1
|
Yap YT, Pan J, Xu J, Yuan S, Niu C, Zheng C, Li W, Zhou T, Li T, Zhang Y, Holtzman MJ, Pazour GJ, Hess RA, Kelly CV, Touré A, Brody SL, Zhang Z. Role of intraflagellar transport protein IFT140 in the formation and function of motile cilia in mammals. Cell Mol Life Sci 2025; 82:198. [PMID: 40348912 PMCID: PMC12065702 DOI: 10.1007/s00018-025-05710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025]
Abstract
Cilia are microtubular structures extending from the surface of most mammalian cells. They can be categorized as motile cilia and primary sensory cilia. Both types possess intraflagellar transport (IFT) machinery, composed of unique protein complexes that travel along the microtubules to deliver proteins for ciliary and flagellar assembly, disassembly, and homeostasis. Although the role of IFT in primary cilia formation has been well studied, little is known about its role in mammalian motile cilia assembly. We generated conditional knockout mice by breeding floxed Ift140 mice with the FOXJ1-Cre transgenic mouse line to specifically delete Ift140 from cells that assemble motile cilia. Mice with Ift140 deficiency did not have laterality defects or gross; however most died prior to sexual maturity. Those mutants that survived to adulthood were completely infertile. Males demonstrated abnormal spermatogenesis associated with reduced sperm count and motility, together with short length flagella, and abnormal morphology. Cilia length was diminished in the epithelial cells of the efferent ductules and airways. Cilia from cultured tracheal epithelial cells were also short and had reduced beat frequency (CBF). Ultrastructural studies revealed the presence of inner and outer dynein arms, but an abnormal central apparatus, and the accumulation of particles within the cilia. Overall, the short length and abnormal localization of ciliary proteins in Ift140 conditional mutants resulted in inadequate cilia function despite proper localization of the dynein motor complexes. We propose a key role of Ift140 for motile cilia assembly in certain tissues and suggest that genetic alterations of IFT140 could be associated with motile ciliopathies.
Collapse
Affiliation(s)
- Yi Tian Yap
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
| | - Jiehong Pan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jian Xu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shuo Yuan
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Changmin Niu
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- School of Nursing, School of Public Health, Yangzhou University, Yangzhou, Jiangsu, China
| | - Cheng Zheng
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei Li
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
| | - Ting Zhou
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Tao Li
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, 2001S. Lincoln, Urbana, IL, USA
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, USA
| | - Aminata Touré
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institut pour l'Avancée des Biosciences (IAB), Team Physiology and Pathophysiology of Sperm cells, 38000, Grenoble, France
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, 275 E Hancock Street, Detroit, MI, 48201, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Yang Y, McCullough CG, Seninge L, Guo L, Kwon WJ, Zhang Y, Li NY, Gaddam S, Pan C, Zhen H, Torkelson J, Glass IA, Charville GW, Que J, Stuart JM, Ding H, Oro AE. A spatiotemporal and machine-learning platform facilitates the manufacturing of hPSC-derived esophageal mucosa. Dev Cell 2025; 60:1359-1376.e10. [PMID: 39798574 PMCID: PMC12055484 DOI: 10.1016/j.devcel.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2024] [Indexed: 01/15/2025]
Abstract
Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell replacement manufacturing method for ectoderm-derived skin epithelium. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium despite possessing a similar stratified epithelial structure. Here, we employ single-cell and spatial technologies to generate a spatiotemporal multi-omics cell census for human esophageal development. We identify the cellular diversity, dynamics, and signal communications for the developing esophageal epithelium and stroma. Using Manatee, a machine-learning algorithm, we prioritize the combinations of candidate human developmental signals for in vitro derivation of esophageal basal cells. Functional validation of Manatee predictions leads to a clinically compatible system for manufacturing human esophageal mucosa.
Collapse
Affiliation(s)
- Ying Yang
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Carmel Grace McCullough
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Lucas Seninge
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Lihao Guo
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, AZ, USA
| | - Woo-Joo Kwon
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Yongchun Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Nancy Yanzhe Li
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Cory Pan
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Hanson Zhen
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Jessica Torkelson
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA
| | - Ian A Glass
- Birth Defect Research Laboratory Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY, USA
| | - Joshua M Stuart
- Department of Biomolecular Engineering and Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Hongxu Ding
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, AZ, USA.
| | - Anthony E Oro
- Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Guidone D, de Santis M, Pesce E, Capurro V, Pedemonte N, Galietta LJV. The apical mucus layer alters the pharmacological properties of the airway epithelium. J Physiol 2025; 603:2619-2632. [PMID: 40047394 PMCID: PMC12072236 DOI: 10.1113/jp287891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/11/2025] [Indexed: 05/14/2025] Open
Abstract
Electrogenic transepithelial ion transport can be measured with the short-circuit current technique. Such experiments are frequently used to evaluate the activity of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel that is defective in cystic fibrosis, one of the most frequent genetic diseases. Typically, CFTR activity is estimated from the effect of CFTRinh-172, a selective CFTR inhibitor. Unexpectedly, we found that CFTRinh-172, in addition to PPQ-102, another CFTR inhibitor, caused only partial inhibition of CFTR function, particularly in epithelia in pro-inflammatory conditions, which are characterized by abundant mucus secretion. We hypothesized that the mucus layer was responsible for the poor activity of CFTR inhibitors. Therefore, we treated the epithelial surface with the reducing agent dithiothreitol to remove mucus. Removal of mucus, confirmed by immunofluorescence, resulted in highly enhanced sensitivity of CFTR to pharmacological inhibition. Our results show that the mucus layer represents an important barrier whose presence limits the activity of pharmacological agents. This is particularly relevant for CFTR and the evaluation of therapeutic approaches for correction of the basic defect in cystic fibrosis. KEY POINTS: Activity of the cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel can be evaluated by measuring the inhibition elicited by the selective blockers CFTRinh-172 and PPQ-102. In short-circuit current recordings on human airway epithelia, CFTR inhibitors had only a partial effect on cAMP-dependent chloride secretion, suggesting the possible contribution of other ion channels. The mucus layer covering the epithelial surface was removed with the reducing agent dithiothreitol. Treatment of epithelia with dithiothreitol markedly improved the efficacy of CFTR inhibitors. The partial effect of CFTR inhibitors might be explained by the presence of the mucus layer acting as a barrier.
Collapse
Affiliation(s)
| | | | | | | | | | - Luis J. V. Galietta
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesUniversity of Napoli ‘Federico II’NaplesItaly
| |
Collapse
|
4
|
Park S, Yoon YJ, Hong Y, Yu J, Cho JM, Jeong YJ, Yu H, Jeong H, Lee H, Hwang S, Koh WG, Yang JY, Hyun KA, Jung HI, Lim JY. CD9-enriched extracellular vesicles from chemically reprogrammed basal progenitors of salivary glands mitigate salivary gland fibrosis. Bioact Mater 2025; 47:229-247. [PMID: 39925710 PMCID: PMC11803853 DOI: 10.1016/j.bioactmat.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/07/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Extracellular vesicles (EVs) derived from stem cells offer promising potential for cell-free therapy. However, refining their cargo for precise disease targeting and delivery remains challenging. This study employed chemical reprogramming via dual inhibition of transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) to expand salivary gland basal progenitor cells (sgBPCs). CD9-enriched (CD9+) EVs were then isolated from the sgBPC secretome concentrate using a dual microfluidic chip. Notably, CD9+ EVs demonstrated superior uptake by salivary epithelial cells compared to CD9-depleted (CD9-) EVs and total EVs. In vivo studies using a salivary gland (SG) obstruction mouse model and ex vivo studies in SG fibrosis organoids revealed that CD9+ EVs significantly enhanced anti-fibrotic effects over CD9- EVs and control treatments. The presence of miR-3162 and miR-1290 in CD9+ EVs supported their anti-fibrotic properties by downregulating ACVR1 expression. The chemical reprogramming culture method effectively expanded sgBPCs, enabling consistent and scalable EV production. Utilizing microfluidic chip-isolated CD9+ EVs and ductal delivery presents a targeted and efficient approach for anti-fibrotic SG regeneration.
Collapse
Affiliation(s)
- Sunyoung Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yongpyo Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jianning Yu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- Department of Biomedical Laboratory Science, Yonsei University, 1 Yeonsedae-gil, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Jae-Min Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ye Jin Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Haeun Yu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyorim Jeong
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyunjin Lee
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Seungyeon Hwang
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Ji Yeong Yang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Kyung-A Hyun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- Korea Electronics Technology Institute (KETI), Seongnam, Gyeonggi-do, 13509, Republic of Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
- The DABOM Inc., 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Xu S, Zhu T, Mou H, Tan S, Leong JM. Weakened Airway Epithelial Junctions and Enhanced Neutrophil Elastase Release Contribute to Age-Dependent Bacteremia Risk Following Pneumococcal Pneumonia. Aging Cell 2025; 24:e14474. [PMID: 39778043 PMCID: PMC12074028 DOI: 10.1111/acel.14474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Streptococcus pneumoniae (Sp; pneumococcus), the most common agent of community-acquired pneumonia, can spread systemically, particularly in the elderly, highlighting the need for adjunctive therapies. The airway epithelial barrier defends against bacteremia and is dependent upon apical junctional complex (AJC) proteins such as E-cadherin. After mouse lung challenge, pneumolysin (PLY), a key Sp virulence factor, stimulates epithelial secretion of an inflammatory eicosanoid, triggering the infiltration of polymorphonuclear leukocytes (PMNs) that secrete high levels of neutrophil elastase (NE), thus promoting epithelial damage and systemic infection. Here, pulmonary E-cadherin staining of intratracheally (i.t.) inoculated mice revealed PLY-mediated disruption of AJC independently of PMNs. Apical infection of air-liquid interface (ALI) respiratory epithelial monolayers similarly showed that PLY disrupts AJCs. This epithelial damage promoted PMN transmigration and bacterial apical-to-basolateral translocation, and pharmacologically fortifying epithelial barrier function diminished both barrier breach in vitro and bacteremia in vivo. E-cadherin staining after Sp i.t. inoculation of > 20-month-old mice, or apical infection of ALI monolayers derived from these mice, revealed an age-associated vulnerability to PLY-mediated AJC disruption, which in turn enhanced PMN migration and bacteremia. In addition, we found that PMNs from aged mice secrete increased levels of tissue-damaging NE. Simultaneous pharmacological inhibition of tissue-destructive NE and fortification of pulmonary epithelial barrier function was required to reduce the level of Sp bacteremia in aged mice to that of young mice. This work underscores the importance of fully characterizing the multifactorial sources of age-associated susceptibility in devising adjunctive therapies to mitigate invasive pneumococcal disease in the elderly.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonMAUSA
- Graduate Program in ImmunologyTufts Graduate School of Biomedical SciencesBostonMAUSA
| | - Tianmou Zhu
- Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonMAUSA
- Graduate Program in ImmunologyTufts Graduate School of Biomedical SciencesBostonMAUSA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research CenterMassachusetts General HospitalBostonMAUSA
| | - Shumin Tan
- Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonMAUSA
| | - John M. Leong
- Department of Molecular Biology and MicrobiologyTufts University School of MedicineBostonMAUSA
- Stuart B Levy Center for the Integrated Management of Antimicrobial ResistanceTufts UniversityBostonMAUSA
| |
Collapse
|
6
|
Jeong YJ, Hong Y, Yoon YJ, Sim NS, Hong SM, Lim JY. Chemical reprogramming culture for the expansion of salivary gland epithelial basal progenitor cells. Stem Cell Res Ther 2025; 16:187. [PMID: 40251601 PMCID: PMC12008940 DOI: 10.1186/s13287-025-04295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/25/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Salivary gland (SG) hypofunction presents a significant clinical challenge with limited treatment options. SG epithelial cells offer a promising approach due to their intrinsic tissue specificity and regenerative potential. However, the lack of efficient culture methods has hindered their clinical use. METHODS This study presents a chemical reprogramming culture (CRC) system that utilizes a combination of three small molecules for the long-term two-dimensional culture of human SG epithelial progenitor cells. We characterized the cultured cells, measured their organoid-forming efficiencies, and assessed their differentiation potential. To evaluate the therapeutic efficacy of the SG basal progenitor cells (SG-BPCs), we administered them into a mouse model with radiation-induced SG hypofunction and assessed the functional recovery. RESULTS By utilizing optimal concentrations of the small molecules Y-27632, A83-01, and LDN193189, the SG epithelial cells achieved over 50 population doubling levels (PD) within 80 d, surpassing the Hayflick limit. β-galactosidase and Terminal deoxynucleotidyl transferase dUTP nick end labeling staining confirmed that these small molecules inhibited cellular senescence and apoptosis, respectively. The cells expressed SG basal ductal cell markers KRT5, KRT19, and SOX9, with increased expression levels observed from PD5 to PD40. Notably, these expanded cells were able to differentiate into various SG cell types, including acinar and myoepithelial cells, indicating that SG-basal progenitor cells (SG-BPCs) were selectively proliferated using our CRC method. To assess the therapeutic potential of the expanded SG-BPCs, they were administered to mice with radiation-induced SG hypofunction. The treatment successfully restored SG function. CONCLUSION Our findings demonstrate that our CRC system is an effective method for the long-term culture of SG-BPCs. This advancement holds significant promise for the development of SG epithelial progenitor-based therapies to treat SG hypofunction.
Collapse
Affiliation(s)
- Ye Jin Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yongpyo Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Min Hong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
7
|
Inoko A, Soga N, Suzuki M, Kiyono T, Ikenouchi J, Kojima T, Sato Y, Saito D, Miyamoto T, Goshima N, Ito H, Kasai K. Long-term expansion of basal cells and the novel differentiation methods identify mechanisms for switching Claudin expression in normal epithelia. Sci Rep 2025; 15:12172. [PMID: 40204777 PMCID: PMC11982363 DOI: 10.1038/s41598-025-95463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Epithelia are tightly connected cellular sheets, that shield our body from the external environment. They are continuously maintained by a pooled population of undifferentiated cells through differentiation. However, the maintenance mechanisms remain incompletely understood due to the difficulty of experimentally observing the differentiation process. To address this issue, we developed a culture method for long-term expansion of primary mammary basal cells with a set of compounds, that includes undifferentiated cells. An effective differentiation method regarding Claudin expression was also developed by simply removing compounds. To verify this differentiation-switching technique, we obtained microarray data comparing each differentiation state. Subsequent cellular analysis confirmed key transcription factors in each state: (1) EGR1 in undifferentiated basal cells is important for suppressing Claudin expression through maintaining the epithelial-mesenchymal transition (EMT) transcription factor TWIST1, (2) ELF3 in differentiated cells is important for actin organization and subsequent Claudin localization at the cell-cell border, that corresponds to the amount of GRHL3, an actin organizer. Their relevance was also observed in tissues and organoids. In summary, we present an effective tool for verifying molecular mechanisms that determine Claudin status in normal basal cell differentiation, that would be beneficial in epithelial cell biology, cancer biology, physiology, and regeneration research.
Collapse
Affiliation(s)
- Akihito Inoko
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan.
| | - Norihito Soga
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Urology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Minako Suzuki
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Kojima
- Department of Urology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Daisuke Saito
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hideaki Ito
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kenji Kasai
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
8
|
Tabasi M, Chen N, Sajjan U. Role of Homeobox A1 in Airway Epithelial Generation from Human Airway Basal Cells. Cells 2025; 14:549. [PMID: 40214503 PMCID: PMC11989199 DOI: 10.3390/cells14070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/04/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Airway basal cells from chronic obstructive pulmonary disease patients show a reduction in HOXA1 expression and generate an abnormal airway epithelium. Because the specific role of HOXA1 in airway basal cells is not known, we investigated the contribution of HOXA1 in the generation of the airway epithelium, which depends on basal cell proliferation, polarization, and differentiation. Airway stem cells were transduced with an inducible HOXA1 shRNA lentivector to knock down HOXA1 in either proliferating cells or100% confluent cells. The bronchial epithelium expresses HOXA1 near the basement membrane, likely representing basal cells. HOXA1 knockdown in proliferating basal cells attenuated cell proliferation. HOXA1 knockdown in confluent monolayers of basal cells generated an abnormal airway epithelium characterized by goblet cell hyperplasia and an inflammatory phenotype. Compared to the control, HOXA1 knockdown cells showed a decrease in transepithelial resistance, localization of occludin and E-cadherin to the intercellular junctions, reduced expression of occludin but not E-cadherin, and increased expression of TNF-α. Blocking TNF-α increased the expression of occludin in HOXA1 K/D cells. Based on these results, we conclude that HOXA1 plays an important role in cell proliferation, polarization, and differentiation, which are essential steps in airway epithelial generation. Additionally, HOXA1 may regulate occludin expression by inhibiting TNF-α expression.
Collapse
Affiliation(s)
- Mohsen Tabasi
- Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA; (M.T.); (N.C.)
- Department of Microbiology, Immunology and Inflammation, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA
| | - Nathaniel Chen
- Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA; (M.T.); (N.C.)
| | - Umadevi Sajjan
- Center for Inflammation and Lung Research, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA; (M.T.); (N.C.)
- Department of Microbiology, Immunology and Inflammation, Lewis-Katz Medical School, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University Health System, Philadelphia, PA 19140, USA
| |
Collapse
|
9
|
Murthy S, Seabold DA, Gautam LK, Caceres AM, Sease R, Calvert BA, Busch SM, Neely A, Marconett CN, Ryan AL. Culture conditions differentially regulate the inflammatory niche and cellular phenotype of tracheobronchial basal stem cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L538-L553. [PMID: 39982813 DOI: 10.1152/ajplung.00293.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Bronchial epithelial cells derived from the tracheobronchial regions of human airways (HBECs) provide a valuable in vitro model for studying pathological mechanisms and evaluating therapeutics. This cell population comprises a mixed population of basal cells (BCs), the predominant stem cell in airways capable of both self-renewal and functional differentiation. Despite their potential for regenerative medicine, BCs exhibit significant phenotypic variability in culture. To investigate how culture conditions influence BC phenotype and function, we expanded three independent BC isolates in three media: airway epithelial cell growth medium (AECGM), dual-SMAD inhibitor (DSI)-enriched AECGM, and PneumaCult Ex plus (PEx+). Analysis through RNA sequencing, immune assays, and impedance measurements revealed that PEx+ media significantly drove cell proliferation and a broad proinflammatory phenotype in BCs. In contrast, BCs expanded in AECGM and displayed increased expression of structural and extracellular matrix components at higher passage. AECGM increased expression of some cytokines at high passage, whereas DSI suppressed inflammation implicating the involvement TGF-β in BC inflammatory processes. Differentiation capacity of BCs declined with time in culture irrespective of expansion media. This was associated with an increase in PLUNC expressing secretory cells in AECGM and PEx+ media consistent with the known immune modulatory role of PLUNC in the airways. These findings highlight the profound impact of media conditions on inflammatory niche established by, and function of, in vitro expanded BCs. The broad proinflammatory phenotype driven by PEx+ media, in particular, should be considered in the development of cell-based models for airway diseases and therapeutic applications.NEW & NOTEWORTHY Airway basal cells, vital for airway regeneration and potential therapies, show significant changes based on culture conditions. Our study reveals that media composition and culture duration greatly affect basal cell properties with profound changes in the proinflammatory phenotype and extracellular matrix deposition driven by changes in growth conditions. These results underscore the critical impact of culture conditions on BC phenotype, influencing cell-based models for airway disease research and therapy.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Denise A Seabold
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Rosemary Sease
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, United States
| | - Ben A Calvert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
| | - Shana M Busch
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
| | - Aaron Neely
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States
| | - Crystal N Marconett
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, United States
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, California, United States
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Medicine, Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, California, United States
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
10
|
Walentek P. Mucociliary cell type compositions - bridging the gap between genes and emergent tissue functions. Cells Dev 2025:204019. [PMID: 40058594 DOI: 10.1016/j.cdev.2025.204019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
When multiple cell types are brought together to form a tissue-specific collective, the combination of cell functions and cell-cell interactions leads to novel behaviors and properties beyond the simple addition of individual features, often referred to as emergent tissue functions. During evolution, functional adaptations in organs are significantly influenced by changes in cell type compositions, and in diseases, aberrations in cell type compositions result in impaired organ functions. Investigating the mechanisms that regulate cell type compositions could elucidate an important organizational meta-level that bridges gene functions and cellular features de facto facilitating the emergence of collective cell behaviors and novel tissue functions. Due to their unique evolutionary positioning and diverse functions, mucociliary epithelia could provide an optimal system to unravel principle mechanisms of adaptations in cell type compositions that facilitate the evolution of new or optimization of existing tissue functions, and could reveal novel entry points to counteract human diseases. An integrative investigation of signaling, transcriptional, epigenetic and morphogenetic mechanisms across a broad range of mucociliary tissues with different specialized cells and cell type compositions can help us to connect gene functions and contributions to self-organized behaviors in cell collectives determining emergent tissue functions. Taking such route moving forward has the potential to unravel novel principles in mucociliary self-organization and to reveal broadly applicable principles underlying the generation and modification of emergent tissue functions across species and organ systems.
Collapse
Affiliation(s)
- Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany.
| |
Collapse
|
11
|
Carrozzo I, Maule G, Gentile C, Umbach A, Ciciani M, Guidone D, De Santis M, Petris G, Vicente Galietta LJ, Arosio D, Cereseto A. Functional rescue of F508del-CFTR through revertant mutations introduced by CRISPR base editing. Mol Ther 2025; 33:970-985. [PMID: 39797401 PMCID: PMC11897810 DOI: 10.1016/j.ymthe.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF, affecting approximately 80% of persons with CF (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms, there is no definitive cure. Here, we leveraged revertant mutations (RMs) in cis with F508del to rescue CFTR protein folding and restore its function. We developed CRISPR base editing strategies to efficiently and precisely introduce the desired mutations in the F508del locus. Both editing and CFTR function recovery were verified in CF cellular models, including primary epithelial cells derived from pwCFs. The efficacy of the CFTR recovery strategy was validated in cultures of pseudostratified epithelia from pwCF cells showing full recovery of ion transport. Additionally, we observed an additive effect by combining our strategy with small molecules that enhance F508del activity, thus paving the way to combinatorial therapies.
Collapse
Affiliation(s)
- Irene Carrozzo
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Giulia Maule
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Carmelo Gentile
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Alessandro Umbach
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Matteo Ciciani
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | | | - Gianluca Petris
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Luis Juan Vicente Galietta
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Department of Translational Medical Sciences, University of Napoli "Federico II", 80138 Napoli, Italy
| | - Daniele Arosio
- Institute of Biophysics, CNR, Via alla Cascata 56/C, 38123 Trento, Italy.
| | - Anna Cereseto
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy.
| |
Collapse
|
12
|
Ma L, Thapa BR, Le Suer JA, Tilston-Lünel A, Herriges MJ, Wang F, Bawa PS, Varelas X, Hawkins FJ, Kotton DN. Life-long functional regeneration of in vivo airway epithelium by the engraftment of airway basal stem cells. Nat Protoc 2025; 20:810-842. [PMID: 39501108 DOI: 10.1038/s41596-024-01067-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/30/2024] [Indexed: 12/11/2024]
Abstract
Durable and functional regeneration of the airway epithelium in vivo with transplanted stem cells has the potential to reconstitute healthy tissue in diseased airways, such as in cystic fibrosis or primary ciliary dyskinesia. Here, we present detailed protocols for the preparation and culture expansion of murine primary and induced pluripotent stem cell-derived airway basal stem cells (iBCs) and methods for their intra-airway transplantation into polidocanol-conditioned murine recipients to achieve durable in vivo airway regeneration. Reconstitution of the airway tissue resident epithelial stem cell compartment of immunocompetent mice with syngeneic donor cells leverages the extensive self-renewal and multipotent differentiation properties of basal stem cells (BCs) to durably generate a broad diversity of mature airway epithelial lineages in vivo. Engrafted donor-derived cells re-establish planar cell polarity as well as functional ciliary transport. By using this same approach, human primary BCs or iBCs transplanted into NOD-SCID gamma recipient mice similarly display engraftment and multilineage airway epithelial differentiation in vivo. The time to generate mouse or human iBCs takes ~60 d, which can be reduced to ~20 d if previously differentiated cells are thawed from cryopreserved iBC archives. The tracheal conditioning regimen and cell transplantation procedure is completed in 1 d. A competent graduate student or postdoctoral trainee should be able to perform the procedures listed in this protocol.
Collapse
Grants
- R21 HD094012 NICHD NIH HHS
- R21HD094012 U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- P01HL170952 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HAWKIN20XX2 Cystic Fibrosis Foundation (CF Foundation)
- U01HL134766 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL139799 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL095993 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139799 NHLBI NIH HHS
- R01HL124392 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL124392 NHLBI NIH HHS
- NO1: 75N92020C00005 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- PCTC Jumpstart Award U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01HL148692 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Jake A Le Suer
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lünel
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Pushpinder S Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
| | - Xaralabos Varelas
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Boston University School of Medicine, Boston, MA, USA
| | - Finn J Hawkins
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, USA.
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
13
|
Zhou X, Xu L, Tan Y, Wang W, Huang X, Li G. Stiffness Regulates the Morphology and Stemness of Limbal Niche Cells Through Unique nYAP/cYAP Translocation. Invest Ophthalmol Vis Sci 2025; 66:43. [PMID: 39951297 PMCID: PMC11824500 DOI: 10.1167/iovs.66.2.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/23/2025] [Indexed: 02/19/2025] Open
Abstract
Purpose To investigate the effect of matrix stiffness on the morphology and stem characters of maintenance and differentiation of limbal niche cells (LNCs) and the mechanisms involved. Methods Human LNCs were isolated, cultured, and identified based on published literature, and LNCs from passages 4 to 6 (P4-P6) were used in this study. They were coated with hydrogels of different concentrations to prepare matrices with different stiffnesses, and non-coated plate were used for the control group. Elastic modulus values were determined by atomic force microscopy (AFM). The expression of putative stem cell markers (SOX2, OCT4, PAX6) and fibrosis markers (α-SMA, COL1A1, S100A4) was analyzed by immunofluorescence and quantitative reverse-transcription PCR (RT-qPCR). The intracellular distribution and expression of Yes-associated protein (YAP) and drosophila mothers against decapentaplegic protein family members 2 and 3 (SMAD2/3) accordingly were analyzed using immunofluorescence and western blot. Results The elastic modulus values of plastic, low-concentration hydrogel-coated surfaces, and high-concentration hydrogel-coated surfaces were 3261.05 ± 172.78 MPa, 30.39 ± 5.84 kPa, and 6.99 ± 4.04 kPa, respectively; thus, they were referred to as the dish, stiff, and soft groups. Using an in vitro model to explore the effect of matrix stiffness on LNCs, we found that a soft substrate could activate YAP to change the morphology and elevate the stemness of LNCs, whereas activation of SMAD2/3 on a stiff substrate decreased nuclear YAP (nYAP) levels, leading to myofibroblast phenotype. Inhibition of SMAD2/3 on stiff substrates partially restored LNC stemness by promoting YAP nuclear translocation. Conclusions Our findings confirm that matrix stiffness regulates the stemness and differentiation of LNCs through the YAP/SMAD signaling pathway, indicating a potential strategy for the treatment of limbal stem cell deficiency based on LNCs.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Yongyao Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Wei Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Xiaoyu Huang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Otolaryngologic and Ophthalmic Diseases, Wuhan, China
| |
Collapse
|
14
|
Liu X, Wang X, Wu X, Zhan S, Yang Y, Jiang C. Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy. Stem Cell Res Ther 2025; 16:29. [PMID: 39876014 PMCID: PMC11776311 DOI: 10.1186/s13287-025-04152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions. Recently, airway basal stem cells (BSCs) have emerged as a novel therapeutic strategy in pulmonary regenerative medicine because of their substantial potential in repairing lung structure and function. Airway BSCs, which are strongly capable of self-renewal and multi-lineage differentiation, can effectively attenuate airway epithelial injury caused by environmental factors or genetic disorders, such as cystic fibrosis. This review comprehensively explores the efficacy and action mechanisms of airway BSCs across various lung disease models and describes potential strategies for inducing pluripotent stem cells to differentiate into pulmonary epithelial lineages on the basis of the original research findings. Additionally, the review also discusses the technical and biological challenges in translating these research findings into clinical applications and offers prospective views on future research directions, therefore broadening the landscape of pulmonary regenerative medicine.
Collapse
Affiliation(s)
- Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Wang
- Department of Emergency, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Wu
- Department of Pulmonary and Critical Care Medicine, Bazhong Enyang District People's Hospital, Bazhong, China
| | - Shuhua Zhan
- Department of Pulmonary and Critical Care Medicine, Aba Tibetan and Qiang Autonomous Prefecture People's Hospital, Maerkang, China
| | - Yan Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Caiyu Jiang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Li Y, He Y, Zheng Q, Zhang J, Pan X, Zhang X, Yuan H, Wang G, Liu X, Zhou X, Zhu X, Ren T, Sui P. Mitochondrial pyruvate carriers control airway basal progenitor cell function through glycolytic-epigenetic reprogramming. Cell Stem Cell 2025; 32:105-120.e6. [PMID: 39426380 DOI: 10.1016/j.stem.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/14/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024]
Abstract
Basal cells (BCs) are the progenitor cells responsible for tracheal epithelium integrity. Here, we demonstrate that mitochondrial pyruvate carriers (MPCs) act as metabolic checkpoints that are essential for BC fate decision. Inhibition of MPCs enables long-term expansion of BCs from both mice and humans. Genetic inactivation of Mpc2 in mice leads to BC hyperplasia and reduced ciliated cells during homeostasis, as well as delayed epithelial regeneration and accumulation of intermediate cells following injury. Mechanistically, MPC2 links glycolysis to ATP citrate lyase (ACLY)-dependent cytosolic acetyl-coenzyme A (CoA) generation, which is required for the epigenetic control of differentiation-related gene transcription. Modulating this metabolic-epigenetic axis partially rescues Yes-associated protein (YAP)-dysfunction-induced changes in BCs. Importantly, exogenous citrate promotes the differentiation of BCs from chronic obstructive lung disease (COPD) patients. Thus, beyond demonstrating the role of pyruvate metabolism in BC fate decision, our study suggests that targeting pyruvate-citrate metabolism may serve as a potential strategy to rectify abnormal BC behavior in lung diseases.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yalin He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Zheng
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jiazhu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinwen Pan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangchuan Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xin Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Zhou
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Xueliang Zhu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Ren
- Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Pengfei Sui
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
16
|
Hermo L, Oliveira R, Dufresne J, Gregory M, Cyr DG. Basal and Immune Cells of the Epididymis: An Electron Microscopy View of Their Association. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:67-87. [PMID: 40301253 DOI: 10.1007/978-3-031-82990-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The epididymis is a highly coiled duct divided into the initial segment, caput, corpus, and cauda regions. It is a pseudostratified epithelium consisting of principal, narrow, apical, basal, and clear cells. Circulating halo cells, identified as nonepithelial cells, monocytes/macrophages (M/M) and T-lymphocytes, in addition to dendritic cells and a resident population of M/M cells, also inhabit the epididymal epithelium. Using electron microscopy (EM), we characterized the ultrastructural features of each of these different cell types. Basal cells with stem cell characteristics suggest a role in sustaining the epithelium following injury and inflammation, as well as maintaining the steady state of the epithelium. Interestingly, a close morphological affiliation was noted between circulating M/M cells with basal cells and an intraepithelial resident M/M population of cells, as well as between T-lymphocytes and dendritic cells. The association of all these cell types with one another suggests complex interactions enabling the coordination of their functions related to maturation, protection, survival of sperm, and renewal of the epithelium.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Daniel G Cyr
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
| |
Collapse
|
17
|
Lindsay ME, Scimone ER, Lawton J, Richa R, Yonker LM, Di YP, Buch K, Ouyang W, Mo X, Lin AE, Mou H. Gain-of-function variants in SMAD4 compromise respiratory epithelial function. J Allergy Clin Immunol 2025; 155:107-119.e2. [PMID: 39243984 DOI: 10.1016/j.jaci.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Myhre syndrome is an exceedingly rare yet increasingly diagnosed genetic disorder arising from germline variants in the SMAD4 gene. Its core manifestation is the progression of stiffness and fibrosis across multiple organs. Individuals with Myhre syndrome exhibit a propensity for upper respiratory tract remodeling and infections. The molecular and cellular mechanisms underlying this phenotype remain unclear. OBJECTIVE We sought to investigate how SMAD4 pathogenic variants associated with Myhre syndrome affect SMAD4 protein levels, activation, and physiological functions in patient-derived nasal epithelial cells. METHODS Clinical observations were conducted on a cohort of 47 patients recruited at Massachusetts General Hospital from 2016 to 2023. Nasal epithelial basal cells were isolated and cultured from inferior turbinate brushings of healthy subjects (n = 8) and patients with Myhre syndrome (n = 3; SMAD4-Ile500Val, Arg496Cys, and Ile500Thr). Transcriptomic analysis and functional assays were performed to assess SMAD4 levels, transcriptional activity, and epithelial cell host defense functions, including cell proliferation, mucociliary differentiation, and bacterial elimination. RESULTS Clinical observations revealed a prevalent history of otitis media and sinusitis among most individuals with Myhre syndrome. Analyses of nasal epithelial cells indicated that SMAD4 mutations do not alter SMAD4 protein stability or upstream regulatory SMAD phosphorylation but enhance signaling transcriptional activity, supporting a gain-of-function mechanism, likely attributable to increased protein-protein interaction of the SMAD complex. Consequently, Myhre syndrome nasal basal cells exhibit reduced potential in cell proliferation and mucociliary differentiation. Furthermore, Myhre syndrome nasal epithelia are impaired in bacterial killing. CONCLUSIONS Compromised innate immunity originating from epithelial cells in Myhre syndrome may contribute to increased susceptibility to upper respiratory tract infections.
Collapse
Affiliation(s)
- Mark E Lindsay
- Cardiovascular Genetics Program, Massachusetts General Hospital, Boston, Mass; Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Eleanor R Scimone
- Medical Genetics, Department of Pediatrics, Mass General for Children, Boston, Mass
| | - Joseph Lawton
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Rashmi Richa
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass
| | - Yuanpu P Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pa
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, Mass
| | - Wukun Ouyang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Ga
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Ga
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, Mass General for Children, Boston, Mass
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Mass.
| |
Collapse
|
18
|
Pinto F, Suzuki D, Senoo M. Long-Term Expansion of Mouse Primary Epidermal Keratinocytes Using a TGF-β Signaling Inhibitor. Methods Mol Biol 2025; 2922:49-62. [PMID: 40208526 DOI: 10.1007/978-1-0716-4510-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Mouse models have been used to study the physiology and pathogenesis of the skin. However, propagation of mouse primary epidermal keratinocytes remains challenging. In this chapter, we introduce a newly developed protocol that enables long-term expansion of p63+ mouse epidermal keratinocytes in low Ca2+ media without the need of progenitor cell-purification steps or support by a feeder cell layer. Pharmacological inhibition of TGF-β signaling in crude preparations of mouse epidermis robustly increases proliferative capacity of p63+ epidermal progenitor cells, while preserving their ability to differentiate. Suppression of TGF-β signaling also permits p63+ epidermal keratinocytes to form macroscopically large clones in 3 T3-J2 feeder cell co-culture. This simple and efficient approach will facilitate the use of mouse models by providing p63+ primary epidermal keratinocytes in quantity.
Collapse
Affiliation(s)
| | - Daisuke Suzuki
- Department of Physiology and Biochemistry, Faculty of Nutrition, Kobe Gakuin University, Kobe, Japan
| | - Makoto Senoo
- FRACORA Co. Ltd., Shinjuku-ku, Tokyo, Japan
- BIRTH Co. Ltd., Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
19
|
Cyr DG, Gregory M, Hermo L, Dufresne J. Molecular Pathways Implicated in the Differentiation and Function of Epididymal Basal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:89-113. [PMID: 40301254 DOI: 10.1007/978-3-031-82990-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The postnatal development of the epididymis is a complex and poorly understood process. Our recent studies have shown that undifferentiated primitive small columnar cells are stem cells and can differentiate in vitro into basal and principal cells. This process represents a key aspect of early epididymal development. As such, the genes and signaling pathways implicated in the differentiation of stem cells are critical. In the rat, epididymal development has been subdivided into three phases consisting of an undifferentiated epithelium (birth to day 14), differentiation (days 14 to 44), and expansion (day 45 to adult). During this period, changes in gene expression in the epididymis are the most significant, as almost 1500 genes are differentially expressed between epididymides of 7 and 18 days of age. In the adult rat, basal cells appear to represent a quiescent adult stem cell population that can be cultured under 3D conditions and can differentiate into principal cells. Gene expression in basal cells of adults compared with epididymides from day 7 rats reveals approximately 400 genes that are common to both. Analyses of these genes predict multiple signaling pathways and master regulator genes. Their roles in early epididymal development suggest that the process is complex and involves multiple regulators, cell surface factors, signaling pathways, and hormones that are interconnected and which promote the differentiation of epididymal basal cells into other epididymal cell types.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Québec, QC, Canada.
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| |
Collapse
|
20
|
Rotti PG, Yi Y, Gasser G, Yuan F, Sun X, Apak-Evans I, Wu P, Liu G, Choi S, Reeves R, Scioneaux AE, Zhang Y, Winter M, Liang B, Cunicelli N, Uc A, Norris AW, Sussel L, Wells KL, Engelhardt JF. CFTR represses a PDX1 axis to govern pancreatic ductal cell fate. iScience 2024; 27:111393. [PMID: 39687022 PMCID: PMC11647141 DOI: 10.1016/j.isci.2024.111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation, acinar atrophy, and ductal hyperplasia drive pancreatic remodeling in newborn cystic fibrosis (CF) ferrets lacking a functional cystic fibrosis conductance regulator (CFTR) channel. These changes are associated with a transient phase of glucose intolerance that involves islet destruction and subsequent regeneration near hyperplastic ducts. The phenotypic changes in CF ductal epithelium and their impact on islet function are unknown. Using bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and assay for transposase-accessible chromatin using sequencing (ATAC-seq) on CF ferret models, we demonstrate that ductal CFTR protein constrains PDX1 expression by maintaining PTEN and GSK3β activation. In the absence of CFTR protein, centroacinar cells adopted a bipotent progenitor-like state associated with enhanced WNT/β-Catenin, transforming growth factor β (TGF-β), and AKT signaling. We show that the level of CFTR protein, not its channel function, regulates PDX1 expression. Thus, this study has discovered a cell-autonomous CFTR-dependent mechanism by which CFTR mutations that produced little to no protein could impact pancreatic exocrine/endocrine remodeling in people with CF.
Collapse
Affiliation(s)
| | - Yaling Yi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Grace Gasser
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xingshen Sun
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Idil Apak-Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peipei Wu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Guangming Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Soon Choi
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rosie Reeves
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Attilina E. Scioneaux
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Yulong Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael Winter
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bo Liang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nathan Cunicelli
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aliye Uc
- Stead Family Department of Pediatrics, Carver College of Medicine, Iowa City, IA, USA
| | - Andrew W. Norris
- Center for Gene Therapy, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lori Sussel
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - Kristen L. Wells
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz, Medical Campus, Aurora, CO, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
21
|
Ishibashi S, Inoko A, Oka Y, Leproux P, Kano H. Coherent Raman microscopy visualizes ongoing cellular senescence through amide I peak shifts originating from β sheets in disordered nucleolar proteins. Sci Rep 2024; 14:27584. [PMID: 39528609 PMCID: PMC11555345 DOI: 10.1038/s41598-024-78899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Cellular senescence occurs through the accumulation of many kinds of stresses. Senescent cells in tissues also cause various age-related disorders. Therefore, detecting them without labeling is beneficial for medical research and developing diagnostic methods. However, existing biomarkers have limitations of requiring fixation and labeling, or their molecular backgrounds are uncertain. Coherent anti-Stokes Raman scattering (CARS) spectroscopic imaging is a novel option because it can assess and visualize molecular structures based on their molecular fingerprint. Here, we present a new label-free method to visualize cellular senescence using CARS imaging in nucleoli. We found the peak of the nucleolar amide I band shifted to a higher wavenumber in binuclear senescent cells, which reflects changes in the protein secondary structure from predominant α-helices to β-sheets originating from amyloid-like aggregates. Following this, we developed a procedure that can visualize the senescent cells by providing the ratios and subtractions of these two components. We also confirmed that the procedure can visualize nucleolar aggregates due to unfolded/misfolded proteins produced by proteasome inhibition. Finally, we found that this method can help visualize the nucleolar defects in naïve cells even before binucleation. Thus, our method is beneficial to evaluate ongoing cellular senescence through label-free imaging of nucleolar defects.
Collapse
Affiliation(s)
- Shigeo Ishibashi
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Akihito Inoko
- Department of Pathology, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Yuki Oka
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Philippe Leproux
- Institut de Recherche XLIM, UMR CNRS No. 7252, 123 avenue Albert Thomas, 87060, Limoges CEDEX, France
| | - Hideaki Kano
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
- Department of Chemistry, Faculty of Science, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
22
|
Zhao C, Bai Y, Wang W, Amonkar GM, Mou H, Olejnik J, Hume AJ, Mühlberger E, Lukacs NW, Fearns R, Lerou PH, Ai X. Activation of STAT3-mediated ciliated cell survival protects against severe infection by respiratory syncytial virus. J Clin Invest 2024; 134:e183978. [PMID: 39484716 PMCID: PMC11527452 DOI: 10.1172/jci183978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/15/2024] [Indexed: 11/03/2024] Open
Abstract
Respiratory syncytial virus (RSV) selectively targets ciliated cells in human bronchial epithelium and can cause bronchiolitis and pneumonia, mostly in infants. To identify molecular targets of intervention during RSV infection in infants, we investigated how age regulates RSV interaction with the bronchial epithelium barrier. Employing precision-cut lung slices and air-liquid interface cultures generated from infant and adult human donors, we found robust RSV virus spread and extensive apoptotic cell death only in infant bronchial epithelium. In contrast, adult bronchial epithelium showed no barrier damage and limited RSV infection. Single nuclear RNA-Seq revealed age-related insufficiency of an antiapoptotic STAT3 activation response to RSV infection in infant ciliated cells, which was exploited to facilitate virus spread via the extruded apoptotic ciliated cells carrying RSV. Activation of STAT3 and blockade of apoptosis rendered protection against severe RSV infection in infant bronchial epithelium. Lastly, apoptotic inhibitor treatment of a neonatal mouse model of RSV infection mitigated infection and inflammation in the lung. Taken together, our findings identify a STAT3-mediated antiapoptosis pathway as a target to battle severe RSV disease in infants.
Collapse
Affiliation(s)
- Caiqi Zhao
- Division of Newborn Medicine, Department of Pediatrics and
| | - Yan Bai
- Division of Newborn Medicine, Department of Pediatrics and
| | - Wei Wang
- Division of Newborn Medicine, Department of Pediatrics and
| | | | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Adam J. Hume
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Elke Mühlberger
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Paul H. Lerou
- Division of Newborn Medicine, Department of Pediatrics and
| | - Xingbin Ai
- Division of Newborn Medicine, Department of Pediatrics and
| |
Collapse
|
23
|
Wang J, Peng X, Yuan N, Wang B, Chen S, Wang B, Xie L. Interplay between pulmonary epithelial stem cells and innate immune cells contribute to the repair and regeneration of ALI/ARDS. Transl Res 2024; 272:111-125. [PMID: 38897427 DOI: 10.1016/j.trsl.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Mammalian lung is the important organ for ventilation and exchange of air and blood. Fresh air and venous blood are constantly delivered through the airway and vascular tree to the alveolus. Based on this, the airways and alveolis are persistently exposed to the external environment and are easily suffered from toxins, irritants and pathogens. For example, acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a common cause of respiratory failure in critical patients, whose typical pathological characters are diffuse epithelial and endothelial damage resulting in excessive accumulation of inflammatory fluid in the alveolar cavity. The supportive treatment is the main current treatment for ALI/ARDS with the lack of targeted effective treatment strategies. However, ALI/ARDS needs more targeted treatment measures. Therefore, it is extremely urgent to understand the cellular and molecular mechanisms that maintain alveolar epithelial barrier and airway integrity. Previous researches have shown that the lung epithelial cells with tissue stem cell function have the ability to repair and regenerate after injury. Also, it is able to regulate the phenotype and function of innate immune cells involving in regeneration of tissue repair. Meanwhile, we emphasize that interaction between the lung epithelial cells and innate immune cells is more supportive to repair and regenerate in the lung epithelium following acute lung injury. We reviewed the recent advances in injury and repair of lung epithelial stem cells and innate immune cells in ALI/ARDS, concentrating on alveolar type 2 cells and alveolar macrophages and their contribution to post-injury repair behavior of ALI/ARDS through the latest potential molecular communication mechanisms. This will help to develop new research strategies and therapeutic targets for ALI/ARDS.
Collapse
Affiliation(s)
- Jiang Wang
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Xinyue Peng
- Fu Xing Hospital, Capital Medical University, Beijing 100038, China
| | - Na Yuan
- Department of Pulmonary & Critical Care Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Bin Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Siyu Chen
- Department of Thoracic Surgery, the Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bo Wang
- Department of Thoracic Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, the Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China; Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
24
|
Yao Q, Cheng S, Pan Q, Yu J, Cao G, Li L, Cao H. Organoids: development and applications in disease models, drug discovery, precision medicine, and regenerative medicine. MedComm (Beijing) 2024; 5:e735. [PMID: 39309690 PMCID: PMC11416091 DOI: 10.1002/mco2.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Organoids are miniature, highly accurate representations of organs that capture the structure and unique functions of specific organs. Although the field of organoids has experienced exponential growth, driven by advances in artificial intelligence, gene editing, and bioinstrumentation, a comprehensive and accurate overview of organoid applications remains necessary. This review offers a detailed exploration of the historical origins and characteristics of various organoid types, their applications-including disease modeling, drug toxicity and efficacy assessments, precision medicine, and regenerative medicine-as well as the current challenges and future directions of organoid research. Organoids have proven instrumental in elucidating genetic cell fate in hereditary diseases, infectious diseases, metabolic disorders, and malignancies, as well as in the study of processes such as embryonic development, molecular mechanisms, and host-microbe interactions. Furthermore, the integration of organoid technology with artificial intelligence and microfluidics has significantly advanced large-scale, rapid, and cost-effective drug toxicity and efficacy assessments, thereby propelling progress in precision medicine. Finally, with the advent of high-performance materials, three-dimensional printing technology, and gene editing, organoids are also gaining prominence in the field of regenerative medicine. Our insights and predictions aim to provide valuable guidance to current researchers and to support the continued advancement of this rapidly developing field.
Collapse
Affiliation(s)
- Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sheng Cheng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoqiang Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesNational Medical Center for Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory for Diagnosis and Treatment of Physic‐Chemical and Aging‐Related InjuriesHangzhouChina
| |
Collapse
|
25
|
Herms A, Fernandez-Antoran D, Alcolea MP, Kalogeropoulou A, Banerjee U, Piedrafita G, Abby E, Valverde-Lopez JA, Ferreira IS, Caseda I, Bejar MT, Dentro SC, Vidal-Notari S, Ong SH, Colom B, Murai K, King C, Mahbubani K, Saeb-Parsy K, Lowe AR, Gerstung M, Jones PH. Self-sustaining long-term 3D epithelioid cultures reveal drivers of clonal expansion in esophageal epithelium. Nat Genet 2024; 56:2158-2173. [PMID: 39313617 PMCID: PMC11525200 DOI: 10.1038/s41588-024-01875-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
Aging epithelia are colonized by somatic mutations, which are subjected to selection influenced by intrinsic and extrinsic factors. The lack of suitable culture systems has slowed the study of this and other long-term biological processes. Here, we describe epithelioids, a facile, cost-effective method of culturing multiple mouse and human epithelia. Esophageal epithelioids self-maintain without passaging for at least 1 year, maintaining a three-dimensional structure with proliferative basal cells that differentiate into suprabasal cells, which eventually shed and retain genomic stability. Live imaging over 5 months showed that epithelioids replicate in vivo cell dynamics. Epithelioids support genetic manipulation and enable the study of mutant cell competition and selection in three-dimensional epithelia, and show how anti-cancer treatments modulate competition between transformed and wild-type cells. Finally, a targeted CRISPR-Cas9 screen shows that epithelioids recapitulate mutant gene selection in aging human esophagus and identifies additional drivers of clonal expansion, resolving the genetic networks underpinning competitive fitness.
Collapse
Affiliation(s)
- Albert Herms
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - David Fernandez-Antoran
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- ARAID Foundation, Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Maria P Alcolea
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Gabriel Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Inês S Ferreira
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Irene Caseda
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona, Spain
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria T Bejar
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sara Vidal-Notari
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Bartomeu Colom
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge Institute of Science, Altos Labs, Cambridge, UK
| | | | | | - Krishnaa Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Collaborative Biorepository for Translational Medicine (CBTM), Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Alan R Lowe
- Institute for Structural and Molecular Biology, University College London, London, UK
- Institute for the Physics of Living Systems, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Oncology, Hutchison Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Harding AT, Crossen AJ, Reedy JL, Basham KJ, Hepworth OW, Zhang Y, Shah VS, Harding HB, Surve MV, Simaku P, Kwaku GN, Jensen KN, Otto Y, Ward RA, Thompson GR, Klein BS, Rajagopal J, Sen P, Haber AL, Vyas JM. Single-cell analysis of human airway epithelium identifies cell type-specific responses to Aspergillus and Coccidioides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612147. [PMID: 39314271 PMCID: PMC11418999 DOI: 10.1101/2024.09.09.612147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Respiratory fungal infections pose a significant threat to human health. Animal models do not fully recapitulate human disease, necessitating advanced models to study human-fungal pathogen interactions. In this study, we utilized primary human airway epithelial cells (hAECs) to recapitulate the lung environment in vitro and investigate cellular responses to two diverse, clinically significant fungal pathogens, Aspergillus fumigatus and Coccidioides posadasii. To understand the mechanisms of early pathogenesis for both fungi, we performed single-cell RNA sequencing of infected hAECs. Analysis revealed that both fungi induced cellular stress and cytokine production. However, the cell subtypes affected and specific pathways differed between fungi, with A. fumigatus and C. posadasii triggering protein-folding-related stress in ciliated cells and hypoxia responses in secretory cells, respectively. This study represents one of the first reports of single-cell transcriptional analysis of hAECs infected with either A. fumigatus or C. posadasii, providing a vital dataset to dissect the mechanism of disease and potentially identify targetable pathways.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge MA
- Department of Microbiology, Harvard Medical School, Cambridge MA
| | - Arianne J. Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kyle J. Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia W. Hepworth
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yanting Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Viral S. Shah
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manalee V. Surve
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patricia Simaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Geneva N. Kwaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristine Nolling Jensen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yohana Otto
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - George R. Thompson
- Division of Infectious Diseases, and Departments of Internal Medicine and Medical Microbiology and Immunology, University of California-Davis, Sacramento, CA, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jayaraj Rajagopal
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
27
|
Xu S, Tan S, Romanos P, Reedy JL, Zhang Y, Mansour MK, Vyas JM, Mecsas J, Mou H, Leong JM. Blocking HXA 3-mediated neutrophil elastase release during S. pneumoniae lung infection limits pulmonary epithelial barrier disruption and bacteremia. mBio 2024; 15:e0185624. [PMID: 39120139 PMCID: PMC11389395 DOI: 10.1128/mbio.01856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Streptococcus pneumoniae (Sp), a leading cause of community-acquired pneumonia, can spread from the lung into the bloodstream to cause septicemia and meningitis, with a concomitant threefold increase in mortality. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that target pathogenic immune processes. Polymorphonuclear leukocytes (PMNs) are essential for infection control but can also promote tissue damage and pathogen spread. The major Sp virulence factor, pneumolysin, triggers acute inflammation by stimulating the 12-lipoxygenase (12-LOX) eicosanoid synthesis pathway in epithelial cells. This pathway is required for systemic spread in a mouse pneumonia model and produces a number of bioactive lipids, including hepoxilin A3 (HXA3), a hydroxy epoxide PMN chemoattractant that has been hypothesized to facilitate breach of mucosal barriers. To understand how 12-LOX-dependent inflammation promotes dissemination during Sp lung infection and dissemination, we utilized bronchial stem cell-derived air-liquid interface cultures that lack this enzyme to show that HXA3 methyl ester (HXA3-ME) is sufficient to promote basolateral-to-apical PMN transmigration, monolayer disruption, and concomitant Sp barrier breach. In contrast, PMN transmigration in response to the non-eicosanoid chemoattractant N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP) did not lead to epithelial disruption or bacterial translocation. Correspondingly, HXA3-ME but not fMLP increased the release of neutrophil elastase (NE) from Sp-infected PMNs. Pharmacologic blockade of NE secretion or activity diminished epithelial barrier disruption and bacteremia after pulmonary challenge of mice. Thus, HXA3 promotes barrier-disrupting PMN transmigration and NE release, pathological events that can be targeted to curtail systemic disease following pneumococcal pneumonia.IMPORTANCEStreptococcus pneumoniae (Sp), a leading cause of pneumonia, can spread from the lung into the bloodstream to cause systemic disease. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that limit pathologic host immune responses to Sp. Excessive polymorphonuclear leukocyte (PMN) infiltration into Sp-infected airways promotes systemic disease. Using stem cell-derived respiratory cultures that reflect bona fide lung epithelium, we identified eicosanoid hepoxilin A3 as a critical pulmonary PMN chemoattractant that is sufficient to drive PMN-mediated epithelial damage by inducing the release of neutrophil elastase. Inhibition of the release or activity of this protease in mice limited epithelial barrier disruption and bacterial dissemination, suggesting a new host-directed treatment for Sp lung infection.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Patricia Romanos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Biotechnology, Francisco de Vitoria University, Madrid, Spain
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B Levy Center for the Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Gorelov R, Weiner A, Huebner A, Yagi M, Haghani A, Brooke R, Horvath S, Hochedlinger K. Dissecting the impact of differentiation stage, replicative history, and cell type composition on epigenetic clocks. Stem Cell Reports 2024; 19:1242-1254. [PMID: 39178844 PMCID: PMC11411293 DOI: 10.1016/j.stemcr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
Epigenetic clocks, built on DNA methylation patterns of bulk tissues, are powerful age predictors, but their biological basis remains incompletely understood. Here, we conducted a comparative analysis of epigenetic age in murine muscle, epithelial, and blood cell types across lifespan. Strikingly, our results show that cellular subpopulations within these tissues, including adult stem and progenitor cells as well as their differentiated progeny, exhibit different epigenetic ages. Accordingly, we experimentally demonstrate that clocks can be skewed by age-associated changes in tissue composition. Mechanistically, we provide evidence that the observed variation in epigenetic age among adult stem cells correlates with their proliferative state, and, fittingly, forced proliferation of stem cells leads to increases in epigenetic age. Collectively, our analyses elucidate the impact of cell type composition, differentiation state, and replicative potential on epigenetic age, which has implications for the interpretation of existing clocks and should inform the development of more sensitive clocks.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Weiner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Masaki Yagi
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Torrance, CA 90502, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA; Epigenetic Clock Development Foundation, Torrance, CA 90502, USA; Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Murthy S, Seabold DA, Gautam LK, Caceres AM, Sease R, Calvert BA, Busch S, Neely A, Marconett CN, Ryan AL. Culture Conditions Differentially Regulate the Inflammatory Niche and Cellular Phenotype of Tracheo-Bronchial Basal Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611264. [PMID: 39282256 PMCID: PMC11398510 DOI: 10.1101/2024.09.04.611264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Human bronchial epithelial cells (HBECs) derived from the tracheo-bronchial regions of human airways provide an excellent in vitro model for studying pathological mechanisms and evaluating therapeutics in human airway cells. This cell population comprises a mixed population of basal cells (BCs), the predominant stem cell in airways capable of both self-renewal and functional differentiation. Despite their potential for regenerative medicine, BCs exhibit significant phenotypic variability in culture. To investigate how culture conditions influence BC phenotype and function, we expanded three independent BC isolates in three media, airway epithelial cell growth medium (AECGM), dual-SMAD inhibitor (DSI)-enriched AECGM, and Pneumacult Ex plus (PEx+). Extensive RNA sequencing, immune assays and electrical measurements revealed that PEx+ media significantly drove cell proliferation and a broad pro-inflammatory phenotype in BCs. In contrast, BCs expanded in AECGM, displayed increased expression of structural and extracellular matrix components at high passage. Whereas culture in AECGM increased expression of some cytokines at high passage, DSI suppressed inflammation altogether thus implicating TGF-β in BC inflammatory processes. Differentiation capacity declined with time in culture irrespective of expansion media except for PLUNC expressing secretory cells that were elevated at high passage in AECGM and PEx+ suggestive of an immune modulatory role of PLUNC in BCs. These findings underscore the profound impact of media conditions on inflammatory niche and function of in vitro expanded BCs. The broad pro-inflammatory phenotype driven by PEx+ media, in particular, should be considered in the development of cell-based models for airway diseases and therapeutic application.
Collapse
Affiliation(s)
- Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Denise A. Seabold
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Adrian M. Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
| | - Rosemary Sease
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| | - Ben A. Calvert
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
| | - Shana Busch
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
| | - Aaron Neely
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
| | - Crystal N. Marconett
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
- Department of Integrative Translational Sciences, Beckman Research Institute, City of Hope, Duarte, CA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Amy L. Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Los Angeles, CA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
30
|
Redman E, Fierville M, Cavard A, Plaisant M, Arguel MJ, Ruiz Garcia S, McAndrew EM, Girard-Riboulleau C, Lebrigand K, Magnone V, Ponzio G, Gras D, Chanez P, Abelanet S, Barbry P, Marcet B, Zaragosi LE. Cell Culture Differentiation and Proliferation Conditions Influence the In Vitro Regeneration of the Human Airway Epithelium. Am J Respir Cell Mol Biol 2024; 71:267-281. [PMID: 38843491 PMCID: PMC11376247 DOI: 10.1165/rcmb.2023-0356ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an air-liquid interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist among media used for ALI-cultured human airway epithelial cells, the aim of our study was to evaluate the impact of several media (BEGM, PneumaCult, Half & Half, and Clancy) on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling, and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCult-ALI and Half & Half, stronger EGF signaling from basal cells in BEGM-ALI, differential expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry factor ACE2, and distinct secretome transcripts depending on the media used. We also established that proliferation in PneumaCult-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will aid in choosing the most relevant medium according to the processes to be investigated, such as cilia, mucus biology, or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology.
Collapse
Affiliation(s)
- Elisa Redman
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Morgane Fierville
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Amélie Cavard
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Magali Plaisant
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Marie-Jeanne Arguel
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Sandra Ruiz Garcia
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Eamon M McAndrew
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Cédric Girard-Riboulleau
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Virginie Magnone
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Gilles Ponzio
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Delphine Gras
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Pascal Chanez
- Centre de Recherche en Cardiovasculaire et Nutrition, Institut National de la Santé et de la Recherche Médicale (INSERM), and Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement (INRAE), Université Aix-Marseille, Marseille, France
| | - Sophie Abelanet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
- Interdisciplinary Institute for Artificial Intelligence (3IA Côte d'Azur), Université Côte d'Azur, Sophia Antipolis, France; and
| | - Brice Marcet
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| | - Laure-Emmanuelle Zaragosi
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), and Université Côte d'Azur
- IHU RespirERA, and
| |
Collapse
|
31
|
Nie J, Chen H, Zhao X. Advancement and Potential Applications of Epididymal Organoids. Biomolecules 2024; 14:1026. [PMID: 39199413 PMCID: PMC11352229 DOI: 10.3390/biom14081026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The epididymis, a key reproductive organ, is crucial for sperm concentration, maturation, and storage. Despite a comprehensive understanding of many of its functions, several aspects of the complex processes within the epididymis remain obscure. Dysfunction in this organ is intricately connected to the formation of the microenvironment, disruptions in sperm maturation, and the progression of male infertility. Thus, elucidating the functional mechanisms of the epididymal epithelium is imperative. Given the variety of cell types present within the epididymal epithelium, utilizing a three-dimensional (3D) in vitro model provides a holistic and practical framework for exploring the multifaceted roles of the epididymis. Organoid cell culture, involving the co-cultivation of pluripotent or adult stem cells with growth factors on artificial matrix scaffolds, effectively recreates the in vivo cell growth microenvironment, thereby offering a promising avenue for studying the epididymis. The field of epididymal organoids is relatively new, with few studies focusing on their formation and even fewer detailing the generation of organoids that exhibit epididymis-specific structures and functions. Ongoing challenges in both clinical applications and mechanistic studies underscore the importance of this research. This review summarizes the established methodologies for inducing the in vitro cultivation of epididymal cells, outlines the various approaches for the development of epididymal organoids, and explores their potential applications in the field of male reproductive biology.
Collapse
Affiliation(s)
| | | | - Xiuling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, China; (J.N.)
| |
Collapse
|
32
|
Goh KJ, Lu H, Tan EK, Lee ZY, Wong A, Tran T, Dunn NR, Roy S. Differentiation of CD166-positive hPSC-derived lung progenitors into airway epithelial cells. Biol Open 2024; 13:bio061729. [PMID: 39387302 PMCID: PMC11554259 DOI: 10.1242/bio.061729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
The generation of lung epithelial cells through the directed differentiation of human pluripotent stem cells (hPSCs) in vitro provides a platform to model both embryonic lung development and adult airway disease. Here, we describe a robust differentiation protocol that closely recapitulates human embryonic lung development. Differentiating cells progress through obligate intermediate stages, beginning with definitive endoderm formation and then patterning into anterior foregut endoderm that yields lung progenitors (LPs) with extended culture. These LPs can be purified using the cell surface marker CD166 (also known as ALCAM), and further matured into proximal airway epithelial cells including basal cells, secretory cells and multiciliated cells using either an organoid platform or culture at the air-liquid interface (ALI). We additionally demonstrate that these hPSC-derived airway epithelial cells can be used to model Influenza A infection. Collectively, our results underscore the utility of CD166 expression for the efficient enrichment of LPs from heterogenous differentiation cultures and the ability of these isolated cells to mature into more specialized, physiologically relevant proximal lung cell types.
Collapse
Affiliation(s)
- Kim Jee Goh
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
| | - Hao Lu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
| | - Ee Kim Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zhao Yong Lee
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Amanda Wong
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - Thai Tran
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore 117593, Singapore
| | - N. Ray Dunn
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road #17-01, Singapore 308232, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288, Singapore
| |
Collapse
|
33
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
34
|
Quach H, Farrell S, Wu MJM, Kanagarajah K, Leung JWH, Xu X, Kallurkar P, Turinsky AL, Bear CE, Ratjen F, Kalish B, Goyal S, Moraes TJ, Wong AP. Early human fetal lung atlas reveals the temporal dynamics of epithelial cell plasticity. Nat Commun 2024; 15:5898. [PMID: 39003323 PMCID: PMC11246468 DOI: 10.1038/s41467-024-50281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.
Collapse
Affiliation(s)
- Henry Quach
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Spencer Farrell
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Ming Jia Michael Wu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kayshani Kanagarajah
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Wai-Hin Leung
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaoqiao Xu
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Prajkta Kallurkar
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrei L Turinsky
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christine E Bear
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felix Ratjen
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Kalish
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sidhartha Goyal
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
| | - Theo J Moraes
- Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
35
|
Reedy JL, Jensen KN, Crossen AJ, Basham KJ, Ward RA, Reardon CM, Brown Harding H, Hepworth OW, Simaku P, Kwaku GN, Tone K, Willment JA, Reid DM, Stappers MHT, Brown GD, Rajagopal J, Vyas JM. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. Nat Commun 2024; 15:5817. [PMID: 38987270 PMCID: PMC11237042 DOI: 10.1038/s41467-024-50100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Collapse
Affiliation(s)
- Jennifer L Reedy
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kirstine Nolling Jensen
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Arianne J Crossen
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kyle J Basham
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A Ward
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher M Reardon
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Hannah Brown Harding
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Olivia W Hepworth
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patricia Simaku
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Geneva N Kwaku
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuya Tone
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Janet A Willment
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Delyth M Reid
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Mark H T Stappers
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jatin M Vyas
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Kooistra T, Saez B, Roche M, Egea-Zorrilla A, Li D, Anketell D, Nguyen N, Villoria J, Gillis J, Petri E, Vera L, Blasco-Iturri Z, Smith NP, Alladina J, Zhang Y, Vinarsky V, Shivaraju M, Sheng SL, Gonzalez-Celeiro M, Mou H, Waghray A, Lin B, Paksa A, Yanger K, Tata PR, Zhao R, Causton B, Zulueta JJ, Prosper F, Cho JL, Villani AC, Haber A, Rajagopal J, Medoff BD, Pardo-Saganta A. Airway basal stem cells are necessary for the maintenance of functional intraepithelial airway macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600501. [PMID: 38979172 PMCID: PMC11230263 DOI: 10.1101/2024.06.25.600501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Adult stem cells play a crucial role in tissue homeostasis and repair through multiple mechanisms. In addition to being able to replace aged or damaged cells, stem cells provide signals that contribute to the maintenance and function of neighboring cells. In the lung, airway basal stem cells also produce cytokines and chemokines in response to inhaled irritants, allergens, and pathogens, which affect specific immune cell populations and shape the nature of the immune response. However, direct cell-to-cell signaling through contact between airway basal stem cells and immune cells has not been demonstrated. Recently, a unique population of intraepithelial airway macrophages (IAMs) has been identified in the murine trachea. Here, we demonstrate that IAMs require Notch signaling from airway basal stem cells for maintenance of their differentiated state and function. Furthermore, we demonstrate that Notch signaling between airway basal stem cells and IAMs is required for antigen-induced allergic inflammation only in the trachea where the basal stem cells are located whereas allergic responses in distal lung tissues are preserved consistent with a local circuit linking stem cells to proximate immune cells. Finally, we demonstrate that IAM-like cells are present in human conducting airways and that these cells display Notch activation, mirroring their murine counterparts. Since diverse lung stem cells have recently been identified and localized to specific anatomic niches along the proximodistal axis of the respiratory tree, we hypothesize that the direct functional coupling of local stem cell-mediated regeneration and immune responses permits a compartmentalized inflammatory response.
Collapse
|
37
|
Xu S, Tan S, Romanos P, Reedy JL, Zhang Y, Mansour MK, Vyas JM, Mecsas J, Mou H, Leong JM. Blocking HXA 3-mediated neutrophil elastase release during S. pneumoniae lung infection limits pulmonary epithelial barrier disruption and bacteremia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600637. [PMID: 38979170 PMCID: PMC11230237 DOI: 10.1101/2024.06.25.600637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Streptococcus pneumoniae (Sp), a leading cause of community-acquired pneumonia, can spread from the lung into the bloodstream to cause septicemia and meningitis, with a concomitant three-fold increase in mortality. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that target pathogenic immune processes. Polymorphonuclear leukocytes (PMNs) are essential for infection control but can also promote tissue damage and pathogen spread. The major Sp virulence factor, pneumolysin (PLY), triggers acute inflammation by stimulating the 12-lipoxygenase (12-LOX) eicosanoid synthesis pathway in epithelial cells. This pathway is required for systemic spread in a mouse pneumonia model and produces a number of bioactive lipids, including hepoxilin A3 (HXA3), a hydroxy epoxide PMN chemoattractant that has been hypothesized to facilitate breach of mucosal barriers. To understand how 12-LOX-dependent inflammation promotes dissemination during Sp lung infection and dissemination, we utilized bronchial stem cell-derived air-liquid interface (ALI) cultures that lack this enzyme to show that HXA3 methyl ester (HXA3-ME) is sufficient to promote basolateral-to-apical PMN transmigration, monolayer disruption, and concomitant Sp barrier breach. In contrast, PMN transmigration in response to the non-eicosanoid chemoattractant fMLP did not lead to epithelial disruption or bacterial translocation. Correspondingly, HXA3-ME but not fMLP increased release of neutrophil elastase (NE) from Sp-infected PMNs. Pharmacologic blockade of NE secretion or activity diminished epithelial barrier disruption and bacteremia after pulmonary challenge of mice. Thus, HXA3 promotes barrier disrupting PMN transmigration and NE release, pathological events that can be targeted to curtail systemic disease following pneumococcal pneumonia.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Patricia Romanos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Francisco de Vitoria University, Madrid, Spain
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Stuart B Levy Center for the Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
| |
Collapse
|
38
|
Choksi SP, Byrnes LE, Konjikusic MJ, Tsai BWH, Deleon R, Lu Q, Westlake CJ, Reiter JF. An alternative cell cycle coordinates multiciliated cell differentiation. Nature 2024; 630:214-221. [PMID: 38811726 PMCID: PMC11996048 DOI: 10.1038/s41586-024-07476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/26/2024] [Indexed: 05/31/2024]
Abstract
The canonical mitotic cell cycle coordinates DNA replication, centriole duplication and cytokinesis to generate two cells from one1. Some cells, such as mammalian trophoblast giant cells, use cell cycle variants like the endocycle to bypass mitosis2. Differentiating multiciliated cells, found in the mammalian airway, brain ventricles and reproductive tract, are post-mitotic but generate hundreds of centrioles, each of which matures into a basal body and nucleates a motile cilium3,4. Several cell cycle regulators have previously been implicated in specific steps of multiciliated cell differentiation5,6. Here we show that differentiating multiciliated cells integrate cell cycle regulators into a new alternative cell cycle, which we refer to as the multiciliation cycle. The multiciliation cycle redeploys many canonical cell cycle regulators, including cyclin-dependent kinases (CDKs) and their cognate cyclins. For example, cyclin D1, CDK4 and CDK6, which are regulators of mitotic G1-to-S progression, are required to initiate multiciliated cell differentiation. The multiciliation cycle amplifies some aspects of the canonical cell cycle, such as centriole synthesis, and blocks others, such as DNA replication. E2F7, a transcriptional regulator of canonical S-to-G2 progression, is expressed at high levels during the multiciliation cycle. In the multiciliation cycle, E2F7 directly dampens the expression of genes encoding DNA replication machinery and terminates the S phase-like gene expression program. Loss of E2F7 causes aberrant acquisition of DNA synthesis in multiciliated cells and dysregulation of multiciliation cycle progression, which disrupts centriole maturation and ciliogenesis. We conclude that multiciliated cells use an alternative cell cycle that orchestrates differentiation instead of controlling proliferation.
Collapse
Affiliation(s)
- Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Lauren E Byrnes
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Mia J Konjikusic
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict W H Tsai
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Deleon
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Quanlong Lu
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
39
|
Reedy JL, Jensen KN, Crossen AJ, Basham KJ, Ward RA, Reardon CM, Harding HB, Hepworth OW, Simaku P, Kwaku GN, Tone K, Willment JA, Reid DM, Stappers MHT, Brown GD, Rajagopal J, Vyas JM. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.28.534632. [PMID: 37034634 PMCID: PMC10081279 DOI: 10.1101/2023.03.28.534632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo . Aspergillus -derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.
Collapse
|
40
|
Liu T, Liu S, Rui X, Cao Y, Hecker J, Guo F, Zhang Y, Gong L, Zhou Y, Yu Y, Krishnamoorthyni N, Bates S, Chun S, Boyer N, Xu S, Park JA, Perrella MA, Levy BD, Weiss ST, Mou H, Raby BA, Zhou X. Gasdermin B, an asthma-susceptibility gene, promotes MAVS-TBK1 signalling and airway inflammation. Eur Respir J 2024; 63:2301232. [PMID: 38514093 PMCID: PMC11063620 DOI: 10.1183/13993003.01232-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/31/2023] [Indexed: 03/23/2024]
Abstract
RATIONALE Respiratory virus-induced inflammation is the leading cause of asthma exacerbation, frequently accompanied by induction of interferon-stimulated genes (ISGs). How asthma-susceptibility genes modulate cellular response upon viral infection by fine-tuning ISG induction and subsequent airway inflammation in genetically susceptible asthma patients remains largely unknown. OBJECTIVES To decipher the functions of gasdermin B (encoded by GSDMB) in respiratory virus-induced lung inflammation. METHODS In two independent cohorts, we analysed expression correlation between GSDMB and ISG s. In human bronchial epithelial cell line or primary bronchial epithelial cells, we generated GSDMB-overexpressing and GSDMB-deficient cells. A series of quantitative PCR, ELISA and co-immunoprecipitation assays were performed to determine the function and mechanism of GSDMB for ISG induction. We also generated a novel transgenic mouse line with inducible expression of human unique GSDMB gene in airway epithelial cells and infected the mice with respiratory syncytial virus to determine the role of GSDMB in respiratory syncytial virus-induced lung inflammation in vivo. RESULTS GSDMB is one of the most significant asthma-susceptibility genes at 17q21 and acts as a novel RNA sensor, promoting mitochondrial antiviral-signalling protein (MAVS)-TANK binding kinase 1 (TBK1) signalling and subsequent inflammation. In airway epithelium, GSDMB is induced by respiratory viral infections. Expression of GSDMB and ISGs significantly correlated in respiratory epithelium from two independent asthma cohorts. Notably, inducible expression of human GSDMB in mouse airway epithelium led to enhanced ISGs induction and increased airway inflammation with mucus hypersecretion upon respiratory syncytial virus infection. CONCLUSIONS GSDMB promotes ISGs expression and airway inflammation upon respiratory virus infection, thereby conferring asthma risk in risk allele carriers.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Xianliang Rui
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors contributed equally
| | - Ye Cao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lu Gong
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yihan Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuzhen Yu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nandini Krishnamoorthyni
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel Bates
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sung Chun
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuang Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jin-Ah Park
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- These authors jointly conceptualised and supervised this work
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- These authors jointly conceptualised and supervised this work
| |
Collapse
|
41
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
42
|
Lin B, Shah VS, Chernoff C, Sun J, Shipkovenska GG, Vinarsky V, Waghray A, Xu J, Leduc AD, Hintschich CA, Surve MV, Xu Y, Capen DE, Villoria J, Dou Z, Hariri LP, Rajagopal J. Airway hillocks are injury-resistant reservoirs of unique plastic stem cells. Nature 2024; 629:869-877. [PMID: 38693267 PMCID: PMC11890216 DOI: 10.1038/s41586-024-07377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Airway hillocks are stratified epithelial structures of unknown function1. Hillocks persist for months and have a unique population of basal stem cells that express genes associated with barrier function and cell adhesion. Hillock basal stem cells continually replenish overlying squamous barrier cells. They exhibit dramatically higher turnover than the abundant, largely quiescent classic pseudostratified airway epithelium. Hillocks resist a remarkably broad spectrum of injuries, including toxins, infection, acid and physical injury because hillock squamous cells shield underlying hillock basal stem cells from injury. Hillock basal stem cells are capable of massive clonal expansion that is sufficient to resurface denuded airway, and eventually regenerate normal airway epithelium with each of its six component cell types. Hillock basal stem cells preferentially stratify and keratinize in the setting of retinoic acid signalling inhibition, a known cause of squamous metaplasia2,3. Here we show that mouse hillock expansion is the cause of vitamin A deficiency-induced squamous metaplasia. Finally, we identify human hillocks whose basal stem cells generate functional squamous barrier structures in culture. The existence of hillocks reframes our understanding of airway epithelial regeneration. Furthermore, we show that hillocks are one origin of 'squamous metaplasia', which is long thought to be a precursor of lung cancer.
Collapse
Affiliation(s)
- Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA.
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, USA.
| | - Viral S Shah
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chaim Chernoff
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Developmental and Regenerative Biology Program, Harvard, Cambridge, MA, USA
| | - Jiawei Sun
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Gergana G Shipkovenska
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Jiajie Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Andrew D Leduc
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Constantin A Hintschich
- Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, USA
- Department of Otorhinolaryngology, Regensburg University Hospital, Regensburg, Germany
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Manalee Vishnu Surve
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Diane E Capen
- Program in Membrane Biology and Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Villoria
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Lida P Hariri
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA.
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Developmental and Regenerative Biology Program, Harvard, Cambridge, MA, USA.
| |
Collapse
|
43
|
Pedrazzoli E, Demozzi M, Visentin E, Ciciani M, Bonuzzi I, Pezzè L, Lucchetta L, Maule G, Amistadi S, Esposito F, Lupo M, Miccio A, Auricchio A, Casini A, Segata N, Cereseto A. CoCas9 is a compact nuclease from the human microbiome for efficient and precise genome editing. Nat Commun 2024; 15:3478. [PMID: 38658578 PMCID: PMC11043407 DOI: 10.1038/s41467-024-47800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
The expansion of the CRISPR-Cas toolbox is highly needed to accelerate the development of therapies for genetic diseases. Here, through the interrogation of a massively expanded repository of metagenome-assembled genomes, mostly from human microbiomes, we uncover a large variety (n = 17,173) of type II CRISPR-Cas loci. Among these we identify CoCas9, a strongly active and high-fidelity nuclease with reduced molecular size (1004 amino acids) isolated from an uncultivated Collinsella species. CoCas9 is efficiently co-delivered with its sgRNA through adeno associated viral (AAV) vectors, obtaining efficient in vivo editing in the mouse retina. With this study we uncover a collection of previously uncharacterized Cas9 nucleases, including CoCas9, which enriches the genome editing toolbox.
Collapse
Affiliation(s)
- Eleonora Pedrazzoli
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Michele Demozzi
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Elisabetta Visentin
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Matteo Ciciani
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Ilaria Bonuzzi
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | | | - Lorenzo Lucchetta
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Giulia Maule
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Simone Amistadi
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
- Université de Paris, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM, UMR 1163, Paris, France
| | - Federica Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli (NA), Italy
| | - Mariangela Lupo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli (NA), Italy
| | - Annarita Miccio
- Université de Paris, Imagine Institute, Laboratory of chromatin and gene regulation during development, INSERM, UMR 1163, Paris, France
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli (NA), Italy
- Medical Genetics, Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Anna Cereseto
- Department of Computational, Cellular and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| |
Collapse
|
44
|
McCauley KB, Kukreja K, Tovar Walker AE, Jaffe AB, Klein AM. A map of signaling responses in the human airway epithelium. Cell Syst 2024; 15:307-321.e10. [PMID: 38508187 PMCID: PMC11031335 DOI: 10.1016/j.cels.2024.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
Abstract
Receptor-mediated signaling plays a central role in tissue regeneration, and it is dysregulated in disease. Here, we build a signaling-response map for a model regenerative human tissue: the airway epithelium. We analyzed the effect of 17 receptor-mediated signaling pathways on organotypic cultures to determine changes in abundance and phenotype of epithelial cell types. This map recapitulates the gamut of known airway epithelial signaling responses to these pathways. It defines convergent states induced by multiple ligands and diverse, ligand-specific responses in basal cell and secretory cell metaplasia. We show that loss of canonical differentiation induced by multiple pathways is associated with cell-cycle arrest, but that arrest is not sufficient to block differentiation. Using the signaling-response map, we show that a TGFB1-mediated response underlies specific aberrant cells found in multiple lung diseases and identify interferon responses in COVID-19 patient samples. Thus, we offer a framework enabling systematic evaluation of tissue signaling responses. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Katherine B McCauley
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA; Disease Area X, Biomedical Research, Novartis, Cambridge, MA 02139, USA
| | - Kalki Kukreja
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Aron B Jaffe
- Respiratory Diseases, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Brody SL, Pan J, Huang T, Xu J, Xu H, Koenitizer J, Brennan SK, Nanjundappa R, Saba TG, Berical A, Hawkins FJ, Wang X, Zhang R, Mahjoub MR, Horani A, Dutcher SK. Loss of an extensive ciliary connectome induces proteostasis and cell fate switching in a severe motile ciliopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585965. [PMID: 38562900 PMCID: PMC10983967 DOI: 10.1101/2024.03.20.585965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Motile cilia have essential cellular functions in development, reproduction, and homeostasis. Genetic causes for motile ciliopathies have been identified, but the consequences on cellular functions beyond impaired motility remain unknown. Variants in CCDC39 and CCDC40 cause severe disease not explained by loss of motility. Using human cells with pathological variants in these genes, Chlamydomonas genetics, cryo-electron microscopy, single cell RNA transcriptomics, and proteomics, we identified perturbations in multiple cilia-independent pathways. Absence of the axonemal CCDC39/CCDC40 heterodimer results in loss of a connectome of over 90 proteins. The undocked connectome activates cell quality control pathways, switches multiciliated cell fate, impairs microtubule architecture, and creates a defective periciliary barrier. Both cilia-dependent and independent defects are likely responsible for the disease severity. Our findings provide a foundation for reconsidering the broad cellular impact of pathologic variants in ciliopathies and suggest new directions for therapies.
Collapse
Affiliation(s)
- Steven L. Brody
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jiehong Pan
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jian Xu
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Huihui Xu
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jeffrey Koenitizer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Steven K. Brennan
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rashmi Nanjundappa
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Thomas G. Saba
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
| | - Andrew Berical
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Finn J. Hawkins
- Center for Regenerative Medicine, Boston University, Boston, MA, 02118, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Moe R. Mahjoub
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Amjad Horani
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, 48108, USA
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Susan K. Dutcher
- Department of Cell Biology and Physisology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
46
|
Liu MM, Feng XL, Qi C, Zhang SE, Zhang GL. The significance of single-cell transcriptome analysis in epididymis research. Front Cell Dev Biol 2024; 12:1357370. [PMID: 38577504 PMCID: PMC10991796 DOI: 10.3389/fcell.2024.1357370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
As a crucial component of the male reproductive system, the epididymis plays multiple roles, including sperm storage and secretion of nutritive fluids for sperm development and maturation. The acquisition of fertilization capacity by sperm occurs during their transport through the epididymis. Compared with the testis, little has been realized about the importance of the epididymis. However, with the development of molecular biology and single-cell sequencing technology, the importance of the epididymis for male fertility should be reconsidered. Recent studies have revealed that different regions of the epididymis exhibit distinct functions and cell type compositions, which are likely determined by variations in gene expression patterns. In this research, we primarily focused on elucidating the cellular composition and region-specific gene expression patterns within different segments of the epididymis and provided detailed insights into epididymal function in male fertility.
Collapse
Affiliation(s)
- Meng-Meng Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xin-Lei Feng
- Animal Products Quality and Safety Center of Shandong Province, Jinan, Shandong, China
| | - Chao Qi
- Provincial Animal Husbandry Station of Shandong Province, Jinan, Shandong, China
| | - Shu-Er Zhang
- Provincial Animal Husbandry Station of Shandong Province, Jinan, Shandong, China
| | - Guo-Liang Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
47
|
Liu T, Hecker J, Liu S, Rui X, Boyer N, Wang J, Yu Y, Zhang Y, Mou H, Gomez-Escobar LG, Choi AM, Raby BA, Weiss ST, Zhou X. The Asthma Risk Gene, GSDMB, Promotes Mitochondrial DNA-induced ISGs Expression. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10005. [PMID: 38737375 PMCID: PMC11086750 DOI: 10.35534/jrbtm.2024.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Released mitochondrial DNA (mtDNA) in cells activates cGAS-STING pathway, which induces expression of interferon-stimulated genes (ISGs) and thereby promotes inflammation, as frequently seen in asthmatic airways. However, whether the genetic determinant, Gasdermin B (GSDMB), the most replicated asthma risk gene, regulates this pathway remains unknown. We set out to determine whether and how GSDMB regulates mtDNA-activated cGAS-STING pathway and subsequent ISGs induction in human airway epithelial cells. Using qPCR, ELISA, native polyacrylamide gel electrophoresis, co-immunoprecipitation and immunofluorescence assays, we evaluated the regulation of GSDMB on cGAS-STING pathway in both BEAS-2B cells and primary normal human bronchial epithelial cells (nHBEs). mtDNA was extracted in plasma samples from human asthmatics and the correlation between mtDNA levels and eosinophil counts was analyzed. GSDMB is significantly associated with RANTES expression in asthmatic nasal epithelial brushing samples from the Genes-environments and Admixture in Latino Americans (GALA) II study. Over-expression of GSDMB promotes DNA-induced IFN and ISGs expression in bronchial epithelial BEAS-2B cells and nHBEs. Conversely, knockout of GSDMB led to weakened induction of interferon (IFNs) and ISGs in BEAS-2B cells. Mechanistically, GSDMB interacts with the C-terminus of STING, promoting the translocation of STING to Golgi, leading to the phosphorylation of IRF3 and induction of IFNs and ISGs. mtDNA copy number in serum from asthmatics was significantly correlated with blood eosinophil counts especially in male subjects. GSDMB promotes the activation of mtDNA and poly (dA:dT)-induced activation of cGAS-STING pathway in airway epithelial cells, leading to enhanced induction of ISGs.
Collapse
Affiliation(s)
- Tao Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Julian Hecker
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Siqi Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xianliang Rui
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Boyer
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer Wang
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yuzhen Yu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Augustine M.K. Choi
- Weil Cornell Medical School, Joan and Sanford I. Weill Department of Medicine, New York, NY 10065, USA
| | - Benjamin A. Raby
- Division of Pulmonary Medicine, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Rouhani MJ, Janes SM, Kim CF. Epithelial stem and progenitor cells of the upper airway. Cells Dev 2024; 177:203905. [PMID: 38355015 DOI: 10.1016/j.cdev.2024.203905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The upper airway acts as a conduit for the passage of air to the respiratory system and is implicated in several chronic diseases. Whilst the cell biology of the distal respiratory system has been described in great detail, less is known about the proximal upper airway. In this review, we describe the relevant anatomy of the upper airway and discuss the literature detailing the identification and roles of the progenitor cells of these regions.
Collapse
Affiliation(s)
- Maral J Rouhani
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Sam M Janes
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Carla F Kim
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Fernandes da Costa D, de Oliveira Ribeiro A, Morena Bonita Ricci J, da Silva Rodrigues M, Antonio de Oliveira M, Felipe da Rosa I, Benites Doretto L, Takahiro Nakajima R, Henrique Nóbrega R. A83-01 and DMH1 effects in the zebrafish spermatogonial niche: Unraveling the roles of TGF-β and BMP signaling in the Fsh-mediated spermatogonial fate. Gene 2024; 897:148082. [PMID: 38101710 DOI: 10.1016/j.gene.2023.148082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling has fundamental roles in the regulation of the stem cell niche for both embryonic and adult stem cells. In zebrafish, male germ stem cell niche is regulated by follicle-stimulating hormone (Fsh) through different members of the TGF-β superfamily. On the other hand, the specific roles of TGF-β and BMP signaling pathways are unknown in the zebrafish male germ stem cell niche. Considering this lack of information, the present study aimed to investigate the pharmacological inhibition of TGF-β (A83-01) and BMP (DMH1) signaling pathways in the presence of recombinant zebrafish Fsh using testicular explants. We also reanalyzed single cell-RNA sequencing (sc-RNA-seq) dataset from adult zebrafish testes to identify the testicular cellular sites of smad expression, and to understand the physiological significance of the changes in smad transcript levels after inhibition of TGF-β or BMP pathways. Our results showed that A83-01 potentiated the pro-stimulatory effects of Fsh on spermatogonial differentiation leading to an increase in the proportion area occupied by differentiated spermatogonia with concomitant reduction of type A undifferentiated (Aund) spermatogonia. In agreement, expression analysis showed lower mRNA levels for the pluripotency gene pou5f3, and increased expression of dazl (marker of type B spermatogonia and spermatocyte) and igf3 (pro-stimulatory growth factor) following the co-treatment with TGF-β inhibitor and Fsh. Contrariwise, the inhibition of BMP signaling nullified the pro-stimulatory effects of Fsh, resulting in a reduction of differentiated spermatogonia and increased proportion area occupied by type Aund spermatogonia. Supporting this evidence, BMP signaling inhibition increased the mRNA levels of pluripotency genes nanog and pou5f3, and decreased dazl levels when compared to control. The sc-RNA-seq data unveiled a distinctive pattern of smad expression among testicular cells, primarily observed in spermatogonia (smad 2, 3a, 3b, 8), spermatocytes (smad 2, 3a, 8), Sertoli cells (smad 1, 3a, 3b), and Leydig cells (smad 1, 2). This finding supports the notion that inhibition of TGF-β and BMP signaling pathways may predominantly impact cellular components within the spermatogonial niche, namely spermatogonia, Sertoli, and Leydig cells. In conclusion, our study demonstrated that TGF-β and BMP signaling pathways exert antagonistic roles in the zebrafish germ stem cell niche. The members of the TGF-β subfamily are mainly involved in maintaining the undifferentiated state of spermatogonia, while the BMP subfamily promotes spermatogonial differentiation. Therefore, in the complex regulation of the germ stem cell niche by Fsh, members of the BMP subfamily (pro-differentiation) should be more predominant in the niche than those belonging to the TGF-β (anti-differentiation). Overall, these findings are not only relevant for understanding the regulation of germ stem cell niche but may also be useful for expanding in vitro the number of undifferentiated spermatogonia more efficiently than using recombinant hormones or growth factors.
Collapse
Affiliation(s)
- Daniel Fernandes da Costa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Amanda de Oliveira Ribeiro
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Juliana Morena Bonita Ricci
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Marcos Antonio de Oliveira
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Ivana Felipe da Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Lucas Benites Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Rafael Takahiro Nakajima
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, 389 25 Vodňany, Czech Republic.
| |
Collapse
|
50
|
Liang X, Hou X, Bouhamdan M, Sun Y, Song Z, Rajagopalan C, Jiang H, Wei HG, Song J, Yang D, Guo Y, Zhang Y, Mou H, Zhang J, Chen YE, Sun F, Jin JP, Zhang K, Xu J. Sotagliflozin attenuates liver-associated disorders in cystic fibrosis rabbits. JCI Insight 2024; 9:e165826. [PMID: 38358827 PMCID: PMC10972622 DOI: 10.1172/jci.insight.165826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene lead to CF, a life-threating autosomal recessive genetic disease. While recently approved Trikafta dramatically ameliorates CF lung diseases, there is still a lack of effective medicine to treat CF-associated liver disease (CFLD). To address this medical need, we used a recently established CF rabbit model to test whether sotagliflozin, a sodium-glucose cotransporter 1 and 2 (SGLT1/2) inhibitor drug that is approved to treat diabetes, can be repurposed to treat CFLD. Sotagliflozin treatment led to systemic benefits to CF rabbits, evidenced by increased appetite and weight gain as well as prolonged lifespan. For CF liver-related phenotypes, the animals benefited from normalized blood chemistry and bile acid parameters. Furthermore, sotagliflozin alleviated nonalcoholic steatohepatitis-like phenotypes, including liver fibrosis. Intriguingly, sotagliflozin treatment markedly reduced the otherwise elevated endoplasmic reticulum stress responses in the liver and other affected organs of CF rabbits. In summary, our work demonstrates that sotagliflozin attenuates liver disorders in CF rabbits and suggests sotagliflozin as a potential drug to treat CFLD.
Collapse
Affiliation(s)
- Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Xia Hou
- Department of Physiology, and
| | | | - Yifei Sun
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | - Jun Song
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanhong Guo
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Y. Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Fei Sun
- Department of Physiology, and
| | | | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|