1
|
Almeida Dos Santos DJ, de Oliveira TR, Pott-Junior H, Melendez ME, Sabino EC, Faria RC. Electrochemical genomagnetic assay for detection of SARS-CoV-2 RNA using a disposable microfluidic platform. Talanta 2025; 294:128186. [PMID: 40262348 DOI: 10.1016/j.talanta.2025.128186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND The COVID-19 pandemic exposed the world to one of the greatest challenges in our history, causing profound social and economic impacts. With the advance of the pandemic, it became evident that there was a need for new diagnostic tests for monitoring and controlling the disease. In this sense, we describe the development of a genomagnetic assay based on the use of a fully disposable electrochemical microfluidic device for detection of RNA from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in saliva samples. RESULTS A simple and low-cost disposable microfluidic platform (DμP) containing unmodified carbon-based electrodes was developed and coupled to a 3D holder containing neodymium magnets for detection of SARS-CoV-2 RNA in saliva samples. The device allows up to 8 simultaneous detections using the genomemagnetic assay, providing sensitivity with a limit of detection of 0.44 fmol L-1 and a limit of quantification of 1.44 fmol L-1, with a linear range of 5.0 fmol L-1 to 200.0 nmol L-1. The proposed assay has been successfully applied for the diagnosis of COVID-19 in cohorts of positive and negative individuals, showing excellent agreement with the results obtained by reverse transcription-polymerase chain reaction (RT-PCR). The genomagnectic assay showed the ability to discriminate between healthy individuals and patients infected with SARS-CoV-2, showing 82.4 % and 100.0 % of clinical sensitivity and specificity, respectively. SIGNIFICANCE The method developed allows a simple, low-cost, and quantitative detection of viral RNA requiring no transcription or DNA amplification steps showing excellent reproducibility. The genomagnetic assay proposed can be an alternative tool for the diagnosis and monitoring of COVID-19 and even could be easily adapted for detection of other single-stranded RNA viruses.
Collapse
Affiliation(s)
| | | | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Ronaldo Censi Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
2
|
Fukana N, Park J, Silva Junior GJ, Malsick LE, Gallichotte EN, Ebel GD, Geiss BJ, Dandy DS, Bertotti M, Nacapricha D, Baldo TA, Henry CS. Magnetophoretic slider assay for electrochemical detection of SARS-cov-2 nucleocapsid protein in nasal swab samples. Biosens Bioelectron 2025; 271:117048. [PMID: 39671962 DOI: 10.1016/j.bios.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
The COVID-19 pandemic highlighted the need for rapid and sensitive diagnostic tools. In this work, the Magnetophoretic Slider Assay (MeSA) was integrated with electrochemical detection (eMeSA) using screen-printed carbon electrodes for the first time for the detection of SARS-CoV-2 nucleocapsid protein (NP). A sandwich enzyme-linked immunosorbent assay (ELISA) was performed on streptavidin-labeled magnetic beads (MBs). The streptavidin MB/biotinylated antibody/NP complexes were added into the sample inlet, where the beads were trapped using an external magnet while the solution rehydrated the HRP-labeled antibody (HRP-Ab) and 3,3',5,5'-tetramethylbenzidine (TMB) pads. By sliding the external magnet along the channel, the bead complexes were moved to the reservoir under the HRP-Ab pad, forming sandwich complexes. These complexes were subsequently moved back across the device to reach the electrochemical detection zone, where they reacted with released TMB, which underwent oxidation upon reacting with HRP attached to the detection antibody, followed by reduction due to the voltage applied to the working electrode (0.0 V vs. Ag reference electrode). The assay showed promising results in detecting SARS-CoV-2 in 10 min, with a limit of detection of 8.89 ng/mL NP and 78.02 PFU/mL inactivated virus. The results from 15 human samples demonstrated 100% clinical specificity and 100% clinical sensitivity for samples with RT-PCR cycle threshold (Ct) values from 19 to 30, meeting WHO criteria for COVID-19 diagnostics. The eMeSA offers an alternative to traditional ELISA for a wide range of point-of-care and point-of-need diagnostic applications.
Collapse
Affiliation(s)
- Nutnaree Fukana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand; Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Thailand; Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Joowon Park
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Gilberto J Silva Junior
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970, São Paulo, SP, Brazil
| | - Lauren E Malsick
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO, USA, 80523
| | - Emily N Gallichotte
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO, USA, 80523
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO, USA, 80523
| | - Brian J Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, CO, USA, 80523; School of Biomedical Engineering, Colorado State University, CO, USA, 80523
| | - David S Dandy
- School of Biomedical Engineering, Colorado State University, CO, USA, 80523; Department of Chemical and Biological Engineering, Colorado State University, CO, USA, 80523
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748, 05513-970, São Paulo, SP, Brazil
| | - Duangjai Nacapricha
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand; Flow Innovation-Research for Science and Technology Laboratories (Firstlabs), Thailand.
| | - Thaisa A Baldo
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, CO, USA, 80523; Department of Chemical and Biological Engineering, Colorado State University, CO, USA, 80523.
| |
Collapse
|
3
|
Devi S, Yadav N, Yadav R. Nanotechnology-Based Modern Biosensors for the Detection of SARS-CoV-2 Virus. Indian J Microbiol 2025; 65:177-188. [PMID: 40371028 PMCID: PMC12069202 DOI: 10.1007/s12088-024-01404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/28/2024] [Indexed: 05/16/2025] Open
Abstract
The emergence of the COVID-19 pandemic has pointed out the urgent need for rapid and accurate diagnostic tools to detect the SARS-CoV-2 virus. Nanotechnology-based biosensors have emerged as a promising solution due to their high sensitivity, specificity, and speed in detecting biological molecules. This article focuses on the advancements in using nanotechnology for the development of modern biosensors tailored for the detection of the SARS-CoV-2 virus. Various nanomaterials, such as quantum dots, metallic nanoparticles, and nanowires, have been harnessed to enhance the performance of biosensors, offering improved detection limits and specificity. Besides this, innovative detection platforms, such as field-effect transistors, surface plasmon resonance, and electrochemical sensors, have revolutionized the landscape of SARS-CoV-2 diagnostics. These nanotechnology-based biosensors demonstrate the potential for point-of-care testing, enabling rapid and on-site detection with minimal sample preparation. The scalability, cost-effectiveness, and portability of these biosensors make them suitable for mass screening efforts in various healthcare settings, including hospitals, clinics, and community centers. The development of reliable biosensors for SARS-CoV-2 detection aligns with global efforts to curb the spread of the virus through early identification and containment strategies.
Collapse
Affiliation(s)
- Sandhya Devi
- Department of Biotechnology formerly known as Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Neha Yadav
- Department of Biotechnology formerly known as Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
- Central Instrumentation Laboratory, Central University of Punjab, Bathinda, Punjab 151401 India
| | - Rakesh Yadav
- Department of Biotechnology formerly known as Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| |
Collapse
|
4
|
Zhu R, Martínez-Roque MA, Figueroa-Miranda G, Hu Z, Acunzo A, Li H, Hu Q, Bednar J, Gensch T, Ingebrandt S, Offenhäusser A, Mayer D. Plasmon-enhanced fluorescence and electrochemical aptasensor for SARS-CoV-2 Spike protein detection. Talanta 2025; 281:126760. [PMID: 39226699 DOI: 10.1016/j.talanta.2024.126760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
In this work, we combined plasmon-enhanced fluorescence and electrochemical (PEF-EC) transduction mechanisms to realize a highly sensitive dual-transducer aptasensor. To implement two traducers in one biosensor, a novel large-scale nanoimprint lithography process was introduced to fabricate gold nanopit arrays (AuNpA) with unique fringe structures. Light transmitting through the AuNpA samples exhibited a surface plasmon polariton peak overlapping with the excitation peak of the C7 aptamer-associated fluorophore methylene blue (MB). We observed a five and seven-times higher average fluorescence intensity over the AuNpA and fringe structure, respectively, in comparison to a plane Au film. Furthermore, the MB fluorophore was simultaneously utilized as a redox probe for electrochemical investigations and is described here as a dual transduction label for the first time. The novel dual transducer system was deployed for the detection of SARS-CoV-2 Spike protein via a C7 aptamer in combination with a strand displacement protocol. The PEF transducer exhibited a detection range from 1 fg/mL to 10 ng/mL with a detection limit of 0.07 fg/mL, while the EC traducer showed an extended dynamic range from 1 fg/mL to 100 ng/mL with a detection limit of 0.15 fg/mL. This work provides insights into an easy-to-perform, large-scale fabrication process for nanostructures enabling plasmon-enhanced fluorescence, and the development of an advanced but universal aptasensor platform.
Collapse
Affiliation(s)
- Ruifeng Zhu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany; Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074, Aachen, Germany
| | - Mateo Alejandro Martínez-Roque
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Ziheng Hu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Adriano Acunzo
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany; Department of Physics, University of Naples "Federico II", Via Cintia 26, Naples, 80126, Italy
| | - Hangyu Li
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Qinyu Hu
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Justus Bednar
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany; Fakultät für Mathematik, Informatik und Naturwissenschaften, RWTH Aachen University, 52074, Aachen, Germany
| | - Thomas Gensch
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Sven Ingebrandt
- Institute of Materials in Electrical Engineering 1, RWTH Aachen University, 52074, Aachen, Germany
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany.
| |
Collapse
|
5
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
6
|
de Araujo Andrade T, Ribeiro IS, Silva TA, de Souza LKA, Coltro WKT, Borges LP, Silva DMRR, de Tarso Garcia P, de Jesus JR. Diagnosis of viral infectious diseases through sensitive detection of human serum antibodies using a modified label-free electrochemical biosensor. Anal Bioanal Chem 2024; 416:6345-6355. [PMID: 39251427 DOI: 10.1007/s00216-024-05520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Rapid virus identification is crucial for preventing outbreaks. The COVID-19 pandemic has highlighted the critical nature of rapid virus detection. Here, we designed a label-free electrochemical biosensor modified with gold nanoparticles (AuNPs) to detect IgG antibodies from human serum, enabling rapid point-of-care diagnostics. AuNPs were synthesized and characterized. A multivariate optimization was carried out to determine the optimal condition for functionalizing AuNPs with anti-IgG. Subsequently, using a glassy carbon electrode (GCE), a modified AuNPs/GCE electrochemical biosensor was developed for IgG detection. The results indicated that AuNPs displayed a spherical morphology with a size distribution of 19.54 nm. Additionally, the zeta potential was recorded at -7.84 mV. Central composite design (CCD) analysis determined the optimal conditions for functionalizing AuNPs to be an anti-IgG concentration of 320 µg mL-1, a temperature of 25 °C, and pH of 7.4. The characterization study confirmed the successful synthesis and functionalization of AuNPs. Through electrochemical impedance spectroscopy measurement, the biosensor demonstrated a limit of detection (LOD) of 0.2 ng mL-1 and limit of quantification (LOQ) of 0.8 ng mL-1. Furthermore, tests in real samples showed the interaction between IgG antibodies in serum samples and AuNPs/GCE, confirming the biosensor's ability to detect and quantify IgG in clinical samples.
Collapse
Affiliation(s)
- Tatianny de Araujo Andrade
- Faculty of Chemistry, Universidade Federal do Sul e Sudeste do Pará, Marabá, Pará, 68507-670, Brazil
- Research Laboratory in Bionanomaterials, LPbio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Iare Soares Ribeiro
- Research Laboratory in Bionanomaterials, LPbio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Tiago Almeida Silva
- Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, 49100-000, Brazil
| | | | - Paulo de Tarso Garcia
- Faculty of Chemistry, Universidade Federal do Sul e Sudeste do Pará, Marabá, Pará, 68507-670, Brazil.
| | - Jemmyson Romário de Jesus
- Research Laboratory in Bionanomaterials, LPbio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
7
|
Oliveira EH, Monteleone-Cassiano AC, Tavares L, Santos JC, Lima TM, Gomes GF, Tanaka PP, Monteiro CJ, Munuera M, Batah SS, Fabro AT, Faça VM, Masson AP, Donadi EA, Dametto M, Bonacin R, Martins RB, Neto EA, daSilva LLP, Cunha TM, Passos GA. A mimetic peptide of ACE2 protects against SARS-CoV-2 infection and decreases pulmonary inflammation related to COVID-19. Antiviral Res 2024; 229:105968. [PMID: 39004311 DOI: 10.1016/j.antiviral.2024.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Since human angiotensin-converting enzyme 2 (ACE2) serves as a primary receptor for SARS-CoV-2, characterizing ACE2 regions that allow SARS-CoV-2 to enter human cells is essential for designing peptide-based antiviral blockers and elucidating the pathogenesis of the virus. We identified and synthesized a 25-mer mimetic peptide (encompassing positions 22-46 of the ACE2 alpha-helix α1) implicated in the S1 receptor-binding domain (RBD)-ACE2 interface. The mimetic (wild-type, WT) ACE2 peptide significantly inhibited SARS-CoV-2 infection of human pulmonary Calu-3 cells in vitro. In silico protein modeling predicted that residues F28, K31, F32, F40, and Y41 of the ACE2 alpha-helix α1 are critical for the original, Delta, and Omicron strains of SARS-CoV-2 to establish the Spike RBD-ACE2 interface. Substituting these residues with alanine (A) or aspartic acid (D) abrogated the antiviral protective effect of the peptides, indicating that these positions are critical for viral entry into pulmonary cells. WT ACE2 peptide, but not the A or D mutated peptides, exhibited significant interaction with the SARS-CoV-2 S1 RBD, as shown through molecular dynamics simulations. Through identifying the critical amino acid residues of the ACE2 alpha-helix α1, which is necessary for the Spike RBD-ACE2 interface and mobilized during the in vitro viral infection of cells, we demonstrated that the WT ACE2 peptide protects susceptible K18-hACE2 mice against in vivo SARS-CoV-2 infection and is effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Ernna H Oliveira
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana C Monteleone-Cassiano
- Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Lucas Tavares
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Jadson C Santos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thais M Lima
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Giovanni F Gomes
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Pedro P Tanaka
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Cintia J Monteiro
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Matheus Munuera
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Sabrina S Batah
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre T Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vitor M Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Ana P Masson
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mariangela Dametto
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Rodrigo Bonacin
- Renato Archer Technology Information Center, Ministry of Science, Technology and Innovation, Campinas, SP, Brazil
| | - Ronaldo B Martins
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Eurico Arruda Neto
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Luis Lamberti P daSilva
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Center for Virus Research, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Thiago M Cunha
- Center for Research in Inflammatory Diseases, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Sousa TASL, Almeida NBF, Santos FA, Filgueiras PS, Corsini CA, Lacerda CMS, Silva TG, Grenfell RFQ, Plentz F. Ultrafast and highly sensitive detection of SARS-CoV-2 spike protein by field-effect transistor graphene-based biosensors. NANOTECHNOLOGY 2024; 35:425503. [PMID: 39059417 DOI: 10.1088/1361-6528/ad67e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), etiological agent for the coronavirus disease 2019 (COVID-19), has resulted in over 775 million global infections. Early diagnosis remains pivotal for effective epidemiological surveillance despite the availability of vaccines. Antigen-based assays are advantageous for early COVID-19 detection due to their simplicity, cost-effectiveness, and suitability for point-of-care testing (PoCT). This study introduces a graphene field-effect transistor-based biosensor designed for high sensitivity and rapid response to the SARS-CoV-2 spike protein. By functionalizing graphene with monoclonal antibodies and applying short-duration gate voltage pulses, we achieve selective detection of the viral spike protein in human serum within 100 µs and at concentrations as low as 1 fg ml-1, equivalent to 8 antigen molecules perµl of blood. Furthermore, the biosensor estimates spike protein concentrations in serum from COVID-19 patients. Our platform demonstrates potential for next-generation PoCT antigen assays, promising fast and sensitive diagnostics for COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Thiago A S L Sousa
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
- DTU Physics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Nathalie B F Almeida
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
- Instituto René Rachou-Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Fabrício A Santos
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Priscilla S Filgueiras
- Instituto René Rachou-Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Camila A Corsini
- Instituto René Rachou-Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Camila M S Lacerda
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thais G Silva
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Rafaella F Q Grenfell
- Instituto René Rachou-Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Flavio Plentz
- Departamento de Física, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos 6627 Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
9
|
Liu X, Sun Y, Song H, Zhang W, Liu T, Chu Z, Gu X, Ma Z, Jin W. Nanomaterials-based electrochemical biosensors for diagnosis of COVID-19. Talanta 2024; 274:125994. [PMID: 38547841 DOI: 10.1016/j.talanta.2024.125994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 05/04/2024]
Abstract
Since the outbreak of corona virus disease 2019 (COVID-19), this pandemic has caused severe death and infection worldwide. Owing to its strong infectivity, long incubation period, and nonspecific symptoms, the early diagnosis is essential to reduce risk of the severe illness. The electrochemical biosensor, as a fast and sensitive technique for quantitative analysis of body fluids, has been widely studied to diagnose different biomarkers caused at different infective stages of COVID-19 virus (SARS-CoV-2). Recently, many reports have proved that nanomaterials with special architectures and size effects can effectively promote the biosensing performance on the COVID-19 diagnosis, there are few comprehensive summary reports yet. Therefore, in this review, we will pay efforts on recent progress of advanced nanomaterials-facilitated electrochemical biosensors for the COVID-19 detections. The process of SARS-CoV-2 infection in humans will be briefly described, as well as summarizing the types of sensors that should be designed for different infection processes. Emphasis will be supplied to various functional nanomaterials which dominate the biosensing performance for comparison, expecting to provide a rational guidance on the material selection of biosensor construction for people. Finally, we will conclude the perspective on the design of superior nanomaterials-based biosensors facing the unknown virus in future.
Collapse
Affiliation(s)
- Xinxin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Yifan Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Huaiyu Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Wei Zhang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Tao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China.
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China
| | - Xiaoping Gu
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.
| | - Zhengliang Ma
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, NO.30 Puzhu Road(S), Nanjing, 211816, PR China.
| |
Collapse
|
10
|
Cerdeira Ferreira LM, Lima D, Marcolino-Junior LH, Bergamini MF, Kuss S, Campanhã Vicentini F. Cutting-edge biorecognition strategies to boost the detection performance of COVID-19 electrochemical biosensors: A review. Bioelectrochemistry 2024; 157:108632. [PMID: 38181592 DOI: 10.1016/j.bioelechem.2023.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Electrochemical biosensors are known for their high sensitivity, selectivity, and low cost. Recently, they have gained significant attention and became particularly important as promising tools for the detection of COVID-19 biomarkers, since they offer a rapid and accurate means of diagnosis. Biorecognition strategies are a crucial component of electrochemical biosensors and determine their specificity and sensitivity based on the interaction of biological molecules, such as antibodies, enzymes, and DNA, with target analytes (e.g., viral particles, proteins and genetic material) to create a measurable signal. Different biorecognition strategies have been developed to enhance the performance of electrochemical biosensors, including direct, competitive, and sandwich binding, alongside nucleic acid hybridization mechanisms and gene editing systems. In this review article, we present the different strategies used in electrochemical biosensors to target SARS-CoV-2 and other COVID-19 biomarkers, as well as explore the advantages and disadvantages of each strategy and highlight recent progress in this field. Additionally, we discuss the challenges associated with developing electrochemical biosensors for clinical COVID-19 diagnosis and their widespread commercialization.
Collapse
Affiliation(s)
- Luís Marcos Cerdeira Ferreira
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000, Buri, SP, Brazil; Laboratory of Electrochemical Sensors (LabSensE) Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Dhésmon Lima
- Laboratory for Bioanalytics and Electrochemical Sensing (LBES), Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada.
| | - Luiz Humberto Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE) Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Marcio Fernando Bergamini
- Laboratory of Electrochemical Sensors (LabSensE) Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Sabine Kuss
- Laboratory for Bioanalytics and Electrochemical Sensing (LBES), Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Fernando Campanhã Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000, Buri, SP, Brazil.
| |
Collapse
|
11
|
Ilieş BD, Yildiz I, Abbas M. Peptide-conjugated Nanoparticle Platforms for Targeted Delivery, Imaging, and Biosensing Applications. Chembiochem 2024; 25:e202300867. [PMID: 38551557 DOI: 10.1002/cbic.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Indexed: 04/24/2024]
Abstract
Peptides have become an indispensable tool in engineering of multifunctional nanostructure platforms for biomedical applications such as targeted drug and gene delivery, imaging and biosensing. They can be covalently incorporated into a variety of nanoparticles (NPs) including polymers, metallic nanoparticles, and others. Using different bioconjugation techniques, multifunctional peptide-modified NPs can be formulated to produce therapeutical and diagnostic platforms offering high specificity, lower toxicity, biocompatibility, and stimuli responsive behavior. Targeting peptides can direct the nanoparticles into specific tissues for targeted drug and gene delivery and imaging applications due to their specificity towards certain receptors. Furthermore, due to their stimuli-responsive features, they can offer controlled release of therapeutics into desired sites of disease. In addition, peptide-based biosensors and imaging agents can provide non-invasive detection and monitoring of diseases including cancer, infectious diseases, and neurological disorders. In this review, we covered the design and formulation of recent peptide-based NP platforms, as well as their utilization in in vitro and in vivo applications such as targeted drug and gene delivery, targeting, sensing, and imaging applications. In the end, we provided the future outlook to design new peptide conjugated nanomaterials for biomedical applications.
Collapse
Affiliation(s)
- Bogdan Dragoş Ilieş
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Ibrahim Yildiz
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
- Functional Biomaterials Group, Khalifa University of Science and Technology, P.O. Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
12
|
Agarwal S, Srivastava R, Kumar S, Prajapati YK. COVID-19 Detection Using Contemporary Biosensors and Machine Learning Approach: A Review. IEEE Trans Nanobioscience 2024; 23:291-299. [PMID: 38090858 DOI: 10.1109/tnb.2023.3342126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The current global pandemic not only claims countless human lives but also rocks the economies of every country on the planet. This fact needs the development of novel, productive, and efficient techniques to detect the SARS-CoV-2 virus. This review article discusses the current state of SARS-CoV-2 virus detection methods such as electrochemical, fluorescent, and electronic, etc., as well as the potential of optical sensors with a wide range of novel approaches and models. This review provides a comprehensive comparison of various detection methods by comparing the various techniques in depth. In addition, there is a brief discussion of the futuristic approach combining optical sensors with machine learning algorithms. It is believed that this study would prove to be critical for the scientific community to explore solutions for detecting viruses with improved functionality.
Collapse
|
13
|
Fabiani L, Fiore L, Fillo S, D'Amore N, De Santis R, Lista F, Arduini F. Smartphone-assisted paper-based electrochemical immunosensor for SARS-CoV-2 detection in saliva. Bioelectrochemistry 2024; 156:108619. [PMID: 38128441 DOI: 10.1016/j.bioelechem.2023.108619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Herein, we developed a new waste solution-free paper-based electrochemical immunosensor for SARS-CoV-2 detection in saliva, by combining vertical and lateral flow. In detail, the device was constituted of a reservoir containing all reagents for the construction of the immunological chain onto the magnetic beads and a lateral flow holder which contained a polyester-based electrode, a magnet, and an adsorbent pad. The measurement was carried out by adding the saliva sample into the reservoir, followed by the addition of this solution in the hole present in the lateral flow holder. The successive additions of washing buffer and TMB solution in the lateral flow holder allowed the detection of N protein in saliva in the range of 0.06 to 4 µg/mL with a detection limit equal to 30 ng/mL. The analysis of several saliva samples with the sensing tool and the reference method, demonstrated the effectiveness of this device, being able to identify positive patients with high values of CT e.g. 35. This new configuration paves the way for the realization of any magnetic beads-based immunosystem without waste solution production, enlarging the application of paper-based devices.
Collapse
Affiliation(s)
- Laura Fabiani
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Luca Fiore
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED, Via Bitonto 139, 00133, Rome, Italy
| | - Silvia Fillo
- Defence Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Nino D'Amore
- Defence Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Riccardo De Santis
- Defence Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Defence Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Fabiana Arduini
- University of Rome "Tor Vergata", Department of Chemical Science and Technologies, Via della Ricerca Scientifica, 00133 Rome, Italy; SENSE4MED, Via Bitonto 139, 00133, Rome, Italy.
| |
Collapse
|
14
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
15
|
Li Y, Guan C, Liu C, Li Z, Han G. Disease diagnosis and application analysis of molecularly imprinted polymers (MIPs) in saliva detection. Talanta 2024; 269:125394. [PMID: 37980173 DOI: 10.1016/j.talanta.2023.125394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Saliva has significantly evolved as a diagnostic fluid in recent years, giving a non-invasive alternative to blood analysis. A high protein concentration in saliva is delivered directly from the bloodstream, making it a "human mirror" that reflects the body's physiological state. It plays an essential role in detecting diseases in biomedical and fitness monitoring. Molecularly imprinted polymers (MIPs) are biomimetic materials with custom-designed synthetic recognition sites that imitate biological counterparts renowned for sensitive analyte detection. This paper reviews the progress made in research about MIP biosensors for detecting saliva biomarkers. Specifically, we investigate the link between saliva biomarkers and various diseases, providing detailed insights into the corresponding biosensors. Furthermore, we discuss the principles of molecular imprinting for disease diagnostics and application analysis, including recent advances in integrated MIP-sensor technologies for high-affinity analyte detection in saliva. Notably, these biosensors exhibit high discrimination, allowing for the detection of saliva biomarkers linked explicitly to chronic stress disorders, diabetes, cancer, bacterial or viral-induced illnesses, and exposure to illicit toxic substances or tobacco smoke. Our findings indicate that MIP-based biosensors match and perhaps surpass their counterparts featuring integrated natural antibodies in terms of stability, signal-to-noise ratios, and detection limits. Additionally, we highlight the design of MIP coatings, strategies for synthesizing polymers, and the integration of advanced biodevices. These tailored biodevices, designed to assess various salivary biomarkers, are emerging as promising screening or diagnostic tools for real-time monitoring and self-health management, improving quality of life.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
16
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
17
|
Wang J, Zhang L, Yan G, Cheng L, Zhang F, Wu J, Lei Y, An Q, Qi H, Zhang C, Gao Q. Modified exfoliated graphene functionalized with carboxylic acid-group and thionine on a screen-printed carbon electrode as a platform for an electrochemical enzyme immunosensor. Mikrochim Acta 2024; 191:143. [PMID: 38368295 DOI: 10.1007/s00604-024-06212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
An enzyme immunoassay was developed based on the coulometric measurement of immunoglobulin M (IgM) against Hantaan viruses (HTNV) by using virus-like particles (VLPs) as recognition molecules. The surface functionalization of screen-printed carbon electrodes (SPCEs) was achieved through paste-exfoliated graphene that was modified with a COOH group and a thionine mediator through supramolecular-covalent scaffolds, on SPCEs by using the binder contained in the ink. After the covalent immobilization of the antibody, the sensor was used for the sandwich enzyme immunoassay of IgM against HTNV. By using HTNV VLPs as the second recognization molecules, the resulting sensor efficiently monitored the reaction of IgM against HTNV and anti-IgM antibody with high specificity. By attaching HTNV nucleocapsid protein antibody conjugate with horseradish peroxidase (HRP) onto VLPs, the signal response of the assay was derived from the coulometric measurement of H2O2 reduction mediated by thionine on the electrode surface after the application of a potential (- 0.2 V vs. Ag/AgCl). The ratio of charges measured before or after H2O2 addition was used to quantify IgM because these charges could be used as background charges or total charges, respectively. The ratio exhibited good agreement with IgM concentration within a range 0.1 to 1000 pg mL-1, and a detection limit of 0.06 pg mL-1 was obtained. The assay demonstrated high sensitivity and specificity toward HTNV-specific IgM in serum.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Liang Zhang
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Guanrong Yan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Linfeng Cheng
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Jialin Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Yingfeng Lei
- Department of Microbiology, Faculty of Preclinical Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Qunxing An
- Department of Transfusion Medicine, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Qiang Gao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
18
|
Zhu J, Lu H, Lin Q, Zhang T, Chen G, Zhou Y, Sui G. Fucoidan-based antibody-free magnetic nanoparticle for on-site detection of waterborne SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168619. [PMID: 37977397 DOI: 10.1016/j.scitotenv.2023.168619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The portable and sensitive point-of-care-test (POCT) method is in urgent need to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for ensuring public health and safety. However, detection of trace number of pathogens in real water sample from the environment still faces challenges, because complex environment disruptors can rapidly degrade targets. Herein, magnetic beads coated with fucoidan and polydopamine (Fuc-PDA-MBs) were introduced as the capture carrier for pretreatment of samples. Fucoidan, a sulfated polysaccharide, can recognize the SARS-CoV-2 spike (S1) protein receptor-binding domain (S1 RBD) and was chosen for replacement of antibody in enrichment. Environmental water seeded with SARS-CoV-2 spike pseudovirus was applied to test performance of Fuc-PDA-MBs method. Under optimal conditions, the use of Fuc-PDA-MBs showed average 76 % capture efficiency at SARS-CoV-2 spike pseudovirus concentration ranging from 107.62 to 104.34 gene copies (gc)/L. Compared with Electronegative filtration (ENF), Fuc-PDA-MBs showed better virion sorption effectiveness. Fuc-PDA-MBs also validated by raw contaminated urban wastewater and showed high recovery results for SARS-CoV-2 variants. To rapidly detect virus in POCT, nucleic acid extraction-free Loop-Mediated Isothermal Amplification (LAMP) was used for simplifying experimental process. The Fuc-PDA-MBs-LAMP assay showed the quantitation limit of sample (LOQ) was 105.49 gc/L. The whole procedure could be completed within 90 min, including 30 min for virus pre-enrichment, 10 min nucleic acid release and 45 min LAMP analysis. Compared with regular antibody-based immunodetection, this integrated system provides broad-spectrum, economic way to detect SARS-CoV-2 mutants in complex environments and also adaptable for high throughput test, which might be used for on-site early warning of SARS-CoV-2 outbreaks in developing area.
Collapse
Affiliation(s)
- Jinhui Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Huijun Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Qiuyuan Lin
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Tong Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Guang Chen
- Shanghai Chengtou Wastewater Treatment Co., LtD., Shanghai 201203, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China.
| |
Collapse
|
19
|
Kim YJ, Min J. Advances in nanobiosensors during the COVID-19 pandemic and future perspectives for the post-COVID era. NANO CONVERGENCE 2024; 11:3. [PMID: 38206526 PMCID: PMC10784265 DOI: 10.1186/s40580-023-00410-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The unprecedented threat of the highly contagious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes exponentially increased infections of coronavirus disease 2019 (COVID-19), highlights the weak spots of the current diagnostic toolbox. In the midst of catastrophe, nanobiosensors offer a new opportunity as an alternative tool to fill a gap among molecular tests, rapid antigen tests, and serological tests. Nanobiosensors surpass the potential of antigen tests because of their enhanced sensitivity, thus enabling us to see antigens as stable and easy-to-access targets. During the first three years of the COVID-19 pandemic, a substantial number of studies have reported nanobiosensors for the detection of SARS-CoV-2 antigens. The number of articles on nanobiosensors and SARS-CoV-2 exceeds the amount of nanobiosensor research on detecting previous infectious diseases, from influenza to SARS-CoV and MERS-CoV. This unprecedented publishing pace also implies the significance of SARS-CoV-2 and the present pandemic. In this review, 158 studies reporting nanobiosensors for detecting SARS-CoV-2 antigens are collected to discuss the current challenges of nanobiosensors using the criteria of point-of-care (POC) diagnostics along with COVID-specific issues. These advances and lessons during the pandemic pave the way for preparing for the post-COVID era and potential upcoming infectious diseases.
Collapse
Affiliation(s)
- Young Jun Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
20
|
du Plooy J, Kock B, Jahed N, Iwuoha E, Pokpas K. Carbon Nanostructured Immunosensing of Anti-SARS-CoV-2 S-Protein Antibodies. Molecules 2023; 28:8022. [PMID: 38138513 PMCID: PMC10745885 DOI: 10.3390/molecules28248022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The rampant spread and death rate of the recent coronavirus pandemic related to the SARS-CoV-2 respiratory virus have underscored the critical need for affordable, portable virus diagnostics, particularly in resource-limited settings. Moreover, efficient and timely monitoring of vaccine efficacy is needed to prevent future widespread infections. Electrochemical immunosensing poses an effective alternative to conventional molecular spectroscopic approaches, offering rapid, cost-effective, sensitive, and portable electroanalysis of disease biomarkers and antibodies; however, efforts to improve binding efficiency and sensitivity are still being investigated. Graphene quantum dots (GQDs) in particular have shown promise in improving device sensitivity. This study reports the development of a GQD-functionalized point-of-contamination device leveraging the selective interactions between SARS-CoV-2-specific Spike (S) Protein receptor binding domain (RBD) antigens and IgG anti-SARS-CoV-2-specific S-protein antibodies at screen-printed carbon electrode (SPCE) surfaces. The immunocomplexes formed at the GQD surfaces result in the interruption of the redox reactions that take place in the presence of a redox probe, decreasing the current response. Increased active surface area, conductivity, and binding via EDC/NHS chemistry were achieved due to the nanomaterial inclusion, with 5 nm, blue luminescent GQDs offering the best results. GQD concentration, EDC/NHS ratio, and RBD S-protein incubation time and concentration were optimized for the biosensor, and inter- and intra-screen-printed carbon electrode detection was investigated by calibration studies on multiple and single electrodes. The single electrode used for the entire calibration provided the best results. The label-free immunosensor was able to selectively detect anti-SARS-CoV-2 IgG antibodies between 0.5 and 100 ng/mL in the presence of IgM and other coronavirus antibodies with an excellent regression of 0.9599. A LOD of 2.028 ng/mL was found, offering comparable findings to the literature-reported values. The detection sensitivity of the sensor is further compared to non-specific IgM antibodies. The developed GQD immunosensor was compared to other low-oxygen content carbon nanomaterials, namely (i) carbon quantum dot (CQD), (ii) electrochemically reduced graphene oxide, and (iii) carbon black-functionalized devices. The findings suggest that improved electron transfer kinetics and increased active surface area of the CNs, along with surface oxygen content, aid in the detection of anti-SARS-CoV-2 IgG antibodies. The novel immunosensor suggests a possible application toward monitoring of IgG antibody production in SARS-CoV-2-vaccinated patients to study immune responses, vaccine efficacy, and lifetime to meet the demands for POC analysis in resource-limited settings.
Collapse
Affiliation(s)
| | | | | | | | - Keagan Pokpas
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
21
|
Palanisamy S, Lee LY, Kao CF, Chen WL, Wang HC, Shen ST, Jian JW, Yuan SSF, Kung YA, Wang YM. One-step-one-pot hydrothermally derived metal-organic-framework-nanohybrids for integrated point-of-care diagnostics of SARS-CoV-2 viral antigen/pseudovirus utilizing electrochemical biosensor chip. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 390:133960. [PMID: 37193120 PMCID: PMC10170875 DOI: 10.1016/j.snb.2023.133960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic has become a global catastrophe, affecting the health and economy of the human community. It is required to mitigate the impact of pandemics by developing rapid molecular diagnostics for SARS-CoV-2 virus detection. In this context, developing a rapid point-of-care (POC) diagnostic test is a holistic approach to the prevention of COVID-19. In this context, this study aims at presenting a real-time, biosensor chip for improved molecular diagnostics including recombinant SARS-CoV-2 spike glycoprotein and SARS-CoV-2 pseudovirus detection based on one-step-one-pot hydrothermally derived CoFeBDCNH2-CoFe2O4 MOF-nanohybrids. This study was tested on a PalmSens-EmStat Go POC device, showing a limit of detection (LOD) for recombinant SARS-CoV-2 spike glycoprotein of 6.68 fg/mL and 6.20 fg/mL in buffer and 10% serum-containing media, respectively. To validate virus detection in the POC platform, an electrochemical instrument (CHI6116E) was used to perform dose dependent studies under similar experimental conditions to the handheld device. The results obtained from these studies were comparable indicating the capability and high detection electrochemical performance of MOF nanocomposite derived from one-step-one-pot hydrothermal synthesis for SARS-CoV-2 detection for the first time. Further, the performance of the sensor was tested in the presence of Omicron BA.2 and wild-type D614G pseudoviruses.
Collapse
Affiliation(s)
- Sathyadevi Palanisamy
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Li-Yun Lee
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Wen-Liang Chen
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| | - Hsiang-Ching Wang
- Biomedical Technology and Device Research Lab, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - San-Tai Shen
- AnTaimmu BioMed Co., Ltd, Unit 304, No. 1, Lixing 1st Road, East District, Hsinchu 300, Taiwan
| | - Jhih-Wei Jian
- AnTaimmu BioMed Co., Ltd, Unit 304, No. 1, Lixing 1st Road, East District, Hsinchu 300, Taiwan
| | - Shyng-Shiou F Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty and College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, 75 Bo-Ai Street, Hsinchu 300, Taiwan
| |
Collapse
|
22
|
Mishra S, Aamna B, Parida S, Dan AK. Carbon-based biosensors: Next-generation diagnostic tool for target-specific detection of SARS-CoV-2 (COVID-19). TALANTA OPEN 2023; 7:100218. [PMID: 37131405 PMCID: PMC10125215 DOI: 10.1016/j.talo.2023.100218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) was declared a global pandemic in 2020. Having rapidly spread around the globe, with the emergence of new variants, there is a crucial need to develop diagnostic kits for its rapid detection. Since it validated accuracy and reliability, the reverse transcription polymerase chain reaction (RT-PCR) test has been declared the gold standard for disease detection. However, despite its reliability, the requirement of specialized facilities, reagents, and duration of a PCR run limits its usage for rapid detection. There is thus a continuous increase in the design and development of rapid, point-of-care (PoC), and cost-effective diagnostic kits. In this review, we discuss the potential of carbon-based biosensors for target-specific detection of coronavirus disease 19 (COVID-19) and present an overview of investigation within the timeframe of the last four years (2019-2022), which have developed novel platforms using carbon nanomaterial-based approaches for viral detection. The approaches discussed offer rapid, accurate, and cost-effective strategies for COVID-19 detection for healthcare personnel and research workers.
Collapse
Affiliation(s)
- Shivam Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| | - Bari Aamna
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| | - Sagarika Parida
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Aritra Kumar Dan
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
23
|
Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100324. [PMID: 36844889 PMCID: PMC9941073 DOI: 10.1016/j.biosx.2023.100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
24
|
Tieu MV, Le HTN, Cho S. Using Nanomaterials for SARS-CoV-2 Sensing via Electrochemical Techniques. MICROMACHINES 2023; 14:933. [PMID: 37241556 PMCID: PMC10221901 DOI: 10.3390/mi14050933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023]
Abstract
Advancing low-cost and user-friendly innovations to benefit public health is an important task of scientific and engineering research. According to the World Health Organization (WHO), electrochemical sensors are being developed for low-cost SARS-CoV-2 diagnosis, particularly in resource-limited settings. Nanostructures with sizes ranging from 10 nm to a few micrometers could deliver optimum electrochemical behavior (e.g., quick response, compact size, sensitivity and selectivity, and portability), providing an excellent alternative to the existing techniques. Therefore, nanostructures, such as metal, 1D, and 2D materials, have been successfully applied in in vitro and in vivo detection of a wide range of infectious diseases, particularly SARS-CoV-2. Electrochemical detection methods reduce the cost of electrodes, provide analytical ability to detect targets with a wide variety of nanomaterials, and are an essential strategy in biomarker sensing as they can rapidly, sensitively, and selectively detect SARS-CoV-2. The current studies in this area provide fundamental knowledge of electrochemical techniques for future applications.
Collapse
Affiliation(s)
- My-Van Tieu
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hien T. Ngoc Le
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
25
|
Deenin W, Yakoh A, Pimpitak U, Pasomsub E, Rengpipat S, Crespo GA, Chaiyo S. Electrochemical lateral-flow device for rapid COVID-19 antigen-diagnostic testing. Bioelectrochemistry 2023; 152:108438. [PMID: 37054603 PMCID: PMC10077809 DOI: 10.1016/j.bioelechem.2023.108438] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Antigen test kits (ATK) are extensively utilized for screening and diagnosing COVID-19 because they are easy to operate. However, ATKs exhibit poor sensitivity and cannot detect low concentrations of SARS-CoV-2. Herein, we present a new, highly sensitive, and selective device obtained by combining the principle of ATKs with electrochemical detection for COVID-19 diagnosis, which can be quantitatively assessed using a smartphone. An electrochemical test strip (E-test strip) was constructed by attaching a screen-printed electrode inside a lateral-flow device to exploit the remarkable binding affinity of SARS-CoV-2 antigen to ACE2. The ferrocene carboxylic acid attached to SARS-CoV-2 antibody acts as an electroactive species when it binds to SARS-CoV-2 antigen in the sample before it flows continuously to the ACE2-immobilization region on the electrode. Electrochemical-assay signal intensity on smartphones increased proportionally to the concentration of SARS-CoV-2 antigen (LOD = 2.98 pg/mL, under 12 min). Additionally, the application of the single-step E-test strip for COVID-19 screening was demonstrated using nasopharyngeal samples, and the results were consistent with those obtained using the gold standard (RT-PCR). Therefore, the sensor demonstrated excellent performance in assessing and screening COVID-19, and it can be used professionally to accurately verify diagnostic data while remaining rapid, simple, and inexpensive.
Collapse
Affiliation(s)
- Wanwisa Deenin
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Abdulhadee Yakoh
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Umaporn Pimpitak
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sirirat Rengpipat
- Qualified Diagnostic Development Center (QDD), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Gastón A Crespo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30SE-100 44, Stockholm, Sweden; UCAM SENS, UCAM-SENS, Universidad Católica San Antonio de Murcia, UCAM HiTech, 30107 Murcia, Spain
| | - Sudkate Chaiyo
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence for Food and Water Risk Analysis (FAWRA), Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
26
|
Ferreira MDP, Yamada-Ogatta SF, Teixeira Tarley CR. Electrochemical and Bioelectrochemical Sensing Platforms for Diagnostics of COVID-19. BIOSENSORS 2023; 13:336. [PMID: 36979548 PMCID: PMC10046778 DOI: 10.3390/bios13030336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Rapid transmission and high mortality rates caused by the SARS-CoV-2 virus showed that the best way to fight against the pandemic was through rapid, accurate diagnosis in parallel with vaccination. In this context, several research groups around the world have endeavored to develop new diagnostic methods due to the disadvantages of the gold standard method, reverse transcriptase polymerase chain reaction (RT-PCR), in terms of cost and time consumption. Electrochemical and bioelectrochemical platforms have been important tools for overcoming the limitations of conventional diagnostic platforms, including accuracy, accessibility, portability, and response time. In this review, we report on several electrochemical sensors and biosensors developed for SARS-CoV-2 detection, presenting the concepts, fabrication, advantages, and disadvantages of the different approaches. The focus is devoted to highlighting the recent progress of electrochemical devices developed as next-generation field-deployable analytical tools as well as guiding future researchers in the manufacture of devices for disease diagnosis.
Collapse
Affiliation(s)
| | | | - César Ricardo Teixeira Tarley
- Department of Chemistry, State University of Londrina (UEL), Londrina 86051-990, Brazil
- National Institute of Science and Technology in Bioanalysis (INCTBio), Institute of Chemistry, State University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| |
Collapse
|
27
|
Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2023; 415:1003-1031. [PMID: 35970970 PMCID: PMC9378265 DOI: 10.1007/s00216-022-04237-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, therapeutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the inauguration of a new paradigm of personalized medicine.
Collapse
Affiliation(s)
- Viviana Vásquez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
28
|
Castro KPR, Colombo RNP, Iost RM, da Silva BGR, Crespilho FN. Low-dimensionality carbon-based biosensors: the new era of emerging technologies in bioanalytical chemistry. Anal Bioanal Chem 2023:10.1007/s00216-023-04578-x. [PMID: 36757464 PMCID: PMC9909134 DOI: 10.1007/s00216-023-04578-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Since the last decade, carbon nanomaterials have had a notable impact on different fields such as bioimaging, drug delivery, artificial tissue engineering, and biosensors. This is due to their good compatibility toward a wide range of chemical to biological molecules, low toxicity, and tunable properties. Especially for biosensor technology, the characteristic features of each dimensionality of carbon-based materials may influence the performance and viability of their use. Surface area, porous network, hybridization, functionalization, synthesis route, the combination of dimensionalities, purity levels, and the mechanisms underlying carbon nanomaterial interactions influence their applications in bioanalytical chemistry. Efforts are being made to fully understand how nanomaterials can influence biological interactions, to develop commercially viable biosensors, and to gain knowledge on the biomolecular processes associated with carbon. Here, we present a comprehensive review highlighting the characteristic features of the dimensionality of carbon-based materials in biosensing.
Collapse
Affiliation(s)
- Karla P. R. Castro
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Rafael N. P. Colombo
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Rodrigo M. Iost
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Beatriz G. R. da Silva
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| | - Frank N. Crespilho
- grid.11899.380000 0004 1937 0722São Carlos Institute of Chemistry, University of São Paulo, Av. Trabalhador São Carlense, 400 Parque Arnold Schimidt, São Carlos, SP 13566-590 Brazil
| |
Collapse
|
29
|
Dong T, Matos Pires NM, Yang Z, Jiang Z. Advances in Electrochemical Biosensors Based on Nanomaterials for Protein Biomarker Detection in Saliva. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205429. [PMID: 36585368 PMCID: PMC9951322 DOI: 10.1002/advs.202205429] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/20/2022] [Indexed: 06/02/2023]
Abstract
The focus on precise medicine enhances the need for timely diagnosis and frequent monitoring of chronic diseases. Moreover, the recent pandemic of severe acute respiratory syndrome coronavirus 2 poses a great demand for rapid detection and surveillance of viral infections. The detection of protein biomarkers and antigens in the saliva allows rapid identification of diseases or disease changes in scenarios where and when the test response at the point of care is mandated. While traditional methods of protein testing fail to provide the desired fast results, electrochemical biosensors based on nanomaterials hold perfect characteristics for the detection of biomarkers in point-of-care settings. The recent advances in electrochemical sensors for salivary protein detection are critically reviewed in this work, with emphasis on the role of nanomaterials to boost the biosensor analytical performance and increase the reliability of the test in human saliva samples. Furthermore, this work identifies the critical factors for further modernization of the nanomaterial-based electrochemical sensors, envisaging the development and implementation of next-generation sample-in-answer-out systems.
Collapse
Affiliation(s)
- Tao Dong
- Department of Microsystems‐ IMSFaculty of TechnologyNatural Sciences and Maritime SciencesUniversity of South‐Eastern Norway‐USNP.O. Box 235Kongsberg3603Norway
| | - Nuno Miguel Matos Pires
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
| | - Zhuangde Jiang
- Chongqing Key Laboratory of Micro‐Nano Systems and Intelligent TransductionCollaborative Innovation Center on Micro‐Nano Transduction and Intelligent Eco‐Internet of ThingsChongqing Key Laboratory of Colleges and Universities on Micro‐Nano Systems Technology and Smart TransducingNational Research Base of Intelligent Manufacturing ServiceChongqing Technology and Business UniversityNan'an DistrictChongqing400067China
- State Key Laboratory for Manufacturing Systems EngineeringInternational Joint Laboratory for Micro/Nano Manufacturing and Measurement TechnologyXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
30
|
de Moraes Pontes JG, Dos Santos RV, Tasic L. NMR-Metabolomics in COVID-19 Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:197-209. [PMID: 37378768 DOI: 10.1007/978-3-031-28012-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
COVID-19 stands for Corona Virus Disease 2019, which starts as a viral infection that provokes illness with different symptoms and severity. The infected individuals can be asymptomatic or present with mild, moderate, severe, and critical illness with acute respiratory distress syndrome (ARDS), acute cardiac injury, and multiorgan failure. When the virus enters the cells, it replicates and provokes responses. Most diseased individuals resolve the problems in a short time but unfortunately, some may die, and almost 3 years after the first reported cases, COVID-19 still kills thousands per day worldwide. One of the problems in not curing the viral infection is that the virus passes by undetected in cells. This can be caused by the lack of pathogen-associated molecular patterns (PAMPs) that start an orchestrated immune response, such as activation of type 1 interferons (IFNs), inflammatory cytokines, chemokines, and antiviral defenses. Before all of these events can happen, the virus uses the infected cells and numerous small molecules as sources of energy and building blocks for newly synthesized viral nanoparticles that travel to and infect other host cells. Therefore, studying the cell metabolome and metabolomic changes in biofluids might give insights into the state of the viral infection, viral loads, and defense response. NMR-metabolomics can help in solving the real-time host interactions by monitoring concentration changes in metabolites. This chapter addresses the state of the art of COVIDomics by NMR analyses and presents exemplified biomolecules identified in different world regions and gravities of illness as potential biomarkers.
Collapse
Affiliation(s)
| | - Roney Vander Dos Santos
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), CampinaEs, Sao Paulo, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, University of Campinas (UNICAMP), CampinaEs, Sao Paulo, Brazil.
| |
Collapse
|
31
|
Du J, Xiang D, Liu F, Wang L, Li H, Gong L, Fan X. Hijacking the self-replicating machine of bacteriophage for PCR-based cascade signal amplification in detecting SARS-CoV-2 viral marker protein in serum. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 374:132780. [PMID: 36267643 PMCID: PMC9560943 DOI: 10.1016/j.snb.2022.132780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
In this work, the nucleic acid detection of SARS-Cov-2 is extended to protein markers of the virus, utilizing bacteriophage. Specifically, the phage display technique enables the main protease of SARS-Cov-2 to control the self-replication of m13 phage, so that the presence of the viral protease can be amplified by phage replication as the first round of signal amplification. Then, the genome of replicated phage can be detected using polymer chain reaction (PCR), as the second round of signal amplification. Based on these two types of well-established biotechnology, the proposed method shows satisfactory sensitivity and robustness in the direct serum detection of the viral protease. These results may point to clinical application in the near future.
Collapse
Affiliation(s)
- Jialei Du
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Daili Xiang
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Fushan Liu
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Leichen Wang
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Hao Li
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Liu Gong
- Institute for Advanced Interdisciplinary Research (iAIR), Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, University of Jinan, Jinan 250022, China
| | - Xiangyu Fan
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| |
Collapse
|
32
|
Farsaeivahid N, Grenier C, Nazarian S, Wang ML. A Rapid Label-Free Disposable Electrochemical Salivary Point-of-Care Sensor for SARS-CoV-2 Detection and Quantification. SENSORS (BASEL, SWITZERLAND) 2022; 23:433. [PMID: 36617031 PMCID: PMC9823438 DOI: 10.3390/s23010433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 05/24/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has created an urgent need for accurate early diagnosis and monitoring. A label-free rapid electrochemical point-of-care (POC) biosensor for SARS-CoV-2 detection in human saliva is reported here to help address the shortcomings of traditional nucleic acid amplification methods and give a quantitative assessment of the viral load to track infection status anywhere, using disposable electrochemical sensor chips. A new chemical construct of gold nanoparticles (GNp) and thionine (Th) are immobilized on carboxylic acid functionalized carbon nanotubes (SWCNT-COOH) for high-performance biosensing. The sensor uses saliva with a one-step pretreatment and simple testing procedure as an analytical medium due to the user-friendly and non-invasive nature of its procurement from patients. The sensor has a response time of 5 min with a limit of detection (LOD) reaching 200 and 500 pM for the freely suspended spike (S) protein in phosphate buffer saline (PBS) and human saliva, respectively. The sensor's performance was also proven for detecting a COVID-19 pseudovirus in an electrolyte solution with a LOD of 106 copies/mL. The results demonstrate that the optimized POC sensor developed in this work is a promising device for the label-free electrochemical biosensing detection of SARS-CoV-2 and different species of viruses.
Collapse
Affiliation(s)
- Nadia Farsaeivahid
- Interdisciplinary Engineering Program, Northeastern University, Boston, MA 02115, USA
| | - Christian Grenier
- Interdisciplinary Engineering Program, Northeastern University, Boston, MA 02115, USA
| | - Sheyda Nazarian
- Interdisciplinary Engineering Program, Northeastern University, Boston, MA 02115, USA
| | - Ming L. Wang
- Civil and Environmental Engineering Department, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
33
|
Gul I, Zhai S, Zhong X, Chen Q, Yuan X, Du Z, Chen Z, Raheem MA, Deng L, Leeansyah E, Zhang C, Yu D, Qin P. Angiotensin-Converting Enzyme 2-Based Biosensing Modalities and Devices for Coronavirus Detection. BIOSENSORS 2022; 12:984. [PMID: 36354493 PMCID: PMC9688389 DOI: 10.3390/bios12110984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 05/30/2023]
Abstract
Rapid and cost-effective diagnostic tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a critical and valuable weapon for the coronavirus disease 2019 (COVID-19) pandemic response. SARS-CoV-2 invasion is primarily mediated by human angiotensin-converting enzyme 2 (hACE2). Recent developments in ACE2-based SARS-CoV-2 detection modalities accentuate the potential of this natural host-virus interaction for developing point-of-care (POC) COVID-19 diagnostic systems. Although research on harnessing ACE2 for SARS-CoV-2 detection is in its infancy, some interesting biosensing devices have been developed, showing the commercial viability of this intriguing new approach. The exquisite performance of the reported ACE2-based COVID-19 biosensors provides opportunities for researchers to develop rapid detection tools suitable for virus detection at points of entry, workplaces, or congregate scenarios in order to effectively implement pandemic control and management plans. However, to be considered as an emerging approach, the rationale for ACE2-based biosensing needs to be critically and comprehensively surveyed and discussed. Herein, we review the recent status of ACE2-based detection methods, the signal transduction principles in ACE2 biosensors and the development trend in the future. We discuss the challenges to development of ACE2-biosensors and delineate prospects for their use, along with recommended solutions and suggestions.
Collapse
Affiliation(s)
- Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shiyao Zhai
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyun Zhong
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Yuan
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhicheng Du
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Muhammad Akmal Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Canyang Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dongmei Yu
- Department of Computer Science and Technology, School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
34
|
Moura AV, de Oliveira DC, Silva AAR, da Rosa JR, Garcia PHD, Sanches PHG, Garza KY, Mendes FMM, Lambert M, Gutierrez JM, Granado NM, dos Santos AC, de Lima IL, Negrini LDDO, Antonio MA, Eberlin MN, Eberlin LS, Porcari AM. Urine Metabolites Enable Fast Detection of COVID-19 Using Mass Spectrometry. Metabolites 2022; 12:1056. [PMID: 36355139 PMCID: PMC9697918 DOI: 10.3390/metabo12111056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
The COVID-19 pandemic boosted the development of diagnostic tests to meet patient needs and provide accurate, sensitive, and fast disease detection. Despite rapid advancements, limitations related to turnaround time, varying performance metrics due to different sampling sites, illness duration, co-infections, and the need for particular reagents still exist. As an alternative diagnostic test, we present urine analysis through flow-injection-tandem mass spectrometry (FIA-MS/MS) as a powerful approach for COVID-19 diagnosis, targeting the detection of amino acids and acylcarnitines. We adapted a method that is widely used for newborn screening tests on dried blood for urine samples in order to detect metabolites related to COVID-19 infection. We analyzed samples from 246 volunteers with diagnostic confirmation via PCR. Urine samples were self-collected, diluted, and analyzed with a run time of 4 min. A Lasso statistical classifier was built using 75/25% data for training/validation sets and achieved high diagnostic performances: 97/90% sensitivity, 95/100% specificity, and 95/97.2% accuracy. Additionally, we predicted on two withheld sets composed of suspected hospitalized/symptomatic COVID-19-PCR negative patients and patients out of the optimal time-frame collection for PCR diagnosis, with promising results. Altogether, we show that the benchmarked FIA-MS/MS method is promising for COVID-19 screening and diagnosis, and is also potentially useful after the peak viral load has passed.
Collapse
Affiliation(s)
- Alexandre Varao Moura
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Danilo Cardoso de Oliveira
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Alex Ap. R. Silva
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Jonas Ribeiro da Rosa
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Pedro Henrique Dias Garcia
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Pedro Henrique Godoy Sanches
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Kyana Y. Garza
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Flavio Marcio Macedo Mendes
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Mayara Lambert
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Junier Marrero Gutierrez
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Nicole Marino Granado
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| | - Alicia Camacho dos Santos
- Department of Material Engineering and Nanotechnology, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil
| | - Iasmim Lopes de Lima
- Department of Material Engineering and Nanotechnology, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil
| | | | - Marcia Aparecida Antonio
- Integrated Unit of Pharmacology and Gastroenterology, UNIFAG, Bragança Paulista 12916-900, SP, Brazil
| | - Marcos N. Eberlin
- Department of Material Engineering and Nanotechnology, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andreia M. Porcari
- MSLife Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil
| |
Collapse
|
35
|
Ganesh PS, Kim SY. A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. CHEMOSPHERE 2022; 307:135645. [PMID: 35817176 PMCID: PMC9270057 DOI: 10.1016/j.chemosphere.2022.135645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are a serious threat to human wellbeing that can cause pandemic disease. As a result, it is critical to identify virus in a timely, sensitive, and precise manner. The present novel coronavirus-2019 (COVID-19) disease outbreak has increased these concerns. The research of developing various methods for COVID-19 virus identification is one of the most rapidly growing research areas. This review article compares and addresses recent improvements in conventional and advanced electroanalytical approaches for detecting COVID-19 virus. The popular conventional methods such as polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP), serology test, and computed tomography (CT) scan with artificial intelligence require specialized equipment, hours of processing, and specially trained staff. Many researchers, on the other hand, focused on the invention and expansion of electrochemical and/or bio sensors to detect SARS-CoV-2, demonstrating that they could show a significant role in COVID-19 disease control. We attempted to meticulously summarize recent advancements, compare conventional and electroanalytical approaches, and ultimately discuss future prospective in the field. We hope that this review will be helpful to researchers who are interested in this interdisciplinary field and desire to develop more innovative virus detection methods.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| |
Collapse
|
36
|
Ma C, Lu D, Gan H, Yao Z, Zhu DZ, Luo J, Fu Q, Kurup P. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta 2022:124009. [PMCID: PMC9562616 DOI: 10.1016/j.talanta.2022.124009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though the bitter global pandemic posed a severe public health threat, it set an unprecedented stage for different research teams to present various technologies for detecting SARS-CoV-2, providing a rare and hard-won lesson for one to comprehensively survey the core experimental aspects in developing pathogens electrochemical biosensors. Apart from collecting all the published biosensor studies, we focused on the effects and consequences of using different receptors, such as antibodies, aptamers, ACE 2, and MIPs, which are one of the core topics of developing a pathogen biosensor. In addition, we tried to find an appropriate and distinctive application scenario (e.g., wastewater-based epidemiology) to maximize the advantages of using electrochemical biosensors to detect pathogens. Based on the enormous amount of information from those published studies, features that fit and favor wastewater pathogen detection can be picked up and integrated into a specific strategy to perform quantitative measurements in wastewater samples.
Collapse
Affiliation(s)
- Chen Ma
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Dingnan Lu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author. Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Huihui Gan
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Zhiyuan Yao
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - David Z. Zhu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Pradeep Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author
| |
Collapse
|
37
|
Lee SE, Jeong SE, Hong JS, Im H, Hwang SY, Oh JK, Kim SE. Gold-Nanoparticle-Coated Magnetic Beads for ALP-Enzyme-Based Electrochemical Immunosensing in Human Plasma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196875. [PMID: 36234217 PMCID: PMC9573121 DOI: 10.3390/ma15196875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 05/14/2023]
Abstract
A simple and sensitive AuNP-coated magnetic beads (AMB)-based electrochemical biosensor platform was fabricated for bioassay. In this study, AuNP-conjugated magnetic particles were successfully prepared using biotin-streptavidin conjugation. The morphology and structure of the nanocomplex were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray analysis (EDX) and UV-visible spectroscopy. Moreover, cyclic voltammetry (CV) was used to investigate the effect of AuNP-MB on alkaline phosphatase (ALP) for electrochemical signal enhancement. An ALP-based electrochemical (EC) immunoassay was performed on the developed AuNP-MB complex with indium tin oxide (ITO) electrodes. Subsequently, the concentration of capture antibodies was well-optimized on the AMB complex via biotin-avidin conjugation. Lastly, the developed AuNP-MB immunoassay platform was verified with extracellular vesicle (EV) detection via immune response by showing the existence of EGFR proteins on glioblastoma multiforme (GBM)-derived EVs (108 particle/mL) spiked in human plasma. Therefore, the signal-enhanced ALP-based EC biosensor on AuNP-MB was favorably utilized as an immunoassay platform, revealing the potential application of biosensors in immunoassays in biological environments.
Collapse
Affiliation(s)
- Seo-Eun Lee
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea
| | - Se-Eun Jeong
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea
| | - Jae-Sang Hong
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sei-Young Hwang
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea
| | - Seong-Eun Kim
- Human IT Convergence Research Center, Convergence System R&D Division, Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam-si 13509, Korea
- Correspondence: ; Tel.: +82-31-789-7555
| |
Collapse
|
38
|
Farzin MA, Abdoos H, Saber R. AuNP-based biosensors for the diagnosis of pathogenic human coronaviruses: COVID-19 pandemic developments. Anal Bioanal Chem 2022; 414:7069-7084. [PMID: 35781591 PMCID: PMC9251037 DOI: 10.1007/s00216-022-04193-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
The outbreak rate of human coronaviruses (CoVs) especially highly pathogenic CoVs is increasing alarmingly. Early detection of these viruses allows treatment interventions to be provided more quickly to people at higher risk, as well as helping to identify asymptomatic carriers and isolate them as quickly as possible, thus preventing the disease transmission chain. The current diagnostic methods such as RT-PCR are not ideal due to high cost, low accuracy, low speed, and probability of false results. Therefore, a reliable and accurate method for the detection of CoVs in biofluids can become a front-line tool in order to deal with the spread of these deadly viruses. Currently, the nanomaterial-based sensing devices for detection of human coronaviruses from laboratory diagnosis to point-of-care (PoC) diagnosis are progressing rapidly. Gold nanoparticles (AuNPs) have revolutionized the field of biosensors because of the outstanding optical and electrochemical properties. In this review paper, a detailed overview of AuNP-based biosensing strategies with the varied transducers (electrochemical, optical, etc.) and also different biomarkers (protein antigens and nucleic acids) was presented for the detection of human coronaviruses including SARS-CoV-2, SARS-CoV-1, and MERS-CoV and lowly pathogenic CoVs. The present review highlights the newest trends in the SARS-CoV-2 nanobiosensors from the beginning of the COVID-19 epidemic until 2022. We hope that the presented examples in this review paper convince readers that AuNPs are a suitable platform for the designing of biosensors.
Collapse
Affiliation(s)
- Mohammad Ali Farzin
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P. O. Box: 35131-19111, Semnan, Iran
| | - Hassan Abdoos
- Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, P. O. Box: 35131-19111, Semnan, Iran.
| | - Reza Saber
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Kiruba Daniel SCG, Pai PS, Sabbella HR, Singh K, Rangaiah A, Gowdara Basawarajappa S, Thakur CS. Handheld, Low-Cost, Aptamer-Based Sensing Device for Rapid SARS-CoV-2 RNA Detection Using Novelly Synthesized Gold Nanoparticles. IEEE SENSORS JOURNAL 2022; 22:18437-18445. [PMID: 36416744 PMCID: PMC9647715 DOI: 10.1109/jsen.2022.3196598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
The development of a cost-efficient device to rapidly detect pandemic viruses is paramount. Hence, an innovative and scalable synthesis of metal nanoparticles followed by its usage for rapid detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been reported in this work. The simple synthesis of metal nanoparticles utilizing tin as a solid-state reusable reducing agent is used for the SARS-CoV-2 ribonucleic acid (RNA) detection. Moreover, the solid-state reduction process occurs faster and leads to the enhanced formation of silver and gold nanoparticles (AuNPs) with voltage. By adding tin as a solid-state reducing agent with the precursor, the nanoparticles are formed within 30 s. This synthesis method can be easily scaled up for a commercially viable process to obtain different-sized metal nanoparticles. This is the first disclosure of the usage of tin as a reusable solid-state reducing agent for metal nanoparticle synthesis. An electronic device, consisting of AuNPs functionalized with a deoxyribonucleic acid (DNA)-based aptamer, can detect SARS-CoV-2 RNA in less than 5 min. With an increase in SARS-CoV-2 variants, such as Delta and Omicron, the detection device could be used for identifying the nucleic acids of the COVID-19 variants by modifying the aptamer sequence. The reported work overcomes the drawbacks of complex instrumentation, trained labor, and increased turnaround time.
Collapse
Affiliation(s)
- S. C. G. Kiruba Daniel
- NeuRonICS LabDepartment of Electronic Systems EngineeringIndian Institute of ScienceBengaluru560012India
| | - Poojitha S. Pai
- NeuRonICS LabDepartment of Electronic Systems EngineeringIndian Institute of ScienceBengaluru560012India
| | - Hemanth Reddy Sabbella
- NeuRonICS LabDepartment of Electronic Systems EngineeringIndian Institute of ScienceBengaluru560012India
| | - Kumar Singh
- Department of MicrobiologyBangalore Medical College and Research InstituteBengaluru560002India
| | - Ambica Rangaiah
- Department of MicrobiologyBangalore Medical College and Research InstituteBengaluru560002India
| | | | - Chetan Singh Thakur
- NeuRonICS LabDepartment of Electronic Systems EngineeringIndian Institute of ScienceBengaluru560012India
| |
Collapse
|
40
|
Effect of Recombinant Antibodies and MIP Nanoparticles on the Electrical Behavior of Impedimetric Biorecognition Surfaces for SARS-CoV-2 Spike Glycoprotein: A Short Report. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Electrochemical immunosensors are often described as innovative strategies to tackle urgent epidemiological needs, such as the detection of SARS-CoV-2 main biomarker, the spike glycoprotein. Nevertheless, there is a great variety of receptors, especially recombinant antibodies, that can be used to develop these biosensing platforms, and very few reports compare their suitability in analytical device design and their sensing performances. Therefore, this short report targeted a brief and straightforward investigation of the performance of different impedimetric biorecognition surfaces (BioS) for SARS-CoV-2, which were crafted from three commonly reported recombinant antibodies and molecularly-imprinted polymer (MIP) nanoparticles (nanoMIP). The selected NanoMIP were chosen due to their reported selectivity to the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein. Results showed that the surface modification protocol based on MUDA and crosslinking with EDC/NHS was successful for the anchoring of each tested receptor, as the semicircle diameter of the Nyquist plots of EIS increased upon each modification, which suggests the increase of Rct due to the binding of dielectric materials on the conductive surface. Furthermore, the type of monoclonal antibody used to craft the BioS and the artificial receptors led to very distinct responses, being the RBD5305 and the NanoMIP-based BioS the ones that showcased the highest increment of signal in the conditions herein reported, which suggests their adequacy in the development of impedimetric immunosensors for SARS-CoV-2 spike glycoprotein.
Collapse
|
41
|
Murillo AMM, Valle LG, Ramírez Y, Sánchez MJ, Santamaría B, Molina-Roldan E, Ortega-Madueño I, Urcelay E, Tramarin L, Herreros P, Díaz-Perales A, Garrido-Arandia M, Tome-Amat J, Hernández-Ramírez G, Espinosa RL, Laguna MF, Holgado M. Integration of Multiple Interferometers in Highly Multiplexed Diagnostic KITs to Evaluate Several Biomarkers of COVID-19 in Serum. BIOSENSORS 2022; 12:bios12090671. [PMID: 36140055 PMCID: PMC9496092 DOI: 10.3390/bios12090671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 01/08/2023]
Abstract
In the present work, highly multiplexed diagnostic KITs based on an Interferometric Optical Detection Method (IODM) were developed to evaluate six Coronavirus Disease 2019 (COVID-19)-related biomarkers. These biomarkers of COVID-19 were evaluated in 74 serum samples from severe, moderate, and mild patients with positive polymerase chain reaction (PCR), collected at the end of March 2020 in the Hospital Clínico San Carlos, in Madrid (Spain). The developed multiplexed diagnostic KITs were biofunctionalized to simultaneously measure different types of specific biomarkers involved in COVID-19. Thus, the serum samples were investigated by measuring the total specific Immunoglobulins (sIgT), specific Immunoglobulins G (sIgG), specific Immunoglobulins M (sIgM), specific Immunoglobulins A (sIgA), all of them against SARS-CoV-2, together with two biomarkers involved in inflammatory disorders, Ferritin (FER) and C Reactive Protein (CRP). To assess the results, a Multiple Linear Regression Model (MLRM) was carried out to study the influence of IgGs, IgMs, IgAs, FER, and CRP against the total sIgTs in these serum samples with a goodness of fit of 73.01% (Adjusted R-Squared).
Collapse
Affiliation(s)
- Ana María M. Murillo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- BioOptical Detection S.L., Centro de Empresas, Campus Montegancedo, 28223 Madrid, Spain
| | - Luis G. Valle
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Yolanda Ramírez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- BioOptical Detection S.L., Centro de Empresas, Campus Montegancedo, 28223 Madrid, Spain
| | - María Jesús Sánchez
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Beatriz Santamaría
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - E. Molina-Roldan
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
| | - Isabel Ortega-Madueño
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
| | - Elena Urcelay
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
| | - Luca Tramarin
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Pedro Herreros
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Araceli Díaz-Perales
- Center for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - María Garrido-Arandia
- Center for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Jaime Tome-Amat
- Center for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Guadalupe Hernández-Ramírez
- Center for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Rocío L. Espinosa
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - María F. Laguna
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Holgado
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Parque Científico y Tecnológico de la UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, IdISSC. C/Profesor Martín Lagos s/n, 4ª Planta Sur, 28040 Madrid, Spain
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-91-067-911
| |
Collapse
|
42
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
43
|
Wei H, Zhang C, Du X, Zhang Z. Research progress of biosensors for detection of SARS-CoV-2 variants based on ACE2. Talanta 2022; 251:123813. [PMID: 35952504 PMCID: PMC9356646 DOI: 10.1016/j.talanta.2022.123813] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Currently, the coronavirus disease 2019 (COVID-19) pandemic is ravaging the world, causing serious crisis in economy and human health. The top priority is the detection and drug development of the novel coronavirus. The gold standard for real-time diagnosis of coronavirus disease is the reverse transcription-polymerase chain reaction (RT-PCR), which is usually operatively complex and time-consuming. Biosensors are known for their low cost and rapid detection, which are developing rapidly in detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The current study showed that the spike protein of SARS-CoV-2 will bind to angiotensin-converting hormone 2 (ACE2) to mediate the entry of the virus into cells. Interestingly, the affinity between ACE2 and SARS-CoV-2 spike protein increases with the mutation of the virus. Using ACE2 as a biosensor recognition receptor to detect SARS-CoV-2 will effectively avoid the decline of detection accuracy and false negative caused by variants. In fact, due to the variation of the virus, it may even lead to enhanced detection performance. In addition, ACE2-specific drugs to prevent SARS-CoV-2 from entering cells will be effectively evaluated using the biosensors even with virus mutations. Here, we reviewed the biosensors for rapid detection of SARS-CoV-2 by ACE2 and discussed the advantages of ACE2 as an antibody for the detection of SARS-CoV-2 variants. The review also discussed the value of ACE2-based biosensors for screening for drugs that modulate the interaction between ACE2 and SARS-CoV-2.
Collapse
|
44
|
Abstract
Rapid and early diagnosis of lethal coronavirus disease-19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important issue considering global human health, economy, education, and other activities. The advancement of understanding of the chemistry/biochemistry and the structure of the SARS-CoV-2 virus has led to the development of low-cost, efficient, and reliable methods for COVID-19 diagnosis over “gold standard” real-time reverse transcription-polymerase chain reaction (RT-PCR) due to its several limitations. This led to the development of electrochemical sensors/biosensors for rapid, fast, and low-cost detection of the SARS-CoV-2 virus from the patient’s biological fluids by detecting the components of the virus, including structural proteins (antigens), nucleic acid, and antibodies created after COVID-19 infection. This review comprehensively summarizes the state-of-the-art research progress of electrochemical biosensors for COVID-19 diagnosis. They include the detection of spike protein, nucleocapsid protein, whole virus, nucleic acid, and antibodies. The review also outlines the structure of the SARS-CoV-2 virus, different detection methods, and design strategies of electrochemical SARS-CoV-2 biosensors by highlighting the current challenges and future perspectives.
Collapse
|
45
|
Madhurantakam S, Muthukumar S, Prasad S. Emerging Electrochemical Biosensing Trends for Rapid Diagnosis of COVID-19 Biomarkers as Point-of-Care Platforms: A Critical Review. ACS OMEGA 2022; 7:12467-12473. [PMID: 35474766 PMCID: PMC9026073 DOI: 10.1021/acsomega.2c00638] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 05/15/2023]
Abstract
Rapid diagnosis is a critical aspect associated with controlling the spread of COVID-19. Electrochemical sensor platforms are ideally suited for rapid and highly sensitive detection of biomolecules. This review focuses on state-of-the-art of COVID-19 biomarker detection by utilizing electrochemical biosensing platforms. Point-of-care (POC) sensing is one of the most promising and emerging fields in detecting and quantifying health biomarkers. Electrochemical biosensors play a major role in the development of point-of-care devices because of their high sensitivity, specificity, and ability for rapid analysis. Integration of electrochemistry with point-of-care technologies in the context of COVID-19 diagnosis and screening has facilitated in convenient operation, miniaturization, and portability. Identification of potential biomarkers in disease diagnosis is crucial for patient monitoring concerning severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we will discuss the choice of biomarkers in addition to the various types of electrochemical sensors that have been developed to meet the needs of rapid detection and disease severity analysis.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department
of Bioengineering, The University of Texas
at Dallas, Richardson, Texas 75080, United States
| | | | - Shalini Prasad
- Department
of Bioengineering, The University of Texas
at Dallas, Richardson, Texas 75080, United States
- E-mail:
| |
Collapse
|
46
|
Gao B, Rojas Chavez AA, Malkawi WI, Keefe DW, Smith R, Haim H, Salem AK, Toor F. Sensitive detection of SARS-CoV-2 spike protein using vertically-oriented silicon nanowire array-based biosensor. SENSING AND BIO-SENSING RESEARCH 2022; 36:100487. [PMID: 35340912 PMCID: PMC8937609 DOI: 10.1016/j.sbsr.2022.100487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 pandemic has caused tremendous damage to the world. In order to quickly and accurately diagnose the virus and contain the spread, there is a need for rapid, sensitive, accurate, and cost-effective SARS-CoV-2 biosensors. In this paper, we report on a novel biosensor based on angiotensin converting enzyme 2 (ACE-2)-conjugated vertically-oriented silicon nanowire (vSiNW) arrays that can detect the SARS-CoV-2 spike protein with high sensitivity and selectivity relative to negative controls. First, we demonstrate the efficacy of using ACE-2 receptor to detect the SARS-CoV-2 spike protein via a capture assay test, which confirms high specificity of ACE-2 against the mock protein, and high affinity between the spike and ACE-2. We then report on results for ACE-2-conjugated vSiNW arrays where the biosensor device architecture is based on a p-n junction transducer. We confirm via analytical modeling that the transduction mechanism of the biosensor involves induced surface charge depletion of the vSiNWs due to negative electrostatic surface potential induced by the spike protein after binding with ACE-2. This vSiNW surface charge modulation is measured via current-voltage characteristics of the functionalized biosensor. Calibrated concentration dependent electrical response of the vSiNW sensor confirms the limit-of-detection for virus spike concentration of 100 ng/ml (or 575 pM). The vSiNW sensor also exhibits highly specific response to the spike protein with respect to negative controls, offering a promising point-of-care detection method for SARS-CoV-2.
Collapse
|