1
|
Rajalekshmi R, Agrawal DK. Synergistic potential of stem cells and microfluidics in regenerative medicine. Mol Cell Biochem 2025; 480:1481-1493. [PMID: 39285093 PMCID: PMC11842489 DOI: 10.1007/s11010-024-05108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/27/2024] [Indexed: 02/21/2025]
Abstract
Regenerative medicine has immense potential to revolutionize healthcare by using regenerative capabilities of stem cells. Microfluidics, a cutting-edge technology, offers precise control over cellular microenvironments. The integration of these two fields provides a deep understanding of stem cell behavior and enables the development of advanced therapeutic strategies. This critical review explores the use of microfluidic systems to culture and differentiate stem cells with precision. We examined the use of microfluidic platforms for controlled nutrient supply, mechanical stimuli, and real-time monitoring, providing an unprecedented level of detail in studying cellular responses. The convergence of stem cells and microfluidics holds immense promise for tissue repair, regeneration, and personalized medicine. It offers a unique opportunity to revolutionize the approach to regenerative medicine, facilitating the development of advanced therapeutic strategies and enhancing healthcare outcomes.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
2
|
Lee SJ, Kim E, Jeong Y, Youm JB, Kim HK, Han J, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim SJ, Lee HA. Evaluation of the cardiotoxicity of Echinochrome A using human induced pluripotent stem cell-derived cardiac organoids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117489. [PMID: 39644572 DOI: 10.1016/j.ecoenv.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Echinochrome A (EchA), a marine-derived natural product, has shown promise in treating cardiovascular and inflammatory diseases due to its antioxidant and anti-inflammatory properties. However, its cardiac safety remains underexplored. In this study, we utilized human induced pluripotent stem cell-derived cardiac organoids (hCOs) to validate their ability to model the cardiac safety profile of EchA in a human-relevant system. While EchA's therapeutic effects have been reported, prior studies have not evaluated its cardiotoxicity or arrhythmogenic potential in a high-fidelity 3D human cardiac model. The hCOs, characterized by expression of key cardiac markers (cTnT) and functional ion channels (Cav1.2, Nav1.5, hERG), exhibited structural and electrophysiological properties reflective of human cardiac physiology. Using multi-electrode array (MEA) analysis, we assessed the effects of EchA at concentrations ranging from 0.1 to 30 µM on electrophysiological parameters, including beat period, field potential amplitude, field potential duration, and spike slope. EchA treatment induced no significant changes in these parameters, confirming its non-toxic electrophysiological profile. Cellular viability and lactate dehydrogenase (LDH) assays revealed no cytotoxic effects of EchA across tested concentrations. Contractility assays further demonstrated that EchA did not affect contraction velocity, relaxation velocity, or time to 50 % maximal contraction and relaxation. This study fills a critical gap and highlights the translational relevance of hCOs for cardiotoxicity assessment, demonstrating EchA's cardiac safety and supporting its potential therapeutic and environmental applications.
Collapse
Affiliation(s)
- Su-Jin Lee
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea; Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Eunji Kim
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - Yeeun Jeong
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - Jae Boum Youm
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Elena A Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Natalia P Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Sergey A Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, Vladivostok 690022, Russia
| | - Sung Joon Kim
- Department of Physiology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Hyang-Ae Lee
- Center for Bio-Signal Research, Division of Advanced Predictive Research, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea.
| |
Collapse
|
3
|
Górska A, Trubalski M, Borowski B, Brachet A, Szymańczyk S, Markiewicz R. Navigating stem cell culture: insights, techniques, challenges, and prospects. Front Cell Dev Biol 2024; 12:1435461. [PMID: 39588275 PMCID: PMC11586186 DOI: 10.3389/fcell.2024.1435461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Stem cell research holds huge promise for regenerative medicine and disease modeling, making the understanding and optimization of stem cell culture a critical aspect of advancing these therapeutic applications. This comprehensive review provides an in-depth overview of stem cell culture, including general information, contemporary techniques, encountered problems, and future perspectives. The article begins by explaining the fundamental characteristics of various stem cell types, elucidating the importance of proper culture conditions in maintaining pluripotency or lineage commitment. A detailed exploration of established culture techniques sheds light on the evolving landscape of stem cell culture methodologies. Common challenges such as genetic stability, heterogeneity, and differentiation efficiency are thoroughly discussed, with insights into cutting-edge strategies and technologies aimed at addressing these hurdles. Moreover, the article delves into the impact of substrate materials, culture media components, and biophysical cues on stem cell behavior, emphasizing the intricate interplay between the microenvironment and cell fate decisions. As stem cell research advances, ethical considerations and regulatory frameworks become increasingly important, prompting a critical examination of these aspects in the context of culture practices. Lastly, the article explores emerging perspectives, including the integration of artificial intelligence and machine learning in optimizing culture conditions, and the potential applications of stem cell-derived products in personalized medicine. This comprehensive overview aims to serve as a valuable resource for researchers and clinicians, fostering a deeper understanding of stem cell culture and its key role in advancing regenerative medicine and biomedical research.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, Lublin, Poland
| | - Adam Brachet
- Student Scientific Association, Department of Forensic Medicine, Medical University of Lublin, Lublin, Poland
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Renata Markiewicz
- Occupational Therapy Laboratory, Chair of Nursing Development, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Kumar D, Nadda R, Repaka R. Advances and challenges in organ-on-chip technology: toward mimicking human physiology and disease in vitro. Med Biol Eng Comput 2024; 62:1925-1957. [PMID: 38436835 DOI: 10.1007/s11517-024-03062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Organs-on-chips have been tissues or three-dimensional (3D) mini-organs that comprise numerous cell types and have been produced on microfluidic chips to imitate the complicated structures and interactions of diverse cell types and organs under controlled circumstances. Several morphological and physiological distinctions exist between traditional 2D cultures, animal models, and the growing popular 3D cultures. On the other hand, animal models might not accurately simulate human toxicity because of physiological variations and interspecies metabolic capability. The on-chip technique allows for observing and understanding the process and alterations occurring in metastases. The present study aimed to briefly overview single and multi-organ-on-chip techniques. The current study addresses each platform's essential benefits and characteristics and highlights recent developments in developing and utilizing technologies for single and multi-organs-on-chips. The study also discusses the drawbacks and constraints associated with these models, which include the requirement for standardized procedures and the difficulties of adding immune cells and other intricate biological elements. Finally, a comprehensive review demonstrated that the organs-on-chips approach has a potential way of investigating organ function and disease. The advancements in single and multi-organ-on-chip structures can potentially increase drug discovery and minimize dependency on animal models, resulting in improved therapies for human diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Rahul Nadda
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India.
| | - Ramjee Repaka
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| |
Collapse
|
5
|
Yanagihara K, Hayashi Y, Liu Y, Yamaguchi T, Hemmi Y, Kokunugi M, Yamada KU, Fukumoto K, Suga M, Terada S, Nikawa H, Kawabata K, Furue M. Trisomy 12 compromises the mesendodermal differentiation propensity of human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2024; 60:521-534. [PMID: 38169039 PMCID: PMC11126453 DOI: 10.1007/s11626-023-00824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 01/05/2024]
Abstract
Trisomy 12 is one of the most frequent chromosomal abnormalities in cultured human pluripotent stem cells (hPSCs). Although potential oncogenic properties and augmented cell cycle caused by trisomy 12 have been reported, the consequences of trisomy 12 in terms of cell differentiation, which is the basis for regenerative medicine, drug development, and developmental biology studies, have not yet been investigated. Here, we report that trisomy 12 compromises the mesendodermal differentiation of hPSCs. We identified sublines of hPSCs carrying trisomy 12 after their prolonged culture. Transcriptome analysis revealed that these hPSC sublines carried abnormal gene expression patterns in specific signaling pathways in addition to cancer-related cell cycle pathways. These hPSC sublines showed a lower propensity for mesendodermal differentiation in embryoid bodies cultured in a serum-free medium. BMP4-induced exit from the self-renewal state was impaired in the trisomy 12 hPSC sublines, with less upregulation of key transcription factor gene expression. As a consequence, the differentiation efficiency of hematopoietic and hepatic lineages was also impaired in the trisomy 12 hPSC sublines. We reveal that trisomy 12 disrupts the genome-wide expression patterns that are required for proper mesendodermal differentiation.
Collapse
Affiliation(s)
- Kana Yanagihara
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Yujung Liu
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Tomoko Yamaguchi
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Yasuko Hemmi
- iPS Cell Advanced Characterization and Development Team, RIKEN Bioresource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Minako Kokunugi
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kozue Uchio Yamada
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Ken Fukumoto
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Satoshi Terada
- Department of Applied Chemistry and Biotechnology, University of Fukui, Fukui City, 3-9-1 Bunkyo, Fukui, 910-8507, Japan
| | - Hiroki Nikawa
- Department of Oral Biology & Engineering Integrated Health Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Kawabata
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan
| | - Miho Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health, and Nutrition, 7-6-8, Saito-Asagi, Osaka, Ibaraki, 567-0085, Japan.
- Cel-MiM, Ltd., Tokyo, Japan.
| |
Collapse
|
6
|
Dhanjal DS, Singh R, Sharma V, Nepovimova E, Adam V, Kuca K, Chopra C. Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine. Curr Med Chem 2024; 31:1646-1690. [PMID: 37138422 DOI: 10.2174/0929867330666230503144619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 05/05/2023]
Abstract
The foundations of cell reprogramming were laid by Yamanaka and co-workers, who showed that somatic cells can be reprogrammed into pluripotent cells (induced pluripotency). Since this discovery, the field of regenerative medicine has seen advancements. For example, because they can differentiate into multiple cell types, pluripotent stem cells are considered vital components in regenerative medicine aimed at the functional restoration of damaged tissue. Despite years of research, both replacement and restoration of failed organs/ tissues have remained elusive scientific feats. However, with the inception of cell engineering and nuclear reprogramming, useful solutions have been identified to counter the need for compatible and sustainable organs. By combining the science underlying genetic engineering and nuclear reprogramming with regenerative medicine, scientists have engineered cells to make gene and stem cell therapies applicable and effective. These approaches have enabled the targeting of various pathways to reprogramme cells, i.e., make them behave in beneficial ways in a patient-specific manner. Technological advancements have clearly supported the concept and realization of regenerative medicine. Genetic engineering is used for tissue engineering and nuclear reprogramming and has led to advances in regenerative medicine. Targeted therapies and replacement of traumatized , damaged, or aged organs can be realized through genetic engineering. Furthermore, the success of these therapies has been validated through thousands of clinical trials. Scientists are currently evaluating induced tissue-specific stem cells (iTSCs), which may lead to tumour-free applications of pluripotency induction. In this review, we present state-of-the-art genetic engineering that has been used in regenerative medicine. We also focus on ways that genetic engineering and nuclear reprogramming have transformed regenerative medicine and have become unique therapeutic niches.
Collapse
Affiliation(s)
- Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Varun Sharma
- Head of Bioinformatic Division, NMC Genetics India Pvt. Ltd., Gurugram, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 50005, Czech Republic
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
7
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
8
|
Dias TP, Baltazar T, Pinto SN, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JMS. Xeno-Free Integrated Platform for Robust Production of Cardiomyocyte Sheets from hiPSCs. Stem Cells Int 2022; 2022:4542719. [PMID: 36467280 PMCID: PMC9712013 DOI: 10.1155/2022/4542719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be efficiently differentiated into cardiomyocytes (CMs), which can be used for cardiac disease modeling, for drug screening, and to regenerate damaged myocardium. Implementation of xeno-free culture systems is essential to fully explore the potential of these cells. However, differentiation using xeno-free adhesion matrices often results in low CM yields and lack of functional CM sheets, capable of enduring additional maturation stages. Here, we established a xeno-free CM differentiation platform using TeSR/Synthemax, including a replating step and integrated with two versatile purification/enrichment metabolic approaches. Results showed that the replating step was essential to reestablish a fully integrated, closely-knit CM sheet. In addition, replating contributed to increase the cTnT expression from 65% to 75% and the output from 2.2 to 3.1 CM per hiPSC, comparable with the efficiency observed when using TeSR/Matrigel. In addition, supplementation with PluriSin1 and Glu-Lac+ medium allowed increasing the CM content over 80% without compromising CM sheet integrity or functionality. Thus, this xeno-free differentiation platform is a reliable and robust method to produce hiPSC-derived CMs, increasing the possibility of using these cells safely for a wide range of applications.
Collapse
Affiliation(s)
- Tiago P. Dias
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tânia Baltazar
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago G. Fernandes
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
9
|
Sart S, Liu C, Zeng EZ, Xu C, Li Y. Downstream bioprocessing of human pluripotent stem cell-derived therapeutics. Eng Life Sci 2022; 22:667-680. [PMID: 36348655 PMCID: PMC9635003 DOI: 10.1002/elsc.202100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
With the advancement in lineage-specific differentiation from human pluripotent stem cells (hPSCs), downstream cell separation has now become a critical step to produce hPSC-derived products. Since differentiation procedures usually result in a heterogeneous cell population, cell separation needs to be performed either to enrich the desired cell population or remove the undesired cell population. This article summarizes recent advances in separation processes for hPSC-derived cells, including the standard separation technologies, such as magnetic-activated cell sorting, as well as the novel separation strategies, such as those based on adhesion strength and metabolic flux. Specifically, the downstream bioprocessing flow and the identification of surface markers for various cell lineages are discussed. While challenges remain for large-scale downstream bioprocessing of hPSC-derived cells, the rational quality-by-design approach should be implemented to enhance the understanding of the relationship between process and the product and to ensure the safety of the produced cells.
Collapse
Affiliation(s)
- Sebastien Sart
- Laboratory of Physical Microfluidics and BioengineeringDepartment of Genome and GeneticsInstitut PasteurParisFrance
| | - Chang Liu
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFLUSA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFLUSA
| | - Chunhui Xu
- Department of PediatricsEmory University School of Medicine and Children's Healthcare of AtlantaAtlantaGAUSA
| | - Yan Li
- Department of Chemical and Biomedical EngineeringFAMU‐FSU College of EngineeringFlorida State UniversityTallahasseeFLUSA
| |
Collapse
|
10
|
Ouyang Z, Bourgeois-Tchir N, Lyashenko E, Cundiff PE, Cullen PF, Challa R, Li K, Zhang X, Casey F, Engle SJ, Zhang B, Zavodszky MI. Characterizing the composition of iPSC derived cells from bulk transcriptomics data with CellMap. Sci Rep 2022; 12:17394. [PMID: 36253414 PMCID: PMC9576729 DOI: 10.1038/s41598-022-22115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/10/2022] [Indexed: 01/10/2023] Open
Abstract
Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.
Collapse
Affiliation(s)
- Zhengyu Ouyang
- BioInfoRx, Inc., 510 Charmany Dr, Suite 275A, Madison, WI 53719 USA
| | - Nathanael Bourgeois-Tchir
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA
| | - Eugenia Lyashenko
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA ,grid.417555.70000 0000 8814 392XPresent Address: Genomic Medicine Unit, Sanofi, 225 2nd Ave, Waltham, MA 02451 USA
| | - Paige E. Cundiff
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA
| | - Patrick F. Cullen
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA
| | - Ravi Challa
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA
| | - Kejie Li
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA
| | - Xinmin Zhang
- BioInfoRx, Inc., 510 Charmany Dr, Suite 275A, Madison, WI 53719 USA
| | - Fergal Casey
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA
| | - Sandra J. Engle
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA
| | - Baohong Zhang
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA
| | - Maria I. Zavodszky
- grid.417832.b0000 0004 0384 8146Translational Biology, Research and Development, Biogen, Inc., 225 Binney St, Cambridge, MA 02142 USA
| |
Collapse
|
11
|
Jung C, Oh JE, Lee S, Yoon YS. Generation and Application of Directly Reprogrammed Endothelial Cells. Korean Circ J 2022; 52:643-658. [PMID: 36097834 PMCID: PMC9470489 DOI: 10.4070/kcj.2022.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
Cell-based therapy has emerged as a promising option for treating advanced ischemic cardiovascular disease by inducing vascular regeneration. However, clinical trials with adult cells turned out disappointing in general. As a newer approach, direct reprogramming has emerged to efficiently generate endothelial cells (ECs), which can promote neovascularization and vascular regeneration. This review provides recent updates on the direct endothelial reprogramming. In general, directly reprogrammed ECs can be generated by two approaches: one by transitioning through a plastic intermediate state and the other in a one-step transition without any intermediate states toward pluripotency. Moreover, the methods to deliver reprogramming factors and chemicals for the fate conversion are highlighted. Next, the therapeutic effects of the directly reprogrammed ECs on animal models are reviewed in detail. Other applications using directly reprogrammed ECs, such as tissue engineering and disease modeling, are also discussed. Lastly, the remaining questions and foremost challenges are addressed.
Collapse
Affiliation(s)
- Cholomi Jung
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jee Eun Oh
- Research and Development Center, KarisBio Inc., Seoul, Korea
| | - Sangho Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Research and Development Center, KarisBio Inc., Seoul, Korea
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
12
|
Ferdousi F, Isoda H. Regulating Early Biological Events in Human Amniotic Epithelial Stem Cells Using Natural Bioactive Compounds: Extendable Multidirectional Research Avenues. Front Cell Dev Biol 2022; 10:865810. [PMID: 35433672 PMCID: PMC9011193 DOI: 10.3389/fcell.2022.865810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Stem cells isolated from perinatal tissue sources possess tremendous potential for biomedical and clinical applications. On the other hand, emerging data have demonstrated that bioactive natural compounds regulate numerous cellular and biochemical functions in stem cells and promote cell migration, proliferation, and attachment, resulting in maintaining stem cell proliferation or inducing controlled differentiation. In our previous studies, we have reported for the first time that various natural compounds could induce targeted differentiation of hAESCs in a lineage-specific manner by modulating early biological and molecular events and enhance the therapeutic potential of hAESCs through modulating molecular signaling. In this perspective, we will discuss the advantages of using naturally occurring active compounds in hAESCs and their potential implications for biological research and clinical applications.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,R&D Center for Tailor-made QOL, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Silva MC, Nandi G, Haggarty SJ. Differentiation of Human Induced Pluripotent Stem Cells into Cortical Neurons to Advance Precision Medicine. Methods Mol Biol 2022; 2429:143-174. [PMID: 35507160 DOI: 10.1007/978-1-0716-1979-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A major obstacle in studying human central nervous system (CNS) diseases is inaccessibility to the affected tissue and cells. Even in limited cases where tissue is available through surgical interventions, differentiated neurons cannot be maintained for extended time frames, which is prohibitive for experimental repetition and scalability. Advances in methodologies for reprogramming human somatic cells into induced pluripotent stem cells (iPSC) and directed differentiation of human neurons in culture now allow access to physiological and disease relevant cell types. In particular, patient iPSC-derived neurons represent unique ex vivo neuronal networks that allow investigating disease genetic and molecular pathways in physiologically accurate cellular microenvironments, importantly recapitulating molecular and cellular phenotypic aspects of disease. Generation of functional neural cells from iPSCs relies on manipulation of culture formats in the presence of specific factors that promote the conversion of pluripotent stem cells into neurons. To this end, several experimental protocols have been developed. Direct differentiation of stem cells into post-mitotic neurons is usually associated with low throughput, low yield, and high technical variability. Instead, methods relying on expansion of the intermediate neural progenitor cells (NPCs) show incredible potential for posterior generation of suitable neuronal cultures for cellular and biochemical assays, as well as drug screening. NPCs are expandable, self-renewable multipotent cells that can differentiate into astrocytes, oligodendrocytes, and electrically active neurons. Here, we describe a protocol for generating iPSC-derived NPCs via formation of neural aggregates and selection of NPC precursor neural rosettes, followed by a simple and reproducible method for generating a mixed population of cortical-like neurons through growth factor withdrawal. Implementation of this protocol has the potential to advance the goals of precision medicine research for both neurological and psychiatric disorders.
Collapse
Affiliation(s)
- M Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Ghata Nandi
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Miniaturized droplet microarray platform enables maintenance of human induced pluripotent stem cell pluripotency. Mater Today Bio 2021; 12:100153. [PMID: 34765963 PMCID: PMC8569722 DOI: 10.1016/j.mtbio.2021.100153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022] Open
Abstract
The capacity of human induced pluripotent stem cells (hiPSCs) for indefinite self-renewal warrants their application in disease modeling, drug discovery, toxicity assays and efficacy screening. However, their poor proliferation ability, inability to adhere to surfaces without Matrigel coating and tendency to spontaneously differentiate in vitro hinder the application of hiPSCs in these fields. Here we study the ability to culture hiPSCs inside 200 nL droplets on the droplet microarray (DMA) platform. We demonstrate that (1) hiPSCs can attach to the Matrigel (MG)-free surface of DMA and show good viability after 24 h culture; (2) hiPSC do not spontaneously differentiate when cultured on the MG-free surface of DMAs; (3) culturing of hiPSCs in 200 nL as compared to 2 mL culture leads to higher expression of the Nanog pluripotency marker. Overall, the results demonstrate the possibility to culture undifferentiated hiPSCs in 200 nL droplets on DMA, thereby opening the possibility for high-throughput screenings of hiPSCs with various factors without compromising the results through the involvement of animal-derived materials, such as Matrigel.
Collapse
|
15
|
Abstract
Over the course of the last decade, the biopharmaceutical industry has slowly adopted human inducible pluripotent stem cell (hiPSC) technology to enable the development of humanized model systems to test new therapeutic molecules and drug modalities. The adoption of hiPSC-based models by the industry has increased appreciably in the past 3-5 years. This increase has paralleled the explosion in availability of high-quality human genetic data to mine for new drug targets and the emergence of human-specific therapeutic modalities.
Collapse
|
16
|
Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021; 9:639699. [PMID: 34262897 PMCID: PMC8273765 DOI: 10.3389/fcell.2021.639699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
Collapse
Affiliation(s)
- Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Marcy Martin
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Bramasta Nugraha
- Molecular Parasitology Lab, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
17
|
Oyane A, Araki H, Nakamura M, Aiki Y, Ito Y. Storable bFGF-Releasing Membrane Allowing Continuous Human iPSC Culture. MATERIALS (BASEL, SWITZERLAND) 2021; 14:651. [PMID: 33572553 PMCID: PMC7866866 DOI: 10.3390/ma14030651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 12/26/2022]
Abstract
Basic fibroblast growth factor (bFGF) is a crucial supplement for culture media of human pluripotent stem cells. However, bFGF is extremely unstable under cell culture conditions, which makes frequent (generally every day) medium refreshment requisite. We recently developed a water-floatable, bFGF-releasing membrane via a simple bFGF adsorption process following oxygen plasma treatment by utilizing a polyethylene nonwoven fabric as an adsorbent. This membrane allowed sustained release of bFGF while floating on medium, thereby keeping the bFGF concentration in the medium sufficient for maintaining human-induced pluripotent stem cells (iPSCs) in a proliferative and pluripotent state for as long as 3 days. In this study, lyophilization was applied to the membrane to stabilize bFGF. The sustained bFGF-releasing function of the membrane was kept unchanged even after lyophilization and subsequent cryopreservation at -30 °C for 3 months. The cryopreserved membrane supported proliferation and colony formation of human iPSCs while retaining their viability and pluripotency in a medium-change-free continuous culture for 3 days. The present bFGF-releasing membrane is ready-to-use, storable for at least 3 months, and obviates daily medium refreshment. Therefore, it is a new and more practical bFGF supplement for culture media of human stem cells.
Collapse
Affiliation(s)
- Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (H.A.); (M.N.)
| | - Hiroko Araki
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (H.A.); (M.N.)
| | - Maki Nakamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (H.A.); (M.N.)
| | - Yasuhiko Aiki
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (Y.A.); (Y.I.)
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (Y.A.); (Y.I.)
| |
Collapse
|
18
|
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:402-422. [DOI: 10.1089/ten.teb.2019.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
- Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
19
|
Aonuma K, Ferdousi F, Xu D, Tominaga K, Isoda H. Effects of Isorhamnetin in Human Amniotic Epithelial Stem Cells in vitro and Its Cardioprotective Effects in vivo. Front Cell Dev Biol 2020; 8:578197. [PMID: 33117805 PMCID: PMC7552739 DOI: 10.3389/fcell.2020.578197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiac hypertrophy and fibrosis are major pathophysiologic disorders that lead to serious cardiovascular diseases (CVDs), such as heart failure and arrhythmia. It is well known that transforming growth factor β (TGFβ) signaling pathways play a major role in the proliferation of cardiac hypertrophy and fibrosis, which is mainly stimulated by angiotensin II (AgII). This study aimed to investigate the cardioprotective potential of isorhamnetin (ISO) in human amniotic epithelial stem cells (hAESCs) through global gene expression analysis and to confirm its beneficial effects on cardiac hypertrophy and fibrosis in the AgII-induced in vivo model. In vitro, biological processes including TGFβ, collagen-related functions, and inflammatory processes were significantly suppressed in ISO pretreated hAESCs. In vivo, continuous AgII infusion using an osmotic pump induced significant pathological fibrosis and myocardial hypertrophy, which were remarkably suppressed by ISO pretreatment. ISO was found to reverse the enhanced TGFβ and Collagen type I alpha 1 mRNA expression induced by AgII exposure, which causes cardiovascular remodeling in ventricular tissue. These findings indicate that ISO could be a potential agent against cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Kazuhiro Aonuma
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - DongZhu Xu
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Cardiovascular Division, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenichi Tominaga
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
20
|
Kim KT, Park JC, Jang HK, Lee H, Park S, Kim J, Kwon OS, Go YH, Jin Y, Kim W, Lee J, Bae S, Cha HJ. Safe scarless cassette-free selection of genome-edited human pluripotent stem cells using temporary drug resistance. Biomaterials 2020; 262:120295. [PMID: 32916603 DOI: 10.1016/j.biomaterials.2020.120295] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023]
Abstract
An efficient gene-editing technique for use in human pluripotent stem cells (hPSCs) has great potential value in regenerative medicine, as well as in drug discovery based on isogenic human disease models. However, the extremely low efficiency of gene editing in hPSCs remains as a major technical hurdle. Previously, we demonstrated that YM155, a survivin inhibitor developed as an anti-cancer drug, induces highly selective cell death in undifferentiated hPSCs. In this study, we demonstrated that the high cytotoxicity of YM155 in hPSCs, which is mediated by selective cellular uptake of the drug, is due to the high expression of SLC35F2 in these cells. Knockout of SLC35F2 with CRISPR-Cas9, or depletion with siRNAs, made the hPSCs highly resistant to YM155. Simultaneous editing of a gene of interest and transient knockdown of SLC35F2 following YM155 treatment enabled the survival of genome-edited hPSCs as a result of temporary YM155 resistance, thereby achieving an enriched selection of clonal populations with gene knockout or knock-in. This precise and efficient genome editing approach took as little as 3 weeks and required no cell sorting or the introduction of additional genes, to be a more feasible approach for gene editing in hPSCs due to its simplicity.
Collapse
Affiliation(s)
- Keun-Tae Kim
- Department of Life Sciences, Sogang University, Seoul, South Korea
| | - Ju-Chan Park
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyeon-Ki Jang
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, South Korea; Department of Chemistry, Hanyang University, Seoul, South Korea
| | - Haeseung Lee
- Ewha Research Center for Systems Biology, Division of Molecular & Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Seokwoo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jumee Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ok-Seon Kwon
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Hyun Go
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Yan Jin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Wankyu Kim
- Ewha Research Center for Systems Biology, Division of Molecular & Life Sciences, Ewha Womans University, Seoul, South Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Sangsu Bae
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, South Korea; Department of Chemistry, Hanyang University, Seoul, South Korea
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
21
|
Filippo Buono M, von Boehmer L, Strang J, P. Hoerstrup S, Y. Emmert M, Nugraha B. Human Cardiac Organoids for Modeling Genetic Cardiomyopathy. Cells 2020; 9:cells9071733. [PMID: 32698471 PMCID: PMC7409052 DOI: 10.3390/cells9071733] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic cardiomyopathies are characterized by changes in the function and structure of the myocardium. The development of a novel in vitro model could help to better emulate healthy and diseased human heart conditions and may improve the understanding of disease mechanisms. In this study, for the first time, we demonstrated the generation of cardiac organoids using a triculture approach of human induced pluripotent stem-cell-derived cardiomyocytes (hiPS-CMs)-from healthy subjects and cardiomyopathy patients-human cardiac microvascular endothelial cells (HCMECs) and human cardiac fibroblasts (HCFs). We assessed the organoids' suitability as a 3D cellular model for the representation of phenotypical features of healthy and cardiomyopathic hearts. We observed clear differences in structure and beating behavior between the organoid groups, depending on the type of hiPS-CMs (healthy versus cardiomyopathic) used. Organoids may thus prove a promising tool for the design and testing of patient-specific treatments as well as provide a platform for safer and more efficacious drug development.
Collapse
Affiliation(s)
- Michele Filippo Buono
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland; (M.F.B.); (L.v.B.); (S.P.H.)
| | - Lisa von Boehmer
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland; (M.F.B.); (L.v.B.); (S.P.H.)
| | - Jaan Strang
- Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland; (M.F.B.); (L.v.B.); (S.P.H.)
- Wyss Translational Center Zurich, 8006 Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland; (M.F.B.); (L.v.B.); (S.P.H.)
- Wyss Translational Center Zurich, 8006 Zurich, Switzerland
- Department of Cardiovascular Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: (M.Y.E.); (B.N.); Tel.: +41-44-634-5610 (M.Y.E.); +41-635-8533 (B.N.)
| | - Bramasta Nugraha
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland; (M.F.B.); (L.v.B.); (S.P.H.)
- Correspondence: (M.Y.E.); (B.N.); Tel.: +41-44-634-5610 (M.Y.E.); +41-635-8533 (B.N.)
| |
Collapse
|
22
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
23
|
Witt G, Keminer O, Leu J, Tandon R, Meiser I, Willing A, Winschel I, Abt JC, Brändl B, Sébastien I, Friese MA, Müller FJ, Neubauer JC, Claussen C, Zimmermann H, Gribbon P, Pless O. An automated and high-throughput-screening compatible pluripotent stem cell-based test platform for developmental and reproductive toxicity assessment of small molecule compounds. Cell Biol Toxicol 2020; 37:229-243. [PMID: 32564278 PMCID: PMC8012336 DOI: 10.1007/s10565-020-09538-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022]
Abstract
The embryonic stem cell test (EST) represents the only validated and accepted in vitro system for the detection and classification of compounds according to their developmental and reproductive teratogenic potency. The widespread implementation of the EST, however, in particular for routine application in pharmaceutical development, has not been achieved so far. Several drawbacks still limit the high-throughput screening of potential drug candidates in this format: The long assay period, the use of non-homogeneous viability assays, the low throughput analysis of marker protein expression and the compatibility of the assay procedures to automation. We have therefore introduced several advancements into the EST workflow: A reduction of the assay period, an introduction of homogeneous viability assays, and a straightforward analysis of marker proteins by flow cytometry and high content imaging to assess the impact of small molecules on differentiation capacity. Most importantly, essential parts of the assay procedure have been adapted to lab automation in 96-well format, thus enabling the interrogation of several compounds in parallel. In addition, extensive investigations were performed to explore the predictive capacity of this next-generation EST, by testing a set of well-known embryotoxicants that encompasses the full range of chemical-inherent embryotoxic potencies possible. Due to these significant improvements, the augmented workflow provides a basis for a sensitive, more rapid, and reproducible high throughput screening compatible platform to predict in vivo developmental toxicity from in vitro data which paves the road towards application in an industrial setting. •The embryonic stem cell test to predict teratogenicity was made automation-compatible. •Several key improvements to the assay procedure have been introduced to increase performance. •The workflow was adapted to human iPS cells and isogenic fibroblast donor cells. ![]()
Collapse
Affiliation(s)
- Gesa Witt
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Oliver Keminer
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Jennifer Leu
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Rashmi Tandon
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Ina Meiser
- Fraunhofer IBMT, 66280, Sulzbach, Saar, Germany
| | - Anne Willing
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Ingo Winschel
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jana-Christin Abt
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Björn Brändl
- Christian-Albrechts-Universität zu Kiel, ZIP gGmbH, 24105, Kiel, Germany
| | | | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Franz-Josef Müller
- Christian-Albrechts-Universität zu Kiel, ZIP gGmbH, 24105, Kiel, Germany
| | | | - Carsten Claussen
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Heiko Zimmermann
- Fraunhofer IBMT, 66280, Sulzbach, Saar, Germany.,Lehrstuhl für Molekulare und Zelluläre Biotechnologie, Universität des Saarlandes, 66123, Saarbrücken, Germany.,Fakultät für Meereswissenschaften, Universidad Católica del Norte, CL-1781421, Coquimbo, Chile
| | - Philip Gribbon
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Ole Pless
- Fraunhofer IME ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany.
| |
Collapse
|
24
|
Zhang X, Hu D, Shang Y, Qi X. Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165431. [PMID: 30898538 PMCID: PMC6751032 DOI: 10.1016/j.bbadis.2019.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/09/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Current application of human induced pluripotent stem cells (hiPSCs) technology in patient-specific models of neurodegenerative disorders recapitulate some of key phenotypes of diseases, representing disease-specific cellular modeling and providing a unique platform for therapeutics development. We review recent efforts toward advancing hiPSCs-derived neuronal cell types and highlight their potential use for the development of more complex in vitro models of neurodegenerative diseases by focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. We present evidence from previous works on the important phenotypic changes of various neuronal types in these neurological diseases. We also summarize efforts on conducting low- and high-throughput screening experiments with hiPSCs toward developing potential therapeutics for treatment of neurodegenerative diseases. Lastly, we discuss the limitations of hiPSCs culture system in studying neurodegenerative diseases and alternative strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Xinwen Zhang
- Center of Implant Dentistry, School of Stomatology, China Medical University, Shenyang 110002, China; Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Di Hu
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Yutong Shang
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
25
|
Neural In Vitro Models for Studying Substances Acting on the Central Nervous System. Handb Exp Pharmacol 2020; 265:111-141. [PMID: 32594299 DOI: 10.1007/164_2020_367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Animal models have been greatly contributing to our understanding of physiology, mechanisms of diseases, and toxicity. Yet, their limitations due to, e.g., interspecies variation are reflected in the high number of drug attrition rates, especially in central nervous system (CNS) diseases. Therefore, human-based neural in vitro models for studying safety and efficacy of substances acting on the CNS are needed. Human iPSC-derived cells offer such a platform with the unique advantage of reproducing the "human context" in vitro by preserving the genetic and molecular phenotype of their donors. Guiding the differentiation of hiPSC into cells of the nervous system and combining them in a 2D or 3D format allows to obtain complex models suitable for investigating neurotoxicity or brain-related diseases with patient-derived cells. This chapter will give an overview over stem cell-based human 2D neuronal and mixed neuronal/astrocyte models, in vitro cultures of microglia, as well as CNS disease models and considers new developments in the field, more specifically the use of brain organoids and 3D bioprinted in vitro models for safety and efficacy evaluation.
Collapse
|
26
|
Ortuño-Costela MDC, Cerrada V, García-López M, Gallardo ME. The Challenge of Bringing iPSCs to the Patient. Int J Mol Sci 2019; 20:E6305. [PMID: 31847153 PMCID: PMC6940848 DOI: 10.3390/ijms20246305] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
The implementation of induced pluripotent stem cells (iPSCs) in biomedical research more than a decade ago, resulted in a huge leap forward in the highly promising area of personalized medicine. Nowadays, we are even closer to the patient than ever. To date, there are multiple examples of iPSCs applications in clinical trials and drug screening. However, there are still many obstacles to overcome. In this review, we will focus our attention on the advantages of implementing induced pluripotent stem cells technology into the clinics but also commenting on all the current drawbacks that could hinder this promising path towards the patient.
Collapse
Affiliation(s)
- María del Carmen Ortuño-Costela
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain. Instituto de Investigaciones Biomédicas “Alberto Sols”, (UAM-CSIC), 28029 Madrid, Spain;
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Victoria Cerrada
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - Marta García-López
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
| | - M. Esther Gallardo
- Grupo de Investigación Traslacional con células iPS, Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041 Madrid, Spain; (V.C.); (M.G.-L.)
- Centro de Investigación Biomédica en Red (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
27
|
Li XF, Zhou YW, Cai PF, Fu WC, Wang JH, Chen JY, Yang QN. CRISPR/Cas9 facilitates genomic editing for large-scale functional studies in pluripotent stem cell cultures. Hum Genet 2019; 138:1217-1225. [PMID: 31606751 DOI: 10.1007/s00439-019-02071-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cell (PSC) cultures form an integral part of biomedical and medical research due to their capacity to rapidly proliferate and differentiate into hundreds of highly specialized cell types. This makes them a highly useful tool in exploring human physiology and disease. Genomic editing of PSC cultures is an essential method of attaining answers to basic physiological functions, developing in vitro models of human disease, and exploring potential therapeutic strategies and the identification of drug targets. Achieving reliable and efficient genomic editing is an important aspect of using large-scale PSC cultures. The CRISPR/Cas9 genomic editing tool has facilitated highly efficient gene knockout, gene correction, or gene modifications through the design and use of single-guide RNAs which are delivered to the target DNA via Cas9. CRISPR/Cas9 modification of PSCs has furthered the understanding of basic physiology and has been utilized to develop in vitro disease models, to test therapeutic strategies, and to facilitate regenerative or tissue repair approaches. In this review, we discuss the benefits of the CRISPR/Cas9 system in large-scale PSC cultures.
Collapse
Affiliation(s)
- Xiao-Fei Li
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Yong-Wei Zhou
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Peng-Fei Cai
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Wei-Cong Fu
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Jin-Hua Wang
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology, Hangzhou, 310052, Zhejiang, People's Republic of China
| | - Qi-Ning Yang
- Department of Joint Surgery, Jinhua Municipal Central Hospital, No. 365 Renmin East Road, Wucheng District, Jinhua, 321000, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Differential Effects of Extracellular Vesicles of Lineage-Specific Human Pluripotent Stem Cells on the Cellular Behaviors of Isogenic Cortical Spheroids. Cells 2019; 8:cells8090993. [PMID: 31466320 PMCID: PMC6770916 DOI: 10.3390/cells8090993] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) contribute to a variety of signaling processes and the overall physiological and pathological states of stem cells and tissues. Human induced pluripotent stem cells (hiPSCs) have unique characteristics that can mimic embryonic tissue development. There is growing interest in the use of EVs derived from hiPSCs as therapeutics, biomarkers, and drug delivery vehicles. However, little is known about the characteristics of EVs secreted by hiPSCs and paracrine signaling during tissue morphogenesis and lineage specification. Methods: In this study, the physical and biological properties of EVs isolated from hiPSC-derived neural progenitors (ectoderm), hiPSC-derived cardiac cells (mesoderm), and the undifferentiated hiPSCs (healthy iPSK3 and Alzheimer’s-associated SY-UBH lines) were analyzed. Results: Nanoparticle tracking analysis and electron microscopy results indicate that hiPSC-derived EVs have an average size of 100–250 nm. Immunoblot analyses confirmed the enrichment of exosomal markers Alix, CD63, TSG101, and Hsc70 in the purified EV preparations. MicroRNAs including miR-133, miR-155, miR-221, and miR-34a were differently expressed in the EVs isolated from distinct hiPSC lineages. Treatment of cortical spheroids with hiPSC-EVs in vitro resulted in enhanced cell proliferation (indicated by BrdU+ cells) and axonal growth (indicated by β-tubulin III staining). Furthermore, hiPSC-derived EVs exhibited neural protective abilities in Aβ42 oligomer-treated cultures, enhancing cell viability and reducing oxidative stress. Our results demonstrate that the paracrine signaling provided by tissue context-dependent EVs derived from hiPSCs elicit distinct responses to impact the physiological state of cortical spheroids. Overall, this study advances our understanding of cell‒cell communication in the stem cell microenvironment and provides possible therapeutic options for treating neural degeneration.
Collapse
|
29
|
Multifactorial Modeling Reveals a Dominant Role of Wnt Signaling in Lineage Commitment of Human Pluripotent Stem Cells. Bioengineering (Basel) 2019; 6:bioengineering6030071. [PMID: 31443254 PMCID: PMC6783940 DOI: 10.3390/bioengineering6030071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
The human primed pluripotent state is maintained by a complex balance of several signaling pathways governing pluripotency maintenance and commitment. Here, we explore a multiparameter approach using a full factorial design and a simple well-defined culture system to assess individual and synergistic contributions of Wnt, FGF and TGFβ signaling to pluripotency and lineage specification of human induced pluripotent stem cells (hiPSC). Hierarchical clustering and quadratic models highlighted a dominant effect of Wnt signaling over FGF and TGFβ signaling, drawing hiPSCs towards mesendoderm lineages. In addition, a synergistic effect between Wnt signaling and FGF was observed to have a negative contribution to pluripotency maintenance and a positive contribution to ectoderm and mesoderm commitment. Furthermore, FGF and TGFβ signaling only contributed significantly for negative ectoderm scores, suggesting that the effect of both factors for pluripotency maintenance resides in a balance of inhibitory signals instead of proactive stimulation of hiPSC pluripotency. Overall, our dry-signaling multiparameter modeling approach can contribute to elucidate individual and synergistic inputs, providing an additional degree of comprehension of the complex regulatory mechanisms of human pluripotency and commitment.
Collapse
|
30
|
Song L, Yuan X, Jones Z, Vied C, Miao Y, Marzano M, Hua T, Sang QXA, Guan J, Ma T, Zhou Y, Li Y. Functionalization of Brain Region-specific Spheroids with Isogenic Microglia-like Cells. Sci Rep 2019; 9:11055. [PMID: 31363137 PMCID: PMC6667451 DOI: 10.1038/s41598-019-47444-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
Current brain spheroids or organoids derived from human induced pluripotent stem cells (hiPSCs) still lack a microglia component, the resident immune cells in the brain. The objective of this study is to engineer brain region-specific organoids from hiPSCs incorporated with isogenic microglia-like cells in order to enhance immune function. In this study, microglia-like cells were derived from hiPSCs using a simplified protocol with stage-wise growth factor induction, which expressed several phenotypic markers, including CD11b, IBA-1, CX3CR1, and P2RY12, and phagocytosed micron-size super-paramagnetic iron oxides. The derived cells were able to upregulate pro-inflammatory gene (TNF-α) and secrete anti-inflammatory cytokines (i.e., VEGF, TGF-β1, and PGE2) when stimulated with amyloid β42 oligomers, lipopolysaccharides, or dexamethasone. The derived isogenic dorsal cortical (higher expression of TBR1 and PAX6) and ventral (higher expression of NKX2.1 and PROX1) spheroids/organoids displayed action potentials and synaptic activities. Co-culturing the microglia-like cells (MG) with the dorsal (D) or ventral (V) organoids showed differential migration ability, intracellular Ca2+ signaling, and the response to pro-inflammatory stimuli (V-MG group had higher TNF-α and TREM2 expression). Transcriptome analysis exhibited 37 microglia-related genes that were differentially expressed in MG and D-MG groups. In addition, the hybrid D-MG spheroids exhibited higher levels of immunoreceptor genes in activating members, but the MG group contained higher levels for most of genes in inhibitory members (except SIGLEC5 and CD200). This study should advance our understanding of the microglia function in brain-like tissue and establish a transformative approach to modulate cellular microenvironment toward the goal of treating various neurological disorders.
Collapse
Affiliation(s)
- Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Zachary Jones
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Cynthia Vied
- The Translational Science Laboratory, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yu Miao
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Thien Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
31
|
Sasaki T, Suzuki I, Yokoi R, Sato K, Ikegaya Y. Synchronous spike patterns in differently mixed cultures of human iPSC-derived glutamatergic and GABAergic neurons. Biochem Biophys Res Commun 2019; 513:300-305. [PMID: 30954214 DOI: 10.1016/j.bbrc.2019.03.161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/24/2019] [Indexed: 01/16/2023]
Abstract
Human induced-pluripotent stem cell (hiPSC)-derived neurons develop organized neuronal networks under in vitro cultivation conditions. Here, using a multielectrode array system, we examined whether the spike patterns of hiPSC-derived neuronal populations differed in a manner that depended on the proportions of glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons in the cultures. Synchronous burst firing events spanning multiple electrodes became more frequent as the number of days in culture increased. However, at all developmental stages, the event rates of synchronous burst firing, the repertoires of synchronous burst firing, and the frequencies of sporadic spikes did not differ in cultures with different glutamatergic-to-GABAergic ratios. Pharmacological blockade of GABAergic synaptic transmission increased the frequencies of spike patterns specifically in cultures with lower glutamatergic-to-GABAergic ratios. These results demonstrate that a robust homeostatic property of developing hiPSC-derived neuronal networks in culture counteracts chronically imbalanced glutamatergic and GABAergic signaling.
Collapse
Affiliation(s)
- Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan; iPS-non-Clinical Experiments for Nervous System (iNCENS) Project, Kanagawa, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi), Kanagawa, Japan.
| | - Remi Yokoi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Kaoru Sato
- iPS-non-Clinical Experiments for Nervous System (iNCENS) Project, Kanagawa, Japan; Consortium for Safety Assessment using Human iPS Cells (CSAHi), Kanagawa, Japan; Laboratory of Neuropharmacology, Division of Pharmacology, Laboratory of Neuropharmacology, National Institute of Health Sciences, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
32
|
Morita Y, Okura H, Matsuyama A. Patent Application Trends of Induced Pluripotent Stem Cell Technologies in the United States, Japanese, and European Applications. Biores Open Access 2019; 8:45-58. [PMID: 30906670 PMCID: PMC6428227 DOI: 10.1089/biores.2018.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patent application trends were investigated for induced pluripotent stem cell (iPSC) technologies, particularly disease-specific cell technologies related to iPSCs, in the U.S., Japanese, and European applications during 2017. The number of patent applications for iPSC technologies was 1516 in the United States, 895 in Japan, and 420 in Europe, with 5% of applications for disease-specific cell technologies. In contrast, the percentages of patent applications for iPSC preparation and differentiation technologies were 17% and 23%, respectively. Patent applications for disease-specific cell technologies were classified into four technical fields and 14 disorder groups. In the technical fields, patent applications for genetically engineered cell technologies were prominent, accounting for 63%, 50%, and 65% of the U.S., Japanese, and European applications for 11, 8, and 7 disorder groups, respectively. In the disorder groups, the percentages of patent applications for neurological disorders were 40%, 32%, and 40% of the U.S., Japanese, and European applications, respectively, which were filed in four technical fields in the U.S. and Japanese applications. The U.S. patent applications for disease-specific cell technologies were filed by applicants in the United States, Japan, France, Belgium, Italy, Korea, and Canada; however, patent applications filed by those in Belgium, Italy, and Canada were not found in the Japanese and European applications. The percentages of patent applications filed by the U.S. applicants were 72%, 55%, and 65% of the U.S., Japanese, and European applications, respectively. Most patent applications filed by the U.S. applicants were in the field of genetically engineered cells for 11 disorder groups, which mostly included neurological and blood disorders. Japanese applicants mainly filed patent applications for drug screening technologies; subjects included five disorder groups, particularly neurological and bone/articular disorders. French applicants filed patent applications for neurological disorders in the field of genetically engineered cells and drug screening technologies. Korean applicants filed patent applications for patient-derived cell technologies for neurological, metabolic, and chromosomal/genetic disorders. In conclusion, more than half of patent applications were for genetically engineered cells for 11 disorders, most of which were filed by U.S. applicants.
Collapse
Affiliation(s)
- Yasushi Morita
- Department of Regenerative Medicine Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Osaka, Japan
| | - Hanayuki Okura
- Department of Regenerative Medicine Support Promotion Facility, Center for Research Promotion and Support, Fujita Health University, Osaka, Japan
| | - Akifumi Matsuyama
- Department of Regenerative Medicine and Stem Cell Biology, School of Medicine, Fujita Health University, Toyoake, Japan
| |
Collapse
|
33
|
Wnorowski A, Yang H, Wu JC. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models. Adv Drug Deliv Rev 2019; 140:3-11. [PMID: 29885330 DOI: 10.1016/j.addr.2018.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022]
Abstract
In recent years, drug development costs have soared, primarily due to the failure of preclinical animal and cell culture models, which do not directly translate to human physiology. Organ-on-a-chip (OOC) is a burgeoning technology with the potential to revolutionize disease modeling, drug discovery, and toxicology research by strengthening the relevance of culture-based models while reducing costly animal studies. Although OOC models can incorporate a variety of tissue sources, the most robust and relevant OOC models going forward will include stem cells. In this review, we will highlight the benefits of stem cells as a tissue source while considering current limitations to their complete and effective implementation into OOC models.
Collapse
Affiliation(s)
- Alexa Wnorowski
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States; Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA 943055, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA 94305, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford, CA 94305, United States; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
34
|
Kim H, Schaniel C. Modeling Hematological Diseases and Cancer With Patient-Specific Induced Pluripotent Stem Cells. Front Immunol 2018; 9:2243. [PMID: 30323816 PMCID: PMC6172418 DOI: 10.3389/fimmu.2018.02243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) together with recent advances in genome editing, microphysiological systems, tissue engineering and xenograft models present new opportunities for the investigation of hematological diseases and cancer in a patient-specific context. Here we review the progress in the field and discuss the advantages, limitations, and challenges of iPSC-based malignancy modeling. We will also discuss the use of iPSCs and its derivatives as cellular sources for drug target identification, drug development and evaluation of pharmacological responses.
Collapse
Affiliation(s)
- Huensuk Kim
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christoph Schaniel
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
35
|
van Hasselt JGC, Iyengar R. Systems Pharmacology: Defining the Interactions of Drug Combinations. Annu Rev Pharmacol Toxicol 2018; 59:21-40. [PMID: 30260737 DOI: 10.1146/annurev-pharmtox-010818-021511] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of diseases are associated with alterations in multiple molecular pathways and complex interactions at the cellular and organ levels. Single-target monotherapies therefore have intrinsic limitations with respect to their maximum therapeutic benefits. The potential of combination drug therapies has received interest for the treatment of many diseases and is well established in some areas, such as oncology. Combination drug treatments may allow us to identify synergistic drug effects, reduce adverse drug reactions, and address variability in disease characteristics between patients. Identification of combination therapies remains challenging. We discuss current state-of-the-art systems pharmacology approaches to enable rational identification of combination therapies. These approaches, which include characterization of mechanisms of disease and drug action at a systems level, can enable understanding of drug interactions at the molecular, cellular, physiological, and organismal levels. Such multiscale understanding can enable precision medicine by promoting the rational development of combination therapy at the level of individual patients for many diseases.
Collapse
Affiliation(s)
- J G Coen van Hasselt
- Department of Pharmacological Sciences, Systems Biology Center, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, 2333 Leiden, Netherlands;
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Systems Biology Center, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
36
|
Adipose tissue-derived extracellular fraction characterization: biological and clinical considerations in regenerative medicine. Stem Cell Res Ther 2018; 9:207. [PMID: 30092820 PMCID: PMC6085647 DOI: 10.1186/s13287-018-0956-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Adipose tissue-derived stem cells are considered to be a promising source in the field of cell therapy and regenerative medicine. In addition to direct cell replacement using adipose tissue or purified stem cells, intercellular molecule exchange by the adipose tissue complex, a vast array of bioactive secretory factors, demonstrated beneficial effects by reducing tissue damage and stimulation of endogenous repair. However, for therapeutic purposes, the use of secretome derivatives, such as full conditioned media or purified exosomes generated in vitro, may present considerable disadvantages for cell manufacturing, storage, product safety, and their potential as a ready-to-go therapeutic product. Methods In this study, the effect of a liquid fraction of lipoaspirates isolated intraoperatively from 28 healthy donors was evaluated for their protective effect against oxidative stress and senescence, proliferation, and migration in vitro on normal human melanocytes, keratinocytes, and fibroblasts. Immunoenzymatic quantification of several growth factors and important signal molecules was used to define the biological profile of physiological adipose tissue secretome. Results Adipose tissue extracellular fraction (AT-Ex), isolated from lipoaspirate, exhibited significant potential for skin repair. AT-Ex augmented dermal and epidermal cell proliferation in a dose-dependent manner without promoting cancer cell growth. Moreover, migration of dermal fibroblasts, an important phenomenon implicated in endogenous repair, was enhanced by AT-Ex treatment. AT-Ex has a positive impact on oxidative stress damage when cells are exposed to extrinsic hostile factors and prevent a fibroblast senescence phenotype including paracrine functions associated with skin aging. Conclusions Collectively, our findings propose natural systems carrying the physiological balance of in-vivo produced secretome that could improve cutaneous wound healing and tissue repair. This approach, representing an innovative perspective and therapeutic strategy in regenerative medicine, could also be combined with autologous stem cell grafts to treat chronic nonhealing wounds, stable vitiligo, severe burns, and post-oncological scarring. Electronic supplementary material The online version of this article (10.1186/s13287-018-0956-4) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Toraldo DM, Toraldo S, Conte L. The Clinical Use of Stem Cell Research in Chronic Obstructive Pulmonary Disease: A Critical Analysis of Current Policies. J Clin Med Res 2018; 10:671-678. [PMID: 30116436 PMCID: PMC6089575 DOI: 10.14740/jocmr3484w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disorder affecting more than 200 million people around the world, resulting in three million deaths per year. COPD is characterized by the loss of lung tissue and airway remodelling, with chronic inflammation of the airways and progressive destruction of lung parenchyma. The use of stem cells may lead to regenerative processes that address biological damage. However, this approach raises ethical issues that need to be considered in clinical trials using stem cell therapy, such as informed consent, patient recruitment and harm minimization, as well as the inherent uncertainty of these medical procedures on human beings. Indeed, up to now, these experiments have been performed in preclinical studies using animal models, with few studies involving humans. Additional efforts should be made to assess this promising procedure.
Collapse
Affiliation(s)
| | - Sara Toraldo
- Faculty of Economics, Catholic University of the Sacred Heart, Piacenza, Italy
| | - Luana Conte
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of the Salento, in the "V. Fazzi" Hospital, Italy.,Department of Biological and Environmental Sciences and Technologies, University of the Salento, Lecce, Italy
| |
Collapse
|
38
|
Dias TP, Pinto SN, Santos JI, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JM. Biophysical study of human induced Pluripotent Stem Cell-Derived cardiomyocyte structural maturation during long-term culture. Biochem Biophys Res Commun 2018; 499:611-617. [DOI: 10.1016/j.bbrc.2018.03.198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022]
|
39
|
Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs. Stem Cell Reports 2018; 10:1610-1624. [PMID: 29681544 PMCID: PMC5995368 DOI: 10.1016/j.stemcr.2018.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022] Open
Abstract
Connecting specific cancer genotypes with phenotypes and drug responses constitutes the central premise of precision oncology but is hindered by the genetic complexity and heterogeneity of primary cancer cells. Here, we use patient-derived induced pluripotent stem cells (iPSCs) and CRISPR/Cas9 genome editing to dissect the individual contributions of two recurrent genetic lesions, the splicing factor SRSF2 P95L mutation and the chromosome 7q deletion, to the development of myeloid malignancy. Using a comprehensive panel of isogenic iPSCs-with none, one, or both genetic lesions-we characterize their relative phenotypic contributions and identify drug sensitivities specific to each one through a candidate drug approach and an unbiased large-scale small-molecule screen. To facilitate drug testing and discovery, we also derive SRSF2-mutant and isogenic normal expandable hematopoietic progenitor cells. We thus describe here an approach to dissect the individual effects of two cooperating mutations to clinically relevant features of malignant diseases.
Collapse
|
40
|
Sima N, Li R, Huang W, Xu M, Beers J, Zou J, Titus S, Ottinger EA, Marugan JJ, Xie X, Zheng W. Neural stem cells for disease modeling and evaluation of therapeutics for infantile (CLN1/PPT1) and late infantile (CLN2/TPP1) neuronal ceroid lipofuscinoses. Orphanet J Rare Dis 2018; 13:54. [PMID: 29631617 PMCID: PMC5891977 DOI: 10.1186/s13023-018-0798-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Infantile and late infantile neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage diseases affecting the central nervous system (CNS). The infantile NCL (INCL) is caused by mutations in the PPT1 gene and late-infantile NCL (LINCL) is due to mutations in the TPP1 gene. Deficiency in PPT1 or TPP1 enzyme function results in lysosomal accumulation of pathological lipofuscin-like material in the patient cells. There is currently no small-molecular drug treatment for NCLs. RESULTS We have generated induced pluripotent stem cells (iPSC) from three patient dermal fibroblast lines and further differentiated them into neural stem cells (NSCs). Using these new disease models, we evaluated the effect of δ-tocopherol (DT) and hydroxypropyl-β-cyclodextrin (HPBCD) with the enzyme replacement therapy as the control. Treatment with the relevant recombinant enzyme or DT significantly ameliorated the lipid accumulation and lysosomal enlargement in the disease cells. A combination therapy of δ-tocopherol and HPBCD further improved the effect compared to that of either drug used as a single therapy. CONCLUSION The results demonstrate that these patient iPSC derived NCL NSCs are valid cell- based disease models with characteristic disease phenotypes that can be used for study of disease pathophysiology and drug development.
Collapse
Affiliation(s)
- Ni Sima
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.,Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Rong Li
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Wei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.,Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Jeanette Beers
- iPSC core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Elizabeth A Ottinger
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
41
|
Gong L, Cao L, Shen Z, Shao L, Gao S, Zhang C, Lu J, Li W. Materials for Neural Differentiation, Trans-Differentiation, and Modeling of Neurological Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705684. [PMID: 29573284 DOI: 10.1002/adma.201705684] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Indexed: 05/02/2023]
Abstract
Neuron regeneration from pluripotent stem cells (PSCs) differentiation or somatic cells trans-differentiation is a promising approach for cell replacement in neurodegenerative diseases and provides a powerful tool for investigating neural development, modeling neurological diseases, and uncovering the mechanisms that underlie diseases. Advancing the materials that are applied in neural differentiation and trans-differentiation promotes the safety, efficiency, and efficacy of neuron regeneration. In the neural differentiation process, matrix materials, either natural or synthetic, not only provide a structural and biochemical support for the monolayer or three-dimensional (3D) cultured cells but also assist in cell adhesion and cell-to-cell communication. They play important roles in directing the differentiation of PSCs into neural cells and modeling neurological diseases. For the trans-differentiation of neural cells, several materials have been used to make the conversion feasible for future therapy. Here, the most current applications of materials for neural differentiation for PSCs, neuronal trans-differentiation, and neurological disease modeling is summarized and discussed.
Collapse
Affiliation(s)
- Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Lining Cao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhenmin Shen
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Shao
- The VIP Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaorong Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jianfeng Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
42
|
Koivumäki JT, Naumenko N, Tuomainen T, Takalo J, Oksanen M, Puttonen KA, Lehtonen Š, Kuusisto J, Laakso M, Koistinaho J, Tavi P. Structural Immaturity of Human iPSC-Derived Cardiomyocytes: In Silico Investigation of Effects on Function and Disease Modeling. Front Physiol 2018; 9:80. [PMID: 29467678 PMCID: PMC5808345 DOI: 10.3389/fphys.2018.00080] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising experimental tool for translational heart research and drug development. However, their usability as a human adult cardiomyocyte model is limited by their functional immaturity. Our aim is to analyse quantitatively those characteristics and how they differ from adult CMs. Methods and Results: We have developed a novel in silico model with all essential functional electrophysiology and calcium handling features of hiPSC-CMs. Importantly, the virtual cell recapitulates the immature intracellular ion dynamics that are characteristic for hiPSC-CMs, as quantified based our in vitro imaging data. The strong “calcium clock” is a source for a dual function of excitation-contraction coupling in hiPSC-CMs: action potential and calcium transient morphology vary substantially depending on the activation sequence of underlying ionic currents and fluxes that is altered in spontaneous vs. paced mode. Furthermore, parallel simulations with hiPSC-CM and adult cardiomyocyte models demonstrate the central differences. Results indicate that hiPSC-CMs translate poorly the disease specific phenotypes of Brugada syndrome, long QT Syndrome and catecholaminergic polymorphic ventricular tachycardia, showing less robustness and greater tendency for arrhythmic events than adult CMs. Based on a comparative sensitivity analysis, hiPSC-CMs share some features with adult CMs, but are still functionally closer to prenatal CMs than adult CMs. A database analysis of 3000 hiPSC-CM model variants suggests that hiPSC-CMs recapitulate poorly fundamental physiological properties of adult CMs. Single modifications do not appear to solve this problem, which is mostly contributed by the immaturity of intracellular calcium handling. Conclusion: Our data indicates that translation of findings from hiPSC-CMs to human disease should be made with great caution. Furthermore, we established a mathematical platform that can be used to improve the translation from hiPSC-CMs to human, and to quantitatively evaluate hiPSC-CMs development toward more general and valuable model for human cardiac diseases.
Collapse
Affiliation(s)
- Jussi T Koivumäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nikolay Naumenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jouni Takalo
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Biophysics, Department of Physics, University of Oulu, Oulu, Finland
| | - Minna Oksanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katja A Puttonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Šárka Lehtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Johanna Kuusisto
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
43
|
Park J, Wetzel I, Dréau D, Cho H. 3D Miniaturization of Human Organs for Drug Discovery. Adv Healthc Mater 2018; 7. [PMID: 28885786 DOI: 10.1002/adhm.201700551] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/14/2017] [Indexed: 12/15/2022]
Abstract
"Engineered human organs" hold promises for predicting the effectiveness and accuracy of drug responses while reducing cost, time, and failure rates in clinical trials. Multiorgan human models utilize many aspects of currently available technologies including self-organized spherical 3D human organoids, microfabricated 3D human organ chips, and 3D bioprinted human organ constructs to mimic key structural and functional properties of human organs. They enable precise control of multicellular activities, extracellular matrix (ECM) compositions, spatial distributions of cells, architectural organizations of ECM, and environmental cues. Thus, engineered human organs can provide the microstructures and biological functions of target organs and advantageously substitute multiscaled drug-testing platforms including the current in vitro molecular assays, cell platforms, and in vivo models. This review provides an overview of advanced innovative designs based on the three main technologies used for organ construction leading to single and multiorgan systems useable for drug development. Current technological challenges and future perspectives are also discussed.
Collapse
Affiliation(s)
- Joseph Park
- Department of Mechanical Engineering and Engineering Science; Department of Biological Sciences; The Nanoscale Science Program; Center for Biomedical Engineering and Science; UNC Charlotte; 9201 University City Blvd Charlotte NC 28223 USA
| | - Isaac Wetzel
- Department of Mechanical Engineering and Engineering Science; Department of Biological Sciences; The Nanoscale Science Program; Center for Biomedical Engineering and Science; UNC Charlotte; 9201 University City Blvd Charlotte NC 28223 USA
| | - Didier Dréau
- Department of Mechanical Engineering and Engineering Science; Department of Biological Sciences; The Nanoscale Science Program; Center for Biomedical Engineering and Science; UNC Charlotte; 9201 University City Blvd Charlotte NC 28223 USA
| | - Hansang Cho
- Department of Mechanical Engineering and Engineering Science; Department of Biological Sciences; The Nanoscale Science Program; Center for Biomedical Engineering and Science; UNC Charlotte; 9201 University City Blvd Charlotte NC 28223 USA
| |
Collapse
|
44
|
Chen X, Harkness L, Jia Z, Prowse A, Monteiro MJ, Gray PP. Methods for Expansion of Three-Dimensional Cultures of Human Embryonic Stem Cells Using a Thermoresponsive Polymer. Tissue Eng Part C Methods 2017; 24:146-157. [PMID: 29239281 DOI: 10.1089/ten.tec.2017.0331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are viewed as promising candidates for applications in regenerative medicine and therapy due to their proliferative and pluripotent properties. However, obtaining clinically significant numbers of hPSCs remains a limiting factor and impedes their use in therapeutic applications. Conventionally, hPSCs are cultured on two-dimensional surfaces coated with a suitable substrate, such as Matrigel™. This method, however, requires a large surface area to generate sufficient cell numbers to meet clinical needs and is therefore impractical as a manufacturing platform for cell expansion. In addition, the use of enzymes for cell detachment and small molecule inhibitors to increase plating efficiency may impact future cell behavior when used for routine subculturing. In this study, we describe a protocol to generate and maintain hPSC aggregates in a three-dimensional suspension culture by utilizing thermoresponsive nanobridges. The property of the polymer used in the nanobridges enables passaging and expansion through a temperature change in combination with mechanically applied shear to dissociate aggregates; thus, we eliminate the need of enzymes or small molecules for cell dissociation and viability, respectively. Utilizing this platform, maintenance of human embryonic stem cells for three continuous passages demonstrated high expression levels in key pluripotent markers.
Collapse
Affiliation(s)
- Xiaoli Chen
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Linda Harkness
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Zhongfan Jia
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Andrew Prowse
- 2 The Garvan Institute of Medical Research , Sydney, Australia
| | - Michael J Monteiro
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Peter P Gray
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| |
Collapse
|
45
|
Kayama T, Suzuki I, Odawara A, Sasaki T, Ikegaya Y. Temporally coordinated spiking activity of human induced pluripotent stem cell-derived neurons co-cultured with astrocytes. Biochem Biophys Res Commun 2017; 495:1028-1033. [PMID: 29170135 DOI: 10.1016/j.bbrc.2017.11.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Abstract
In culture conditions, human induced-pluripotent stem cells (hiPSC)-derived neurons form synaptic connections with other cells and establish neuronal networks, which are expected to be an in vitro model system for drug discovery screening and toxicity testing. While early studies demonstrated effects of co-culture of hiPSC-derived neurons with astroglial cells on survival and maturation of hiPSC-derived neurons, the population spiking patterns of such hiPSC-derived neurons have not been fully characterized. In this study, we analyzed temporal spiking patterns of hiPSC-derived neurons recorded by a multi-electrode array system. We discovered that specific sets of hiPSC-derived neurons co-cultured with astrocytes showed more frequent and highly coherent non-random synchronized spike trains and more dynamic changes in overall spike patterns over time. These temporally coordinated spiking patterns are physiological signs of organized circuits of hiPSC-derived neurons and suggest benefits of co-culture of hiPSC-derived neurons with astrocytes.
Collapse
Affiliation(s)
- Tasuku Kayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan.
| | - Aoi Odawara
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan; Japan Society for the Promotion of Science, 5-3-1 Koujimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Center for Information and Neural Networks, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
46
|
Yan Y, Song L, Madinya J, Ma T, Li Y. Derivation of Cortical Spheroids from Human Induced Pluripotent Stem Cells in a Suspension Bioreactor. Tissue Eng Part A 2017; 24:418-431. [PMID: 28825364 DOI: 10.1089/ten.tea.2016.0400] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) emerge as a promising source to construct human brain-like tissues, spheroids, or organoids in vitro for disease modeling and drug screening. A suspension bioreactor can be used to generate large size of brain organoids from hiPSCs through enhanced diffusion, but the influence of a dynamic bioreactor culture environment on neural tissue patterning from hiPSCs has not been well understood. The objective of this study is to assess the influence of a suspension bioreactor culture on cortical spheroid (i.e., forebrain-like aggregates) formation from hiPSCs. Single undifferentiated hiPSK3 cells or preformed embryoid bodies were inoculated into the bioreactor. Aggregate size distribution, neural marker expression (e.g., Nestin, PAX6, β-tubulin III, and MAP-2), and cortical tissue patterning markers (e.g., TBR1, BRN2, SATB2, and vGlut1) were evaluated with static control. Bioreactor culture was found to promote the expression of TBR1, a deep cortical layer VI marker, and temporally affect SATB2, a superficial cortical layer II-IV marker that appears later according to inside-out cortical tissue development. Prolonged culture after 70 days showed layer-specific cortical structure in the spheroids. Differential expression of matrix metalloproteinase-2 and -3 was also observed for bioreactor and static culture. The altered expression of cortical markers by a suspension bioreactor indicates the importance of culture environment on cortical tissue development from hiPSCs.
Collapse
Affiliation(s)
- Yuanwei Yan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Liqing Song
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Jason Madinya
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| |
Collapse
|
47
|
Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery. Sci Rep 2017; 7:10015. [PMID: 28855688 PMCID: PMC5577104 DOI: 10.1038/s41598-017-10710-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/15/2017] [Indexed: 12/24/2022] Open
Abstract
In the past decade, adipose tissue has become a highly interesting source of adult stem cells for plastic surgery and regenerative medicine. The adipose source offers two options for the isolation of regenerative cells: the enzymatic digestion an expensive time-consuming procedure lacking a common standard operating protocol, or the non-enzymatic dissociation methods based on mechanical forces to break the processed adipose tissue. Here, we propose innovative inexpensive non-enzymatic protocols to collect and concentrate clinically useful regenerative cells from adipose tissue by centrifugation of the infranatant fraction of lipoaspirate as first step, usually discarded as a byproduct of the surgical procedure, and by fat shaking and wash as second enrichment step. The isolated cells were characterized according to the criteria proposed by the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy (ISCT) to define human mesenchymal stem cells, and the results were compared with matched lipoaspirate samples processed with collagenase. The results demonstrated the usability of these new procedures as an alternative to fat grafting for treating stem cell-depleted tissues and for specific application requiring minimal or null soft tissue augmentation, such as skin diseases including severe burn and post-oncological scaring, chronic non-healing wounds, and vitiligo.
Collapse
|
48
|
Papapetrou EP. Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 2017; 22:1392-1401. [PMID: 27923030 DOI: 10.1038/nm.4238] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
Together with recent advances in the processing and culture of human tissue, bioengineering, xenotransplantation and genome editing, Induced pluripotent stem cells (iPSCs) present a range of new opportunities for the study of human cancer. Here we discuss the main advantages and limitations of iPSC modeling, and how the method intersects with other patient-derived models of cancer, such as organoids, organs-on-chips and patient-derived xenografts (PDXs). We highlight the opportunities that iPSC models can provide beyond those offered by existing systems and animal models and present current challenges and crucial areas for future improvements toward wider adoption of this technology.
Collapse
Affiliation(s)
- Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
49
|
Baek JA, Seol HW, Jung J, Kim HS, Oh SK, Choi YM. Clean-Up Human Embryonic Stem Cell Lines Using Humanized Culture Condition. Tissue Eng Regen Med 2017; 14:453-464. [PMID: 30603501 DOI: 10.1007/s13770-017-0053-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022] Open
Abstract
Human embryonic stem cell (hESC) culture system has been changing culture conditions from conventional to xeno-free for therapeutic cell applications, and N-glycolylneuraminic acid (Neu5Gc) could be a useful indicator of xenogeneic contaminations in hESCs because human cells can no longer produce it genetically. We set up the humanized culture condition using commercially available humanized materials and two different adaptation methods: sequential or direct. SNUhES4 and H1 hESC lines, previously established in conventional culture conditions, were maintained using the humanized culture condition and were examined for the presence of Neu5Gc. The hESCs showed the same morphology and character as those of the conventional culture condition. Moreover, they were negative for Neu5Gc within two passages without loss of pluripotency. This study suggested that this method can effectively cleanse previously established hESC lines, bringing them one step closer to being clinical-grade hESCs.
Collapse
Affiliation(s)
- Jin Ah Baek
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Hye Won Seol
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Juwon Jung
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Hee Sun Kim
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea.,2Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Sun Kyung Oh
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea
| | - Young Min Choi
- 1Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71, Ihwajang-gil, Jongno-gu, Seoul, 03087 Korea.,2Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, 101, Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|
50
|
Li Y, Sallam K, Schwartz PJ, Wu JC. Patient-Specific Induced Pluripotent Stem Cell-Based Disease Model for Pathogenesis Studies and Clinical Pharmacotherapy. Circ Arrhythm Electrophysiol 2017; 10:e005398. [PMID: 28630175 PMCID: PMC5517015 DOI: 10.1161/circep.117.005398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yingxin Li
- From the Stanford Cardiovascular Institute, Departments of Medicine and Radiology, Institute of Stem Cell Biology & Regenerative Medicine (Y.L., K.S., J.C.W.), Stanford University, School of Medicine, CA; and Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy (P.J.S.)
| | - Karim Sallam
- From the Stanford Cardiovascular Institute, Departments of Medicine and Radiology, Institute of Stem Cell Biology & Regenerative Medicine (Y.L., K.S., J.C.W.), Stanford University, School of Medicine, CA; and Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy (P.J.S.)
| | - Peter J Schwartz
- From the Stanford Cardiovascular Institute, Departments of Medicine and Radiology, Institute of Stem Cell Biology & Regenerative Medicine (Y.L., K.S., J.C.W.), Stanford University, School of Medicine, CA; and Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy (P.J.S.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute, Departments of Medicine and Radiology, Institute of Stem Cell Biology & Regenerative Medicine (Y.L., K.S., J.C.W.), Stanford University, School of Medicine, CA; and Center for Cardiac Arrhythmias of Genetic Origin, IRCCS Istituto Auxologico Italiano, Milano, Italy (P.J.S.).
| |
Collapse
|