we demonstrate that N protein, the most abundant protein of PPRV, plays an extremely important role in suppression of interferon regulatory factor 3 (IRF3) function and type I interferon (IFN) production by interfering with the formation of the TBK1-IRF3 complex. This study explored a novel antagonistic mechanism of PPRV. Peste des petits ruminants virus (PPRV) is the etiological agent of peste des petits ruminants, causing acute immunosuppression in its natural hosts. However, the molecular mechanisms by which PPRV antagonizes the host immune responses have not been fully characterized. In particular, how PPRV suppresses the activation of the host RIG-I-like receptor (RLR) pathway has yet to be clarified. In this study, we demonstrated that PPRV infection significantly suppresses RLR pathway activation and type I interferon (IFN) production and identified PPRV N protein as an extremely important antagonistic viral factor that suppresses beta interferon (IFN-β) and IFN-stimulated gene (ISG) expression. A detailed analysis showed that PPRV N protein inhibited type I IFN production by targeting interferon regulatory factor 3 (IRF3), a key molecule in the RLR pathway required for type I IFN induction. PPRV N protein interacted with IRF3 (but not with other components of the RLR pathway, including MDA5, RIG-I, VISA, TBK1, and MITA) and abrogated the phosphorylation of IRF3. As expected, PPRV N protein also considerably impaired the nuclear translocation of IRF3. The TBK1-IRF3 interaction was involved significantly in IRF3 phosphorylation, and we showed that PPRV N protein inhibits the association between TBK1 and IRF3, which in turn inhibits IRF3 phosphorylation. The amino acid region 106 to 210 of PPRV N protein was determined to be essential for suppressing the nuclear translocation of IRF3 and IFN-β production, and the 140 to 400 region of IRF3 was identified as the crucial region for the N-IRF3 interaction. Together, our findings demonstrate a new mechanism evolved by PPRV to inhibit type I IFN production and provide structural insights into the immunosuppression caused by PPRV. IMPORTANCE Peste des petits ruminants is a highly contagious animal disease affecting small ruminants, which threatens both small livestock and endangered susceptible wildlife populations in many countries. The causative agent, peste des petits ruminants virus (PPRV), often causes acute immunosuppression in its natural hosts during infection. Here, for the first time, we demonstrate that N protein, the most abundant protein of PPRV, plays an extremely important role in suppression of interferon regulatory factor 3 (IRF3) function and type I interferon (IFN) production by interfering with the formation of the TBK1-IRF3 complex. This study explored a novel antagonistic mechanism of PPRV.
Collapse
|
36
|
Torres-Velez F, Havas KA, Spiegel K, Brown C. Transboundary animal diseases as re-emerging threats – Impact on one health. Semin Diagn Pathol 2019; 36:193-196. [DOI: 10.1053/j.semdp.2019.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Assessment of Peste des petits ruminants antibodies in vaccinated pregnant Kano brown does from Nigeria and subsequent maternal immunity in their kids. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Mantip SE, Shamaki D, Farougou S. Peste des petits ruminants in Africa: Meta-analysis of the virus isolation in molecular epidemiology studies. Onderstepoort J Vet Res 2019; 86:e1-e15. [PMID: 31038322 PMCID: PMC6556936 DOI: 10.4102/ojvr.v86i1.1677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
Peste des petits ruminant (PPR) is a highly contagious, infectious viral disease of small ruminant species which is caused by the peste des petits ruminants virus (PPRV), the prototype member of the Morbillivirus genus in the Paramyxoviridae family. Peste des petits ruminant was first described in West Africa, where it has probably been endemic in sheep and goats since the emergence of the rinderpest pandemic and was always misdiagnosed with rinderpest in sheep and goats. Since its discovery PPR has had a major impact on sheep and goat breeders in Africa and has therefore been a key focus of research at the veterinary research institutes and university faculties of veterinary medicine in Africa. Several key discoveries were made at these institutions, including the isolation and propagation of African PPR virus isolates, notable amongst which was the Nigerian PPRV 75/1 that was used in the scientific study to understand the taxonomy, molecular dynamics, lineage differentiation of PPRV and the development of vaccine seeds for immunisation against PPR. African sheep and goat breeds including camels and wild ruminants are frequently infected, manifesting clinical signs of the disease, whereas cattle and pigs are asymptomatic but can seroconvert for PPR. The immunisation of susceptible sheep and goats remains the most effective and practical control measure against PPR. To carry out PPR vaccination in tropical African countries with a very high temperature, a thermostable vaccine using the rinderpest lyophilisation method to the attenuated Nigeria 75/1 PPR vaccine strain has been developed, which will greatly facilitate the delivery of vaccination in the control, prevention and global eradication of PPR. Apart from vaccination, other important questions that will contribute towards the control and prevention of PPR need to be answered, for example, to identify the period when a susceptible naïve animal becomes infectious when in contact with an infected animal and when an infectious animal becomes contagious.
Collapse
Affiliation(s)
- Samuel E Mantip
- Department of Animal Health and Production, University of Abomey-Calavi, Abomey Calavi, Benin; and, Viral Research Division, National Veterinary Research Institute, Vom, Nigeria.
| | | | | |
Collapse
|
39
|
Peste Des Petits Ruminants (PPR) in Dromedary Camels and Small Ruminants in Mandera and Wajir Counties of Kenya. Adv Virol 2019; 2019:4028720. [PMID: 30956658 PMCID: PMC6425320 DOI: 10.1155/2019/4028720] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/29/2019] [Accepted: 02/18/2019] [Indexed: 02/04/2023] Open
Abstract
A study was conducted to determine the presence of Peste des petits ruminants (PPR) in camel population kept together with small ruminants in Isiolo, Mandera, Marsabit, and Wajir counties of Kenya. This was done in the wake of a disease with unknown etiology “Camel Sudden Death Syndrome” camels in the horn of Africa. Thirty-eight (38) samples, 12, 8, 15, and 3 samples, were collected from Mandera, Wajir, Isiolo, and Marsabit, respectively, from 25 camels, 7 goats, and 4 sheep. One camel in Mandera and one goat in Wajir were confirmed positive for PPR virus (PPRV) through reverse Polymerase Chain Reaction. The analysis of sequences revealed closest nucleotide identities of obtained sequences from both goat and camel to the lineage III of PPRV albeit with 60.29% of nucleotide identity. This study establishes that camels in the study area suffer with PPR manifest clinical signs that are mainly characterized by inappetence, loss of body condition, and general weakness terminally leading to diarrhea, conjunctivitis, and ocular nasal discharges preceding death. These clinical signs are similar to those observed in small ruminants with slight variations of manifestations such as keratoconjunctivitis as well as edema of the ventral surface of the abdomen. This shows that camels could be involved in the epidemiology of PPR in the region and that PPRV could be involved in the epidemics of Camel Sudden Death syndrome. There is therefore a need for resources to be dedicated in understanding the role camels play in the epidemiology of PPR and the role of the disease in Camels Sudden death syndrome.
Collapse
|
40
|
Altan E, Parida S, Mahapatra M, Turan N, Yilmaz H. Molecular characterization of Peste des petits ruminants viruses in the Marmara Region of Turkey. Transbound Emerg Dis 2019; 66:865-872. [PMID: 30525310 PMCID: PMC7814889 DOI: 10.1111/tbed.13095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 11/21/2018] [Accepted: 11/25/2018] [Indexed: 11/28/2022]
Abstract
Recent outbreaks of Peste des petits ruminants (PPR) in the Marmara region of Turkey including the European part of Thrace is important due to its proximity to Europe (Greece and Bulgaria) and the potential threat of spread of PPR into mainland Europe. In order to investigate the circulation of PPRV in the region suspect clinical and necropsy samples were collected from domestic sheep (n = 211) in the Marmara region of Turkey between 2011 and 2012. PPR virus (PPRV) genome was detected in 10.4% (22 out of 211) of sheep samples by real-time RT-PCR, and PPR virus was isolated from lungs of two sheep that died from infection. Of the 22 positive samples nine were used for partial N-gene amplification and sequencing. The phylogenetic analyses indicated that the virus belongs to lineage IV, the same lineage that is circulating in eastern and central part of Turkey since its first official report in 1999. In addition, samples from 100 cattle were collected to investigate potential subclinical circulation of PPRV. However all were found to be negative by real-time RT-PCR, and also in serological tests indicating the large ruminants were likely not exposed or infected with the virus. The impact of these findings on the potential threat of spread of PPR to Europe including the first PPR outbreak in Europe in Bulgaria on 23rd June 2018 is discussed.
Collapse
Affiliation(s)
- Eda Altan
- Veterinary Faculty, Department of Virology, University of Istanbul, Istanbul, Turkey.,Blood Systems Research Institute, San Francisco, California.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Satya Parida
- The Pirbright Institute, Pirbright, Woking, Surrey, UK
| | | | - Nuri Turan
- Veterinary Faculty, Department of Virology, University of Istanbul, Istanbul, Turkey
| | - Huseyin Yilmaz
- Veterinary Faculty, Department of Virology, University of Istanbul, Istanbul, Turkey
| |
Collapse
|
41
|
Enchery F, Hamers C, Kwiatek O, Gaillardet D, Montange C, Brunel H, Goutebroze S, Philippe-Reversat C, Libeau G, Hudelet P, Bataille A. Development of a PPRV challenge model in goats and its use to assess the efficacy of a PPR vaccine. Vaccine 2019; 37:1667-1673. [DOI: 10.1016/j.vaccine.2019.01.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
|
42
|
Monoclonal antibody resistant mutant of Peste des petits ruminants vaccine virus. Virusdisease 2018; 29:520-530. [PMID: 30539056 PMCID: PMC6261885 DOI: 10.1007/s13337-018-0483-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 01/10/2023] Open
Abstract
The available vaccines for control of Peste des petits ruminants do not favour differentiation of infected and vaccinated animals (DIVA). Hence, the present study was aimed to isolate and characterize monoclonal antibody resistant mutant of an Indian strain of vaccine virus "PPRV-Sungri/96" under selection pressure of virus neutralizing monoclonal antibody '4B11' specific to haemagglutinin (H) protein. We successfully isolated five monoclonal antibody resistant (mAr) mutants (PPRV-RM5, PPRV-RM6, PPRV-RM7, PPRV- E6 and PPRV- E7). The mAr mutants did not react with the anti-H mAb 4B11 whereas reacted with control anti-nucleoprotein mAb 4G6, similar to the parent vaccine virus "PPRV-Sungri/96" in indirect ELISA, cell ELISA and indirect immunofluorescence test. Cytometry analysis of mAr mutants revealed loss of binding to mAb 4B11 while maintaining binding to mAb 4G6, more or less similar to "PPRV-Sungri/96". The sequence analysis of the H-protein gene of the mAr mutants resulted in identification of two nucleotide changes leading to amino acid substitutions at position 263 and 502 (L263P and R502P) of the H protein indicating that the epitope of mAb 4B11 could be conformational in nature. Though, mAr mutant grew to a similar titre as parent vaccine virus (PPRV-Sungri/96), the in vivo work in goats to study the mAr mutant as possible negative marker vaccine candidate could not be successfully proved with mAb 4B11 based competitive ELISA. However, one of the nucleotide change (T-C) at position 788, unique to mAr mutant virus resulted in abolition of a restriction enzyme recognition site (BglII). This could be used to differentiate mAr mutant vaccine virus from other available vaccine and field strains using restriction fragment length polymorphism. However, the mAr mutant PPRV-E6 cannot be used as a candidate strain for DIVA vaccine as immune response against it cannot be differentiated based on serology.
Collapse
|
43
|
Clarke BD, Islam MR, Yusuf MA, Mahapatra M, Parida S. Molecular detection, isolation and characterization of Peste-des-petits ruminants virus from goat milk from outbreaks in Bangladesh and its implication for eradication strategy. Transbound Emerg Dis 2018; 65:1597-1604. [PMID: 29806118 PMCID: PMC6282541 DOI: 10.1111/tbed.12911] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 10/27/2022]
Abstract
Peste-des-petits ruminants (PPR) is a highly contagious transboundary viral disease of small ruminants, which is endemic in much of Africa, the Middle East and Asia. In South Asia, PPR is of significant concern to the Indian subcontinent including Bangladesh as more than 30% of the world's sheep and goats are farmed in this region, predominantly by small, poor and marginal farmers. PPR virus was detected and isolated from goat milk from field samples from PPR outbreaks (2012-2015) in Bangladesh and its full-length sequences obtained. Sequence analysis of the partial N gene of Bangladesh isolates showed 99.3%-100% identity whereas 98.2%-99.6% identity was observed when compared with neighbouring Indian viruses. Further analysis of the full-length genomes indicated that the Bangladesh isolates were 99.3%-99.99% identical among themselves and 98.3%-98.4% identical to neighbouring Indian viruses. These findings further support the transboundary transmission of PPR virus across the Indian and Bangladesh border. In additional, the establishment of a cross-border strategy between India and Bangladesh will be of paramount importance for the eradication of PPR in this region. Molecular detection and isolation of PPR virus from milk is of significant potential concern for spread of the disease to free areas as the major producers of goat milk globally are PPR endemic countries in particular India and Bangladesh, as well as Sudan. Milk is a noninvasive sample type and bulk goat milk sampling for the detection of PPRV would be of practical significance for regional surveillance of PPRV as progress is made towards the targeted 2030 eradication.
Collapse
Affiliation(s)
| | | | - Mohammad Abu Yusuf
- SAARC Regional Leading Diagnostic Laboratory for PPR, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | | | | |
Collapse
|
44
|
Begum S, Nooruzzaman M, Parvin M, Mohanto N, Parvin R, Islam MR, Chowdhury EH. Peste des petits ruminants virus infection of Black Bengal goats showed altered haematological and serum biochemical profiles. ACTA ACUST UNITED AC 2018; 85:e1-e10. [PMID: 30326714 PMCID: PMC6324080 DOI: 10.4102/ojvr.v85i1.1595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 11/03/2022]
Abstract
In Bangladesh, veterinarians often claim to reduce the mortality of natural peste des petits ruminants (PPR) outbreaks with the help of supportive fluid and electrolyte therapy. Information on haematological and biochemical parameters of PPR-infected goats, which is often altered because of associated tissue damages, is necessary to formulate the appropriate supportive therapy. This study determined the haematological and serum biochemical parameters of Black Bengal goats naturally infected with PPR virus. Blood and serum samples from 13 PPR-affected Black Bengal goats from 13 field outbreaks and 5 healthy goats were collected and analysed by routine haematological and biochemical examination. Haematological analysis of PRR-affected goats showed severe anaemia characterised by significant decrease in the values of haemoglobin, total erythrocyte counts (TECs) and packed cell volume (PCV). On the contrary, PPR-affected goats showed marked leucocytosis with absolute increase in lymphocytes and neutrophils counts compared to the healthy goats. Biochemical analysis revealed significant decrease in total protein and albumin level and increased creatine kinase, aspartate transaminase and alanine transaminase that mirrored the gross and histopathological changes in the PPR-affected goats. Significant increase in the values of sodium and chloride ions was found in the sera of PPR-infected goats. Peste des petits ruminants virus altered the haematological and serum biochemical parameters of the infected goats. Antidiarrheal agents with aqua solution together with other drugs to support liver and kidney function could help improve therapy of PPR-infected goats.
Collapse
Affiliation(s)
- Shahana Begum
- Department of Pathology, Bangladesh Agricultural University.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ben Hassen S, Monaco F, Sghaier S, Orsini M, Valleriani F, Haj Ammar H, Petrini A, Hammami S, Cosseddu GM. Peste des Petits Ruminants outbreaks in Tunisia in 2016. Transbound Emerg Dis 2018; 65:1416-1420. [PMID: 30062766 DOI: 10.1111/tbed.12985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 11/30/2022]
Abstract
In Tunisia, 86 outbreaks of Peste des Petits Ruminants (PPR) were reported in ovine and caprine herds in 2016. Molecular characterization of PPRV strains was carried out by partial sequencing of nucleoprotein (Np) gene from diagnostic specimens. The results showed that disease outbreaks were caused by virus strains closely related to PPRV strains collected in Egypt in 2014 and 2015.
Collapse
Affiliation(s)
- Sonia Ben Hassen
- Institut de la Recherche Vétérinaire de Tunisie, Laboratoire de virologie, Université de Tunis El Manar, Tunis, Tunisia
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Soufien Sghaier
- Institut de la Recherche Vétérinaire de Tunisie, Laboratoire de virologie, Université de Tunis El Manar, Tunis, Tunisia
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Fabrizia Valleriani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Heni Haj Ammar
- Direction Générale des Services Vétérinaires, Ministère de l'Agriculture- Tunisia, Tunis, Tunisia
| | - Antonio Petrini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Salah Hammami
- Service de Microbiologie-Immunologie-Pathologie Générale, Ecole Nationale de Médecine Vétérinaire de Sidi Thabet (ENMV) Sidi Thabet -2020, Tunisia Université de la Manouba, Manouba, Tunisia
| | - Gian Mario Cosseddu
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| |
Collapse
|
46
|
Khan A, Saleemi MK, Ali F, Abubakar M, Hussain R, Abbas RZ, Khan IA. Pathophysiology of peste des petits ruminants in sheep (Dorper & Kajli) and goats (Boer & Beetal). Microb Pathog 2018; 117:139-147. [DOI: 10.1016/j.micpath.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 11/29/2022]
|
47
|
Fakri F, Bamouh Z, Ghzal F, Baha W, Tadlaoui K, Fihri OF, Chen W, Bu Z, Elharrak M. Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines. Virology 2018; 514:211-215. [DOI: 10.1016/j.virol.2017.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 10/18/2022]
|
48
|
Peste des petits ruminants (PPR): A neglected tropical disease in Maghreb region of North Africa and its threat to Europe. PLoS One 2017; 12:e0175461. [PMID: 28426782 PMCID: PMC5398521 DOI: 10.1371/journal.pone.0175461] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/27/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Peste des petits ruminants (PPR) is a contagious disease listed by the World Organisation for Animal health (OIE) as being a specific hazard. It affects sheep, goats, and wild ungulates, and is prevalent throughout the developing world particularly Asia, the Middle East, and Africa. PPR has been targeted for eradication by 2030 by the Food and Agriculture Organization of the United Nations (FAO) and the OIE, after the successful eradication of the related disease, rinderpest in cattle. PPR was first reported in 1942 in the Ivory Coast in Western Africa and has since extended its range in Asia, the Middle East, and Africa posing an immediate threat of incursion into Europe, South East Asia and South Africa. Although robust vaccines are available, the use of these vaccines in a systematic and rational manner is not widespread, resulting in this devastating disease becoming an important neglected tropical disease in the developing world. METHODOLOGY We isolated and characterized the PPR virus from an outbreak in Cheraga, northern Algeria, during October 2015 by analyzing the partial N-gene sequence in comparison with other viruses from the Maghreb region. As well as sequencing the full length viral genome and performing real-time RT-PCR on clinical samples. Maximum-likelihood and Bayesian temporal and phylogeographic analyses were performed to assess the persistence and spread of PPRV circulation from Eastern Africa in the Maghreb region of North Africa. CONCLUSIONS Recent PPR outbreaks in Cheraga, in the northern part of Algiers (October 2015) and North-West Morocco (June, 2015) highlight that PPRV has spread to the northern border of North Africa and may pose a threat of introduction to Europe. Phylogeographic analysis suggests that lineage IV PPRV has spread from Eastern Africa, most likely from the Sudan 2000 outbreak, into Northern Africa resulting in the 2008 Moroccan outbreak. Maximum-likelihood and Bayesian analysis shows that these North African viruses cluster closely together suggesting the existence of continual regional circulation. Considering the same virus is circulating in Algeria, Morocco and Tunisia, implementation of a common Maghreb PPR eradication strategy would be beneficial for the region.
Collapse
|
49
|
Clarke B, Mahapatra M, Friedgut O, Bumbarov V, Parida S. Persistence of Lineage IV Peste-des-petits ruminants virus within Israel since 1993: An evolutionary perspective. PLoS One 2017; 12:e0177028. [PMID: 28545149 PMCID: PMC5436660 DOI: 10.1371/journal.pone.0177028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/20/2017] [Indexed: 11/24/2022] Open
Abstract
Peste-des-petits ruminants (PPR) is one of the most important infectious diseases of domesticated small ruminants. From the initial identification in 1942 in West Africa, PPR virus (PPRV) has spread throughout much of the developing world. PPRV is now considered endemic throughout Africa, with the notable exception of South Africa, the Middle-East and Israel, as well as South-, East-, and Central Asia. Despite this widespread dispersal, the evolution and transmission of PPRV in endemic populations is not well understood. This understanding will be critical in the planning of rational measures to eradicate PPRV by the planned time as defined by the FAO and OIE. To further advance the understanding of the evolution of PPRV the full genome sequence of 18 viruses isolated from Israel from consecutive years between 1997-2014 were generated. This data set is unique and crucial for the understanding of the evolution of PPRV, as it represents the first set of full-length sequence data available from consecutive years from a single geographic location. Analysis of these full genome sequences shows 96.2-99.9% nucleotide conservation across the Israel isolates and further demonstrates the strong purifying selection pressures on PPRV within Israel and globally. Four amino acid substitutions indicative of putative positive selection were additionally identified within the Israel isolates. The mean substitution rate per site per year was estimated to be 9.22 x 10-4 (95% HPD 6.206 x 10-4-1.26 x 10-3). Using Bayesian and phylogenetic analyses we further demonstrate that the PPRV isolates from Israel belongs to linage IV and form a single strong regional cluster within all other lineage IV viruses circulating worldwide implying a single incursion into Israel.
Collapse
Affiliation(s)
| | | | | | | | - Satya Parida
- The Pirbright Institute, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Fakri F, Embarki T, Parida S, Bamouh Z, Jazouli M, Mahapatra M, Tadlaoui K, Fassi-Fihri O, Richardson CD, Elharrak M. Re-emergence of Peste des Petits Ruminants virus in 2015 in Morocco: Molecular characterization and experimental infection in Alpine goats. Vet Microbiol 2016; 197:137-141. [PMID: 27938675 DOI: 10.1016/j.vetmic.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 01/08/2023]
Abstract
Peste des Petits Ruminants (PPR) is a transboundary viral disease of small ruminants that causes huge economic losses in Africa, The Middle East and Asia. In Morocco, the first PPR outbreak was notified in 2008. Since then no cases were reported for seven years, probably due to three successive vaccination campaigns during 2008-2011 and close surveillance at the border areas. In June 2015, the disease re-emerged in Morocco, raising questions about the origin of the virus. The PPR virus was confirmed by qRT-PCR and virus was isolated from clinical samples on VeroNectin-4 cells. The disease was experimentally reproduced in Alpine goats using both sheep and goat derived outbreak isolates. Molecular characterization of the 2015 Moroccan PPR isolate confirmed the identity of the virus as lineage IV, closely related to the 2012 Algerian (KP793696) and 2012 Tunisian (KM068121) isolates and significantly distinct from the previous PPRV Morocco 2008 strain (HQ131927). Therefore this study confirms a new incursion of PPR virus in Morocco during 2015 and highlights the urgency of implementation of a common control strategy to combat PPR in Maghreb region in North Africa.
Collapse
Affiliation(s)
- F Fakri
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco; Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - T Embarki
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - S Parida
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Z Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - M Jazouli
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - M Mahapatra
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - K Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - O Fassi-Fihri
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - C D Richardson
- IWK Health Centre, Canadian Center for Vaccinology, Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - M Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| |
Collapse
|