1
|
Meleiro M, Henrique R. Epigenetic Alterations in Glioblastoma Multiforme as Novel Therapeutic Targets: A Scoping Review. Int J Mol Sci 2025; 26:5634. [PMID: 40565099 PMCID: PMC12192589 DOI: 10.3390/ijms26125634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 06/06/2025] [Accepted: 06/09/2025] [Indexed: 06/28/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM's molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical contributors to GBM pathobiology, including aberrant DNA methylation, histone modifications, and non-coding RNA (ncRNA) dysregulation. These mechanisms drive oncogenesis, therapy resistance, and immune evasion. This scoping review evaluates the current state of knowledge on epigenetic modifications in GBM, synthesizing findings from original articles and preclinical and clinical trials published over the last decade. Particular attention is given to MGMT promoter hypermethylation status as a biomarker for temozolomide (TMZ) sensitivity, histone deacetylation and methylation as modulators of chromatin structure, and microRNAs as regulators of pathways such as apoptosis and angiogenesis. Therapeutically, epigenetic drugs, like DNA methyltransferase inhibitors (DNMTis) and histone deacetylase inhibitors (HDACis), appear as promising approaches in preclinical models and early trials. Emerging RNA-based therapies targeting dysregulated ncRNAs represent a novel approach to reprogram the tumor epigenome. Combination therapies, pairing epigenetic agents with immune checkpoint inhibitors or chemotherapy, are explored for their potential to enhance treatment response. Despite these advancements, challenges such as tumor heterogeneity, the blood-brain barrier (BBB), and off-target effects remain significant. Future directions emphasize integrative omics approaches to identify patient-specific targets and refine therapies. This article thus highlights the potential of epigenetics in reshaping GBM treatment paradigms.
Collapse
Affiliation(s)
- Marco Meleiro
- Integrated Master’s in Medicine, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Rui Henrique
- Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Cancer Biology & Epigenetics Group-Research Center of IPO Porto (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
2
|
Pan X, Munan S, Zuckerman AL, Pon A, Violante S, Cross JR, Shah H, Cracan V. A genetically encoded bifunctional enzyme mitigates redox imbalance and lipotoxicity via engineered Gro3P-Glycerol shunt. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.06.02.657195. [PMID: 40501877 PMCID: PMC12157500 DOI: 10.1101/2025.06.02.657195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2025]
Abstract
Dihydroxyacetone phosphate (DHAP), glycerol-3-phosphate (Gro3P) and reduced/oxidized nicotinamide adenine dinucleotide (NADH/NAD + ) are key metabolites of the Gro3P shuttle system that forms a redox circuit, allowing transfer of reducing equivalents between cytosol and mitochondria. Targeted activation of Gro3P biosynthesis was recently identified as a promising strategy to alleviate reductive stress by promoting NAD + recycling, including in cells with an impaired mitochondrial complex I. However, because Gro3P constitutes the backbone of triglycerides under some circumstances, its accumulation can lead to excessive fat deposition. Here, we present the development of a novel genetically encoded tool based on a di-domain glycerol-3-phosphate dehydrogenase from algae Chlamydomonas reinhardtii ( Cr GPDH), which is a bifunctional enzyme that can recycle NAD + while converting DHAP to Gro3P. In addition, this enzyme possesses an N-terminal domain which cleaves Gro3P into glycerol and inorganic phosphate (Pi) (in humans and other organisms, this reaction is catalyzed by a separate glycerol-3-phosphate phosphatase, a reaction also known as "glycerol shunt"). When expressed in mammalian cells, Cr GPDH diminished Gro3P levels and boosted the TCA cycle and fatty acid β-oxidation in mitochondria. Cr GPDH expression alone supported proliferation of HeLa cells under conditions of either inhibited activity of the mitochondrial electron transport chain or hypoxia. Moreover, human kidney cancer cells, which exhibit abnormal lipid accumulation, had decreased triglycerides levels when expressing Cr GPDH. Our findings suggest that the coordinated boosting of both Gro3P biosynthesis and glycerol shunt may be a viable strategy to alleviate consequences of redox imbalance and associated impaired lipogenesis in a wide repertoire of conditions, ranging from primary mitochondrial diseases to obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Xingxiu Pan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
| | - Subrata Munan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
| | - Austin L. Zuckerman
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
- Program in Mathematics and Science Education, University of California San Diego and San Diego State University, San Diego, CA 92120, USA
| | - Andrew Pon
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Justin R. Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Hardik Shah
- Metabolomics Platform, University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL 60637, USA
| | - Valentin Cracan
- Scintillon Institute, Laboratory of Redox Biology and Metabolism, San Diego, CA 92121, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Ghosh N, Chatterjee D, Datta A. Tumor heterogeneity and resistance in glioblastoma: the role of stem cells. Apoptosis 2025:10.1007/s10495-025-02123-y. [PMID: 40375039 DOI: 10.1007/s10495-025-02123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/18/2025]
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and treatment-resistant brain tumor, characterized by its heterogeneity and the presence of glioblastoma stem cells (GSCs). GSCs are a subpopulation of cells within the tumor that possess self-renewal and differentiation capabilities, contributing to tumor initiation, progression, and recurrence. This review explores the unique biological properties of GSCs, including their molecular markers, signalling pathways, and interactions with the tumor microenvironment. We discuss the mechanisms by which GSCs evade conventional therapies, such as enhanced DNA repair and metabolic plasticity, which complicate treatment outcomes. Furthermore, we highlight recent advancements in identifying novel biomarkers and therapeutic targets that may improve the efficacy of treatments aimed at GSCs. The potential of targeted therapies, including immunotherapy and combination strategies, is also examined to overcome the challenges posed by GSCs. Ultimately, a deeper understanding of GSC biology is essential for developing personalized treatment approaches that can enhance patient outcomes in glioblastoma.
Collapse
Affiliation(s)
- Nikita Ghosh
- Department of Neuroscience Technology, School of Allied Health Sciences, Yenepoya, Mangalore, Karnataka, India
| | | | - Aparna Datta
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, India.
| |
Collapse
|
4
|
Peng T, Ma X, Hua W, Wang C, Chu Y, Sun M, Fermi V, Hamelmann S, Lindner K, Shao C, Zaman J, Tian W, Zhuo Y, Harim Y, Stöffler N, Hammann L, Xiao Q, Jin X, Warta R, Lotsch C, Zhuang X, Feng Y, Fu M, Zhang X, Zhang J, Xu H, Qiu F, Xie L, Zhang Y, Zhu W, Du Z, Salgueiro L, Schneider M, Eichhorn F, Lefevre A, Pusch S, Grinevich V, Ratliff M, Loges S, Bunse L, Sahm F, Xiang Y, Unterberg A, von Deimling A, Platten M, Herold-Mende C, Wu Y, Liu HK, Mao Y. Individualized patient tumor organoids faithfully preserve human brain tumor ecosystems and predict patient response to therapy. Cell Stem Cell 2025; 32:652-669.e11. [PMID: 39938519 DOI: 10.1016/j.stem.2025.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025]
Abstract
Tumor organoids are important tools for cancer research, but current models have drawbacks that limit their applications for predicting response to therapy. Here, we developed a fast, efficient, and complex culture system (IPTO, individualized patient tumor organoid) that accurately recapitulates the cellular and molecular pathology of human brain tumors. Patient-derived tumor explants were cultured in induced pluripotent stem cell (iPSC)-derived cerebral organoids, thus enabling culture of a wide range of human tumors in the central nervous system (CNS), including adult, pediatric, and metastatic brain cancers. Histopathological, genomic, epigenomic, and single-cell RNA sequencing (scRNA-seq) analyses demonstrated that the IPTO model recapitulates cellular heterogeneity and molecular features of original tumors. Crucially, we showed that the IPTO model predicts patient-specific drug responses, including resistance mechanisms, in a prospective patient cohort. Collectively, the IPTO model represents a major breakthrough in preclinical modeling of human cancers, which provides a path toward personalized cancer therapy.
Collapse
Affiliation(s)
- Tianping Peng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiujian Ma
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Changwen Wang
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Meng Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Valentina Fermi
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, Heidelberg 69120, Germany
| | - Stefan Hamelmann
- Deptment of Neuropathology, University Hospital Heidelberg, CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg 69120, Germany
| | - Katharina Lindner
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Tanslational Neuroscience (MCTN), Heidelberg University, Heidelberg 69120, Germany; Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany
| | - Chunxuan Shao
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Julia Zaman
- Deptment of Neuropathology, University Hospital Heidelberg, CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg 69120, Germany
| | - Weili Tian
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Yue Zhuo
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Yassin Harim
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Nadja Stöffler
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Linda Hammann
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Qungen Xiao
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Xiaoliang Jin
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Rolf Warta
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, Heidelberg 69120, Germany
| | - Catharina Lotsch
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, Heidelberg 69120, Germany
| | - Xuran Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuan Feng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Minjie Fu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Hao Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Fufang Qiu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Liqian Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Yi Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lorena Salgueiro
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68167, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Mark Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University, Heidelberg 69120, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg 69120, Germany
| | - Florian Eichhorn
- Department of Thoracic Surgery, Thoraxklinik, University Hospital Heidelberg, Roentgenstrasse 1, Heidelberg 69126, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg 69120, Germany
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Stefan Pusch
- Deptment of Neuropathology, University Hospital Heidelberg, CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg 69120, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Miriam Ratliff
- DKTK Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Research Center (DKFZ), Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim 68167, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim 68167, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim 68167, Germany; Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg 69120, Germany
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Tanslational Neuroscience (MCTN), Heidelberg University, Heidelberg 69120, Germany; Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany
| | - Felix Sahm
- Deptment of Neuropathology, University Hospital Heidelberg, CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg 69120, Germany
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China
| | - Andreas Unterberg
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, Heidelberg 69120, Germany
| | - Andreas von Deimling
- Deptment of Neuropathology, University Hospital Heidelberg, CCU Neuropathology, German Cancer Research Center (DKFZ), University Heidelberg, Heidelberg 69120, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Helmholtz Institute of Translational Oncology Mainz (HI-TRON Mainz) - a Helmholtz Institute of the DKFZ, Mainz 55131, Germany; Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Tanslational Neuroscience (MCTN), Heidelberg University, Heidelberg 69120, Germany; Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg 69120, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center, Heidelberg 69120, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, INF400, Heidelberg 69120, Germany
| | - Yonghe Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Hai-Kun Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University; National Center for Neurological Disorders, Shanghai 200040, China.
| |
Collapse
|
5
|
Lu C, Kang T, Zhang J, Yang K, Liu Y, Song K, Lin Q, Dixit D, Gimple RC, Zhang Q, Shi Z, Fan X, Wu Q, Li D, Shan D, Gao J, Gu D, You H, Li Y, Yang J, Zhao L, Qiu Z, Yang H, Zhao N, Gao W, Tao W, Lu Y, Chen Y, Ji J, Zhu Z, Kang C, Man J, Agnihotri S, Wang Q, Lin F, Qian X, Mack SC, Hu Z, Li C, Taylor MD, Liu N, Zhang N, Lu M, You Y, Rich JN, Zhang W, Wang X. Combined targeting of glioblastoma stem cells of different cellular states disrupts malignant progression. Nat Commun 2025; 16:2974. [PMID: 40140646 PMCID: PMC11947120 DOI: 10.1038/s41467-025-58366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor with intra-tumoral hierarchy of glioblastoma stem cells (GSCs). The heterogeneity of GSCs within GBM inevitably leads to treatment resistance and tumor recurrence. Molecular mechanisms of different cellular state GSCs remain unclear. Here, we find that classical (CL) and mesenchymal (MES) GSCs are enriched in reactive immune region and high CL-MES signature informs poor prognosis in GBM. Through integrated analyses of GSCs RNA sequencing and single-cell RNA sequencing datasets, we identify specific GSCs targets, including MEOX2 for the CL GSCs and SRGN for the MES GSCs. MEOX2-NOTCH and SRGN-NFκB axes play important roles in promoting proliferation and maintaining stemness and subtype signatures of CL and MES GSCs, respectively. In the tumor microenvironment, MEOX2 and SRGN mediate the resistance of CL and MES GSCs to macrophage phagocytosis. Using genetic and pharmacologic approaches, we identify FDA-approved drugs targeting MEOX2 and SRGN. Combined CL and MES GSCs targeting demonstrates enhanced efficacy, both in vitro and in vivo. Our results highlighted a therapeutic strategy for the elimination of heterogeneous GSCs populations through combinatorial targeting of MEOX2 and SRGN in GSCs.
Collapse
Affiliation(s)
- Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Kang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Yang Liu
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kefan Song
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiankun Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan C Gimple
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Qian Zhang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Daqi Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiancheng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danling Gu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao You
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqing Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junlei Yang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zhixin Qiu
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Gao
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tao
- College of Biomedicine and Health & College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yingmei Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Zhu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sameer Agnihotri
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Stephen C Mack
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhibin Hu
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaojun Li
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Michael D Taylor
- Department of Pediatrics- Hematology/Oncology and Neurosurgery, Texas Children's Cancer Center, Hematology-Oncology Section, Baylor College of Medicine, Houston, Texas, USA
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiuxing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Lin G, Liu Q, Xie C, Ding K, Mo G, Zeng L, Zhang F, Liu R, Lu L, Hong W, Mao Y, Su H, Li S. Upregulated FSP1 by GPD1/1L mediated lipid droplet accumulation enhances ferroptosis resistance and peritoneal metastasis in gastric cancer. Cell Commun Signal 2025; 23:132. [PMID: 40075460 PMCID: PMC11899195 DOI: 10.1186/s12964-025-02126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
To successfully metastasize, cancer cells must evade detachment induced cell death, known as anoikis. Unraveling the mechanisms that gastric cancer (GC) circumvent anoikis and achieve peritoneal metastasis especially during unanchored growth, could significantly improve patient outcomes. Our study reveals that GC cells exhibit increased lipid peroxidation, MDA production, and cell death during suspension culture, which can be mitigated by the intervention with liproxstatin-1 and ferrostatin-1. We discovered that oleic acid (OA) or adipocytes stimulate lipid accumulation in GC cells, thereby inhibiting lipid peroxidation and cell death. Lipid mass spectrometry confirmed an upregulation of triglyceride synthesis, indicating that the accumulation of lipid droplet may confer resistance to ferroptosis during suspension growth. In vitro assays demonstrated that OA not only induces lipid droplet accumulation but also upregulates the expression of ferroptosis suppressor protein 1 (FSP1), a process that can be abrogated by the double knockout of GPD1/1L genes. Additionally, we have demonstrated that a decrease in the ubiquitination of FSP1 in GC cells upon lipid droplet accumulation, as well as silencing or pharmacological targeting FSP1, promotes ferroptosis and disrupts the peritoneal metastatic potential of GC cells. Collectively, our findings highlight the potential of FSP1 as a promising therapeutic target for metastatic gastric cancer.
Collapse
Affiliation(s)
- Guoliang Lin
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Qingnan Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chengjie Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Ke Ding
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Guanghua Mo
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Lu Zeng
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Fan Zhang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - RuiXuan Liu
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Lei Lu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuling Mao
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Haibo Su
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Shuai Li
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
7
|
Mahmud MA, Siddique AB, Tajmim A, King JA, El Sayed KA. The Olive Oil Monophenolic Secoiridoid Ligstroside Aglycone Suppresses Melanoma Progression by Targeting the BRAF Signaling Pathway. Molecules 2025; 30:139. [PMID: 39795195 PMCID: PMC11721798 DOI: 10.3390/molecules30010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Melanoma is among the most abundant malignancies in the US and worldwide. Ligstroside aglycone (LA) is a rare extra-virgin olive oil-derived monophenolic secoiridoid with diverse bioactivities. LA dose-response screening at the NCI 60 cancer cells panel identified the high sensitivity of the Malme-3M cell line, which harbors a BRAF V600E mutation. Daily oral 10 mg/kg LA exhibited potent in vivo antitumor effects against Malme-3M cells xenograft in a nude mouse model by targeting the BRAF signaling pathway. A human Clariom S microarray analysis of the collected Malme- 3M tumors identified 571 dysregulated genes, with the downregulation of pathways critical for melanoma cells growth and survival. A Western blot analysis of the collected animal tumors further validated the downregulation of the mutated BRAF-MAPK axis, as well as the GPD1 and ELOVL6 expression levels. A histopathological analysis of Malme-3M tumor sections showed extensive focal tumor necrosis in treated mice. An immunofluorescence study of tumor sections showed notable reductions in proliferation marker ki67 and the vasculogenesis marker CD31 in treated tumors. These findings promote LA as a potential nutraceutical lead for the control of the BRAF V600E mutant melanoma.
Collapse
Affiliation(s)
- Md Ashiq Mahmud
- Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (M.A.M.); (A.B.S.); (A.T.)
| | - Abu Bakar Siddique
- Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (M.A.M.); (A.B.S.); (A.T.)
| | - Afsana Tajmim
- Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (M.A.M.); (A.B.S.); (A.T.)
| | - Judy Ann King
- Foundational and Clinical Sciences Department, Thomas F. Frist, Jr. College of Medicine, Belmont University, 1900 Belmont Boulevard, Nashville, TN 37212, USA;
| | - Khalid A. El Sayed
- Department of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; (M.A.M.); (A.B.S.); (A.T.)
| |
Collapse
|
8
|
Khiabani NA, Doustvandi MA, Story D, Nobari SA, Hajizadeh M, Petersen R, Dunbar G, Rossignol J. Glioblastoma therapy: State of the field and future prospects. Life Sci 2024; 359:123227. [PMID: 39537100 DOI: 10.1016/j.lfs.2024.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GB) is a cancerous brain tumor that originates from glial cells and leads to thousands of deaths each year and a five-year survival of only 6.8 %. Treatments for GB include surgery, chemotherapy, radiation, and immunotherapy. GB is an incurable fatal disease, necessitating the development of innovative strategies to find a developing effective therapy. Genetic therapies may be crucial in treating GB by identifying the mutations and amplifications of multiple genes, which drive its proliferation and spread. Use of small interfering RNAs (siRNAs) provides a novel technology used to suppress the genes associated with disease, which forms a basis for targeted therapy in GB and its stem cell population, which are recognized for their ability to develop resistance to chemotherapy and tumorigenic capabilities. This review examines the use of siRNAs in GB, emphasizing their effectiveness in suppressing key oncogenes and signaling pathways associated with tumor development, invasion, stemness, and resistance to standard treatments. siRNA-based gene silencing is a promising approach for developing targeted therapeutics against GB and associated stem cell populations, potentially enhancing patient outcomes and survival rates in this devastating disease.
Collapse
Affiliation(s)
- Nadia Allahyarzadeh Khiabani
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Darren Story
- Department of Psychology, Saginaw Valley State University, University Center, MI 48710, USA
| | | | | | - Robert Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
9
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
10
|
Liu R, Zou Z, Zhang Z, He H, Xi M, Liang Y, Ye J, Dai Q, Wu Y, Tan H, Zhong W, Wang Z, Liang Y. Evaluation of glucocorticoid-related genes reveals GPD1 as a therapeutic target and regulator of sphingosine 1-phosphate metabolism in CRPC. Cancer Lett 2024; 605:217286. [PMID: 39413958 DOI: 10.1016/j.canlet.2024.217286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Prostate cancer (PCa) is an androgen-dependent disease, with castration-resistant prostate cancer (CRPC) being an advanced stage that no longer responds to androgen deprivation therapy (ADT). Mounting evidence suggests that glucocorticoid receptors (GR) confer resistance to ADT in CRPC patients by bypassing androgen receptor (AR) blockade. GR, as a novel therapeutic target in CRPC, has attracted substantial attention worldwide. This study utilized bioinformatic analysis of publicly available CRPC single-cell data to develop a consensus glucocorticoid-related signature (Glu-sig) that can serve as an independent predictor for relapse-free survival. Our results revealed that the signature demonstrated consistent and robust performance across seven publicly accessible datasets and an internal cohort. Furthermore, our findings demonstrated that glycerol-3-phosphate dehydrogenase 1 (GPD1) in Glu-sig can significantly promote CRPC progression by mediating the cell cycle pathway. Additionally, GPD1 was shown to be regulated by GR, with the GR antagonist mifepristone enhancing the anti-tumorigenic effects of GPD1 in CRPC cells. Mechanistically, targeting GPD1 induced the production of sphingosine 1-phosphate (S1P) and enhanced histone acetylation, thereby inducing the transcription of p21 that involved in cell cycle regulation. In conclusion, Glu-sig could serve as a robust and promising tool to improve the clinical outcomes of PCa patients, and modulating the GR/GPD1 axis that promotes tumor growth may be a promising approach for delaying CRPC progression.
Collapse
Affiliation(s)
- Ren Liu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Zou
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Guangzhou, China
| | - Zhengrong Zhang
- Department of Urology, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Huichan He
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Yingke Liang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qishan Dai
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongding Wu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Huijing Tan
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Laboratory, Guangzhou, China; Macau Institute of Systems Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Zongren Wang
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiang Liang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Man KH, Wu Y, Gao Z, Spreng AS, Keding J, Mangei J, Boskovic P, Mallm JP, Liu HK, Imbusch CD, Lichter P, Radlwimmer B. SOX10 mediates glioblastoma cell-state plasticity. EMBO Rep 2024; 25:5113-5140. [PMID: 39285246 PMCID: PMC11549307 DOI: 10.1038/s44319-024-00258-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 11/10/2024] Open
Abstract
Phenotypic plasticity is a cause of glioblastoma therapy failure. We previously showed that suppressing the oligodendrocyte-lineage regulator SOX10 promotes glioblastoma progression. Here, we analyze SOX10-mediated phenotypic plasticity and exploit it for glioblastoma therapy design. We show that low SOX10 expression is linked to neural stem-cell (NSC)-like glioblastoma cell states and is a consequence of temozolomide treatment in animal and cell line models. Single-cell transcriptome profiling of Sox10-KD tumors indicates that Sox10 suppression is sufficient to induce tumor progression to an aggressive NSC/developmental-like phenotype, including a quiescent NSC-like cell population. The quiescent NSC state is induced by temozolomide and Sox10-KD and reduced by Notch pathway inhibition in cell line models. Combination treatment using Notch and HDAC/PI3K inhibitors extends the survival of mice carrying Sox10-KD tumors, validating our experimental therapy approach. In summary, SOX10 suppression mediates glioblastoma progression through NSC/developmental cell-state transition, including the induction of a targetable quiescent NSC state. This work provides a rationale for the design of tumor therapies based on single-cell phenotypic plasticity analysis.
Collapse
Affiliation(s)
- Ka-Hou Man
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Yonghe Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China
| | - Zhenjiang Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Anna-Sophie Spreng
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johanna Keding
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jasmin Mangei
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavle Boskovic
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-Cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hai-Kun Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, China
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Wei JR, Zhang B, Zhang Y, Chen WM, Zhang XP, Zeng TT, Li Y, Zhu YH, Guan XY, Li L. QSOX1 facilitates dormant esophageal cancer stem cells to evade immune elimination via PD-L1 upregulation and CD8 T cell exclusion. Proc Natl Acad Sci U S A 2024; 121:e2407506121. [PMID: 39432781 PMCID: PMC11536095 DOI: 10.1073/pnas.2407506121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
Dormant cancer stem cells (DCSCs) exhibit characteristics of chemotherapy resistance and immune escape, and they are a crucial source of tumor recurrence and metastasis. However, the underlying mechanisms remain unrevealed. We demonstrate that enriched Gzmk+ CD8+ T cells within the niche of esophageal DCSCs restrict the outgrowth of tumor mass. Nonetheless, DCSCs can escape immune elimination by enhancing PD-L1 signaling, thereby maintaining immune equilibrium. Quiescent fibroblast-derived quiescin sulfhydryl oxidase 1 (QSOX1) promotes the expression of PD-L1 and its own expression in DCSCs by elevating the level of reactive oxygen species. Additionally, high QSOX1 in the dormant tumor niche contributes to the exclusion of CD8+ T cells. Conversely, blocking QSOX1 with Ebselen in combination with anti-PD-1 and chemotherapy can effectively eradicate residual DCSCs by reducing PD-L1 expression and promoting CD8+ T cell infiltration. Clinically, high expression of QSOX1 predicts a poor response to anti-PD-1 treatment in patients with esophageal cancer. Thus, our findings reveal a mechanism whereby QSOX1 promotes PD-L1 upregulation and T cell exclusion, facilitating the immune escape of DCSCs, and QSOX1 inhibition, combined with immunotherapy and chemotherapy, represents a promising therapeutic approach for eliminating DCSCs and preventing recurrence.
Collapse
Affiliation(s)
- Jia-Ru Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
| | - Baifeng Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong00852, People’s Republic of China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Wo-Ming Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
| | - Xiao-Ping Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Yan Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong00852, People’s Republic of China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
- Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen518000, People’s Republic of China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510120, People’s Republic of China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan528200, People’s Republic of China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou510060, People’s Republic of China
| |
Collapse
|
13
|
Banu MA, Dovas A, Argenziano MG, Zhao W, Sperring CP, Cuervo Grajal H, Liu Z, Higgins DM, Amini M, Pereira B, Ye LF, Mahajan A, Humala N, Furnari JL, Upadhyayula PS, Zandkarimi F, Nguyen TT, Teasley D, Wu PB, Hai L, Karan C, Dowdy T, Razavilar A, Siegelin MD, Kitajewski J, Larion M, Bruce JN, Stockwell BR, Sims PA, Canoll P. A cell state-specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma. EMBO J 2024; 43:4492-4521. [PMID: 39192032 PMCID: PMC11480389 DOI: 10.1038/s44318-024-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Glioma cells hijack developmental programs to control cell state. Here, we uncover a glioma cell state-specific metabolic liability that can be therapeutically targeted. To model cell conditions at brain tumor inception, we generated genetically engineered murine gliomas, with deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling astrocyte differentiation during brain development. N1IC tumors harbored quiescent astrocyte-like transformed cell populations while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. Further, N1IC transformed cells exhibited increased mitochondrial lipid peroxidation, high ROS production and depletion of reduced glutathione. This altered mitochondrial phenotype rendered the astrocyte-like, quiescent populations more sensitive to pharmacologic or genetic inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Treatment of patient-derived early-passage cell lines and glioma slice cultures generated from surgical samples with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles. Collectively, these findings reveal a specific therapeutic vulnerability to ferroptosis linked to mitochondrial redox imbalance in a subpopulation of quiescent astrocyte-like glioma cells resistant to standard forms of treatment.
Collapse
Affiliation(s)
- Matei A Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Zhouzerui Liu
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dominique Mo Higgins
- Department of Neurological Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Misha Amini
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling F Ye
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Trang Tt Nguyen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Damian Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Li Hai
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | | | - Aida Razavilar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Kitajewski
- University of Illinois Cancer Center, Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry and Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Peter A Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Peter Canoll
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Watson SS, Zomer A, Fournier N, Lourenco J, Quadroni M, Chryplewicz A, Nassiri S, Aubel P, Avanthay S, Croci D, Abels E, Broekman MLD, Hanahan D, Huse JT, Daniel RT, Hegi ME, Homicsko K, Cossu G, Hottinger AF, Joyce JA. Fibrotic response to anti-CSF-1R therapy potentiates glioblastoma recurrence. Cancer Cell 2024; 42:1507-1527.e11. [PMID: 39255775 DOI: 10.1016/j.ccell.2024.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
Glioblastoma recurrence is currently inevitable despite extensive standard-of-care treatment. In preclinical studies, an alternative strategy of targeting tumor-associated macrophages and microglia through CSF-1R inhibition was previously found to regress established tumors and significantly increase overall survival. However, recurrences developed in ∼50% of mice in long-term studies, which were consistently associated with fibrotic scars. This fibrotic response is observed following multiple anti-glioma therapies in different preclinical models herein and in patient recurrence samples. Multi-omics analyses of the post-treatment tumor microenvironment identified fibrotic areas as pro-tumor survival niches that encapsulated surviving glioma cells, promoted dormancy, and inhibited immune surveillance. The fibrotic treatment response was mediated by perivascular-derived fibroblast-like cells via activation by transforming growth factor β (TGF-β) signaling and neuroinflammation. Concordantly, combinatorial inhibition of these pathways inhibited treatment-associated fibrosis, and significantly improved survival in preclinical trials of anti-colony-stimulating factor-1 receptor (CSF-1R) therapy.
Collapse
Affiliation(s)
- Spencer S Watson
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Anoek Zomer
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Translational Data Science Facility, SIB Swiss Institute of Bioinformatics, Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland
| | - Joao Lourenco
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Translational Data Science Facility, SIB Swiss Institute of Bioinformatics, Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland
| | - Manfredo Quadroni
- Proteomics Core Facility, University of Lausanne, 1011 Lausanne, Switzerland
| | - Agnieszka Chryplewicz
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sina Nassiri
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Translational Data Science Facility, SIB Swiss Institute of Bioinformatics, Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland
| | - Pauline Aubel
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Simona Avanthay
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Davide Croci
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Erik Abels
- Department of Neurosurgery, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2597 The Hague, the Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2597 The Hague, the Netherlands
| | - Douglas Hanahan
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Geneva, Switzerland
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roy T Daniel
- Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Neurosurgery, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Clinical Neurosciences, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Krisztian Homicsko
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Giulia Cossu
- Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Geneva, Switzerland.
| |
Collapse
|
15
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
16
|
Lv X, Wang B, Liu K, Li MJ, Yi X, Wu X. Decoding heterogeneous and coordinated tissue architecture in glioblastoma using spatial transcriptomics. iScience 2024; 27:110064. [PMID: 38947514 PMCID: PMC11214485 DOI: 10.1016/j.isci.2024.110064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most lethal brain tumors, characterized by profound heterogeneity. While single-cell transcriptomic studies have revealed extensive intra-tumor heterogeneity, shed light on intra-tumor diversity, spatial intricacies remain largely unexplored. Leveraging clinical GBM specimens, this study employs spatial transcriptomics technology to delve into gene expression heterogeneity. Our investigation unveils a significant enrichment of tissue stem cell signature in regions bordering necrosis and the peritumoral area, positively correlated with the mesenchymal subtype signature. Moreover, upregulated genes in these regions are linked with extracellular matrix (ECM)-receptor interaction, proteoglycans, as well as vascular endothelial growth factor (VEGF) and angiopoietin-Tie (ANGPT) signaling pathways. In contrast, signatures related to glycogen metabolism and oxidative phosphorylation show no relevance to pathological zoning, whereas creatine metabolism signature is notably exclusive to vascular-enriched areas. These spatial profiles not only offer valuable references but also pave the way for future in-depth functional and mechanistic investigations into GBM progression.
Collapse
Affiliation(s)
- Xuejiao Lv
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Bo Wang
- Department of Neurosurgery, Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, No. 6 Jizhao Road, Tianjin 300350, China
| | - Kunlun Liu
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xianfu Yi
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
17
|
Hu A, Chen H, Pang W, Pu X, Qi Z, Chen H. Identification of potential modulators for human GPD1 by docking-based virtual screening, molecular dynamics simulations, binding free energy calculations, and DeLA-drug analysis. Sci Rep 2024; 14:14123. [PMID: 38898093 PMCID: PMC11187211 DOI: 10.1038/s41598-024-61439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Cytosolic Glycerol-3-phosphate dehydrogenase 1 (GPD1, EC 1.1.1.8) plays a pivotal role in regulating the Embden-Meyerhof glucose glycolysis pathway (E-M pathway), as well as in conditions such as Huntington's disease, cancer, and its potential role as a specific marker for Dormant Glioma Stem Cells. In this study, we conducted virtual screening using the ZINC database ( http://zinc.docking.org/ ) and the GPD1 structure to identify potential GPD1 modulators. The investigation involved screening active candidate ligands using ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) parameters, combined with molecular docking, pose analysis, and interaction analysis based on Lipinski and Veber criteria. Subsequently, the top 10 ligands were subjected to 200 ns all-atom molecular dynamics (M.D.) simulations, and binding free energies were calculated. The findings revealed that specific residues, namely TRP14, PRO94, LYS120, ASN151, THR264, ASP260, and GLN298, played a crucial role in ensuring system stability. Furthermore, through a comprehensive analysis involving molecular docking, molecular M.D., and DeLA-Drug, we identified 10 promising small molecules. These molecules represent potential lead compounds for developing effective therapeutics targeting GPD1-associated diseases, thereby contributing to a deeper understanding of GPD1-associated mechanisms. This study's significance lies in identifying key residues associated with GPD1 and discovering valuable small molecules, providing a foundation for further research and development.
Collapse
Affiliation(s)
- Anzheng Hu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongwei Chen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wenwei Pang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiaojie Pu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zhongquan Qi
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Haiyan Chen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
18
|
Lambert AW, Zhang Y, Weinberg RA. Cell-intrinsic and microenvironmental determinants of metastatic colonization. Nat Cell Biol 2024; 26:687-697. [PMID: 38714854 DOI: 10.1038/s41556-024-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 05/18/2024]
Abstract
Cancer metastasis is a biologically complex process that remains a major challenge in the oncology clinic, accounting for nearly all of the mortality associated with malignant neoplasms. To establish metastatic growths, carcinoma cells must disseminate from the primary tumour, survive in unfamiliar tissue microenvironments, re-activate programs of proliferation, and escape innate and adaptive immunosurveillance. The entire process is extremely inefficient and can occur over protracted timescales, yielding only a vanishingly small number of carcinoma cells that are able to complete all of the required steps. Here we review both the cancer-cell-intrinsic mechanisms and microenvironmental interactions that enable metastatic colonization. In particular, we highlight recent work on the behaviour of already-disseminated tumour cells, since meaningful progress in treating metastatic disease will clearly require a better understanding of the cells that spawn metastases, which generally have disseminated by the time of initial diagnosis.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, MA, USA
| | - Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT Ludwig Center, Cambridge, MA, USA.
| |
Collapse
|
19
|
Oh S, Mai XL, Kim J, de Guzman ACV, Lee JY, Park S. Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases. Exp Mol Med 2024; 56:1066-1079. [PMID: 38689091 PMCID: PMC11148179 DOI: 10.1038/s12276-024-01222-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 05/02/2024] Open
Abstract
The glycerol 3-phosphate shuttle (GPS) is composed of two different enzymes: cytosolic NAD+-linked glycerol 3-phosphate dehydrogenase 1 (GPD1) and mitochondrial FAD-linked glycerol 3-phosphate dehydrogenase 2 (GPD2). These two enzymes work together to act as an NADH shuttle for mitochondrial bioenergetics and function as an important bridge between glucose and lipid metabolism. Since these genes were discovered in the 1960s, their abnormal expression has been described in various metabolic diseases and tumors. Nevertheless, it took a long time until scientists could investigate the causal relationship of these enzymes in those pathophysiological conditions. To date, numerous studies have explored the involvement and mechanisms of GPD1 and GPD2 in cancer and other diseases, encompassing reports of controversial and non-conventional mechanisms. In this review, we summarize and update current knowledge regarding the functions and effects of GPS to provide an overview of how the enzymes influence disease conditions. The potential and challenges of developing therapeutic strategies targeting these enzymes are also discussed.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xuan Linh Mai
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Jiwoo Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Arvie Camille V de Guzman
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Ji Yun Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
20
|
Granadeiro L, Zarralanga VE, Rosa R, Franquinho F, Lamas S, Brites P. Ataxia with giant axonopathy in Acbd5-deficient mice halted by adeno-associated virus gene therapy. Brain 2024; 147:1457-1473. [PMID: 38066620 DOI: 10.1093/brain/awad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 04/06/2024] Open
Abstract
Acyl-CoA binding domain containing 5 (ACBD5) is a critical player in handling very long chain fatty acids (VLCFA) en route for peroxisomal β-oxidation. Mutations in ACBD5 lead to the accumulation of VLCFA and patients present retinal dystrophy, ataxia, psychomotor delay and a severe leukodystrophy. Using CRISPR/Cas9, we generated and characterized an Acbd5 Gly357* mutant allele. Gly357* mutant mice recapitulated key features of the human disorder, including reduced survival, impaired locomotion and reflexes, loss of photoreceptors, and demyelination. The ataxic presentation of Gly357* mice involved the loss of cerebellar Purkinje cells and a giant axonopathy throughout the CNS. Lipidomic studies provided evidence for the extensive lipid dysregulation caused by VLCFA accumulation. Following a proteomic survey, functional studies in neurons treated with VLCFA unravelled a deregulated cytoskeleton with reduced actin dynamics and increased neuronal filopodia. We also show that an adeno-associated virus-mediated gene delivery ameliorated the gait phenotypes and the giant axonopathy, also improving myelination and astrocyte reactivity. Collectively, we established a mouse model with significance for VLCFA-related disorders. The development of relevant neuropathological outcomes enabled the understanding of mechanisms modulated by VLCFA and the evaluation of the efficacy of preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Luis Granadeiro
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
- Graduate Program in Molecular and Cell Biology, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Violeta Enríquez Zarralanga
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Ricardo Rosa
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| | - Filipa Franquinho
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Sofia Lamas
- Animal Facility, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S, 4200-135 Porto, Portugal
| | - Pedro Brites
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde da Universidade do Porto - i3S and Instituto de Biologia Molecular e Celular - IBMC, 4200-135 Porto, Portugal
| |
Collapse
|
21
|
Formanski JP, Ngo HD, Grunwald V, Pöhlking C, Jonas JS, Wohlers D, Schwalbe B, Schreiber M. Transduction Efficiency of Zika Virus E Protein Pseudotyped HIV-1 gfp and Its Oncolytic Activity Tested in Primary Glioblastoma Cell Cultures. Cancers (Basel) 2024; 16:814. [PMID: 38398205 PMCID: PMC10887055 DOI: 10.3390/cancers16040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new tools against glioblastoma multiforme (GBM), the most aggressive and common cancer originating in the brain, remains of utmost importance. Lentiviral vectors (LVs) are among the tools of future concepts, and pseudotyping offers the possibility of tailoring LVs to efficiently transduce and inactivate GBM tumor cells. Zika virus (ZIKV) has a specificity for GBM cells, leaving healthy brain cells unharmed, which makes it a prime candidate for the development of LVs with a ZIKV coat. Here, primary GBM cell cultures were transduced with different LVs encased with ZIKV envelope variants. LVs were generated by using the pNLgfpAM plasmid, which produces the lentiviral, HIV-1-based, core particle with GFP (green fluorescent protein) as a reporter (HIVgfp). Using five different GBM primary cell cultures and three laboratory-adapted GBM cell lines, we showed that ZIKV/HIVgfp achieved a 4-6 times higher transduction efficiency compared to the commonly used VSV/HIVgfp. Transduced GBM cell cultures were monitored over a period of 9 days to identify GFP+ cells to study the oncolytic effect due to ZIKV/HIVgfp entry. Tests of GBM tumor specificity by transduction of GBM tumor and normal brain cells showed a high specificity for GBM cells.
Collapse
Affiliation(s)
- Jan Patrick Formanski
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Hai Dang Ngo
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Vivien Grunwald
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Celine Pöhlking
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Jana Sue Jonas
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Dominik Wohlers
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| | - Birco Schwalbe
- Department of Neurosurgery, Asklepios Klinik Nord, Standort Heidberg, 22417 Hamburg, Germany;
| | - Michael Schreiber
- Department of Virology, LG Schreiber, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany (H.D.N.); (V.G.); (C.P.); (J.S.J.); (D.W.)
| |
Collapse
|
22
|
Wang C, Sun M, Shao C, Schlicker L, Zhuo Y, Harim Y, Peng T, Tian W, Stöffler N, Schneider M, Helm D, Chu Y, Fu B, Jin X, Mallm JP, Mall M, Wu Y, Schulze A, Liu HK. A multidimensional atlas of human glioblastoma-like organoids reveals highly coordinated molecular networks and effective drugs. NPJ Precis Oncol 2024; 8:19. [PMID: 38273014 PMCID: PMC10811239 DOI: 10.1038/s41698-024-00500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024] Open
Abstract
Recent advances in the genomics of glioblastoma (GBM) led to the introduction of molecular neuropathology but failed to translate into treatment improvement. This is largely attributed to the genetic and phenotypic heterogeneity of GBM, which are considered the major obstacle to GBM therapy. Here, we use advanced human GBM-like organoid (LEGO: Laboratory Engineered Glioblastoma-like Organoid) models and provide an unprecedented comprehensive characterization of LEGO models using single-cell transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-proteome analysis. We discovered that genetic heterogeneity dictates functional heterogeneity across molecular layers and demonstrates that NF1 mutation drives mesenchymal signature. Most importantly, we found that glycerol lipid reprogramming is a hallmark of GBM, and several targets and drugs were discovered along this line. We also provide a genotype-based drug reference map using LEGO-based drug screen. This study provides new human GBM models and a research path toward effective GBM therapy.
Collapse
Affiliation(s)
- Changwen Wang
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Meng Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Chunxuan Shao
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Lisa Schlicker
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Yue Zhuo
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Yassin Harim
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Tianping Peng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Weili Tian
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Nadja Stöffler
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Beibei Fu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 200025, Shanghai, China
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Yonghe Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ); The DKFZ-ZMBH alliance, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
23
|
Su D, Ding C, Qiu J, Yang G, Wang R, Liu Y, Tao J, Luo W, Weng G, Zhang T. Ribosome profiling: a powerful tool in oncological research. Biomark Res 2024; 12:11. [PMID: 38273337 PMCID: PMC10809610 DOI: 10.1186/s40364-024-00562-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Neoplastic cells need to adapt their gene expression pattern to survive in an ever-changing or unfavorable tumor microenvironment. Protein synthesis (or mRNA translation), an essential part of gene expression, is dysregulated in cancer. The emergence of distinct translatomic technologies has revolutionized oncological studies to elucidate translational regulatory mechanisms. Ribosome profiling can provide adequate information on diverse aspects of translation by aiding in quantitatively analyzing the intensity of translating ribosome-protected fragments. Here, we review the primary currently used translatomics techniques and highlight their advantages and disadvantages as tools for translatomics studies. Subsequently, we clarified the areas in which ribosome profiling could be applied to better understand translational control. Finally, we summarized the latest advances in cancer studies using ribosome profiling to highlight the extensive application of this powerful and promising translatomic tool.
Collapse
Affiliation(s)
- Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Chen Ding
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Gang Yang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R. China
| | - Guihu Weng
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R. China.
| |
Collapse
|
24
|
Lokumcu T, Iskar M, Schneider M, Helm D, Klinke G, Schlicker L, Bethke F, Müller G, Richter K, Poschet G, Phillips E, Goidts V. Proteomic, Metabolomic, and Fatty Acid Profiling of Small Extracellular Vesicles from Glioblastoma Stem-Like Cells and Their Role in Tumor Heterogeneity. ACS NANO 2024; 18:2500-2519. [PMID: 38207106 PMCID: PMC10811755 DOI: 10.1021/acsnano.3c11427] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Glioblastoma is a deadly brain tumor for which there is no cure. The presence of glioblastoma stem-like cells (GSCs) contributes to the heterogeneous nature of the disease and makes developing effective therapies challenging. Glioblastoma cells have been shown to influence their environment by releasing biological nanostructures known as extracellular vesicles (EVs). Here, we investigated the role of GSC-derived nanosized EVs (<200 nm) in glioblastoma heterogeneity, plasticity, and aggressiveness, with a particular focus on their protein, metabolite, and fatty acid content. We showed that conditioned medium and small extracellular vesicles (sEVs) derived from cells of one glioblastoma subtype induced transcriptomic and proteomic changes in cells of another subtype. We found that GSC-derived sEVs are enriched in proteins playing a role in the transmembrane transport of amino acids, carboxylic acids, and organic acids, growth factor binding, and metabolites associated with amino acid, carboxylic acid, and sugar metabolism. This suggests a dual role of GSC-derived sEVs in supplying neighboring GSCs with valuable metabolites and proteins responsible for their transport. Moreover, GSC-derived sEVs were enriched in saturated fatty acids, while their respective cells were high in unsaturated fatty acids, supporting that the loading of biological cargos into sEVs is a highly regulated process and that GSC-derived sEVs could be sources of saturated fatty acids for the maintenance of glioblastoma cell metabolism. Interestingly, sEVs isolated from GSCs of the proneural and mesenchymal subtypes are enriched in specific sets of proteins, metabolites, and fatty acids, suggesting a molecular collaboration between transcriptionally different glioblastoma cells. In summary, this study revealed the complexity of GSC-derived sEVs and unveiled their potential contribution to tumor heterogeneity and critical cellular processes commonly deregulated in glioblastoma.
Collapse
Affiliation(s)
- Tolga Lokumcu
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
- Faculty
of Biosciences, University of Heidelberg, Heidelberg 69120, Germany
| | - Murat Iskar
- Friedrich
Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Martin Schneider
- Proteomics
Core Facility, German Cancer Research Center
(DKFZ), Heidelberg 69120, Germany
| | - Dominic Helm
- Proteomics
Core Facility, German Cancer Research Center
(DKFZ), Heidelberg 69120, Germany
| | - Glynis Klinke
- Metabolomics
Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Lisa Schlicker
- Proteomics
Core Facility, German Cancer Research Center
(DKFZ), Heidelberg 69120, Germany
- Division
of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Frederic Bethke
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| | - Gabriele Müller
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| | - Karsten Richter
- Core
Facility Electron Microscopy, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| | - Gernot Poschet
- Metabolomics
Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Emma Phillips
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| | - Violaine Goidts
- Brain
Tumor Translational Targets, German Cancer
Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
25
|
Nafe R, Hattingen E. Cellular Components of the Tumor Environment in Gliomas-What Do We Know Today? Biomedicines 2023; 12:14. [PMID: 38275375 PMCID: PMC10813739 DOI: 10.3390/biomedicines12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
A generation ago, the molecular properties of tumor cells were the focus of scientific interest in oncology research. Since then, it has become increasingly apparent that the tumor environment (TEM), whose major components are non-neoplastic cell types, is also of utmost importance for our understanding of tumor growth, maintenance and resistance. In this review, we present the current knowledge concerning all cellular components within the TEM in gliomas, focusing on their molecular properties, expression patterns and influence on the biological behavior of gliomas. Insight into the TEM of gliomas has expanded considerably in recent years, including many aspects that previously received only marginal attention, such as the phenomenon of phagocytosis of glioma cells by macrophages and the role of the thyroid-stimulating hormone on glioma growth. We also discuss other topics such as the migration of lymphocytes into the tumor, phenotypic similarities between chemoresistant glioma cells and stem cells, and new clinical approaches with immunotherapies involving the cells of TEM.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
26
|
Li J, Ma S, Pei H, Jiang J, Zou Q, Lv Z. Review of T cell proliferation regulatory factors in treatment and prognostic prediction for solid tumors. Heliyon 2023; 9:e21329. [PMID: 37954355 PMCID: PMC10637962 DOI: 10.1016/j.heliyon.2023.e21329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
T cell proliferation regulators (Tcprs), which are positive regulators that promote T cell function, have made great contributions to the development of therapies to improve T cell function. CAR (chimeric antigen receptor) -T cell therapy, a type of adoptive cell transfer therapy that targets tumor cells and enhances immune lethality, has led to significant progress in the treatment of hematologic tumors. However, the applications of CAR-T in solid tumor treatment remain limited. Therefore, in this review, we focus on the development of Tcprs for solid tumor therapy and prognostic prediction. We summarize potential strategies for targeting different Tcprs to enhance T cell proliferation and activation and inhibition of cancer progression, thereby improving the antitumor activity and persistence of CAR-T. In summary, we propose means of enhancing CAR-T cells by expressing different Tcprs, which may lead to the development of a new generation of cell therapies.
Collapse
Affiliation(s)
- Jiayu Li
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Shuhan Ma
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongdi Pei
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jici Jiang
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zhibin Lv
- Student Innovation Competition Team, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Lin S, Li K, Qi L. Cancer stem cells in brain tumors: From origin to clinical implications. MedComm (Beijing) 2023; 4:e341. [PMID: 37576862 PMCID: PMC10412776 DOI: 10.1002/mco2.341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Malignant brain tumors are highly heterogeneous tumors with a poor prognosis and a high morbidity and mortality rate in both children and adults. The cancer stem cell (CSC, also named tumor-initiating cell) model states that tumor growth is driven by a subset of CSCs. This model explains some of the clinical observations of brain tumors, including the almost unavoidable tumor recurrence after initial successful chemotherapy and/or radiotherapy and treatment resistance. Over the past two decades, strategies for the identification and characterization of brain CSCs have improved significantly, supporting the design of new diagnostic and therapeutic strategies for brain tumors. Relevant studies have unveiled novel characteristics of CSCs in the brain, including their heterogeneity and distinctive immunobiology, which have provided opportunities for new research directions and potential therapeutic approaches. In this review, we summarize the current knowledge of CSCs markers and stemness regulators in brain tumors. We also comprehensively describe the influence of the CSCs niche and tumor microenvironment on brain tumor stemness, including interactions between CSCs and the immune system, and discuss the potential application of CSCs in brain-based therapies for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shuyun Lin
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Kaishu Li
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| | - Ling Qi
- Institute of Digestive DiseaseThe Sixth Affiliated Hospital of Guangzhou Medical UniversityQingyuan People's HospitalQingyuanGuangdongChina
| |
Collapse
|
28
|
Xia Z, Zhao N, Liu M, Jiang D, Gao S, Ma P, Huang L. GPD1 inhibits the carcinogenesis of breast cancer through increasing PI3K/AKT-mediated lipid metabolism signaling pathway. Heliyon 2023; 9:e18128. [PMID: 37483742 PMCID: PMC10362286 DOI: 10.1016/j.heliyon.2023.e18128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Glycerol 3-phosphate dehydrogenase 1 (GPD1) acts as a tumor suppressor in various types of cancer. However, the mechanisms of GPD1 anti-tumor remain unclear in breast cancer. This study aims to explore the function and clinical relevance of GPD1 in breast cancer. We confirmed that GPD1 inhibited the ability of proliferation, migration, and invasion in GPD1 overexpression breast cancer cells by CCK-8, wound healing, and Transwell assays, respectively. We found that GPD1 overexpression activated the lipid synthesis pathway and PI3K/AKT signaling pathway. The inhibitory effect of GPD1 on breast cancer cells was also weakened after treatment with LY294002, a PI3K/AKT pathway inhibitor. These results indicated that GPD1 suppressed the carcinogenesis of breast cancer through increasing PI3K/AKT-mediated lipid signaling pathways. Meanwhile, we detected that the relationship between GPD1 level and survival rate presents a positive correlation in breast cancer patients from the Cancer Genome Atlas (TCGA) database. Therefore, GPD1 can be a prognostic biomarker and target in developing therapeutic strategies for breast cancer patients.
Collapse
Affiliation(s)
- Zhengchao Xia
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Ningming Zhao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Mingzhou Liu
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - DanDan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Li Huang
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
29
|
Li X, Zhong Z, Zhang R, Zhang J, Zhang Y, Zeng S, Du Q, Wang H, Zhang S, Lu L, Li M, Long K. Decoding the transcriptome of muscular dystrophy due to Ptrf deficiency using single-nucleus RNA sequencing. FASEB J 2023; 37:e22993. [PMID: 37235502 DOI: 10.1096/fj.202201949rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/20/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Lacking PTRF (polymerase I and transcript release factor), an essential caveolae component, causes a secondary deficiency of caveolins resulting in muscular dystrophy. The transcriptome responses of different types of muscle fibers and mononuclear cells in skeletal muscle to muscular dystrophy caused by Ptrf deletion have not been explored. Here, we created muscular dystrophy mice by Ptrf knockout and applied single-nucleus RNA sequencing (snRNA-seq) to unveil the transcriptional changes of the skeletal muscle at single-nucleus resolution. 11 613 muscle nuclei (WT, 5838; Ptrf KO, 5775) were classified into 12 clusters corresponding to 11 nuclear types. Trajectory analysis revealed the potential transition between type IIb_1 and IIb_2 myonuclei upon muscular dystrophy. Functional enrichment analysis indicated that apoptotic signaling and enzyme-linked receptor protein signaling pathway were significantly enriched in type IIb_1 and IIb_2 myonuclei of Ptrf KO, respectively. The muscle structure development and the PI3K-AKT signaling pathway were significantly enriched in type IIa and IIx myonuclei of Ptrf KO. Meanwhile, metabolic pathway analysis showed a decrease in overall metabolic pathway activity of myonuclei subtypes upon muscular dystrophy, with the most decrease in type IIb_1 myonuclei. Gene regulatory network analysis found that the activity of Mef2c, Mef2d, Myf5, and Pax3 regulons was enhanced in type II myonuclei of Ptrf KO, especially in type IIb_2 myonuclei. In addition, we investigated the transcriptome changes in adipocytes and found that muscular dystrophy enhanced the lipid metabolic capacity of adipocytes. Our findings provide a valuable resource for exploring the molecular mechanism of muscular dystrophy due to Ptrf deficiency.
Collapse
Affiliation(s)
- Xiaokai Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhining Zhong
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ruowei Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yu Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Sha Zeng
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qinjiao Du
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Haoming Wang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Songling Zhang
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- Livestock and Poultry Multi-omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
30
|
Bernhard C, Reita D, Martin S, Entz-Werle N, Dontenwill M. Glioblastoma Metabolism: Insights and Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24119137. [PMID: 37298093 DOI: 10.3390/ijms24119137] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor metabolism is emerging as a potential target for cancer therapies. This new approach holds particular promise for the treatment of glioblastoma, a highly lethal brain tumor that is resistant to conventional treatments, for which improving therapeutic strategies is a major challenge. The presence of glioma stem cells is a critical factor in therapy resistance, thus making it essential to eliminate these cells for the long-term survival of cancer patients. Recent advancements in our understanding of cancer metabolism have shown that glioblastoma metabolism is highly heterogeneous, and that cancer stem cells exhibit specific metabolic traits that support their unique functionality. The objective of this review is to examine the metabolic changes in glioblastoma and investigate the role of specific metabolic processes in tumorigenesis, as well as associated therapeutic approaches, with a particular focus on glioma stem cell populations.
Collapse
Affiliation(s)
- Chloé Bernhard
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Damien Reita
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Laboratory of Biochemistry and Molecular Biology, Department of Cancer Molecular Genetics, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Sophie Martin
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Natacha Entz-Werle
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| |
Collapse
|
31
|
HIF1α and HIF2α regulate non-small-cell lung cancer dedifferentiation via expression of Sox2 and Oct4 under hypoxic conditions. Gene 2023; 863:147288. [PMID: 36804853 DOI: 10.1016/j.gene.2023.147288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE To explore HIF1α and HIF2α regulate the dedifferentiation of lung cancer cells under hypoxic conditions through Sox2 and Oct4. MATERIALS AND METHODS HIF1α, HIF2α, Sox2 and Oct4 expression was analysed in lung cancer tissues. We analysed sphere formation by single-cell of differentiated lung cancer under hypoxia, and detected the expression of CD133, CD44, Sox2, Oct4, HIF1α and HIF2α. We knocked out HIF1α, HIF2α, Sox2 or Oct4 in cells, cultured the cells under hypoxic conditions and detected CD133 and CD44 using western blotting. We also detected the apoptosis rate of cells with HIF1α, HIF2α, Sox2 or Oct4 knockout. RESULTS There was more sphere formation of differentiated lung cancer cells under hypoxic conditions than of control cells under normoxic conditions. These newly formed spheres highly expressed CD133 and CD44. TCGA database showed high expression of HIF1α and HIF2α in lung cancer tissues. After knocking out HIF1α and HIF2α, the expression of Sox2, Oct4, CD133 and CD44 decreased significantly, and after knocking out Sox2 or Oct4, the expression of CD133 and CD44 decreased. CONCLUSION HIF1α and HIF2α regulate non-small-cell lung cancer dedifferentiation through Sox2 and Oct4 under hypoxic conditions.
Collapse
|
32
|
Yao CH, Park JS, Kurmi K, Hu SH, Notarangelo G, Crowley J, Jacobson H, Hui S, Sharpe AH, Haigis MC. Uncoupled glycerol-3-phosphate shuttle in kidney cancer reveals that cytosolic GPD is essential to support lipid synthesis. Mol Cell 2023; 83:1340-1349.e7. [PMID: 37084714 PMCID: PMC10131091 DOI: 10.1016/j.molcel.2023.03.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/16/2023] [Accepted: 03/22/2023] [Indexed: 04/23/2023]
Abstract
The glycerol-3-phosphate shuttle (G3PS) is a major NADH shuttle that regenerates reducing equivalents in the cytosol and produces energy in the mitochondria. Here, we demonstrate that G3PS is uncoupled in kidney cancer cells where the cytosolic reaction is ∼4.5 times faster than the mitochondrial reaction. The high flux through cytosolic glycerol-3-phosphate dehydrogenase (GPD) is required to maintain redox balance and support lipid synthesis. Interestingly, inhibition of G3PS by knocking down mitochondrial GPD (GPD2) has no effect on mitochondrial respiration. Instead, loss of GPD2 upregulates cytosolic GPD on a transcriptional level and promotes cancer cell proliferation by increasing glycerol-3-phosphate supply. The proliferative advantage of GPD2 knockdown tumor can be abolished by pharmacologic inhibition of lipid synthesis. Taken together, our results suggest that G3PS is not required to run as an intact NADH shuttle but is instead truncated to support complex lipid synthesis in kidney cancer.
Collapse
Affiliation(s)
- Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Kiran Kurmi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Giulia Notarangelo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joseph Crowley
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Heidi Jacobson
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sheng Hui
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Shen X, Li M, Shao K, Li Y, Ge Z. Post-ischemic inflammatory response in the brain: Targeting immune cell in ischemic stroke therapy. Front Mol Neurosci 2023; 16:1076016. [PMID: 37078089 PMCID: PMC10106693 DOI: 10.3389/fnmol.2023.1076016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
An ischemic stroke occurs when the blood supply is obstructed to the vascular basin, causing the death of nerve cells and forming the ischemic core. Subsequently, the brain enters the stage of reconstruction and repair. The whole process includes cellular brain damage, inflammatory reaction, blood–brain barrier destruction, and nerve repair. During this process, the proportion and function of neurons, immune cells, glial cells, endothelial cells, and other cells change. Identifying potential differences in gene expression between cell types or heterogeneity between cells of the same type helps to understand the cellular changes that occur in the brain and the context of disease. The recent emergence of single-cell sequencing technology has promoted the exploration of single-cell diversity and the elucidation of the molecular mechanism of ischemic stroke, thus providing new ideas and directions for the diagnosis and clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xueyang Shen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kangmei Shao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Yongnan Li,
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Zhaoming Ge,
| |
Collapse
|
34
|
Tau S, Miller TW. The role of cancer cell bioenergetics in dormancy and drug resistance. Cancer Metastasis Rev 2023; 42:87-98. [PMID: 36696004 PMCID: PMC10233409 DOI: 10.1007/s10555-023-10081-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
While anti-cancer drug treatments are often effective for the clinical management of cancer, these treatments frequently leave behind drug-tolerant persister cancer cells that can ultimately give rise to recurrent disease. Such persistent cancer cells can lie dormant for extended periods of time, going undetected by conventional clinical means. Understanding the mechanisms that such dormant cancer cells use to survive, and the mechanisms that drive emergence from dormancy, is critical to the development of improved therapeutic strategies to prevent and manage disease recurrence. Cancer cells often exhibit metabolic alterations compared to their non-transformed counterparts. An emerging body of evidence supports the notion that dormant cancer cells also have unique metabolic adaptations that may offer therapeutically targetable vulnerabilities. Herein, we review mechanisms through which cancer cells metabolically adapt to persist during drug treatments and develop drug resistance. We also highlight emerging therapeutic strategies to target dormant cancer cells via their metabolic features.
Collapse
Affiliation(s)
- Steven Tau
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Dartmouth Cancer Center, Lebanon, NH, USA.
- Dartmouth-Hitchcock Medical Center, One Medical Center Drive, HB-7936, Lebanon, NH 03756, USA.
| |
Collapse
|
35
|
Pöhlking C, Beier S, Formanski JP, Friese M, Schreiber M, Schwalbe B. Isolation of Cells from Glioblastoma Multiforme Grade 4 Tumors for Infection with Zika Virus prME and ME Pseudotyped HIV-1. Int J Mol Sci 2023; 24:ijms24054467. [PMID: 36901897 PMCID: PMC10002608 DOI: 10.3390/ijms24054467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
This study aimed to isolate cells from grade 4 glioblastoma multiforme tumors for infection experiments with Zika virus (ZIKV) prME or ME enveloped HIV-1 pseudotypes. The cells obtained from tumor tissue were successfully cultured in human cerebrospinal fluid (hCSF) or a mixture of hCSF/DMEM in cell culture flasks with polar and hydrophilic surfaces. The isolated tumor cells as well as the U87, U138, and U343 cells tested positive for ZIKV receptors Axl and Integrin αvβ5. Pseudotype entry was detected by the expression of firefly luciferase or green fluorescent protein (gfp). In prME and ME pseudotype infections, luciferase expression in U-cell lines was 2.5 to 3.5 logarithms above the background, but still two logarithms lower than in the VSV-G pseudotype control. Infection of single cells was successfully detected in U-cell lines and isolated tumor cells by gfp detection. Even though prME and ME pseudotypes had low infection rates, pseudotypes with ZIKV envelopes are promising candidates for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Celine Pöhlking
- Department of Virology, LG-Schreiber, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Sebastian Beier
- Department of Virology, LG-Schreiber, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Jan Patrick Formanski
- Department of Virology, LG-Schreiber, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Michael Friese
- Department of Pathology and Neuropathology, Asklepios Kliniken Hamburg GmbH, Asklepios Klinik Nord, Standort Heidberg, 22417 Hamburg, Germany
| | - Michael Schreiber
- Department of Virology, LG-Schreiber, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
- Correspondence:
| | - Birco Schwalbe
- Department of Neurosurgery, Asklepios Kliniken Hamburg GmbH, Asklepios Klinik Nord, Standort Heidberg, 22417 Hamburg, Germany
| |
Collapse
|
36
|
Banu MA, Dovas A, Argenziano MG, Zhao W, Grajal HC, Higgins DM, Sperring CP, Pereira B, Ye LF, Mahajan A, Humala N, Furnari JL, Upadhyayula PS, Zandkarimi F, Nguyen TTT, Wu PB, Hai L, Karan C, Razavilar A, Siegelin MD, Kitajewski J, Bruce JN, Stockwell BR, Sims PA, Canoll PD. A cell state specific metabolic vulnerability to GPX4-dependent ferroptosis in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529581. [PMID: 36865302 PMCID: PMC9980114 DOI: 10.1101/2023.02.22.529581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Glioma cells hijack developmental transcriptional programs to control cell state. During neural development, lineage trajectories rely on specialized metabolic pathways. However, the link between tumor cell state and metabolic programs is poorly understood in glioma. Here we uncover a glioma cell state-specific metabolic liability that can be leveraged therapeutically. To model cell state diversity, we generated genetically engineered murine gliomas, induced by deletion of p53 alone (p53) or with constitutively active Notch signaling (N1IC), a pathway critical in controlling cellular fate. N1IC tumors harbored quiescent astrocyte-like transformed cell states while p53 tumors were predominantly comprised of proliferating progenitor-like cell states. N1IC cells exhibit distinct metabolic alterations, with mitochondrial uncoupling and increased ROS production rendering them more sensitive to inhibition of the lipid hydroperoxidase GPX4 and induction of ferroptosis. Importantly, treating patient-derived organotypic slices with a GPX4 inhibitor induced selective depletion of quiescent astrocyte-like glioma cell populations with similar metabolic profiles.
Collapse
Affiliation(s)
- Matei A. Banu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Athanassios Dovas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Wenting Zhao
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Dominique M.O. Higgins
- Department of Neurological Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Colin P. Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brianna Pereira
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling F. Ye
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Julia L. Furnari
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pavan S. Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Trang T. T. Nguyen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter B. Wu
- Department of Neurological Surgery, UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Li Hai
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Charles Karan
- Sulzberger Columbia Genome Center, Columbia University, New York, NY, USA
| | - Aida Razavilar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Kitajewski
- University of Illinois Cancer Center, Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Brent R. Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Peter A. Sims
- Department of System Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
37
|
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab 2022; 34:1675-1699. [PMID: 36261043 DOI: 10.1016/j.cmet.2022.09.023] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lipids have essential biological functions in the body (e.g., providing energy storage, acting as a signaling molecule, and being a structural component of membranes); however, an excess of lipids can promote tumorigenesis, colonization, and metastatic capacity of tumor cells. To metastasize, a tumor cell goes through different stages that require lipid-related metabolic and structural adaptations. These adaptations include altering the lipid membrane composition for invading other niches and overcoming cell death mechanisms and promoting lipid catabolism and anabolism for energy and oxidative stress protective purposes. Cancer cells also harness lipid metabolism to modulate the activity of stromal and immune cells to their advantage and to resist therapy and promote relapse. All this is especially worrying given the high fat intake in Western diets. Thus, metabolic interventions aiming to reduce lipid availability to cancer cells or to exacerbate their metabolic vulnerabilities provide promising therapeutic opportunities to prevent cancer progression and treat metastasis.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028 Barcelona, Spain.
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
38
|
Chen J, Liu G, Wang X, Hong H, Li T, Li L, Wang H, Xie J, Li B, Li T, Lu D, Zhang Y, Zhao H, Yao C, Wen K, Li T, Chen J, Wu S, He K, Zhang WN, Zhao J, Wang N, Han Q, Xia Q, Qi J, Chen J, Zhou T, Man J, Zhang XM, Li AL, Pan X. Glioblastoma stem cell-specific histamine secretion drives pro-angiogenic tumor microenvironment remodeling. Cell Stem Cell 2022; 29:1531-1546.e7. [DOI: 10.1016/j.stem.2022.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/03/2022]
|
39
|
Gimple RC, Yang K, Halbert ME, Agnihotri S, Rich JN. Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. Nat Rev Cancer 2022; 22:497-514. [PMID: 35710946 DOI: 10.1038/s41568-022-00486-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Malignant brain tumours are complex ecosystems containing neoplastic and stromal components that generate adaptive and evolutionarily driven aberrant tissues in the central nervous system. Brain cancers are cultivated by a dynamic population of stem-like cells that enforce intratumoural heterogeneity and respond to intrinsic microenvironment or therapeutically guided insults through proliferation, plasticity and restructuring of neoplastic and stromal components. Far from a rigid hierarchy, heterogeneous neoplastic populations transition between cellular states with differential self-renewal capacities, endowing them with powerful resilience. Here we review the biological machinery used by brain tumour stem cells to commandeer tissues in the intracranial space, evade immune responses and resist chemoradiotherapy. Through recent advances in single-cell sequencing, improved models to investigate the role of the tumour microenvironment and a deeper understanding of the fundamental role of the immune system in cancer biology, we are now better equipped to explore mechanisms by which these processes can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Matthew E Halbert
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Luo Z, Chen Z, Zhu Z, Hao Y, Feng J, Luo Q, Zhang Z, Yang X, Hu J, Liang W, Ding G. Angiotensin II induces podocyte metabolic reprogramming from glycolysis to glycerol-3-phosphate biosynthesis. Cell Signal 2022; 99:110443. [PMID: 35988808 DOI: 10.1016/j.cellsig.2022.110443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Recent studies have reported that Angiotensin II (Ang II) contributes to podocyte injury by interfering with metabolism. Glycolysis is essential for podocytes and glycolysis abnormality is associated with glomerular injury in chronic kidney disease (CKD). Glycerol-3-phosphate (G-3-P) biosynthesis is a shunt pathway of glycolysis, in which cytosolic glycerol-3-phosphate dehydrogenase 1 (GPD1) catalyzes dihydroxyacetone phosphate (DHAP) to generate G-3-P in the presence of the NADH. G-3-P is not only a substrate in glycerophospholipids and glyceride synthesis but also can be oxidated by mitochondrial glycerol-3-phosphate dehydrogenase (GPD2) to regenerate DHAP in mitochondria. Since G-3-P biosynthesis links to glycolysis, mitochondrial metabolism and lipid synthesis, we speculate G-3-P biosynthesis abnormality is probably involved in podocyte injury. In this study, we demonstrated that Ang II upregulated GPD1 expression and increased G-3-P and glycerophospholipid syntheses in podocytes. GPD1 knockdown protected podocytes from Ang II-induced lipid accumulation and mitochondrial dysfunction. GPD1 overexpression exacerbated Ang II-induced podocyte injury. In addition, we proved that lipid accumulation and mitochondrial dysfunction were correlated with G-3-P content in podocytes. These results suggest that Ang II upregulates GPD1 and promotes G-3-P biosynthesis in podocytes, which promote lipid accumulation and mitochondrial dysfunction in podocytes.
Collapse
Affiliation(s)
- Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Qiang Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
41
|
A slow-cycling/quiescent cells subpopulation is involved in glioma invasiveness. Nat Commun 2022; 13:4767. [PMID: 35970913 PMCID: PMC9378633 DOI: 10.1038/s41467-022-32448-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Pediatric and adult high-grade gliomas are the most common primary malignant brain tumors, with poor prognosis due to recurrence and tumor infiltration after therapy. Quiescent cells have been implicated in tumor recurrence and treatment resistance, but their direct visualization and targeting remain challenging, precluding their mechanistic study. Here, we identify a population of malignant cells expressing Prominin-1 in a non-proliferating state in pediatric high-grade glioma patients. Using a genetic tool to visualize and ablate quiescent cells in mouse brain cancer and human cancer organoids, we reveal their localization at both the core and the edge of the tumors, and we demonstrate that quiescent cells are involved in infiltration of brain cancer cells. Finally, we find that Harmine, a DYRK1A/B inhibitor, partially decreases the number of quiescent and infiltrating cancer cells. Our data point to a subpopulation of quiescent cells as partially responsible of tumor invasiveness, one of the major causes of brain cancer morbidity. Quiescent cancer stem cells have been particularly associated to chemoresistance. Here, the authors show that a slowcycling subpopulation in high-grade glioma patients can invade the brain to promote tumourigenesis.
Collapse
|
42
|
Hersh AM, Gaitsch H, Alomari S, Lubelski D, Tyler BM. Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy. Cancers (Basel) 2022; 14:3743. [PMID: 35954407 PMCID: PMC9367289 DOI: 10.3390/cancers14153743] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| |
Collapse
|
43
|
Rai M, Carter SM, Shefali SA, Mahmoudzadeh NH, Pepin R, Tennessen JM. The Drosophila melanogaster enzyme glycerol-3-phosphate dehydrogenase 1 is required for oogenesis, embryonic development, and amino acid homeostasis. G3 GENES|GENOMES|GENETICS 2022; 12:6583191. [PMID: 35536221 PMCID: PMC9339270 DOI: 10.1093/g3journal/jkac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022]
Abstract
As the fruit fly, Drosophila melanogaster, progresses from one life stage to the next, many of the enzymes that compose intermediary metabolism undergo substantial changes in both expression and activity. These predictable shifts in metabolic flux allow the fly meet stage-specific requirements for energy production and biosynthesis. In this regard, the enzyme glycerol-3-phosphate dehydrogenase 1 (GPDH1) has been the focus of biochemical genetics studies for several decades and, as a result, is one of the most well-characterized Drosophila enzymes. Among the findings of these earlier studies is that GPDH1 acts throughout the fly lifecycle to promote mitochondrial energy production and triglyceride accumulation while also serving a key role in maintaining redox balance. Here, we expand upon the known roles of GPDH1 during fly development by examining how depletion of both the maternal and zygotic pools of this enzyme influences development, metabolism, and viability. Our findings not only confirm previous observations that Gpdh1 mutants exhibit defects in larval development, lifespan, and fat storage but also reveal that GPDH1 serves essential roles in oogenesis and embryogenesis. Moreover, metabolomics analysis reveals that a Gpdh1 mutant stock maintained in a homozygous state exhibits larval metabolic defects that significantly differ from those observed in the F1 mutant generation. Overall, our findings highlight unappreciated roles for GPDH1 in early development and uncover previously undescribed metabolic adaptations that could allow flies to survive the loss of this key enzyme.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Sarah M Carter
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Shefali A Shefali
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | | | - Robert Pepin
- Department of Chemistry, Indiana University , Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
44
|
Zhang W, He X, Yin H, Cao W, Lin T, Chen W, Diao W, Ding M, Hu H, Mo W, Zhang Q, Guo H. Allosteric activation of the metabolic enzyme GPD1 inhibits bladder cancer growth via the lysoPC-PAFR-TRPV2 axis. J Hematol Oncol 2022; 15:93. [PMID: 35836291 PMCID: PMC9284842 DOI: 10.1186/s13045-022-01312-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bladder cancer is the most common malignant tumor of the urinary system. Surgical resection and chemotherapy are the two mainstream treatments for bladder cancer. However, the outcomes are not satisfactory for patients with advanced bladder cancer. There is a need to further explore more effective targeted therapeutic strategies. METHODS Proteomics were performed to compare protein expression differences between human bladder cancer tissues and adjacent normal tissues. The function of GPD1 on bladder cancer cells were confirmed through in vivo and in vitro assays. Transcriptomics and metabolomics were performed to reveal the underlying mechanisms of GPD1. Virtual screening was used to identify allosteric activator of GPD1. RESULTS Here, we used proteomics to find that GPD1 expression was at low levels in bladder cancer tissues. Further investigation showed that GPD1 overexpression significantly promoted apoptosis in bladder cancer cells. Based on transcriptomics and metabolomics, GPD1 promotes Ca2+ influx and apoptosis of tumor cells via the lysoPC-PAFR-TRPV2 axis. Finally, we performed a virtual screening to obtain the GPD1 allosteric activator wedelolactone and demonstrated its ability to inhibit bladder tumor growth in vitro and in vivo. CONCLUSIONS This study suggests that GPD1 may act as a novel tumor suppressor in bladder cancer. Pharmacological activation of GPD1 is a potential therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Xin He
- Department of Urology, Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Haoli Yin
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wenmin Cao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Tingsheng Lin
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wenli Diao
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Meng Ding
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hao Hu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, 321 Zhongshan Rd, Nanjing, 210008, Jiangsu, China
| | - Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, 321 Zhongshan Rd, Nanjing, 210008, Jiangsu, China
| | - Qing Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
45
|
Epigenomic Profiling of Epithelial Ovarian Cancer Stem-Cell Differentiation Reveals GPD1 Associated Immune Suppressive Microenvironment and Poor Prognosis. Int J Mol Sci 2022; 23:ijms23095120. [PMID: 35563509 PMCID: PMC9101898 DOI: 10.3390/ijms23095120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Intraperitoneal metastasis is a challenging clinical scenario in epithelial ovarian cancer (EOC). As they are distinct from hematogenous metastasizing tumors, epithelial ovarian cancer cells primarily disseminate within the peritoneal cavity to form superficially invasive carcinomas. Unfavorable pharmacokinetics for peritoneal tumors and gut toxicity collectively lead to a narrow therapeutic window and therefore limit the opportunities for a favorable clinical outcome. New insights into tumor metastasis in the peritoneal microenvironment are keenly awaited to develop new therapeutic strategies. Epithelial ovarian cancer stem cell (OCSC) seeding is considered to be a critical component of the peritoneal spread. Using a unique and stepwise process of the OCSC differentiation model may provide insight into the intraperitoneal metastasis. The transcriptome and epigenome of OCSC differentiation were characterized by expression array and MethylCap-Seq. The TCGA, AOCS, and KM-Plotter databases were used to evaluate the association between survival outcomes and the methylation/expression levels of candidate genes in the EOC datasets. The STRING database was used to investigate the protein–protein interaction (PPI) for candidates and their associated genes. The infiltration level of immune cells in EOC patients and the association between clinical outcome and OCSCs differentiation genes were estimated using the TIDE and TIME2.0 algorithms. We established an EOC differentiation model using OCSCs. After an integrated transcriptomics and methylomics analysis of OCSCs differentiation, we revealed that the genes associated with earlier OCSC differentiation were better able to reflect the patient’s outcome. The OCSC differentiation genes were involved in regulating metabolism shift and the suppressive immune microenvironment. High GPD1 expression with high pro-tumorigenic immune cells (M2 macrophage, and cancer associated fibroblast) had worst survival. Moreover, we developed a methylation signature, constituted by GNPDA1, GPD1, GRASP, HOXC11, and MSLN, that may be useful for prognostic prediction in EOC. Our results revealed a novel role of epigenetic plasticity OCSC differentiation and suggested metabolic and immune intervention as a new therapeutic strategy.
Collapse
|
46
|
Baek M, Chai JC, Choi HI, Yoo E, Binas B, Lee YS, Jung KH, Chai YG. Comprehensive transcriptome profiling of BET inhibitor-treated HepG2 cells. PLoS One 2022; 17:e0266966. [PMID: 35486664 PMCID: PMC9053788 DOI: 10.1371/journal.pone.0266966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and poor prognosis. Emerging evidence suggests that epigenetic alterations play a crucial role in HCC, suggesting epigenetic inhibition as a promising therapeutic approach. Indeed, the bromodomain and extra-terminal (BET) inhibitors inhibit the proliferation and invasion of various cancers but still lack a strong mechanistic rationale. Here, we identified the differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) in human HCC cell line HepG2 treated with the BET inhibitors, JQ1, OTX015, or ABBV-075. We analyzed the correlation between DEmRNAs and DElncRNAs in common for the three inhibitors based on their expression profiles and performed functional annotation pathway enrichment analysis. Most of these shared DEmRNAs and DElncRNAs, including some novel transcripts, were downregulated, indicating decreased proliferation/adhesion and increased apoptosis/inflammation. Our study suggests that BET proteins play a crucial role in regulating cancer progression-related genes and provide a valuable resource for novel putative biomarkers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Mina Baek
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
- Institute of Natural Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jin Choul Chai
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hae In Choi
- Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
| | - Eunyoung Yoo
- Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
| | - Bert Binas
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
| | - Young Seek Lee
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- * E-mail: (YGC); (KHJ); (YSL)
| | - Kyoung Hwa Jung
- Department of Biopharmaceutical System, Gwangmyeong Convergence Technology Campus of Korea Polytechnic II, Incheon, Republic of Korea
- * E-mail: (YGC); (KHJ); (YSL)
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, Ansan, Republic of Korea
- Department of Bionanotechnology, Hanyang University, Seoul, Republic of Korea
- * E-mail: (YGC); (KHJ); (YSL)
| |
Collapse
|
47
|
Liu K, Chen H, Wang Y, Jiang L, Li Y. Evolving Insights Into the Biological Function and Clinical Significance of Long Noncoding RNA in Glioblastoma. Front Cell Dev Biol 2022; 10:846864. [PMID: 35531099 PMCID: PMC9068894 DOI: 10.3389/fcell.2022.846864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is one of the most prevalent and aggressive cancers worldwide. The overall survival period of GBM patients is only 15 months even with standard combination therapy. The absence of validated biomarkers for early diagnosis mainly accounts for worse clinical outcomes of GBM patients. Thus, there is an urgent requirement to characterize more biomarkers for the early diagnosis of GBM patients. In addition, the detailed molecular basis during GBM pathogenesis and oncogenesis is not fully understood, highlighting that it is of great significance to elucidate the molecular mechanisms of GBM initiation and development. Recently, accumulated pieces of evidence have revealed the central roles of long noncoding RNAs (lncRNAs) in the tumorigenesis and progression of GBM by binding with DNA, RNA, or protein. Targeting those oncogenic lncRNAs in GBM may be promising to develop more effective therapeutics. Furthermore, a better understanding of the biological function and underlying molecular basis of dysregulated lncRNAs in GBM initiation and development will offer new insights into GBM early diagnosis and develop novel treatments for GBM patients. Herein, this review builds on previous studies to summarize the dysregulated lncRNAs in GBM and their unique biological functions during GBM tumorigenesis and progression. In addition, new insights and challenges of lncRNA-based diagnostic and therapeutic potentials for GBM patients were also introduced.
Collapse
Affiliation(s)
- Kun Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hong Chen
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Yuanyuan Wang
- Department of Pathology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Yi Li, ; Liping Jiang,
| | - Yi Li
- Department of Oncology, 920th Hospital of Joint Logistics Support Force, Teaching Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yi Li, ; Liping Jiang,
| |
Collapse
|
48
|
Pienkowski T, Kowalczyk T, Garcia-Romero N, Ayuso-Sacido A, Ciborowski M. Proteomics and metabolomics approach in adult and pediatric glioma diagnostics. Biochim Biophys Acta Rev Cancer 2022; 1877:188721. [PMID: 35304294 DOI: 10.1016/j.bbcan.2022.188721] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
The diagnosis of glioma is mainly based on imaging methods that do not distinguish between stage and subtype prior to histopathological analysis. Patients with gliomas are generally diagnosed in the symptomatic stage of the disease. Additionally, healing scar tissue may be mistakenly identified based on magnetic resonance imaging (MRI) as a false positive tumor recurrence in postoperative patients. Current knowledge of molecular alterations underlying gliomagenesis and identification of tumoral biomarkers allow for their use as discriminators of the state of the organism. Moreover, a multiomics approach provides the greatest spectrum and the ability to track physiological changes and can serve as a minimally invasive method for diagnosing asymptomatic gliomas, preceding surgery and allowing for the initiation of prophylactic treatment. It is important to create a vast biomarker library for adults and pediatric patients due to their metabolic differences. This review focuses on the most promising proteomic, metabolomic and lipidomic glioma biomarkers, their pathways, the interactions, and correlations that can be considered characteristic of tumor grade or specific subtype.
Collapse
Affiliation(s)
- Tomasz Pienkowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland; Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Noemi Garcia-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Angel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain; Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
49
|
Metabolic Features of Tumor Dormancy: Possible Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14030547. [PMID: 35158815 PMCID: PMC8833651 DOI: 10.3390/cancers14030547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Tumor recurrence still represents a major clinical challenge for cancer patients. Cancer cells may undergo a dormant state for long times before re-emerging. Both intracellular- and extracellular-driven pathways are involved in maintaining the dormant state and the subsequent awakening, with a mechanism that is still mostly unknown. In this scenario, cancer metabolism is emerging as a critical driver of tumor progression and dissemination and have gained increasing attention in cancer research. This review focuses on the metabolic adaptations characterizing the dormant phenotype and supporting tumor re-growth. Deciphering the metabolic adaptation sustaining tumor dormancy may pave the way for novel therapeutic approaches to prevent tumor recurrence based on combined metabolic drugs. Abstract Tumor relapse represents one of the main obstacles to cancer treatment. Many patients experience cancer relapse even decades from the primary tumor eradication, developing more aggressive and metastatic disease. This phenomenon is associated with the emergence of dormant cancer cells, characterized by cell cycle arrest and largely insensitive to conventional anti-cancer therapies. These rare and elusive cells may regain proliferative abilities upon the induction of cell-intrinsic and extrinsic factors, thus fueling tumor re-growth and metastasis formation. The molecular mechanisms underlying the maintenance of resistant dormant cells and their awakening are intriguing but, currently, still largely unknown. However, increasing evidence recently underlined a strong dependency of cell cycle progression to metabolic adaptations of cancer cells. Even if dormant cells are frequently characterized by a general metabolic slowdown and an increased ability to cope with oxidative stress, different factors, such as extracellular matrix composition, stromal cells influence, and nutrient availability, may dictate specific changes in dormant cells, finally resulting in tumor relapse. The main topic of this review is deciphering the role of the metabolic pathways involved in tumor cells dormancy to provide new strategies for selectively targeting these cells to prevent fatal recurrence and maximize therapeutic benefit.
Collapse
|
50
|
Wang P, Gong S, Liao B, Pan J, Wang J, Zou D, Zhao L, Xiong S, Deng Y, Yan Q, Wu N. HIF1α/HIF2α induces glioma cell dedifferentiation into cancer stem cells through Sox2 under hypoxic conditions. J Cancer 2022; 13:1-14. [PMID: 34976166 PMCID: PMC8692689 DOI: 10.7150/jca.54402] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Our previous study showed that glioma stem-like cells could be induced to undergo dedifferentiation under hypoxic conditions, but the mechanism requires further study. HIF1α and HIF2α are the main molecules involved in the response to hypoxia, and Sox2, as a retroelement, plays an important role in the formation of induced pluripotent stem cells, especially in hypoxic microenvironments. Therefore, we performed a series of experiments to verify whether HIF1α, HIF2α and Sox2 regulated glioma cell dedifferentiation under hypoxic conditions. Materials and methods: Sphere formation by single glioma cells was observed, and CD133 and CD15 expression was compared between the normoxic and hypoxic groups. HIF1α, HIF2α, and Sox2 expression was detected using the CGGA database, and the correlation among HIF1α, HIF2α and Sox2 levels was analyzed. We knocked out HIF1α, HIF2α and Sox2 in glioma cells and cultured them under hypoxic conditions to detect CD133 and CD15 expression. The above cells were implanted into mouse brains to analyze tumor volume and survival time. Results: New spheres were formed from single glioma cells in 1% O2, but no spheres were formed in 21% O2. The cells cultured in 1% O2 highly expressed CD133 and CD15 and had a lower apoptosis rate. The CGGA database showed HIF1α and HIF2α expression in glioma. Knocking out HIF1α or HIF2α led to a decrease in CD133 and CD15 expression and inhibited sphere formation under hypoxic conditions. Moreover, tumor volume and weight decreased after HIF1α or HIF2α knockout with the same temozolomide treatment. Sox2 was also highly expressed in glioma, and there was a positive correlation between the HIF1α/HIF2α and Sox2 expression levels. Sox2 was expressed at lower levels after HIF1α or HIF2α was knocked out. Then, Sox2 was knocked out, and we found that CD133 and CD15 expression was decreased. Moreover, a lower sphere formation rate, higher apoptosis rate, lower tumor formation rate and longer survival time after temozolomide treatment were detected in the Sox2 knockout cells. Conclusion: In a hypoxic microenvironment, the HIF1α/HIF2α-Sox2 network induced the formation of glioma stem cells through the dedifferentiation of differentiated glioma cells, thus promoting glioma cell chemoresistance. This study demonstrates that both HIF1α and HIF2α, as genes upstream of Sox2, regulate the malignant progression of glioma through dedifferentiation.
Collapse
Affiliation(s)
- Pan Wang
- Chongqing Medical University, Chongqing 400016, China.,Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Sheng Gong
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Bin Liao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Jinyu Pan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Dewei Zou
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Lu Zhao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Shuanglong Xiong
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China Correspondence: Dr. Nan Wu, mailing address: No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, P. R. China. Tel. and E-mail:
| | - Yangmin Deng
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Qian Yan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Nan Wu
- Chongqing Medical University, Chongqing 400016, China.,Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| |
Collapse
|