1
|
Trzeciak AJ, Liu ZL, Gatie M, Krebs AS, Saitz Rojas W, O'Neal AJ, Baako AK, Wang Z, Nelson J, Miranda IC, Uddin J, Lipshutz A, Xie J, Huang CL, Saavedra PHV, Hadjantonakis AK, Overholtzer M, Glickman MS, Subramanya AR, Vierbuchen T, Etchegaray JI, Lucas CD, Parkhurst CN, Perry JSA. WNK1 mediates M-CSF-induced macropinocytosis to enforce macrophage lineage fidelity. Nat Commun 2025; 16:4945. [PMID: 40436823 PMCID: PMC12120055 DOI: 10.1038/s41467-025-59901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/09/2025] [Indexed: 06/01/2025] Open
Abstract
Tissue-resident macrophages (TRM) are critical for mammalian organismal development and homeostasis. Here we report that with-no-lysine 1 (WNK1) controls myeloid progenitor fate, with Csf1riCre-mediated Wnk1 deletion in mice (WNK1-deficient mice) resulting in loss of TRMs and causing perinatal mortality. Mechanistically, absence of WNK1 or inhibition of WNK kinase activity disrupts macrophage colony-stimulating factor (M-CSF)-stimulated macropinocytosis, thereby blocking mouse and human progenitor and monocyte differentiation into macrophages and skewing progenitor differentiation into neutrophils. Treatment with PMA rescues macropinocytosis but not macrophage differentiation of WNK-inhibited progenitors, implicating that M-CSF-stimulated, macropinocytosis-induced activation of WNK1 is required for macrophage differentiation. Finally, M-CSF-stimulated macropinocytosis triggers WNK1 nuclear translocation and concomitant increased protein expression of interferon regulatory factor (IRF)8, whereas inhibition of macropinocytosis or WNK kinase activity suppresses IRF8 expression. Our results thus suggest that WNK1 and downstream IRF8-regulated genes are important for M-CSF/macropinocytosis-mediated regulation of myeloid cell lineage commitment during TRM development and homeostasis.
Collapse
Affiliation(s)
- Alissa J Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Zong-Lin Liu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohamed Gatie
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Adam S Krebs
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
| | - Waleska Saitz Rojas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anya J O'Neal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ann K Baako
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
| | - Zhaoquan Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
| | - Justin Nelson
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabella C Miranda
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jazib Uddin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Allie Lipshutz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Anna-Katerina Hadjantonakis
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Michael Overholtzer
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arohan R Subramanya
- Dept of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas Vierbuchen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jon Iker Etchegaray
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christopher D Lucas
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, BioQuarter, UK
- Institute for Regeneration and Repair, Edinburgh, BioQuarter, UK
| | | | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Zonooz ER, Ghezelayagh Z, Moradmand A, Aghayan HR, Shekari F, Tahamtani Y. Potential role of Sigma-1 receptor inhibition and ER stress-related pathways in upregulating definitive endoderm markers in human embryonic stem cells. Exp Cell Res 2025; 448:114557. [PMID: 40221006 DOI: 10.1016/j.yexcr.2025.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/03/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) participate in stem cell proliferation, differentiation, and apoptosis. Sigma-1 receptor (S1R) is a unique ER chaperon protein that regulates ER stress and UPR. Here, we examine the effects of S1R inhibition on pluripotency and differentiation of human embryonic stem cells (hESCs). hESCs were treated with different doses of an S1R inhibitor (BD 1047), and we investigated the expressions of different pluripotency and lineage-specific genes. The BD-treated hESCs showed increased SRY-box transcription factor 17 (SOX17) expression [definitive endoderm-specific protein], and reductions in NANOG expression and in the number of alkaline phosphatase (ALP)-positive colonies. In silico gene expression analysis of three datasets that contained the hESCs-derived DE samples (GSE98324, GSE63592, GSE52658) was performed to investigate the ER stress-related gene expression patterns during DE differentiation. In silico analysis revealed that UPR-related genes upregulated during DE differentiation and CCL2 was the only gene present in all three DE datasets. qRT-PCR and immunostaining showed that CCL2, eIF2A, ATF4, XBP1, GRP78, DDIT3, DNAJB9, and PDIA5 which are UPR related marker genes were all upregulated in both the BD-treated hESCs and female and male hESC-derived DE cells. The results of this study suggest possible roles for S1R, ER stress-related genes, and the CCL2 pathway during differentiation of hESCs into DE. These potential new targets may improve the efficiency of protocols used to differentiate endodermal lineages.
Collapse
Affiliation(s)
- Elmira Rezaei Zonooz
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Ghezelayagh
- Department of Basic and Population-based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran
| | - Azadeh Moradmand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Yaser Tahamtani
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Basic and Population-based Studies in NCD, Reproductive Epidemiology Research Center, Royan Institute, ACECR, Tehran, Iran.
| |
Collapse
|
3
|
Osteil P, Withey S, Santucci N, Aryamanesh N, Pang I, Salehin N, Sun J, Qin A, Su J, Knowles H, Li XB, Cai S, Wolvetang E, Tam PPL. MIXL1 activation in endoderm differentiation of human induced pluripotent stem cells. Stem Cell Reports 2025; 20:102482. [PMID: 40280138 DOI: 10.1016/j.stemcr.2025.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) possess the ability to differentiate into a multitude of cell and tissue types but display heterogeneous propensity of differentiation into specific lineage. Characterization of the transcriptome of 11 hiPSC lines showed that activation of MIXL1 at the early stage of stem cell differentiation correlated with higher efficacy in generating definitive endoderm and advancing differentiation and maturation of endoderm derivatives. Enforced expression of MIXL1 in the endoderm-inefficient hiPSCs enhanced the propensity of endoderm differentiation, suggesting that modulation of key drivers of lineage differentiation can re-wire hiPSC to the desired lineage propensity to generate the requisite stem cell products.
Collapse
Affiliation(s)
- Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia.
| | - Sarah Withey
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Nader Aryamanesh
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Ignatius Pang
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Nazmus Salehin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Jane Sun
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Annie Qin
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Jiayi Su
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Xiucheng Bella Li
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Simon Cai
- Bioinformatics Group, Children's Medical Research Institute, University of Sydney, Sydney, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Sydney, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
4
|
Rahman MS, Qi G, Li Q, Liu X, Bai J, Chen M, Atala A, Sun XS. Three-Dimensional Trilineage Differentiation Conditions for Human Induced Pluripotent Stem Cells. Bioengineering (Basel) 2025; 12:503. [PMID: 40428122 PMCID: PMC12108907 DOI: 10.3390/bioengineering12050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great potential for regenerative medicine. However, optimizing their differentiation into specific lineages within three-dimensional (3D) scaffold-based culture systems that mimic in vivo environments remains challenging. This study examined the trilineage differentiation of hiPSCs under various 3D conditions using synthetic peptide hydrogel matrices with and without embryoid body (EB) medium induction. hiPSC 3D colonies (spheroids), naturally formed from single cells or small clusters in 3D culture, were used for differentiation into the three germ lineages. Differentiated spheroids exhibited distinct morphological characteristics and significantly increased expression of key lineage-specific markers-FOXA2 (endoderm), Brachyury (mesoderm), and PAX6 (ectoderm)-compared to undifferentiated controls. Marker expression varied depending on the 3D culture conditions. Differentiation efficiency improved significantly, increasing from 16% to 71% for endoderm, 61% to 80% for mesoderm, and 35% to 48% for ectoderm, by selecting the appropriate 3D matrix and applying EB induction. Comprehensive data analysis from RT-qPCR, immunocytochemistry staining, and flow cytometry confirmed that the Synthegel Spheroid (SGS) is a viable 3D matrix for evaluating all three germ lineages using a commercial trilineage differentiation kit. While EB induction is essential for endodermal differentiation, it is not required for mesodermal and ectodermal lineages. These findings are valuable not only for screening initial differentiation potential at the lineage level but also for optimizing 3D differentiation protocols for deriving somatic cells from hiPSCs.
Collapse
Affiliation(s)
- Md Sharifur Rahman
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA; (M.S.R.); (Q.L.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest University-School of Medicine, Winston-Salem, NC 27101, USA; (A.A.); (G.Q.)
| | - Guangyan Qi
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA; (M.S.R.); (Q.L.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest University-School of Medicine, Winston-Salem, NC 27101, USA; (A.A.); (G.Q.)
| | - Quan Li
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA; (M.S.R.); (Q.L.)
| | - Xuming Liu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (X.L.); (M.C.)
| | - Jianfa Bai
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA;
| | - Mingshun Chen
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (X.L.); (M.C.)
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University-School of Medicine, Winston-Salem, NC 27101, USA; (A.A.); (G.Q.)
| | - Xiuzhi Susan Sun
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA; (M.S.R.); (Q.L.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest University-School of Medicine, Winston-Salem, NC 27101, USA; (A.A.); (G.Q.)
| |
Collapse
|
5
|
Lynch AT, Phillips N, Douglas M, Dorgnach M, Lin IH, Adamson AD, Darieva Z, Whittle J, Hanley NA, Bobola N, Birket MJ. HAND1 level controls the specification of multipotent cardiac and extraembryonic progenitors from human pluripotent stem cells. EMBO J 2025; 44:2541-2565. [PMID: 40164946 PMCID: PMC12048643 DOI: 10.1038/s44318-025-00409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Diverse sets of progenitors contribute to the development of the embryonic heart, but the mechanisms of their specification have remained elusive. Here, using a human pluripotent stem cell (hPSC) model, we deciphered cardiac and non-cardiac lineage trajectories in differentiation and identified transcription factors underpinning cell specification, identity and function. We discovered a concentration-dependent, fate determining function for the basic helix-loop-helix transcription factor HAND1 in mesodermal progenitors and uncovered its gene regulatory network. At low expression level, HAND1 directs differentiation towards multipotent juxta-cardiac field progenitors able to make cardiomyocytes and epicardial cells, whereas at high level it promotes the development of extraembryonic mesoderm. Importantly, HAND1-low progenitors can be propagated in their multipotent state. This detailed mechanistic insight into human development has the potential to accelerate the delivery of effective disease modelling, including for congenital heart disease, and cell therapy-based regenerative medicine.
Collapse
Affiliation(s)
- Adam T Lynch
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Naomi Phillips
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Megan Douglas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Marta Dorgnach
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - I-Hsuan Lin
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antony D Adamson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Zoulfia Darieva
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jessica Whittle
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Neil A Hanley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Nicoletta Bobola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Matthew J Birket
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Okubo C, Nakamura M, Sato M, Shichino Y, Mito M, Takashima Y, Iwasaki S, Takahashi K. EIF3D safeguards the homeostasis of key signaling pathways in human primed pluripotency. SCIENCE ADVANCES 2025; 11:eadq5484. [PMID: 40203091 PMCID: PMC11980838 DOI: 10.1126/sciadv.adq5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Although pluripotent stem cell (PSC) properties, such as differentiation and infinite proliferation, have been well documented within the frameworks of transcription factor networks, epigenomes, and signal transduction, they remain unclear and fragmented. Directing attention toward translational regulation as a bridge between these events can yield additional insights into previously unexplained mechanisms. Our functional CRISPR interference screen-based approach revealed that EIF3D, a translation initiation factor, is crucial for maintaining primed pluripotency. Loss of EIF3D disrupted the balance of pluripotency-associated signaling pathways, thereby compromising primed pluripotency. Moreover, EIF3D ensured robust proliferation by controlling the translation of various p53 regulators, which maintain low p53 activity in the undifferentiated state. In this way, EIF3D-mediated translation contributes to tuning the homeostasis of the primed pluripotency networks, ensuring the maintenance of an undifferentiated state with high proliferative potential. This study provides further insights into the translation network in maintaining pluripotency.
Collapse
Affiliation(s)
- Chikako Okubo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kazutoshi Takahashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
7
|
Huang T, Radley A, Yanagida A, Ren Z, Carlisle F, Tahajjodi S, Kim D, O'Neill P, Clarke J, Lancaster MA, Heckhausen Z, Zhuo J, de Sousa JPA, Hajkova P, von Meyenn F, Imai H, Nakauchi H, Guo G, Smith A, Masaki H. Inhibition of PRC2 enables self-renewal of blastoid-competent naive pluripotent stem cells from chimpanzee. Cell Stem Cell 2025; 32:627-639.e8. [PMID: 40015279 DOI: 10.1016/j.stem.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Naive pluripotent stem cells (PSCs) are counterparts of early epiblast in the mammalian embryo. Mouse and human naive PSCs differ in self-renewal requirements and extraembryonic lineage potency. Here, we investigated the generation of chimpanzee naive PSCs. Colonies generated by resetting or reprogramming failed to propagate. We discovered that self-renewal is enabled by inhibition of Polycomb repressive complex 2 (PRC2). Expanded cells show global transcriptome proximity to human naive PSCs and embryo pre-implantation epiblast, with shared expression of a subset of pluripotency transcription factors. Chimpanzee naive PSCs can transition to multilineage competence or can differentiate into trophectoderm and hypoblast, forming tri-lineage blastoids. They thus provide a higher primate comparative model for studying pluripotency and early embryogenesis. Genetic deletions confirm that PRC2 mediates growth arrest. Further, inhibition of PRC2 overcomes a roadblock to feeder-free propagation of human naive PSCs. Therefore, excess deposition of chromatin modification H3K27me3 is an unexpected barrier to naive PSC self-renewal.
Collapse
Affiliation(s)
- Tao Huang
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Arthur Radley
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ayaka Yanagida
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo 113-8657, Japan; Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Zhili Ren
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | | | | | - Dongwan Kim
- Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan
| | - Paul O'Neill
- University of Exeter Sequencing Facility, University of Exeter, Exeter EX4 4QD, UK
| | - James Clarke
- Wellcome-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Zoe Heckhausen
- MRC Laboratory of Medical Sciences (LMS), Du Cane Rd, London W12 0HS, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, UK
| | - Jingran Zhuo
- Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | | | - Petra Hajkova
- MRC Laboratory of Medical Sciences (LMS), Du Cane Rd, London W12 0HS, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, W12 0NN, UK
| | - Ferdinand von Meyenn
- Department of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
| | - Hideki Masaki
- Division of Stem Cell Therapy, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Stem Cell Therapy Division, Institute of Integrated Research, Institute of Science, Tokyo 113-8510, Japan.
| |
Collapse
|
8
|
Neupane J, Lubatti G, Gross-Thebing T, Ruiz Tejada Segura ML, Butler R, Gross-Thebing S, Dietmann S, Scialdone A, Surani MA. The emergence of human primordial germ cell-like cells in stem cell-derived gastruloids. SCIENCE ADVANCES 2025; 11:eado1350. [PMID: 40138398 PMCID: PMC11939039 DOI: 10.1126/sciadv.ado1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Most advances in early human postimplantation development depend on animal studies and stem cell-based embryo models. Here, we present self-organized three-dimensional human gastruloids (hGs) derived from embryonic stem cells. The transcriptome profile of day 3 hGs aligned with Carnegie stage 7 human gastrula, with cell types and differentiation trajectories consistent with human gastrulation. Notably, we observed the emergence of nascent primordial germ cell-like cells (PGCLCs), but without exogenous bone morphogenetic protein (BMP) signaling, which is essential for the PGCLC fate. A mutation in the ISL1 gene affects amnion-like cells and leads to a loss of PGCLCs; the addition of exogenous BMP2 rescues the PGCLC fate, indicating that the amnion may provide endogenous BMP signaling. Our model of early human embryogenesis will enable further exploration of the germ line and other early human lineages.
Collapse
Affiliation(s)
- Jitesh Neupane
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Gabriele Lubatti
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Theresa Gross-Thebing
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| | - Mayra Luisa Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Richard Butler
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Sabine Dietmann
- Department of Development Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - M. Azim Surani
- Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Zhu Y, Warmflash A. Dependence of cell fate potential and cadherin switching on primitive streak coordinate during differentiation of human pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635963. [PMID: 39975234 PMCID: PMC11838492 DOI: 10.1101/2025.01.31.635963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
During gastrulation, the primitive streak (PS) forms and begins to differentiate into mesendodermal subtypes. This process involves an epithelial-mesenchymal transition (EMT), which is marked by cadherin switching, where E-Cadherin is downregulated, and N-Cadherin is upregulated. To understand the relationships between differentiation, EMT, and cadherin switching, we made measurements of these processes during differentiation of human pluripotent stem cells (hPSCs) to PS and subsequently to mesendoderm subtypes using established protocols, as well as variants in which signaling through key pathways including Activin, BMP, and Wnt were modulated. We found that perturbing signaling so that cells acquired identities ranging from anterior to posterior PS had little impact on the subsequent differentiation potential of cells but strongly impacted the degree of cadherin switching. The degree of E-Cadherin downregulation and N-Cadherin upregulation were uncorrelated and had different dependence on signaling. The exception to the broad potential of cells throughout the PS was the loss of definitive endoderm potential in cells with mid to posterior PS identities. Thus, cells induced to different PS coordinates had similar potential within the mesoderm but differed in cadherin switching. Consistently, E-Cadherin knockout did not alter cell fates outcomes during differentiation. Overall, cadherin switching and EMT are modulated independently of cell fate commitment in mesendodermal differentiation.
Collapse
Affiliation(s)
- Ye Zhu
- Department of Bioengineering, Rice University, Houston, TX 77005
| | - Aryeh Warmflash
- Department of Bioengineering, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| |
Collapse
|
10
|
Loh KM, Zheng SL, Liu KJ, Yin Q, Amir-Ugokwe ZA, Jha SK, Qi Y, Wazny VK, Nguyen AT, Chen A, Njunkeng FM, Cheung C, Spiekerkoetter E, Red-Horse K, Ang LT. Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells. STAR Protoc 2025; 6:103494. [PMID: 39705146 PMCID: PMC11728883 DOI: 10.1016/j.xpro.2024.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024] Open
Abstract
Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs. We differentiate stem cells in defined, serum-free culture media in monolayers, without feeder cells or genetic manipulations. For complete details on the use and execution of this protocol, please refer to Ang et al. 1.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Kevin J Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Qingqing Yin
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Zhainib A Amir-Ugokwe
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sawan K Jha
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yue Qi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Vanessa K Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Alana T Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Faith-Masong Njunkeng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore; Institute of Molecular and Cell Biology, A∗STAR, 138673, Singapore, Singapore
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Engel L, Liu KJ, Cui KW, de la Serna EL, Vachharajani VT, Dundes CE, Zheng SL, Begur M, Loh KM, Ang LT, Dunn AR. A microfluidic platform for anterior-posterior human endoderm patterning via countervailing morphogen gradients in vitro. iScience 2025; 28:111744. [PMID: 40040808 PMCID: PMC11879597 DOI: 10.1016/j.isci.2025.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/22/2024] [Accepted: 01/02/2025] [Indexed: 03/06/2025] Open
Abstract
Understanding how morphogen gradients spatially pattern tissues is a fundamental question in developmental biology but can be difficult to directly address using conventional approaches. Here, we expose hPSC-derived endoderm cells to countervailing gradients of anteriorizing and posteriorizing signals using a widely available microfluidic device. This approach yielded spatially patterned cultures comprising anterior foregut (precursor to the thyroid, esophagus, and lungs) and mid/hindgut (precursor to the intestines) cells, whose identities were confirmed using single-cell RNA sequencing (scRNA-seq). By exposing stem cells to externally applied signaling gradients, this widely accessible microfluidic platform should accelerate the production of spatially patterned tissues, complementing internally self-organizing organoids. Applying artificial morphogen gradients in vitro may also illuminate how developing tissues interpret signaling gradients in systems that are not readily accessible for in vivo studies.
Collapse
Affiliation(s)
- Leeya Engel
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel
| | - Kevin J. Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kiara W. Cui
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L. de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vipul T. Vachharajani
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Program in Biophysics, Medical Scientist Training Program, Stanford University, Stanford, CA 94305, USA
| | - Carolyn E. Dundes
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Manali Begur
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kyle M. Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Zheng SL, Fowler JL, Chen JY, Li C, Lin E, Nguyen AT, Chen A, Daley GQ, Ang LT, Loh KM. Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells. STAR Protoc 2025; 6:103592. [PMID: 39864063 PMCID: PMC11969413 DOI: 10.1016/j.xpro.2024.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media. This 10-day protocol enables the manufacturing of blood and immune cells in monolayer cultures. For complete details on the use and execution of this protocol, please refer to Fowler and Zheng et al.1.
Collapse
Affiliation(s)
- Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Christopher Li
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, MA 02138, USA
| | - Elaine Lin
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alana T Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - George Q Daley
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Hamazaki Y, Akuta H, Suzuki H, Tanabe H, Ichiyanagi K, Imamura T, Imamura M. Generation and characterization of induced pluripotent stem cells of small apes. Front Cell Dev Biol 2025; 13:1536947. [PMID: 40177132 PMCID: PMC11961953 DOI: 10.3389/fcell.2025.1536947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Small apes (family Hylobatidae), encompassing gibbons and siamangs, occupy a pivotal evolutionary position within the hominoid lineage, bridging the gap between great apes and catarrhine monkeys. Although they possess distinctive genomic and phenotypic features-such as rapid chromosomal rearrangements and adaptations for brachiation-functional genomic studies on small apes have been hindered by the limited availability of biological samples and developmental models. Here, we address this gap by successfully reprogramming primary skin fibroblasts from three small ape species: lar gibbons (Hylobates lar), Abbott's gray gibbons (Hylobates abbotti), and siamangs (Symphalangus syndactylus). Using Sendai virus-based stealth RNA vectors, we generated 31 reprogrammed cell lines, five of which were developed into transgene-free induced pluripotent stem cells. These iPSCs displayed canonical features of primed pluripotency, both morphologically and molecularly, consistent with other primate iPSCs. Directed differentiation experiments confirmed the capacity of the small ape iPSCs to generate cells representing all three germ layers. In particular, their successful differentiation into limb bud mesoderm cells underscores their utility in investigating the molecular and developmental mechanisms unique to small ape forelimb evolution. Transcriptomic profiling of small ape iPSCs revealed significant upregulation of pluripotency-associated genes, alongside elevated expression of transposable elements. Remarkably, LAVA retrotransposons-a class of elements specific to small apes-exhibited particularly high expression levels in these cells. Comparative transcriptomic analyses with iPSCs from humans, great apes, and macaques identified evolutionary trends and clade-specific gene expression signatures. These signatures highlighted processes linked to genomic stability and cell death, providing insights into small ape-specific adaptations. This study positions small ape iPSCs as a transformative tool for advancing functional genomics and evolutionary developmental biology. By facilitating detailed investigations into hominoid genome evolution and phenotypic diversification, this system bridges critical gaps in comparative research, enabling deeper exploration of the genetic and cellular underpinnings of small ape-specific traits.
Collapse
Affiliation(s)
- Yusuke Hamazaki
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Hiroto Akuta
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Hikaru Suzuki
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Masanori Imamura
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Hutchins NT, Meziane M, Lu C, Mitalipova M, Fischer D, Li P. Reconstructing signaling histories of single cells via perturbation screens and transfer learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.16.643448. [PMID: 40166200 PMCID: PMC11957020 DOI: 10.1101/2025.03.16.643448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Manipulating the signaling environment is an effective approach to alter cellular states for broad-ranging applications, from engineering tissues to treating diseases. Such manipulation requires knowing the signaling states and histories of the cells in situ , for which high-throughput discovery methods are lacking. Here, we present an integrated experimental-computational framework that learns signaling response signatures from a high-throughput in vitro perturbation atlas and infers combinatorial signaling activities in in vivo cell types with high accuracy and temporal resolution. Specifically, we generated signaling perturbation atlas across diverse cell types/states through multiplexed sequential combinatorial screens on human pluripotent stem cells. Using the atlas to train IRIS, a neural network-based model, and predicting on mouse embryo scRNAseq atlas, we discovered global features of combinatorial signaling code usage over time, identified biologically meaningful heterogeneity of signaling states within each cell type, and reconstructed signaling histories along diverse cell lineages. We further demonstrated that IRIS greatly accelerates the optimization of stem cell differentiation protocols by drastically reducing the combinatorial space that needs to be tested. This framework leads to the revelation that different cell types share robust signal response signatures, and provides a scalable solution for mapping complex signaling interactions in vivo to guide targeted interventions.
Collapse
|
15
|
Prescott JB, Liu KJ, Lander A, Pek NMQ, Jha SK, Bokelmann M, Begur M, Koh PW, Yang H, Lim B, Red-Horse K, Weissman IL, Loh KM, Ang LT. Metabolically purified human stem cell-derived hepatocytes reveal distinct effects of Ebola and Lassa viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638665. [PMID: 40027809 PMCID: PMC11870522 DOI: 10.1101/2025.02.17.638665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Ebola and Lassa viruses require biosafety-level-4 (BSL4) containment, infect the liver, and cause deadly hemorrhagic fevers. The cellular effects of these viruses, and whether different families of hemorrhagic-fever viruses elicit similar effects, remain fundamental questions in BSL4 virology. Here, we introduce a new metabolic selection approach to create nearly-pure hepatocytes from human pluripotent stem cells, killing non-liver cells by withholding essential nutrients. Unexpectedly, Ebola and Lassa exerted starkly different effects on human hepatocytes. Ebola infection activated the integrated stress response (ISR) and WNT pathways in hepatocytes in vitro and killed them, whereas Lassa did not. Within non-human primates, Ebola likewise infected hepatocytes and activated ISR signaling in vivo . In summary, we present a single-cell transcriptional and chromatin accessibility roadmap of human hepatocyte differentiation, purification, and viral infection.
Collapse
|
16
|
Hogrebe NJ, Schmidt MD, Augsornworawat P, Gale SE, Shunkarova M, Millman JR. Depolymerizing F-actin accelerates the exit from pluripotency to enhance stem cell-derived islet differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.21.618465. [PMID: 39484596 PMCID: PMC11526947 DOI: 10.1101/2024.10.21.618465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In this study, we demonstrate that cytoskeletal state at the onset of directed differentiation is critical for the specification of human pluripotent stem cells (hPSCs) to all three germ layers. In particular, a polymerized actin cytoskeleton facilitates directed ectoderm differentiation, while depolymerizing F-actin promotes mesendoderm lineages. Applying this concept to a stem cell-derived islet (SC-islet) differentiation protocol, we show that depolymerizing F-actin with latrunculin A (latA) during the first 24 hours of definitive endoderm formation facilitates rapid exit from pluripotency and alters Activin/Nodal, BMP, JNK-JUN, and WNT pathway signaling dynamics. These signaling changes influence downstream patterning of the gut tube, leading to improved pancreatic progenitor identity and decreased expression of markers associated with other endodermal lineages. Continued differentiation generates islets containing a higher percentage of β cells that exhibit improved maturation, insulin secretion, and ability to reverse hyperglycemia. Furthermore, this latA treatment reduces enterochromaffin cells in the final cell population and corrects differentiations from hPSC lines that otherwise fail to consistently produce pancreatic islets, highlighting the importance of cytoskeletal signaling at the onset of directed differentiation.
Collapse
Affiliation(s)
- Nathaniel J. Hogrebe
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Mason D. Schmidt
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Punn Augsornworawat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sarah E. Gale
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Mira Shunkarova
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeffrey R. Millman
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, MSC 8127-057-08, 660 South Euclid Avenue, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
17
|
Chidiac R, Yang A, Kubarakos E, Mikolajewicz N, Han H, Almeida MP, Thibeault PE, Lin S, MacLeod G, Gratton JP, Moffat J, Angers S. Selective activation of FZD2 and FZD7 reveals non-redundant function during mesoderm differentiation. Stem Cell Reports 2025; 20:102391. [PMID: 39824186 PMCID: PMC11864152 DOI: 10.1016/j.stemcr.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025] Open
Abstract
During gastrulation, Wnt-β-catenin signaling dictates lineage bifurcation generating different mesoderm cell types. However, the specific role of Wnt receptors in mesoderm specification remains elusive. Using selective Frizzled (FZD) and LRP5/6 antibody-based agonists, we examined FZD receptors' function during directed mesoderm differentiation of human pluripotent stem cells (hPSCs). We found that FZD2 and FZD7 receptors are expressed at the membrane of hPSCs and that their activation triggers β-catenin signaling with different kinetics, thereby influencing mesoderm patterning choices. Specifically, FZD7 activation enhances both paraxial and lateral mesoderm differentiation, whereas FZD2 activation favors paraxial mesoderm. Mechanistically, FZD2 activation promotes sustained Wnt-β-catenin levels, guiding hPSCs differentiation toward paraxial mesoderm, while blocking lateral mesoderm. In contrast, FZD7 activation kinetics display similar initial activation but more dampening of β-catenin signaling, permitting lateral mesoderm induction in addition to paraxial mesoderm specification. Our findings reveal non-redundant roles for FZD2 and FZD7 in mesoderm specification, offering leverage for precise directed differentiation outcomes.
Collapse
Affiliation(s)
- Rony Chidiac
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Andy Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Elli Kubarakos
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Nicholas Mikolajewicz
- Program in Genetics and Genome Biology, The Hospital for Sick Kids, Toronto, ON, Canada
| | - Hong Han
- Program in Genetics and Genome Biology, The Hospital for Sick Kids, Toronto, ON, Canada
| | - Maira P Almeida
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Pierre E Thibeault
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Sichun Lin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Graham MacLeod
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jean-Philippe Gratton
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Kids, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Shen S, Werner T, Lukowski SW, Andersen S, Sun Y, Shim WJ, Mizikovsky D, Kobayashi S, Outhwaite J, Chiu HS, Chen X, Chapman G, Martin EMMA, Xia D, Pham D, Su Z, Kim D, Yang P, Tan MC, Sinniah E, Zhao Q, Negi S, Redd MA, Powell JE, Dunwoodie SL, Tam PPL, Bodén M, Ho JWK, Nguyen Q, Palpant NJ. Atlas of multilineage stem cell differentiation reveals TMEM88 as a developmental regulator of blood pressure. Nat Commun 2025; 16:1356. [PMID: 39904980 PMCID: PMC11794859 DOI: 10.1038/s41467-025-56533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Pluripotent stem cells provide a scalable approach to analyse molecular regulation of cell differentiation across developmental lineages. Here, we engineer barcoded induced pluripotent stem cells to generate an atlas of multilineage differentiation from pluripotency, encompassing an eight-day time course with modulation of WNT, BMP, and VEGF signalling pathways. Annotation of in vitro cell types with reference to in vivo development reveals diverse mesendoderm lineage cell types including lateral plate and paraxial mesoderm, neural crest, and primitive gut. Interrogation of temporal and signalling-specific gene expression in this atlas, evaluated against cell type-specific gene expression in human complex trait data highlights the WNT-inhibitor gene TMEM88 as a regulator of mesendodermal lineages influencing cardiovascular and anthropometric traits. Genetic TMEM88 loss of function models show impaired differentiation of endodermal and mesodermal derivatives in vitro and dysregulated arterial blood pressure in vivo. Together, this study provides an atlas of multilineage stem cell differentiation and analysis pipelines to dissect genetic determinants of mammalian developmental physiology.
Collapse
Affiliation(s)
- Sophie Shen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Tessa Werner
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Samuel W Lukowski
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Stacey Andersen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genome Innovation Hub, The University of Queensland, St Lucia, QLD, Australia
| | - Yuliangzi Sun
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Woo Jun Shim
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Dalia Mizikovsky
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sakurako Kobayashi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer Outhwaite
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Han Sheng Chiu
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ella M M A Martin
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Di Xia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Genome Innovation Hub, The University of Queensland, St Lucia, QLD, Australia
| | - Duy Pham
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Daniel Kim
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia
| | - Men Chee Tan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Queensland Facility for Advanced Genome Editing, The University of Queensland, St Lucia, QLD, Australia
| | - Enakshi Sinniah
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Qiongyi Zhao
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sumedha Negi
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- University of New South Wales, Cellular Genomics Futures Institute, Sydney, NSW, Australia
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Mikael Bodén
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
- Charles Perkins Centre, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
19
|
Zhao Z, Zeng F, Nie Y, Lu G, Xu H, En H, Gu S, Chan WY, Cao N, Wang J. Chemically defined and growth factor-free system for highly efficient endoderm induction of human pluripotent stem cells. Stem Cell Reports 2025; 20:102382. [PMID: 39729989 PMCID: PMC11784501 DOI: 10.1016/j.stemcr.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge. Here, by systematic optimization and high-throughput screening, we report a chemically defined, small-molecule-based defined system that contains only four components (4C), enabling highly efficient and cost-effective DE specification of hPSCs in the absence of recombinant proteins. 4C-induced DE can differentiate into functional hepatocytes, lung epithelium, and pancreatic β cells in vitro and multiple DE derivatives in vivo. Genomic accessibility analysis reveals that 4C reconfigures chromatin architecture to allow key DE transcription factor binding while identifying TEAD3 as a novel key regulator of the process. This system may facilitate mass production of DE derivatives for drug discovery, disease modeling, and cell therapy.
Collapse
Affiliation(s)
- Zhiju Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - Fanzhu Zeng
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China; Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China
| | - He Xu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - He En
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Shanshan Gu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China
| | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR 999077, China.
| | - Nan Cao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| | - Jia Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangdong 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangdong 510080, China.
| |
Collapse
|
20
|
Wang Z, Wang B, Niu D, Yin C, Bi Y, Cattoglio C, Loh KM, Lavis LD, Ge H, Deng W. Mesoscale chromatin confinement facilitates target search of pioneer transcription factors in live cells. Nat Struct Mol Biol 2025; 32:125-136. [PMID: 39367253 DOI: 10.1038/s41594-024-01385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Pioneer transcription factors (PTFs) possess the unique capability to access closed chromatin regions and initiate cell fate changes, yet the underlying mechanisms remain elusive. Here, we characterized the single-molecule dynamics of PTFs targeting chromatin in living cells, revealing a notable 'confined target search' mechanism. PTFs such as FOXA1, FOXA2, SOX2, OCT4 and KLF4 sampled chromatin more frequently than non-PTF MYC, alternating between fast free diffusion in the nucleus and slower confined diffusion within mesoscale zones. Super-resolved microscopy showed closed chromatin organized as mesoscale nucleosome-dense domains, confining FOXA2 diffusion locally and enriching its binding. We pinpointed specific histone-interacting disordered regions, distinct from DNA-binding domains, crucial for confined target search kinetics and pioneer activity within closed chromatin. Fusion to other factors enhanced pioneer activity. Kinetic simulations suggested that transient confinement could increase target association rate by shortening search time and binding repeatedly. Our findings illuminate how PTFs recognize and exploit closed chromatin organization to access targets, revealing a pivotal aspect of gene regulation.
Collapse
Affiliation(s)
- Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bo Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China
| | - Di Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China
| | - Chao Yin
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China
| | - Ying Bi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kyle M Loh
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Hao Ge
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
| |
Collapse
|
21
|
Turner DA, Martinez Arias A. Three-dimensional stem cell models of mammalian gastrulation. Bioessays 2024; 46:e2400123. [PMID: 39194406 PMCID: PMC11589689 DOI: 10.1002/bies.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Gastrulation is a key milestone in the development of an organism. It is a period of cell proliferation and coordinated cellular rearrangement, that creates an outline of the body plan. Our current understanding of mammalian gastrulation has been improved by embryo culture, but there are still many open questions that are difficult to address because of the intrauterine development of the embryos and the low number of specimens. In the case of humans, there are additional difficulties associated with technical and ethical challenges. Over the last few years, pluripotent stem cell models are being developed that have the potential to become useful tools to understand the mammalian gastrulation. Here we review these models with a special emphasis on gastruloids and provide a survey of the methods to produce them robustly, their uses, relationship to embryos, and their prospects as well as their limitations.
Collapse
Affiliation(s)
- David A. Turner
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
22
|
Yehya H, Wells A, Majcher M, Nakhwa D, King R, Senturk F, Padmanabhan R, Jensen J, Bukys MA. Identifying and optimizing critical process parameters for large-scale manufacturing of iPSC derived insulin-producing β-cells. Stem Cell Res Ther 2024; 15:408. [PMID: 39522051 PMCID: PMC11550522 DOI: 10.1186/s13287-024-03973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Type 1 diabetes, an autoimmune disorder leading to the destruction of pancreatic β-cells, requires lifelong insulin therapy. Islet transplantation offers a promising solution but faces challenges such as limited availability and the need for immunosuppression. Induced pluripotent stem cells (iPSCs) provide a potential alternative source of functional β-cells and have the capability for large-scale production. However, current differentiation protocols, predominantly conducted in hybrid or 2D settings, lack scalability and optimal conditions for suspension culture. METHODS We examined a range of bioreactor scaleup process parameters and quality target product profiles that might affect the differentiation process. This investigation was conducted using an optimized High Dimensional Design of Experiments (HD-DoE) protocol designed for scalability and implemented in 0.5L (PBS-0.5 Mini) vertical wheel bioreactors. RESULTS A three stage suspension manufacturing process is developed, transitioning from adherent to suspension culture, with TB2 media supporting iPSC growth during scaling. Stage-wise optimization approaches and extended differentiation times are used to enhance marker expression and maturation of iPSC-derived islet-like clusters. Continuous bioreactor runs were used to study nutrient and growth limitations and impact on differentiation. The continuous bioreactors were compared to a Control media change bioreactor showing metabolic shifts and a more β-cell-like differentiation profile. Cryopreserved aggregates harvested from the runs were recovered and showed maintenance of viability and insulin secretion capacity post-recovery, indicating their potential for storage and future transplantation therapies. CONCLUSION This study demonstrated that stage time increase and limited media replenishing with lactate accumulation can increase the differentiation capacity of insulin producing cells cultured in a large-scale suspension environment.
Collapse
Affiliation(s)
- Haneen Yehya
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
- Cleveland State University, 2121 Euclid Ave, Cleveland, OH, 44115, USA
| | - Alexandra Wells
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael Majcher
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Dhruv Nakhwa
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Ryan King
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Faruk Senturk
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | | | - Jan Jensen
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA
| | - Michael A Bukys
- Trailhead Biosystems, 23215 Commerce Park, Beachwood, OH, 44122, USA.
| |
Collapse
|
23
|
Liang Z, Huang T, Li W, Ma Z, Wang K, Zhai Z, Fan Y, Fu Y, Wang X, Qin Y, Wang B, Zhao C, Kuang J, Pei D. ALKBH5 governs human endoderm fate by regulating the DKK1/4-mediated Wnt/β-catenin activation. Nucleic Acids Res 2024; 52:10879-10896. [PMID: 39166492 PMCID: PMC11472173 DOI: 10.1093/nar/gkae707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/25/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024] Open
Abstract
N6-methyladenonsine (m6A) is ubiquitously distributed in mammalian mRNA. However, the precise involvement of m6A in early development has yet to be fully elucidated. Here, we report that deletion of the m6A demethylase ALKBH5 in human embryonic stem cells (hESCs) severely impairs definitive endoderm (DE) differentiation. ALKBH5-/- hESCs fail to undergo the primitive streak (PS) intermediate transition that precedes endoderm specification. Mechanistically, we show that ALKBH5 deficiency induces m6A hypermethylation around the 3' untranslated region (3'UTR) of GATA6 transcripts and destabilizes GATA6 mRNA in a YTHDF2-dependent manner. Moreover, GATA6 binds to the promoters of critical regulatory genes involved in Wnt/β-catenin signaling transduction, including the canonical Wnt antagonist DKK1 and DKK4, which are unexpectedly repressed upon the dysregulation of GATA6 mRNA metabolism. Remarkably, DKK1 and DKK4 both exhibit a pleiotropic effect in modulating the Wnt/β-catenin cascade and guard the endogenous signaling activation underlying DE formation as potential downstream targets of the ALKBH5-GATA6 regulation. Here, we unravel a role of ALKBH5 in human endoderm formation in vitro by modulating the canonical Wnt signaling logic through the previously unrecognized functions of DKK1/4, thus capturing a more comprehensive role of m6A in early human embryogenesis.
Collapse
Affiliation(s)
- Zechuan Liang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Tao Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Wei Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoyi Ma
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Kaipeng Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Fudan Unversity, Shanghai, China
| | - Ziwei Zhai
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Fan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Fu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Fudan Unversity, Shanghai, China
| | - Xiaomin Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Qin
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang University of Science and Technology School of Information and Electronic Engineering, Hangzhou, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
| |
Collapse
|
24
|
Chen S, Hayoun-Neeman D, Nagar M, Pinyan S, Hadad L, Yaacobov L, Alon L, Shachar LE, Swissa T, Kryukov O, Gershoni-Yahalom O, Rosental B, Cohen S, Lichtenstein RG. Terminal α1,2-fucosylation of glycosphingolipids by FUT1 is a key regulator in early cell-fate decisions. EMBO Rep 2024; 25:4433-4464. [PMID: 39256596 PMCID: PMC11467398 DOI: 10.1038/s44319-024-00243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
The embryonic cell surface is rich in glycosphingolipids (GSLs), which change during differentiation. The reasons for GSL subgroup variation during early embryogenesis remain elusive. By combining genomic approaches, flow cytometry, confocal imaging, and transcriptomic data analysis, we discovered that α1,2-fucosylated GSLs control the differentiation of human pluripotent cells (hPCs) into germ layer tissues. Overexpression of α1,2-fucosylated GSLs disrupts hPC differentiation into mesodermal lineage and reduces differentiation into cardiomyocytes. Conversely, reducing α1,2-fucosylated groups promotes hPC differentiation and mesoderm commitment in response to external signals. We find that bone morphogenetic protein 4 (BMP4), a mesodermal gene inducer, suppresses α1,2-fucosylated GSL expression. Overexpression of α1,2-fucosylated GSLs impairs SMAD activation despite BMP4 presence, suggesting α-fucosyl end groups as BMP pathway regulators. Additionally, the absence of α1,2-fucosylated GSLs in early/late mesoderm and primitive streak stages in mouse embryos aligns with the hPC results. Thus, α1,2-fucosylated GSLs may regulate early cell-fate decisions and embryo development by modulating cell signaling.
Collapse
Affiliation(s)
- Saray Chen
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Dana Hayoun-Neeman
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Michal Nagar
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Sapir Pinyan
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Limor Hadad
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liat Yaacobov
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Lilach Alon
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Liraz Efrat Shachar
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Tair Swissa
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Olga Kryukov
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Orly Gershoni-Yahalom
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Benyamin Rosental
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Smadar Cohen
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Rachel G Lichtenstein
- Avram and Stella Goren-Goldstein Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
- Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel.
| |
Collapse
|
25
|
Lee U, Zhang Y, Zhu Y, Luo AC, Gong L, Tremmel DM, Kim Y, Villarreal VS, Wang X, Lin RZ, Cui M, Ma M, Yuan K, Wang K, Chen K, Melero-Martin JM. Robust differentiation of human pluripotent stem cells into mural progenitor cells via transient activation of NKX3.1. Nat Commun 2024; 15:8392. [PMID: 39349465 PMCID: PMC11442894 DOI: 10.1038/s41467-024-52678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Mural cells are central to vascular integrity and function. In this study, we demonstrate the innovative use of the transcription factor NKX3.1 to guide the differentiation of human induced pluripotent stem cells into mural progenitor cells (iMPCs). By transiently activating NKX3.1 in mesodermal intermediates, we developed a method that diverges from traditional growth factor-based differentiation techniques. This approach efficiently generates a robust iMPC population capable of maturing into diverse functional mural cell subtypes, including smooth muscle cells and pericytes. These iMPCs exhibit key mural cell functionalities such as contractility, deposition of extracellular matrix, and the ability to support endothelial cell-mediated vascular network formation in vivo. Our study not only underscores the fate-determining significance of NKX3.1 in mural cell differentiation but also highlights the therapeutic potential of these iMPCs. We envision these insights could pave the way for a broader use of iMPCs in vascular biology and regenerative medicine.
Collapse
Affiliation(s)
- Umji Lee
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Yadong Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yonglin Zhu
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Liyan Gong
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Daniel M Tremmel
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Yunhye Kim
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, NY, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Miao Cui
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, NY, USA
| | - Ke Yuan
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kai Wang
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
26
|
Jiang L, Yan C, Yi Y, Zhu L, Liu Z, Zhang D, Jiang W. Cell size regulates human endoderm specification through actomyosin-dependent AMOT-YAP signaling. Stem Cell Reports 2024; 19:1137-1155. [PMID: 39094563 PMCID: PMC11368700 DOI: 10.1016/j.stemcr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Cell size is a crucial physical property that significantly impacts cellular physiology and function. However, the influence of cell size on stem cell specification remains largely unknown. Here, we investigated the dynamic changes in cell size during the differentiation of human pluripotent stem cells into definitive endoderm (DE). Interestingly, cell size exhibited a gradual decrease as DE differentiation progressed with higher stiffness. Furthermore, the application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced DE differentiation. By functionally intervening in mechanosensitive elements, we have identified actomyosin activity as a crucial mediator of both DE differentiation and cell size reduction. Mechanistically, the reduction in cell size induces actomyosin-dependent angiomotin (AMOT) nuclear translocation, which suppresses Yes-associated protein (YAP) activity and thus facilitates DE differentiation. Together, our study has established a novel connection between cell size diminution and DE differentiation, which is mediated by AMOT nuclear translocation. Additionally, our findings suggest that the application of osmotic pressure can effectively promote human endodermal lineage differentiation.
Collapse
Affiliation(s)
- Lai Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China; Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lihang Zhu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
27
|
Cipriano A, Colantoni A, Calicchio A, Fiorentino J, Gomes D, Moqri M, Parker A, Rasouli S, Caldwell M, Briganti F, Roncarolo MG, Baldini A, Weinacht KG, Tartaglia GG, Sebastiano V. Transcriptional and epigenetic characterization of a new in vitro platform to model the formation of human pharyngeal endoderm. Genome Biol 2024; 25:211. [PMID: 39118163 PMCID: PMC11312149 DOI: 10.1186/s13059-024-03354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The Pharyngeal Endoderm (PE) is an extremely relevant developmental tissue, serving as the progenitor for the esophagus, parathyroids, thyroids, lungs, and thymus. While several studies have highlighted the importance of PE cells, a detailed transcriptional and epigenetic characterization of this important developmental stage is still missing, especially in humans, due to technical and ethical constraints pertaining to its early formation. RESULTS Here we fill this knowledge gap by developing an in vitro protocol for the derivation of PE-like cells from human Embryonic Stem Cells (hESCs) and by providing an integrated multi-omics characterization. Our PE-like cells robustly express PE markers and are transcriptionally homogenous and similar to in vivo mouse PE cells. In addition, we define their epigenetic landscape and dynamic changes in response to Retinoic Acid by combining ATAC-Seq and ChIP-Seq of histone modifications. The integration of multiple high-throughput datasets leads to the identification of new putative regulatory regions and to the inference of a Retinoic Acid-centered transcription factor network orchestrating the development of PE-like cells. CONCLUSIONS By combining hESCs differentiation with computational genomics, our work reveals the epigenetic dynamics that occur during human PE differentiation, providing a solid resource and foundation for research focused on the development of PE derivatives and the modeling of their developmental defects in genetic syndromes.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy
| | - Alessandro Calicchio
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jonathan Fiorentino
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy
| | - Danielle Gomes
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Mahdi Moqri
- Biomedical Informatics Program, Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Alexander Parker
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Matthew Caldwell
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Francesca Briganti
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Maria Grazia Roncarolo
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, 94305, USA
- Center for Definitive and Curative Medicine (CDCM), Stanford School of Medicine, Stanford, CA, USA
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotech., University Federico II, 80131, Naples, Italy
| | - Katja G Weinacht
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Gian Gaetano Tartaglia
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano Di Tecnologia (IIT), 00161, Rome, Italy.
- Center for Human Technology, Fondazione Istituto Italiano Di Tecnologia (IIT), 16152, Genoa, Italy.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, 94305, USA.
- Institute for Stem Cell Biology and Regenerative Medicine (ISCBRM), Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
28
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Ma X, Dai L, Tan C, Li J, He X, Wang Y, Xue J, Huang M, Ren J, Xia Y, Wu Q, Zhao H, Chan WY, Feng B. β-catenin mediates endodermal commitment of human ES cells via distinct transactivation functions. Cell Biosci 2024; 14:96. [PMID: 39049023 PMCID: PMC11267888 DOI: 10.1186/s13578-024-01279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND β-catenin, acting as the core effector of canonical Wnt signaling pathway, plays a pivotal role in controlling lineage commitment and the formation of definitive endoderm (DE) during early embryonic development. Despite extensive studies using various animal and cell models, the β-catenin-centered regulatory mechanisms underlying DE formation remain incompletely understood, partly due to the rapid and complex cell fate transitions during early differentiation. RESULTS In this study, we generated new CTNNB1-/- human ES cells (hESCs) using CRISPR-based insertional gene disruption approach and systematically rescued the DE defect in these cells by introducing various truncated or mutant forms of β-catenin. Our analysis showed that a truncated β-catenin lacking both N- and C-terminal domains (ΔN148C) could robustly rescue the DE formation, whereas hyperactive β-catenin mutants with S33Y mutation or N-terminal deletion (ΔN90) had limited ability to induce DE lineage. Notably, the ΔN148C mutant exhibited significant nuclear translocation that was positively correlated with successful DE rescue. Transcriptomic analysis further uncovered that two weak β-catenin mutants lacking the C-terminal transactivation domain (CTD) activated primitive streak (PS) genes, whereas the hyperactive β-catenin mutants activated mesoderm genes. CONCLUSION Our study uncovered an unconventional regulatory function of β-catenin through weak transactivation, indicating that the levels of β-catenin activity determine the lineage bifurcation from mesendoderm into endoderm and mesoderm.
Collapse
Affiliation(s)
- Xun Ma
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Liujiang Dai
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Chunlai Tan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiangchuan Li
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiangjun He
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Junyi Xue
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Min Huang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianwei Ren
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Wai-Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, CUHK-GIBH CAS Joint Research Laboratory on Stem Cell and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
30
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
31
|
Funa NS, Mjoseng HK, de Lichtenberg KH, Raineri S, Esen D, Egeskov-Madsen ALR, Quaranta R, Jørgensen MC, Hansen MS, van Cuyl Kuylenstierna J, Jensen KB, Miao Y, Garcia KC, Seymour PA, Serup P. TGF-β modulates cell fate in human ES cell-derived foregut endoderm by inhibiting Wnt and BMP signaling. Stem Cell Reports 2024; 19:973-992. [PMID: 38942030 PMCID: PMC11252478 DOI: 10.1016/j.stemcr.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024] Open
Abstract
Genetic differences between pluripotent stem cell lines cause variable activity of extracellular signaling pathways, limiting reproducibility of directed differentiation protocols. Here we used human embryonic stem cells (hESCs) to interrogate how exogenous factors modulate endogenous signaling events during specification of foregut endoderm lineages. We find that transforming growth factor β1 (TGF-β1) activates a putative human OTX2/LHX1 gene regulatory network which promotes anterior fate by antagonizing endogenous Wnt signaling. In contrast to Porcupine inhibition, TGF-β1 effects cannot be reversed by exogenous Wnt ligands, suggesting that induction of SHISA proteins and intracellular accumulation of Fzd receptors render TGF-β1-treated cells refractory to Wnt signaling. Subsequently, TGF-β1-mediated inhibition of BMP and Wnt signaling suppresses liver fate and promotes pancreas fate. Furthermore, combined TGF-β1 treatment and Wnt inhibition during pancreatic specification reproducibly and robustly enhance INSULIN+ cell yield across hESC lines. This modification of widely used differentiation protocols will enhance pancreatic β cell yield for cell-based therapeutic applications.
Collapse
Affiliation(s)
- Nina Sofi Funa
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Heidi Katharina Mjoseng
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristian Honnens de Lichtenberg
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Silvia Raineri
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Deniz Esen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anuska la Rosa Egeskov-Madsen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Roberto Quaranta
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mette Christine Jørgensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maria Skjøtt Hansen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jonas van Cuyl Kuylenstierna
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; BRIC - Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yi Miao
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip A Seymour
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Palle Serup
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
32
|
Sun A, Hayat H, Kenyon E, Quadri T, Amos D, Perkins K, Nigam S, Tarleton D, Mallett CL, Deng CX, Qiu Z, Li W, Sempere L, Fan J, Aguirre A, Wang P. Brown Adipose Tissue as a Unique Niche for Islet Organoid Transplantation: Insights From In Vivo Imaging. Transplant Direct 2024; 10:e1658. [PMID: 38881741 PMCID: PMC11177823 DOI: 10.1097/txd.0000000000001658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/15/2024] [Accepted: 04/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background Transplantation of human-induced pluripotent stem cell (hiPSC)-derived islet organoids is a promising cell replacement therapy for type 1 diabetes (T1D). It is important to improve the efficacy of islet organoids transplantation by identifying new transplantation sites with high vascularization and sufficient accommodation to support graft survival with a high capacity for oxygen delivery. Methods A human-induced pluripotent stem cell line (hiPSCs-L1) was generated constitutively expressing luciferase. Luciferase-expressing hiPSCs were differentiated into islet organoids. The islet organoids were transplanted into the scapular brown adipose tissue (BAT) of nonobese diabetic/severe combined immunodeficiency disease (NOD/SCID) mice as the BAT group and under the left kidney capsule (KC) of NOD/SCID mice as a control group, respectively. Bioluminescence imaging (BLI) of the organoid grafts was performed on days 1, 7, 14, 28, 35, 42, 49, 56, and 63 posttransplantation. Results BLI signals were detected in all recipients, including both the BAT and control groups. The BLI signal gradually decreased in both BAT and KC groups. However, the graft BLI signal intensity under the left KC decreased substantially faster than that of the BAT. Furthermore, our data show that islet organoids transplanted into streptozotocin-induced diabetic mice restored normoglycemia. Positron emission tomography/MRI verified that the islet organoids were transplanted at the intended location in these diabetic mice. Immunofluorescence staining revealed the presence of functional organoid grafts, as confirmed by insulin and glucagon staining. Conclusions Our results demonstrate that BAT is a potentially desirable site for islet organoid transplantation for T1D therapy.
Collapse
Affiliation(s)
- Aixia Sun
- Precision Health Program, Michigan State University, East Lansing, MI
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Hanaan Hayat
- Precision Health Program, Michigan State University, East Lansing, MI
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, East Lansing, MI
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Tahnia Quadri
- Precision Health Program, Michigan State University, East Lansing, MI
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Darius Amos
- Precision Health Program, Michigan State University, East Lansing, MI
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Keenan Perkins
- Florida Agricultural and Mechanical University, Tallahassee, FL
| | - Saumya Nigam
- Precision Health Program, Michigan State University, East Lansing, MI
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Deanna Tarleton
- Precision Health Program, Michigan State University, East Lansing, MI
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Christiane L Mallett
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Zhen Qiu
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI
| | - Wen Li
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI
- Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI
| | - Lorenzo Sempere
- Precision Health Program, Michigan State University, East Lansing, MI
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
| | - Jinda Fan
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI
- Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, MI
| | - Aitor Aguirre
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI
| | - Ping Wang
- Precision Health Program, Michigan State University, East Lansing, MI
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
33
|
Tian SP, Ge JY, Song YM, Yu XQ, Chen WH, Chen YY, Ye D, Zheng YW. A novel efficient strategy to generate liver sinusoidal endothelial cells from human pluripotent stem cells. Sci Rep 2024; 14:13831. [PMID: 38879647 PMCID: PMC11180100 DOI: 10.1038/s41598-024-64195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/06/2024] [Indexed: 06/19/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells (ECs) that play an important role in liver development and regeneration. Additionally, it is involved in various pathological processes, including steatosis, inflammation, fibrosis and hepatocellular carcinoma. However, the rapid dedifferentiation of LSECs after culture greatly limits their use in vitro modeling for biomedical applications. In this study, we developed a highly efficient protocol to induce LSEC-like cells from human induced pluripotent stem cells (hiPSCs) in only 8 days. Using single-cell transcriptomic analysis, we identified several novel LSEC-specific markers, such as EPAS1, LIFR, and NID1, as well as several previously revealed markers, such as CLEC4M, CLEC1B, CRHBP and FCN3. These LSEC markers are specifically expressed in our LSEC-like cells. Furthermore, hiPSC-derived cells expressed LSEC-specific proteins and exhibited LSEC-related functions, such as the uptake of acetylated low density lipoprotein (ac-LDL) and immune complex endocytosis. Overall, this study confirmed that our novel protocol allowed hiPSCs to rapidly acquire an LSEC-like phenotype and function in vitro. The ability to generate LSECs efficiently and rapidly may help to more precisely mimic liver development and disease progression in a liver-specific multicellular microenvironment, offering new insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shang-Ping Tian
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Jian-Yun Ge
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Yu-Mu Song
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Xiao-Qing Yu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Wen-Hao Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Yu-Ying Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Di Ye
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Yun-Wen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China.
- Institute of Regenerative Medicine, and Department of Dermatology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China.
- Department of Medical and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
- Institute of Medical Science, Center for Stem Cell Biology and Regenerative Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
34
|
Ee LS, Medina-Cano D, Uyehara CM, Schwarz C, Goetzler E, Salataj E, Polyzos A, Madhuranath S, Evans T, Hadjantonakis AK, Apostolou E, Vierbuchen T, Stadtfeld M. Transcriptional remodeling by OTX2 directs specification and patterning of mammalian definitive endoderm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596630. [PMID: 38854146 PMCID: PMC11160813 DOI: 10.1101/2024.05.30.596630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The molecular mechanisms that drive essential developmental patterning events in the mammalian embryo remain poorly understood. To generate a conceptual framework for gene regulatory processes during germ layer specification, we analyzed transcription factor (TF) expression kinetics around gastrulation and during in vitro differentiation. This approach identified Otx2 as a candidate regulator of definitive endoderm (DE), the precursor of all gut- derived tissues. Analysis of multipurpose degron alleles in gastruloid and directed differentiation models revealed that loss of OTX2 before or after DE specification alters the expression of core components and targets of specific cellular signaling pathways, perturbs adhesion and migration programs as well as de-represses regulators of other lineages, resulting in impaired foregut specification. Key targets of OTX2 are conserved in human DE. Mechanistically, OTX2 is required to establish chromatin accessibility at candidate enhancers, which regulate genes critical to establishing an anterior cell identity in the developing gut. Our results provide a working model for the progressive establishment of spatiotemporal cell identity by developmental TFs across germ layers and species, which may facilitate the generation of gut cell types for regenerative medicine applications.
Collapse
Affiliation(s)
- LS Ee
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - D Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - CM Uyehara
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - C Schwarz
- Emerald Cloud Lab, Austin, TX 78728 USA
| | - E Goetzler
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Salataj
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Polyzos
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - S Madhuranath
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - T Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
| | - AK Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - E Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - T Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Stadtfeld
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
35
|
Koh H, Kang W, Mao YY, Park J, Kim S, Hong SH, Lee JH. Employment of diverse in vitro systems for analyzing multiple aspects of disease, hereditary hemorrhagic telangiectasia (HHT). Cell Biosci 2024; 14:65. [PMID: 38778363 PMCID: PMC11110195 DOI: 10.1186/s13578-024-01247-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In vitro disease modeling enables translational research by providing insight into disease pathophysiology and molecular mechanisms, leading to the development of novel therapeutics. Nevertheless, in vitro systems have limitations for recapitulating the complexity of tissues, and a single model system is insufficient to gain a comprehensive understanding of a disease. RESULTS Here we explored the potential of using several models in combination to provide mechanistic insight into hereditary hemorrhagic telangiectasia (HHT), a genetic vascular disorder. Genome editing was performed to establish hPSCs (H9) with ENG haploinsufficiency and several in vitro models were used to recapitulate the functional aspects of the cells that constitute blood vessels. In a 2D culture system, endothelial cells showed early senescence, reduced viability, and heightened susceptibility to apoptotic insults, and smooth muscle cells (SMCs) exhibited similar behavior to their wild-type counterparts. Features of HHT were evident in 3D blood-vessel organoid systems, including thickening of capillary structures, decreased interaction between ECs and surrounding SMCs, and reduced cell viability. Features of ENG haploinsufficiency were observed in arterial and venous EC subtypes, with arterial ECs showing significant impairments. Molecular biological approaches confirmed the significant downregulation of Notch signaling in HHT-ECs. CONCLUSIONS Overall, we demonstrated refined research strategies to enhance our comprehension of HHT, providing valuable insights for pathogenic analysis and the exploration of innovative therapeutic interventions. Additionally, these results underscore the importance of employing diverse in vitro systems to assess multiple aspects of disease, which is challenging using a single in vitro system.
Collapse
Affiliation(s)
- Hyebin Koh
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Woojoo Kang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Ying-Ying Mao
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jisoo Park
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Sangjune Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
- KW-Bio Co., Ltd, Chuncheon, South Korea.
| | - Jong-Hee Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
| |
Collapse
|
36
|
Fowler JL, Zheng SL, Nguyen A, Chen A, Xiong X, Chai T, Chen JY, Karigane D, Banuelos AM, Niizuma K, Kayamori K, Nishimura T, Cromer MK, Gonzalez-Perez D, Mason C, Liu DD, Yilmaz L, Miquerol L, Porteus MH, Luca VC, Majeti R, Nakauchi H, Red-Horse K, Weissman IL, Ang LT, Loh KM. Lineage-tracing hematopoietic stem cell origins in vivo to efficiently make human HLF+ HOXA+ hematopoietic progenitors from pluripotent stem cells. Dev Cell 2024; 59:1110-1131.e22. [PMID: 38569552 PMCID: PMC11072092 DOI: 10.1016/j.devcel.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Collapse
Affiliation(s)
- Jonas L Fowler
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Alana Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaochen Xiong
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Timothy Chai
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie Y Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Daiki Karigane
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Allison M Banuelos
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kouta Niizuma
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kensuke Kayamori
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Toshinobu Nishimura
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - M Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte Mason
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Daniel Dan Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Leyla Yilmaz
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lucile Miquerol
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille 13288, France
| | - Matthew H Porteus
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Vincent C Luca
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Division of Hematology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Feng L, Wang Y, Fu Y, Li T, He G. Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Rev Rep 2024; 20:601-616. [PMID: 38170319 DOI: 10.1007/s12015-023-10672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acute liver failure (ALF) results from severe liver damage or end-stage liver disease. It is extremely fatal and causes serious health and economic burdens worldwide. Once ALF occurs, liver transplantation (LT) is the only definitive and recommended treatment; however, LT is limited by the scarcity of liver grafts. Consequently, the clinical use of bioartificial liver (BAL) has been proposed as a treatment strategy for ALF. Human primary hepatocytes are an ideal cell source for these methods. However, their high demand and superior viability prevent their widespread use. Hence, finding alternatives that meet the seed cell quality and quantity requirements is imperative. Stem cells with self-renewing, immunogenic, and differentiative capacities are potential cell sources. MSCs and its secretomes encompass a spectrum of beneficial properties, such as anti-inflammatory, immunomodulatory, anti-ROS (reactive oxygen species), anti-apoptotic, pro-metabolomic, anti-fibrogenesis, and pro-regenerative attributes. This review focused on the recent status and future directions of stem cell-based strategies in BAL for ALF. Additionally, we discussed the opportunities and challenges associated with promoting such strategies for clinical applications.
Collapse
Affiliation(s)
- Lei Feng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China.
| | - Yi Wang
- Shanxi Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yu Fu
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ting Li
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510140, Guangdong, China.
| | - Guolin He
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
39
|
Ortiz-Salazar MA, Camacho-Aguilar E, Warmflash A. Endogenous Nodal switches Wnt interpretation from posteriorization to germ layer differentiation in geometrically constrained human pluripotent cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584912. [PMID: 38559061 PMCID: PMC10979992 DOI: 10.1101/2024.03.13.584912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The Wnt pathway is essential for inducing the primitive streak, the precursor of the mesendoderm, as well as setting anterior-posterior coordinates. How Wnt coordinates these diverse activities remains incompletely understood. Here, we show that in Wnt-treated human pluripotent cells, endogenous Nodal signaling is a crucial switch between posteriorizing and primitive streak-including activities. While treatment with Wnt posteriorizes cells in standard culture, in micropatterned colonies, higher levels of endogenously induced Nodal signaling combine with exogenous Wnt to drive endoderm differentiation. Inhibition of Nodal signaling restores dose-dependent posteriorization by Wnt. In the absence of Nodal inhibition, micropatterned colonies undergo spontaneous, elaborate morphogenesis concomitant with endoderm differentiation even in the absence of added extracellular matrix proteins like Matrigel. Our study shows how Wnt and Nodal combinatorially coordinate germ layer differentiation with AP patterning and establishes a system to study a natural self-organizing morphogenetic event in in vitro culture.
Collapse
Affiliation(s)
| | - Elena Camacho-Aguilar
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Present address: Department of Gene Regulation and Morphogenesis, Andalusian Center for Developmental Biology (CSIC-UPO-JA), Seville, Spain, 41013
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX, USA 77005
- Department of Bioengineering, Rice University, Houston, TX, USA 77005
| |
Collapse
|
40
|
Warin J, Vedrenne N, Tam V, Zhu M, Yin D, Lin X, Guidoux-D’halluin B, Humeau A, Roseiro L, Paillat L, Chédeville C, Chariau C, Riemers F, Templin M, Guicheux J, Tryfonidou MA, Ho JW, David L, Chan D, Camus A. In vitro and in vivo models define a molecular signature reference for human embryonic notochordal cells. iScience 2024; 27:109018. [PMID: 38357665 PMCID: PMC10865399 DOI: 10.1016/j.isci.2024.109018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding the emergence of human notochordal cells (NC) is essential for the development of regenerative approaches. We present a comprehensive investigation into the specification and generation of bona fide NC using a straightforward pluripotent stem cell (PSC)-based system benchmarked with human fetal notochord. By integrating in vitro and in vivo transcriptomic data at single-cell resolution, we establish an extended molecular signature and overcome the limitations associated with studying human notochordal lineage at early developmental stages. We show that TGF-β inhibition enhances the yield and homogeneity of notochordal lineage commitment in vitro. Furthermore, this study characterizes regulators of cell-fate decision and matrisome enriched in the notochordal niche. Importantly, we identify specific cell-surface markers opening avenues for differentiation refinement, NC purification, and functional studies. Altogether, this study provides a human notochord transcriptomic reference that will serve as a resource for notochord identification in human systems, diseased-tissues modeling, and facilitating future biomedical research.
Collapse
Affiliation(s)
- Julie Warin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Nicolas Vedrenne
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
- Inserm, Univ. Limoges, Pharmacology & Transplantation, U1248, CHU Limoges, Service de Pharmacologie, toxicologie et pharmacovigilance, FHU SUPORT, 87000 Limoges, France
| | - Vivian Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mengxia Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danqing Yin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Xinyi Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Bluwen Guidoux-D’halluin
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Antoine Humeau
- Inserm, Univ. Limoges, Pharmacology & Transplantation, U1248, CHU Limoges, Service de Pharmacologie, toxicologie et pharmacovigilance, FHU SUPORT, 87000 Limoges, France
| | - Luce Roseiro
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Lily Paillat
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Claire Chédeville
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Caroline Chariau
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, 44000 Nantes, France
| | - Frank Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Joshua W.K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, 44000 Nantes, France
- Nantes Université, CHU Nantes, Inserm, CR2TI, 44000 Nantes, France
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Anne Camus
- Nantes Université, Oniris, CHU Nantes, Inserm, Regenerative Medicine and Skeleton, RMeS, UMR 1229, 44000 Nantes, France
| |
Collapse
|
41
|
Miao Y, Tan C, Pek NM, Yu Z, Iwasawa K, Kechele DO, Sundaram N, Pastrana-Gomez V, Kishimoto K, Yang MC, Jiang C, Tchieu J, Whitsett JA, McCracken KW, Rottier RJ, Kotton DN, Helmrath MA, Wells JM, Takebe T, Zorn AM, Chen YW, Guo M, Gu M. Deciphering Endothelial and Mesenchymal Organ Specification in Vascularized Lung and Intestinal Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.577460. [PMID: 38370768 PMCID: PMC10871227 DOI: 10.1101/2024.02.06.577460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.g., WNT2B and Semaphorins) or intestine (e.g., GDF15). Upon transplantation under the kidney capsule in mice, these organoids further matured and developed perfusable human-specific sub-epithelial capillaries. Additionally, our model recapitulated the abnormal endothelial-epithelial crosstalk in patients with FOXF1 deletion or mutations. Multilineage organoids provide a unique platform to study developmental cues guiding endothelial and mesenchymal cell fate determination, and investigate intricate cell-cell communications in human organogenesis and disease. Highlights BMP signaling fine-tunes the co-differentiation of mesoderm and endoderm.The cellular composition in multilineage organoids resembles that of human fetal organs.Mesenchyme and endothelium co-developed within the organoids adopt organ-specific characteristics.Multilineage organoids recapitulate abnormal endothelial-epithelial crosstalk in FOXF1-associated disorders.
Collapse
|
42
|
Okubo T, Rivron N, Kabata M, Masaki H, Kishimoto K, Semi K, Nakajima-Koyama M, Kunitomi H, Kaswandy B, Sato H, Nakauchi H, Woltjen K, Saitou M, Sasaki E, Yamamoto T, Takashima Y. Hypoblast from human pluripotent stem cells regulates epiblast development. Nature 2024; 626:357-366. [PMID: 38052228 PMCID: PMC10849967 DOI: 10.1038/s41586-023-06871-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Recently, several studies using cultures of human embryos together with single-cell RNA-seq analyses have revealed differences between humans and mice, necessitating the study of human embryos1-8. Despite the importance of human embryology, ethical and legal restrictions have limited post-implantation-stage studies. Thus, recent efforts have focused on developing in vitro self-organizing models using human stem cells9-17. Here, we report genetic and non-genetic approaches to generate authentic hypoblast cells (naive hPSC-derived hypoblast-like cells (nHyCs))-known to give rise to one of the two extraembryonic tissues essential for embryonic development-from naive human pluripotent stem cells (hPSCs). Our nHyCs spontaneously assemble with naive hPSCs to form a three-dimensional bilaminar structure (bilaminoids) with a pro-amniotic-like cavity. In the presence of additional naive hPSC-derived analogues of the second extraembryonic tissue, the trophectoderm, the efficiency of bilaminoid formation increases from 20% to 40%, and the epiblast within the bilaminoids continues to develop in response to trophectoderm-secreted IL-6. Furthermore, we show that bilaminoids robustly recapitulate the patterning of the anterior-posterior axis and the formation of cells reflecting the pregastrula stage, the emergence of which can be shaped by genetically manipulating the DKK1/OTX2 hypoblast-like domain. We have therefore successfully modelled and identified the mechanisms by which the two extraembryonic tissues efficiently guide the stage-specific growth and progression of the epiblast as it establishes the post-implantation landmarks of human embryogenesis.
Collapse
Affiliation(s)
- Takumi Okubo
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Mio Kabata
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideki Masaki
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Katsunori Semi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - May Nakajima-Koyama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Haruko Kunitomi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Belinda Kaswandy
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hideyuki Sato
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromitsu Nakauchi
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Knut Woltjen
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| | - Yasuhiro Takashima
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
43
|
Matsui S, Granitto M, Buckley M, Ludwig K, Koigi S, Shiley J, Zacharias WJ, Mayhew CN, Lim HW, Iwafuchi M. Pioneer and PRDM transcription factors coordinate bivalent epigenetic states to safeguard cell fate. Mol Cell 2024; 84:476-489.e10. [PMID: 38211589 PMCID: PMC10872272 DOI: 10.1016/j.molcel.2023.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
Pioneer transcription factors (TFs) regulate cell fate by establishing transcriptionally primed and active states. However, cell fate control requires the coordination of both lineage-specific gene activation and repression of alternative-lineage programs, a process that is poorly understood. Here, we demonstrate that the pioneer TF FOXA coordinates with PRDM1 TF to recruit nucleosome remodeling and deacetylation (NuRD) complexes and Polycomb repressive complexes (PRCs), which establish highly occupied, accessible nucleosome conformation with bivalent epigenetic states, thereby preventing precocious and alternative-lineage gene expression during human endoderm differentiation. Similarly, the pioneer TF OCT4 coordinates with PRDM14 to form bivalent enhancers and repress cell differentiation programs in human pluripotent stem cells, suggesting that this may be a common and critical function of pioneer TFs. We propose that pioneer and PRDM TFs coordinate to safeguard cell fate through epigenetic repression mechanisms.
Collapse
Affiliation(s)
- Satoshi Matsui
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Marissa Granitto
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Morgan Buckley
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Katie Ludwig
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sandra Koigi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joseph Shiley
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - William J Zacharias
- Division of Pulmonary Biology and Pulmonary and Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christopher N Mayhew
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
44
|
Lin HC, Makhlouf A, Vazquez Echegaray C, Zawada D, Simões F. Programming human cell fate: overcoming challenges and unlocking potential through technological breakthroughs. Development 2023; 150:dev202300. [PMID: 38078653 PMCID: PMC10753584 DOI: 10.1242/dev.202300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In recent years, there have been notable advancements in the ability to programme human cell identity, enabling us to design and manipulate cell function in a Petri dish. However, current protocols for generating target cell types often lack efficiency and precision, resulting in engineered cells that do not fully replicate the desired identity or functional output. This applies to different methods of cell programming, which face similar challenges that hinder progress and delay the achievement of a more favourable outcome. However, recent technological and analytical breakthroughs have provided us with unprecedented opportunities to advance the way we programme cell fate. The Company of Biologists' 2023 workshop on 'Novel Technologies for Programming Human Cell Fate' brought together experts in human cell fate engineering and experts in single-cell genomics, manipulation and characterisation of cells on a single (sub)cellular level. Here, we summarise the main points that emerged during the workshop's themed discussions. Furthermore, we provide specific examples highlighting the current state of the field as well as its trajectory, offering insights into the potential outcomes resulting from the application of these breakthrough technologies in precisely engineering the identity and function of clinically valuable human cells.
Collapse
Affiliation(s)
- Hsiu-Chuan Lin
- Department of Biosystems Science and Engineering, ETH Zürich, 4057 Basel, Switzerland
| | - Aly Makhlouf
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Camila Vazquez Echegaray
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
| | - Dorota Zawada
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, 81675 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, 80636 Munich, Germany
- Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, 81675 Munich, Germany
| | - Filipa Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7TY, UK
| |
Collapse
|
45
|
Conrad JV, Meyer S, Ramesh PS, Neira JA, Rusteika M, Mamott D, Duffin B, Bautista M, Zhang J, Hiles E, Higgins EM, Steill J, Freeman J, Ni Z, Liu S, Ungrin M, Rancourt D, Clegg DO, Stewart R, Thomson JA, Chu LF. Efficient derivation of transgene-free porcine induced pluripotent stem cells enables in vitro modeling of species-specific developmental timing. Stem Cell Reports 2023; 18:2328-2343. [PMID: 37949072 PMCID: PMC10724057 DOI: 10.1016/j.stemcr.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sus scrofa domesticus (pig) has served as a superb large mammalian model for biomedical studies because of its comparable physiology and organ size to humans. The derivation of transgene-free porcine induced pluripotent stem cells (PiPSCs) will, therefore, benefit the development of porcine-specific models for regenerative biology and its medical applications. In the past, this effort has been hampered by a lack of understanding of the signaling milieu that stabilizes the porcine pluripotent state in vitro. Here, we report that transgene-free PiPSCs can be efficiently derived from porcine fibroblasts by episomal vectors along with microRNA-302/367 using optimized protocols tailored for this species. PiPSCs can be differentiated into derivatives representing the primary germ layers in vitro and can form teratomas in immunocompromised mice. Furthermore, the transgene-free PiPSCs preserve intrinsic species-specific developmental timing in culture, known as developmental allochrony. This is demonstrated by establishing a porcine in vitro segmentation clock model that, for the first time, displays a specific periodicity at ∼3.7 h, a timescale recapitulating in vivo porcine somitogenesis. We conclude that the transgene-free PiPSCs can serve as a powerful tool for modeling development and disease and developing transplantation strategies. We also anticipate that they will provide insights into conserved and unique features on the regulations of mammalian pluripotency and developmental timing mechanisms.
Collapse
Affiliation(s)
- J Vanessa Conrad
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pranav S Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jaime A Neira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Margaret Rusteika
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Daniel Mamott
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bret Duffin
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Monica Bautista
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Emily Hiles
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Eve M Higgins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - John Steill
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jack Freeman
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Zijian Ni
- Department of Statistics, University of Wisconsin, Madison, WI 53706, USA
| | - Shiying Liu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mark Ungrin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Derrick Rancourt
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Dennis O Clegg
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
46
|
Xu T, Su P, Wu L, Li D, Qin W, Li Q, Zhou J, Miao YL. OCT4 regulates WNT/β-catenin signaling and prevents mesoendoderm differentiation by repressing EOMES in porcine pluripotent stem cells. J Cell Physiol 2023; 238:2855-2866. [PMID: 37942811 DOI: 10.1002/jcp.31135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
The regulatory network between signaling pathways and transcription factors (TFs) is crucial for the maintenance of pluripotent stem cells. However, little is known about how the key TF OCT4 coordinates signaling pathways to regulate self-renewal and lineage differentiation of porcine pluripotent stem cells (pPSCs). Here, we explored the function of OCT4 in pPSCs by transcriptome and chromatin accessibility analysis. The TFs motif enrichment analysis revealed that, following OCT4 knockdown, the regions of increased chromatin accessibility were enriched with EOMES, GATA6, and FOXA1, indicating that pPSCs differentiated toward the mesoendoderm (ME) lineage. Besides, pPSCs rapidly differentiated into ME when the WNT/β-catenin inhibitor XAV939 was removed. However, the ME differentiation of pPSCs caused by OCT4 knockdown did not rely on the activation of WNT/β-catenin signaling because the target gene of WNT/β-catenin signaling, AXIN2 was not upregulated after OCT4 knockdown, despite significant upregulation of WLS and some WNT ligands. Importantly, OCT4 is directly bound to the promoter and enhancers of EOMES and repressed its transcription. Overexpression of EOMES was sufficient to induce ME differentiation in the presence of XAV939. These results demonstrate that OCT4 can regulate WNT/β-catenin signaling and prevent ME differentiation of pPSCs by repressing EOMES transcription.
Collapse
Affiliation(s)
- Tian Xu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Peng Su
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Linhui Wu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Delong Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Wei Qin
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Qiao Li
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei, China
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
47
|
Zhu P, Zhang B, Sun R, Wang J, Liu Z, Liu X, Yan M, Cui Y, Sha J, Yuan Y. Derivation of new pluripotent stem cells from human extended pluripotent stem cells with formative features and trophectoderm potential. Cell Prolif 2023; 56:e13480. [PMID: 37052060 PMCID: PMC10623941 DOI: 10.1111/cpr.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Previous studies have demonstrated the existence of intermediate stem cells, which have been successfully obtained from human naive pluripotent stem cells (PSCs) and peri-implantation embryos. However, it is not known whether human extended pluripotent stem cells (hEPSCs) can be directly induced into intermediate stem cells. Moreover, the ability of extra-embryonic lineage differentiation in intermediate stem cells has not been verified. In this issue, we transformed hEPSCs into a kind of novel intermediate pluripotent stem cell resembling embryonic days 8-9 (E8-E9) epiblasts and proved its feature of formative epiblasts. We engineered hEPSCs from primed hPSCs under N2B27-LCDM (N2B27 plus Lif, CHIR, DiH and MiH) conditions. Then, we added Activin A, FGF and XAV939 to modulate signalling pathways related to early humans' embryogenesis. We performed RNA-seq and CUT&Tag analysis to compare with AF9-hPSCs from different pluripotency stages of hPSCs. Trophectoderm (TE), primordial germ cells-like cells (PGCLC) and endoderm, mesoderm, and neural ectoderm induction were conducted by specific small molecules and proteins. AF9-hPSCs transcription resembled that of E8-E9 peri-implantation epiblasts. Signalling pathway responsiveness and histone methylation further revealed their formative pluripotency. Additionally, AF9-hPSCs responded directly to primordial germ cells (PGCs) specification and three germ layer differentiation signals in vitro. Moreover, AF9-hPSCs could differentiate into the TE lineage. Therefore, AF9-hPSCs represented an E8-E9 formative pluripotency state between naïve and primed pluripotency, opening new avenues for studying human pluripotency development during embryogenesis.
Collapse
Affiliation(s)
- Pinmou Zhu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Bohang Zhang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Ruiqi Sun
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jiachen Wang
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Zhaode Liu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Xiaorui Liu
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Min Yan
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Yiqiang Cui
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Jiahao Sha
- State Key Laboratory of Reproductive MedicineWomen's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical UniversityNanjingChina
| | - Yan Yuan
- State Key Laboratory of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
48
|
Irie N, Lee SM, Lorenzi V, Xu H, Chen J, Inoue M, Kobayashi T, Sancho-Serra C, Drousioti E, Dietmann S, Vento-Tormo R, Song CX, Surani MA. DMRT1 regulates human germline commitment. Nat Cell Biol 2023; 25:1439-1452. [PMID: 37709822 PMCID: PMC10567552 DOI: 10.1038/s41556-023-01224-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Germline commitment following primordial germ cell (PGC) specification during early human development establishes an epigenetic programme and competence for gametogenesis. Here we follow the progression of nascent PGC-like cells derived from human embryonic stem cells in vitro. We show that switching from BMP signalling for PGC specification to Activin A and retinoic acid resulted in DMRT1 and CDH5 expression, the indicators of migratory PGCs in vivo. Moreover, the induction of DMRT1 and SOX17 in PGC-like cells promoted epigenetic resetting with striking global enrichment of 5-hydroxymethylcytosine and locus-specific loss of 5-methylcytosine at DMRT1 binding sites and the expression of DAZL representing DNA methylation-sensitive genes, a hallmark of the germline commitment programme. We provide insight into the unique role of DMRT1 in germline development for advances in human germ cell biology and in vitro gametogenesis.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Metabolic Systems Laboratory, Live Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan.
| | - Sun-Min Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Department of Physics, Konkuk University, Seoul, Republic of Korea
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jinfeng Chen
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Masato Inoue
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | | | - Elena Drousioti
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Sabine Dietmann
- Department of Developmental Biology and Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Chun-Xiao Song
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
49
|
Limouse C, Smith OK, Jukam D, Fryer KA, Greenleaf WJ, Straight AF. Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions. Nat Commun 2023; 14:6073. [PMID: 37770513 PMCID: PMC10539311 DOI: 10.1038/s41467-023-41848-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are transcribed throughout the genome and provide regulatory inputs to gene expression through their interaction with chromatin. Yet, the genomic targets and functions of most ncRNAs are unknown. Here we use chromatin-associated RNA sequencing (ChAR-seq) to map the global network of ncRNA interactions with chromatin in human embryonic stem cells and the dynamic changes in interactions during differentiation into definitive endoderm. We uncover general principles governing the organization of the RNA-chromatin interactome, demonstrating that nearly all ncRNAs exclusively interact with genes in close three-dimensional proximity to their locus and provide a model predicting the interactome. We uncover RNAs that interact with many loci across the genome and unveil thousands of unannotated RNAs that dynamically interact with chromatin. By relating the dynamics of the interactome to changes in gene expression, we demonstrate that activation or repression of individual genes is unlikely to be controlled by a single ncRNA.
Collapse
Affiliation(s)
- Charles Limouse
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Owen K Smith
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA
| | - David Jukam
- Department of Biochemistry, Stanford University, Stanford, California, USA
| | - Kelsey A Fryer
- Department of Biochemistry, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | | | - Aaron F Straight
- Department of Biochemistry, Stanford University, Stanford, California, USA.
| |
Collapse
|
50
|
Kearns NA, Lobo M, Genga RMJ, Abramowitz RG, Parsi KM, Min J, Kernfeld EM, Huey JD, Kady J, Hennessy E, Brehm MA, Ziller MJ, Maehr R. Generation and molecular characterization of human pluripotent stem cell-derived pharyngeal foregut endoderm. Dev Cell 2023; 58:1801-1818.e15. [PMID: 37751684 PMCID: PMC10637111 DOI: 10.1016/j.devcel.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Approaches to study human pharyngeal foregut endoderm-a developmental intermediate that is linked to various human syndromes involving pharynx development and organogenesis of tissues such as thymus, parathyroid, and thyroid-have been hampered by scarcity of tissue access and cellular models. We present an efficient stepwise differentiation method to generate human pharyngeal foregut endoderm from pluripotent stem cells. We determine dose and temporal requirements of signaling pathway engagement for optimized differentiation and characterize the differentiation products on cellular and integrated molecular level. We present a computational classification tool, "CellMatch," and transcriptomic classification of differentiation products on an integrated mouse scRNA-seq developmental roadmap confirms cellular maturation. Integrated transcriptomic and chromatin analyses infer differentiation stage-specific gene regulatory networks. Our work provides the method and integrated multiomic resource for the investigation of disease-relevant loci and gene regulatory networks and their role in developmental defects affecting the pharyngeal endoderm and its derivatives.
Collapse
Affiliation(s)
- Nicola A Kearns
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Macrina Lobo
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan M J Genga
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan G Abramowitz
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Krishna M Parsi
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jiang Min
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Eric M Kernfeld
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jack D Huey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jamie Kady
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Erica Hennessy
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Michael J Ziller
- Department of Psychiatry, University of Münster, Münster, Germany
| | - René Maehr
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|