1
|
Shan Y, Pang H, Tang Y, Yang N, Wang R, Yang F, Qin B. Altered LY6E and TRIM6 expression in PBMCs correlated with HBsAg clearance and response to Peg-IFN-α treatment in HBeAg-negative chronic hepatitis B patients. Virol J 2025; 22:74. [PMID: 40089754 PMCID: PMC11909810 DOI: 10.1186/s12985-025-02689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Pegylated interferon alpha (Peg-IFN-α) has the potential to eradicate hepatitis B surface antigen (HBsAg). This study aimed to investigate whether the expression levels of lymphocyte antigen 6 family member E (LY6E) and tripartite motif-containing protein 6 (TRIM6) mRNAs in peripheral blood mononuclear cells (PBMCs) of hepatitis B e antigen (HBeAg)-negative chronic hepatitis B virus (HBV) patients is associated with the response to Peg-IFN-α treatment and HBsAg clearance. METHODS In this prospective study, HBeAg-negative chronic HBV patients treated with Peg-IFN-α were followed for 48 weeks. The participants were classified into two groups, the virological response (VR) group and nonvirological response (NVR) group, according to the changes in HBV DNA and HBsAg levels observed at week 48 of treatment. Furthermore, these patients were divided into a serological response (SR) group and a nonserological response (NSR) group, depending on whether they exhibited a loss of serum HBsAg or evidence of seroconversion. The expression levels of LY6E and TRIM6 mRNAs in PBMCs were evaluated using real-time quantitative PCR with fluorescence detection. The diagnostic performance of LY6E and TRIM6 was assessed by analyzing the receiver operating characteristic (ROC) curve and calculating the area under the ROC curve (AUC). RESULTS After the treatment period, the observed VR and SR rates were 44.64% and 28.57%, respectively. Dynamic changes in LY6E and TRIM6 mRNA levels were significantly different between the VR and NVR groups and between the SR and NSR groups. Multivariate analysis revealed that TRIM6 was independently associated with VR at weeks 12 and 24 of Peg-IFN-α therapy and with SR at week 12; in addition, LY6E was independently associated with VR at week 12 and SR at week 24. At week 24, the area under the curve (AUC) for LY6E in the prediction of VR was 0.6942, and the AUC for the prediction of SR was 0.7766; at week 12, TRIM6 had AUCs of 0.7600 for the prediction of VR and 0.8469 for the prediction of SR. CONCLUSIONS LY6E and TRIM6 are important biomarkers for early therapeutic responses to Peg-IFN-α and HBsAg clearance. TRIAL REGISTRATION Registration number: 2023 - 311. Date of registration: 1 October 2023.
Collapse
MESH Headings
- Humans
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/virology
- Hepatitis B, Chronic/blood
- Male
- Interferon-alpha/therapeutic use
- Female
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/drug effects
- Adult
- Antiviral Agents/therapeutic use
- Hepatitis B Surface Antigens/blood
- Prospective Studies
- Middle Aged
- Tripartite Motif Proteins/genetics
- Tripartite Motif Proteins/metabolism
- Hepatitis B e Antigens/blood
- DNA, Viral/blood
- DNA, Viral/genetics
- Treatment Outcome
- Ubiquitin-Protein Ligases/genetics
- GPI-Linked Proteins/genetics
- Hepatitis B virus/genetics
- Hepatitis B virus/drug effects
- Young Adult
- Viral Load/drug effects
- Antigens, Surface
Collapse
Grants
- KJQN202100401, to Fan Yang Scientific and Technological Research Program of Chongqing Municipal Education Commission
- KJQN202100401, to Fan Yang Scientific and Technological Research Program of Chongqing Municipal Education Commission
- KJQN202100401, to Fan Yang Scientific and Technological Research Program of Chongqing Municipal Education Commission
- 2022-02-016-Y, to Yiru Shan Scientific and Technological Program of Basic Research and Achievement Transformation in Jiulongpo District of Chongqing
- cstc2024ycjh-bgzxm0095, to Bo Qin the Chongqing Talents Program
- cstc2024ycjh-bgzxm0095, to Bo Qin the Chongqing Talents Program
- cstc2024ycjh-bgzxm0095, to Bo Qin the Chongqing Talents Program
- cstc2024ycjh-bgzxm0095, to Bo Qin the Chongqing Talents Program
- CSTC2020JCYJ-MSXMX0221, to Bo Qin the Chongqing Natural Science Foundation of China
- CSTC2020JCYJ-MSXMX0221, to Bo Qin the Chongqing Natural Science Foundation of China
- CSTC2020JCYJ-MSXMX0221, to Bo Qin the Chongqing Natural Science Foundation of China
- W0101, to Fan Yang Program for Youth Innovation in Future Medicine, Chongqing Medical University
- W0101, to Fan Yang Program for Youth Innovation in Future Medicine, Chongqing Medical University
- W0101, to Fan Yang Program for Youth Innovation in Future Medicine, Chongqing Medical University
Collapse
Affiliation(s)
- Yiru Shan
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Pang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Tang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Na Yang
- Central Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Wang
- Central Laboratory, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Yang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Karjalainen A, Witalisz-Siepracka A, Prchal-Murphy M, Martin D, Sternberg F, Krunic M, Dolezal M, Fortelny N, Farlik M, Macho-Maschler S, Lassnig C, Meissl K, Amenitsch L, Lederer T, Pohl E, Gotthardt D, Bock C, Decker T, Strobl B, Müller M. Cell-type-specific requirement for TYK2 in murine immune cells under steady state and challenged conditions. Cell Mol Life Sci 2025; 82:98. [PMID: 40025196 PMCID: PMC11872851 DOI: 10.1007/s00018-025-05625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/31/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Tyrosine kinase 2 (TYK2) deficiency and loss or inhibition of kinase activity in men and mice leads to similar immune compromised phenotypes, predominantly through impairment of interferon (IFN) and interleukin 12 family responses. Here we relate the transcriptome changes to phenotypical changes observed in TYK2-deficient (Tyk2-/-) and TYK2 kinase-inactive (Tyk2K923E) mice in naïve splenic immune cells and upon ex vivo IFN treatment or in vivo tumor transplant infiltration. The TYK2 activities under homeostatic and both challenged conditions are highly cell-type-specific with respect to quantity and quality of transcriptionally dependent genes. The major impact of loss of TYK2 protein or kinase activity in splenic homeostatic macrophages, NK and CD8+ T cells and tumor-derived cytolytic cells is on IFN responses. While reportedly TYK2 deficiency leads to partial impairment of IFN-I responses, we identified cell-type-specific IFN-I-repressed gene sets completely dependent on TYK2 kinase activity. Reported kinase-inactive functions of TYK2 relate to signaling crosstalk, metabolic functions and cell differentiation or maturation. None of these phenotypes relates to respective enriched gene sets in the TYK2 kinase-inactive cell types. Nonetheless, the scaffolding functions of TYK2 are capable to change transcriptional activities at single gene levels and chromatin accessibility at promoter-distal regions upon cytokine treatment most prominently in CD8+ T cells. The cell-type-specific transcriptomic and epigenetic effects of TYK2 shed new light on the biology of this JAK family member and are relevant for current and future treatment of autoimmune and inflammatory diseases with TYK2 inhibitors.
Collapse
Affiliation(s)
- Anzhelika Karjalainen
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems an Der Donau, Austria
| | - Michaela Prchal-Murphy
- Pharmacology and Toxicology, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - David Martin
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Felix Sternberg
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Nutritional Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Milica Krunic
- Campus Tulln, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Marlies Dolezal
- Platform Biostatistics and Bioinformatics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Macho-Maschler
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Core Facility VetBiomodels, University of Veterinary Medicine, Vienna, Austria
| | - Katrin Meissl
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lena Amenitsch
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Therese Lederer
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Elena Pohl
- Physiology and Biophysics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dagmar Gotthardt
- Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems an Der Donau, Austria
| | - Christoph Bock
- Cemm Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Birgit Strobl
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Animal Breeding and Genetics, Department of Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Zhang W, Shi H, Peng J. A diagnostic model for sepsis using an integrated machine learning framework approach and its therapeutic drug discovery. BMC Infect Dis 2025; 25:219. [PMID: 39953444 PMCID: PMC11827343 DOI: 10.1186/s12879-025-10616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Sepsis remains a life-threatening condition in intensive care units (ICU) with high morbidity and mortality rates. Some biomarkers commonly used in clinic do not have the characteristics of rapid and specific growth and rapid decline after effective treatment. Machine learning has shown great potential in early diagnosis, subtype analysis, accurate treatment and prognosis evaluation of sepsis. METHODS Gene expression matrices from GSE13904 and GSE26440 were combined into a training model after quality control and standardization. Then, the intersection genes were obtained by crossing the screened differentially expressed genes (DEGs) and the module genes with the strongest correlation obtained by WGCNA analysis. 113 combined machine learning algorithms to build a diagnosis model. Then the CIBERSORT algorithm is used to analyze the relationship between the change of core gene expression and immune response in sepsis. Construct nomogram, DCA and CIC to further verify the reliability of the diagnosis model. The potential molecular compounds interacting with key genes were searched from the Traditional Chinese Medicine Active Compound Library (TCMACL). RESULTS We screened 405 DEGs, including 334 up-regulated and 71 down-regulated genes. The 308 potential genes were obtained by intersection of MEturquoise module genes in WGCNA analysis and DEGs for subsequent machine learning analysis. GO and KEGG enrichment analysis showed that sepsis was mainly related to immune response and bacterial infection. Then 113 combined machine learning algorithms are applied to construct a diagnosis model to screen 22 hub genes. Four four key genes (CD177, GNLY, ANKRD22, and IFIT1) are obtained through further analysis of PPI network constructed by 22 hub genes. Subsequently, the diagnostic model is proved to have good predictive value by nomogram, DCA and CIC. Finally, molecular compounds (Dieckol, Grosvenorine and Tellimagrandin II) were screened out as potential drugs. CONCLUSION 113 combinated machine learning algorithms screened out four key genes that can distinguish sepsis patients. At the same time, potential therapeutic molecular compounds interacting with key genes genes were screened out by molecular docking.
Collapse
Affiliation(s)
- Wuping Zhang
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang, Jiangxi Province, 330006, China
| | - Hanping Shi
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jie Peng
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No.152 Aiguo Road, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
4
|
Ahmadi Ghezeldasht S, Bidkhori HR, Miri R, Baghban A, Mosavat A, Rezaee SA. Momordica charantia phytoconstituents can inhibit human T-lymphotropic virus type-1 (HTLV-1) infectivity in vitro and in vivo. J Neurovirol 2025; 31:24-34. [PMID: 37531001 DOI: 10.1007/s13365-023-01160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
There is an urgent need to find an effective therapy for life-threatening HTLV-1-associated diseases. Bitter melon (Momordica charantia) is considered a traditional herb with antiviral and anticancer properties and was tested in this study on HTLV-1 infectivity. GC-MS analyzed the alcoholic extract. In vitro assay was carried out using transfection of HUVEC cells by HTLV-1-MT2 cell line. The cells were exposed to alcoholic and aqueous extracts at 5,10, and 20 µg/mL concentrations. In vivo, mice were divided into four groups. Three groups were treated with HTLV-1-MT-2 cells as test groups and positive control, and PBS as the negative control group in the presence and absence of M. charantia extracts. Peripheral blood mononuclear cells (PBMCs), mesenteric lymph nodes (MLNs), and splenocytes were collected for HTLV-1-proviral load (PVL) assessment, TaqMan-qPCR. The GC-MS analysis revealed 36 components in M. charantia. The studies showed significant reductions in HTLV-1-PVL in the presence of extract in the HUVEC-treated groups (P = 0.001). Furthermore, the inhibitory effects of extracts on HTLV-1 infected mice showed significant differences in HTLV-1-PVL among M. charantia treated groups with untreated (P = 0.001). The T-cells in MLNs were significantly more susceptible to HTLV-1 than others (P = 0.001). There were significant differences among HTLV-1-infected cells in MLNs and splenocytes (P = 0.001 and 0.046, respectively). Also, aqueous and alcoholic extract-treated groups significantly affected HTLV-1-infected PBMCs (P = 0.002 and 0.009, respectively). M. charantia may have effective antiviral properties. The substantial compound of M. charantia could have inhibitory effects on the proliferation and transmission of HTLV-1 oncovirus.
Collapse
Affiliation(s)
- Sanaz Ahmadi Ghezeldasht
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Raheleh Miri
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran
| | - Arezoo Baghban
- Department of Chemistry, Faculty of Science, Azad University of Mashhad, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR), Azadi-Square, Ferdowsi University Campus, Razavi Khorasan, Mashhad, 9177949367, Iran.
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, 9177948564, Mashhad, Iran.
| |
Collapse
|
5
|
Kong LZ, Jang IH, Wang C, Lee SY, Kim SM, Oh SC, Lee S, Jo S, Kim JH, Kim KK, Kim TD. Transcriptomic landscapes of STING-mediated DNA-sensing reveal cellular response heterogeneity. Int J Biol Macromol 2025; 288:138752. [PMID: 39674484 DOI: 10.1016/j.ijbiomac.2024.138752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Transfection of plasmid DNA (pDNA) encoding target genes is a routine tool in gene function studies and therapeutic applications. However, nucleic acid-sensing-mediated innate immune responses influence multiple intracellular signaling pathways. The stimulator of interferon genes (STING) is a crucial adapter protein for DNA sensors in mammalian cells. In this study, we explored the molecular mechanisms underlying DNA sensing by investigating the relationship between mRNA and protein expression levels and the STING pathway using single-cell analysis. We observed that reporter gene expression was dose-nonlinear after transfection of pDNA in cells with intact DNA-sensing pathways. Moreover, blocking the STING pathway in THP-1 cells significantly downregulated innate immune responses, upregulated exogenous gene expression, and mitigated the effects of innate immune responses on cell and gene function, but did not affect the proportion of reporter protein-positive cells. We elucidated the mechanisms of DNA sensing-induced innate immune response and cell death by analyzing heterozygous cellular responses to DNA transfection and transcriptome changes in positive cells. These findings suggest that the regulation of STING-mediated nucleic acid-sensing pathways is crucial for the accuracy of gene function studies and could enhance the efficacy of gene therapy.
Collapse
Affiliation(s)
- Ling-Zu Kong
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - In-Hwan Jang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chunli Wang
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Soo Yun Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seok-Min Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Se-Chan Oh
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunyoung Lee
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seona Jo
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji Hyun Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Don Kim
- Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Drzeniek NM, Kahwaji N, Picht S, Dimitriou IM, Schlickeiser S, Moradian H, Geissler S, Schmueck-Henneresse M, Gossen M, Volk HD. In Vitro Transcribed mRNA Immunogenicity Induces Chemokine-Mediated Lymphocyte Recruitment and Can Be Gradually Tailored by Uridine Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308447. [PMID: 38491873 DOI: 10.1002/advs.202308447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Beyond SARS-CoV2 vaccines, mRNA drugs are being explored to overcome today's greatest healthcare burdens, including cancer and cardiovascular disease. Synthetic mRNA triggers immune responses in transfected cells, which can be reduced by chemically modified nucleotides. However, the side effects of mRNA-triggered immune activation on cell function and how different nucleotides, such as the N1-methylpseudouridine (m1Ψ) used in SARS-CoV2 vaccines, can modulate cellular responses is not fully understood. Here, cellular responses toward a library of uridine-modified mRNAs are investigated in primary human cells. Targeted proteomics analyses reveal that unmodified mRNA induces a pro-inflammatory paracrine pattern marked by the secretion of chemokines, which recruit T and B lymphocytes toward transfected cells. Importantly, the magnitude of mRNA-induced changes in cell function varies quantitatively between unmodified, Ψ-, m1Ψ-, and 5moU-modified mRNA and can be gradually tailored, with implications for deliberately exploiting this effect in mRNA drug design. Indeed, both the immunosuppressive effect of stromal cells on T-cell proliferation, and the anti-inflammatory effect of IL-10 mRNA are enhanced by appropriate uridine modification. The results provide new insights into the effects of mRNA drugs on cell function and cell-cell communication and open new possibilities to tailor mRNA-triggered immune activation to the desired pro- or anti-inflammatory application.
Collapse
Affiliation(s)
- Norman M Drzeniek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Nourhan Kahwaji
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Samira Picht
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT; graduate school 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ioanna Maria Dimitriou
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT; graduate school 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- CheckImmune GmbH, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hanieh Moradian
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sven Geissler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hans-Dieter Volk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
- CheckImmune GmbH, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
7
|
Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev 2024; 205:115175. [PMID: 38218350 DOI: 10.1016/j.addr.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.
Collapse
Affiliation(s)
- Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anjaiah Aitha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Blengio F, Hocini H, Richert L, Lefebvre C, Durand M, Hejblum B, Tisserand P, McLean C, Luhn K, Thiebaut R, Levy Y. Identification of early gene expression profiles associated with long-lasting antibody responses to the Ebola vaccine Ad26.ZEBOV/MVA-BN-Filo. Cell Rep 2023; 42:113101. [PMID: 37691146 DOI: 10.1016/j.celrep.2023.113101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Ebola virus disease is a severe hemorrhagic fever with a high fatality rate. We investigate transcriptome profiles at 3 h, 1 day, and 7 days after vaccination with Ad26.ZEBOV and MVA-BN-Filo. 3 h after Ad26.ZEBOV injection, we observe an increase in genes related to antigen presentation, sensing, and T and B cell receptors. The highest response occurs 1 day after Ad26.ZEBOV injection, with an increase of the gene expression of interferon-induced antiviral molecules, monocyte activation, and sensing receptors. This response is regulated by the HESX1, ATF3, ANKRD22, and ETV7 transcription factors. A plasma cell signature is observed on day 7 post-Ad26.ZEBOV vaccination, with an increase of CD138, MZB1, CD38, CD79A, and immunoglobulin genes. We have identified early expressed genes correlated with the magnitude of the antibody response 21 days after the MVA-BN-Filo and 364 days after Ad26.ZEBOV vaccinations. Our results provide early gene signatures that correlate with vaccine-induced Ebola virus glycoprotein-specific antibodies.
Collapse
Affiliation(s)
- Fabiola Blengio
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Laura Richert
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Mélany Durand
- University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Boris Hejblum
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France
| | - Pascaline Tisserand
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France
| | - Chelsea McLean
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Kerstin Luhn
- Janssen Vaccines & Prevention, B.V. Archimediesweg, Leiden, the Netherlands
| | - Rodolphe Thiebaut
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; University Bordeaux, Department of Public Health, INSERM Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France; CHU de Bordeaux, Pôle de Santé Publique, Service d'Information Médicale, Bordeaux, France.
| | - Yves Levy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Créteil, France; Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| |
Collapse
|
9
|
Topper MJ, Anagnostou V, Marrone KA, Velculescu VE, Jones PA, Brahmer JR, Baylin SB, Hostetter GH. Derivation of CD8 + T cell infiltration potentiators in non-small-cell lung cancer through tumor microenvironment analysis. iScience 2023; 26:107095. [PMID: 37456850 PMCID: PMC10344796 DOI: 10.1016/j.isci.2023.107095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/27/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Non-small-cell lung cancer remains a deadly form of human cancer even in the era of immunotherapy with existing immunotherapy strategies currently only benefiting a minority of patients. Therefore, the derivation of treatment options, which might extend the promise of immunotherapy to more patients, remains of paramount importance. Here, we define using TCGA lung squamous and lung adenocarcinoma RNAseq datasets a significant correlation between epigenetic therapy actionable interferon genes with both predicted tumor immune score generally, and CD8A specifically. IHC validation using primary sample tissue microarrays confirmed a pronounced positive association between CD8+ T cell tumor infiltration and the interferon-associated targets, CCL5 and MDA5. We next extended these findings to the assessment of clinical trial biopsies from patients with advanced non-small-cell lung cancer treated with epigenetic therapy with and without concurrent immunotherapy. These analyses revealed treatment-associated increases in both CD8+ T cell intratumoral infiltration and microenvironment CCL5 staining intensity.
Collapse
Affiliation(s)
- Michael J. Topper
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valsamo Anagnostou
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen A. Marrone
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victor E. Velculescu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Julie R. Brahmer
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen B. Baylin
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Van Andel Institute (VAI), Grand Rapids, MI, USA
| | - Galen H. Hostetter
- Van Andel Institute (VAI), Grand Rapids, MI, USA
- Department of Pathology, Van Andel Institute (VAI), Grand Rapids, MI, USA
| |
Collapse
|
10
|
Keenum MC, Chatterjee P, Atalis A, Pandey B, Jimenez A, Roy K. Single-cell epitope-transcriptomics reveal lung stromal and immune cell response kinetics to nanoparticle-delivered RIG-I and TLR4 agonists. Biomaterials 2023; 297:122097. [PMID: 37001347 PMCID: PMC10192313 DOI: 10.1016/j.biomaterials.2023.122097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Lung-resident and circulatory lymphoid, myeloid, and stromal cells, expressing various pattern recognition receptors (PRRs), detect pathogen- and danger-associated molecular patterns (PAMPs/DAMPs), and defend against respiratory pathogens and injuries. Here, we report the early responses of murine lungs to nanoparticle-delivered PAMPs, specifically the retinoic acid-inducible gene I (RIG-I) agonist poly-U/UC (PUUC), with or without the TLR4 agonist monophosphoryl lipid A (MPLA). Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we characterized the responses at 4 and 24 h after intranasal administration. Within 4 h, ribosome-associated transcripts decreased in both stromal and immune cells, followed by widespread interferon-stimulated gene (ISG) expression. Using RNA velocity, we show that lung-neutrophils dynamically regulate the synthesis of cytokines like CXCL-10, IL-1α, and IL-1β. Co-delivery of MPLA and PUUC increased chemokine synthesis and upregulated antimicrobial binding proteins targeting iron, manganese, and zinc in many cell types, including fibroblasts, endothelial cells, and epithelial cells. Overall, our results elucidate the early PAMP-induced cellular responses in the lung and demonstrate that stimulation of the RIG-I pathway, with or without TLR4 agonists, induces a ubiquitous microbial defense state in lung stromal and immune cells. Nanoparticle-delivered combination PAMPs may have applications in intranasal antiviral and antimicrobial therapies and prophylaxis.
Collapse
Affiliation(s)
- M Cole Keenum
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA
| | - Alexandra Atalis
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Bhawana Pandey
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Angela Jimenez
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA; The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
11
|
Drzeniek NM, Kahwaji N, Schlickeiser S, Reinke P, Geißler S, Volk HD, Gossen M. Immuno-engineered mRNA combined with cell adhesive niche for synergistic modulation of the MSC secretome. Biomaterials 2023; 294:121971. [PMID: 36634491 DOI: 10.1016/j.biomaterials.2022.121971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
In vitro transcribed (IVT-)mRNA has entered center stage for vaccine development due to its immune co-stimulating properties. Given the widely demonstrated safety of IVT-mRNA-based vaccines, we aimed to adopt IVT-mRNA encoding VEGF for secretory phenotype modulation of therapeutic cells. However, we observed that the immunogenicity of IVT-mRNA impairs the endogenous secretion of pro-angiogenic mediators from transfected mesenchymal stromal cells, instead inducing anti-angiogenic chemokines. This inflammatory secretome modulation limits the application potential of unmodified IVT-mRNA for cell therapy manufacturing, pro-angiogenic therapy and regenerative medicine. To uncouple immunogenicity from the protein expression functionality, we immuno-engineered IVT-mRNA with different chemically modified ribonucleotides. 5-Methoxy-uridine-modification of IVT-mRNA rescued the endogenous secretome pattern of transfected cells and prolonged secretion of IVT-mRNA-encoded VEGF. We found that high secretion of IVT-mRNA-encoded protein further depends on optimized cell adhesion. Cell encapsulation in a collagen-hyaluronic acid hydrogel increased secretion of IVT-mRNA-encoded VEGF and augmented the endogenous secretion of supporting pro-angiogenic mediators, such as HGF. Integrating minimally immunogenic mRNA technology with predesigned matrix-derived cues allows for the synergistic combination of multiple dimensions of cell manipulation and opens routes for biomaterial-based delivery of mRNA-engineered cell products. Such multimodal systems could present a more biologically relevant way to therapeutically address complex multifactorial processes such as tissue ischemia, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Norman Michael Drzeniek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies (BSRT; Graduate School 203 of the German Excellence Initiative), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nourhan Kahwaji
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sven Geißler
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Julius Wolff Institute (JWI), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hans-Dieter Volk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Föhrer Straße 15, 13353, Berlin, Germany.
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513, Teltow, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
12
|
Wang S, Li Y, Qiao X, Jin Y, Liu R, Wang L, Song L. A protein inhibitor of activated STAT (CgPIAS) negatively regulates the expression of ISGs by inhibiting STAT activation in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1214-1223. [PMID: 36410649 DOI: 10.1016/j.fsi.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The protein inhibitor of activated STAT (PIAS) family proteins act as the important negative regulators in janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, which can be also involved in regulating the expression of interferon-stimulated genes (ISGs). In the present study, a PIAS homologue (designated as CgPIAS) was identified from oyster Crassostrea gigas. The open reading frame (ORF) of CgPIAS cDNA was of 1887 bp encoding a peptide of 628 amino acid residues. The CgPIAS protein contains a conserved scaffold attachment factor A/B/acinus/PIAS (SAP) domain, a Pro-Ile-Asn-Ile-Thr (PINIT) motif, a RING-finger-like zinc-binding domain (RLD) and two SUMO-interaction Motifs (SIMs). The deduced amino acid sequence of CgPIAS shared 74.58-81.36% similarity with other PIAS family members in the RLD domain. The mRNA transcripts of CgPIAS were detected in all the tested tissues with highest level in haemocytes (32.98-fold of mantles, p < 0.001). After poly (I:C) and recombinant Interferon-like protein (rCgIFNLP) stimulation, the mRNA expression of CgPIAS in haemocytes significantly up-regulated to the highest level at 48 h (7.38-fold, p < 0.001) and at 24 h (13.08-fold, p < 0.01), respectively. Moreover, the nuclear translocation of CgPIAS was observed in haemocytes after poly (I:C) stimulation. Biolayer Interferometry (BLI) assay revealed that the recombinant protein CgPIAS-RLD could interact with the recombinant protein CgSTAT in vitro with the KD value of 3.88 × 10-8 M. In the CgPIAS-RNAi oysters, the green signals of CgSTAT protein in nucleus of haemocytes increased compared with that in NC-RNAi group, and the mRNA expression of myxovirus resistance (CgMx1), oligoadenylate synthase-like proteins (CgOASL), CgViperin and IFN-induced protein 44-like (CgIFI44L-1) in haemocytes significantly increased at 12 h after poly (I:C) stimulation, which were 2.39-fold (p < 0.05), 2.18-fold (p < 0.001), 1.74-fold (p < 0.05), and 2.89-fold (p < 0.01) of that in control group, respectively. The above results indicated that CgPIAS negatively regulated the ISG expression by inhibiting STAT activation in oyster C. gigas.
Collapse
Affiliation(s)
- Sicong Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuanmei Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Rui Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
13
|
Li Q, Sun B, Zhuo Y, Jiang Z, Li R, Lin C, Jin Y, Gao Y, Wang D. Interferon and interferon-stimulated genes in HBV treatment. Front Immunol 2022; 13:1034968. [PMID: 36531993 PMCID: PMC9751411 DOI: 10.3389/fimmu.2022.1034968] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Human hepatitis B virus (HBV) is a small enveloped DNA virus with a complex life cycle. It is the causative agent of acute and chronic hepatitis. HBV can resist immune system responses and often causes persistent chronic infections. HBV is the leading cause of liver cancer and cirrhosis. Interferons (IFNs) are cytokines with antiviral, immunomodulatory, and antitumor properties. IFNs are glycoproteins with a strong antiviral activity that plays an important role in adaptive and innate immune responses. They are classified into three categories (type I, II, and III) based on the structure of their cell-surface receptors. As an effective drug for controlling chronic viral infections, Type I IFNs are approved to be clinically used for the treatment of HBV infection. The therapeutic effect of interferon will be enhanced when combined with other drugs. IFNs play a biological function by inducing the expression of hundreds of IFN-stimulated genes (ISGs) in the host cells, which are responsible for the inhibiting of HBV replication, transcription, and other important processes. Animal models of HBV, such as chimpanzees, are also important tools for studying IFN treatment and ISG regulation. In the present review, we summarized the recent progress in IFN-HBV treatment and focused on its mechanism through the interaction between HBV and ISGs.
Collapse
Affiliation(s)
- Qirong Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Zhuo
- School of Acupuncture-Moxi bustion and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China,*Correspondence: Yongjian Gao, ; Dongxu Wang,
| |
Collapse
|
14
|
5′ Untranslated mRNA Regions Allow Bypass of Host Cell Translation Inhibition by Legionella pneumophila. Infect Immun 2022; 90:e0017922. [DOI: 10.1128/iai.00179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila
grows within membrane-bound vacuoles in alveolar macrophages during human disease. Pathogen manipulation of the host cell is driven by bacterial proteins translocated through a type IV secretion system (T4SS).
Collapse
|
15
|
Lozhkov AA, Plotnikova MA, Egorova MA, Baranovskaya IL, Elpaeva EA, Klotchenko SA, Vasin AV. Simultaneous Detection of RIG-1, MDA5, and IFIT-1 Expression Is a Convenient Tool for Evaluation of the Interferon-Mediated Response. Viruses 2022; 14:v14102090. [PMID: 36298646 PMCID: PMC9609481 DOI: 10.3390/v14102090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, we developed a novel, multiplex qPCR assay for simultaneous detection of RIG-1, MDA5, and IFIT-1 at the mRNA level. The assay was validated in A549 cells transfected with in vitro transcribed RNAs. Both exogenous RNA-GFP and self-amplifying (saRNA-GFP) induced significant expression of RIG-1, MDA5, IFIT-1, as well as type I and III interferons. In contrast, native RNA from intact A549 cells did not upregulate expression of these genes. Next, we evaluated RIG-1, MDA5, and IFIT-1 mRNA levels in the white blood cells of patients with influenza A virus (H3N2) or SARS-CoV-2. In acute phase (about 4 days after disease onset) both viruses induced these genes expression. Clinical observations of SARS-CoV-2 typically describe a two-step disease progression, starting with a mild-to-moderate presentation followed by a secondary respiratory worsening 9 to 12 days after the first onset of symptoms. It revealed that the expression of RIG-1, MDA5, and MxA was not increased after 2 and 3 weeks from the onset the disease, while for IFIT-1 it was observed the second peak at 21 day post infection. It is well known that RIG-1, MDA5, and IFIT-1 expression is induced by the action of interferons. Due to the ability of SOCS-1 to inhibit interferon-dependent signaling, and the distinct antagonism of SARS-CoV-2 in relation to interferon-stimulated genes expression, we assessed SOCS-1 mRNA levels in white blood cells. SARS-CoV-2 patients had increased SOCS-1 expression, while the influenza-infected group did not differ from heathy donors. Moreover, SOCS-1 mRNA expression remained stably elevated during the course of the disease. It can be assumed that augmented SOCS-1 expression is one of multiple mechanisms that allow SARS-CoV-2 to escape from the interferon-mediated immune response. Our results implicate SOCS-1 involvement in the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Alexey A. Lozhkov
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 197376 St. Petersburg, Russia
| | | | - Marya A. Egorova
- Smorodintsev Research Institute of Influenza, 197376 St. Petersburg, Russia
| | - Irina L. Baranovskaya
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 197376 St. Petersburg, Russia
| | | | - Sergey A. Klotchenko
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 197376 St. Petersburg, Russia
- Correspondence:
| | - Andrey V. Vasin
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Smorodintsev Research Institute of Influenza, 197376 St. Petersburg, Russia
- Scientific and Educational Center for Biophysical Research in the Field of Pharmaceuticals, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia
| |
Collapse
|
16
|
Slobodin B, Sehrawat U, Lev A, Hayat D, Zuckerman B, Fraticelli D, Ogran A, Ben-Shmuel A, Bar-David E, Levy H, Ulitsky I, Dikstein R. Cap-independent translation and a precisely located RNA sequence enable SARS-CoV-2 to control host translation and escape anti-viral response. Nucleic Acids Res 2022; 50:8080-8092. [PMID: 35849342 PMCID: PMC9371909 DOI: 10.1093/nar/gkac615] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022] Open
Abstract
Translation of SARS-CoV-2-encoded mRNAs by the host ribosomes is essential for its propagation. Following infection, the early expressed viral protein NSP1 binds the ribosome, represses translation, and induces mRNA degradation, while the host elicits an anti-viral response. The mechanisms enabling viral mRNAs to escape this multifaceted repression remain obscure. Here we show that expression of NSP1 leads to destabilization of multi-exon cellular mRNAs, while intron-less transcripts, such as viral mRNAs and anti-viral interferon genes, remain relatively stable. We identified a conserved and precisely located cap-proximal RNA element devoid of guanosines that confers resistance to NSP1-mediated translation inhibition. Importantly, the primary sequence rather than the secondary structure is critical for protection. We further show that the genomic 5'UTR of SARS-CoV-2 drives cap-independent translation and promotes expression of NSP1 in an eIF4E-independent and Torin1-resistant manner. Upon expression, NSP1 further enhances cap-independent translation. However, the sub-genomic 5'UTRs are highly sensitive to eIF4E availability, rendering viral propagation partially sensitive to Torin1. We conclude that the combined NSP1-mediated degradation of spliced mRNAs and translation inhibition of single-exon genes, along with the unique features present in the viral 5'UTRs, ensure robust expression of viral mRNAs. These features can be exploited as potential therapeutic targets.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Urmila Sehrawat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anastasia Lev
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daniel Hayat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Binyamin Zuckerman
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel.,Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Davide Fraticelli
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ariel Ogran
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 7410001 Israel
| | - Elad Bar-David
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 7410001 Israel
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 7410001 Israel
| | - Igor Ulitsky
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
17
|
Zhong C, Liao Z, Zhang B, Xiao L, Li J, Zhu X. Bta-miR-677 contribute to interferon pathway affecting the proliferation of caprine parainfluenza virus type 3. Microb Pathog 2022; 169:105642. [PMID: 35710089 DOI: 10.1016/j.micpath.2022.105642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/09/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Caprine parainfluenza virus type 3 (CPIV3), a new strain of virus, was isolated from the goats in 2014 in China. Studies have shown that viral infection can induce changes in the expression profile of host miRNAs, which modulate natural immune responses and viral infection. In this study, we report that bta-miR-677 suppressed CPIV3 replication in Madin-Darby bovine kidney (MDBK) cells and guinea pigs. Bta-miR-677 overexpression promoted type I interferon (IFN-I) and IFN-stimulated genes (ISGs) production, thereby inhibiting CPIV3 replication, while bta-miR-677 inhibitor suppressed the antiviral innate immune response to promoted viral replication in MDBK cells. We showed that bta-miR-677 suppresses CPIV3 replication via directly targeted the 3'-untranslated region (3'-UTR) of mitochondrial antiviral signaling protein (MAVS) thus enhancing IFN pathway in MDBK cells. We also demonstrated that bta-miR-677 agomir could inhibit CPIV3 proliferation in guinea pigs, with much lower viral RNA levels in lung and trachea. Guinea pigs showed no obvious pathological changes and less severe lung lesions in bta-miR-677 agomir treated group at 7 dpi. This study contributes to our understanding of the molecular mechanisms underlying CPIV3 pathogenesis.
Collapse
Affiliation(s)
- Chunyan Zhong
- Biological Engineering Department, Southwest Guizhou Vocational and Technical College for Nationalitie, Xingyi, 562400, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Zheng Liao
- College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Baotai Zhang
- College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Li Xiao
- College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
18
|
Sadeghsoltani F, Mohammadzadeh I, Safari MM, Hassanpour P, Izadpanah M, Qujeq D, Moein S, Vaghari-Tabari M. Zinc and Respiratory Viral Infections: Important Trace Element in Anti-viral Response and Immune Regulation. Biol Trace Elem Res 2022; 200:2556-2571. [PMID: 34368933 PMCID: PMC8349606 DOI: 10.1007/s12011-021-02859-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Influenza viruses, respiratory syncytial virus (RSV), and SARS-COV2 are among the most dangerous respiratory viruses. Zinc is one of the essential micronutrients and is very important in the immune system. The aim of this narrative review is to review the most interesting findings about the importance of zinc in the anti-viral immune response in the respiratory tract and defense against influenza, RSV, and SARS-COV2 infections. The most interesting findings on the role of zinc in regulating immunity in the respiratory tract and the relationship between zinc and acute respiratory distress syndrome (ARDS) are reviewed, as well. Besides, current findings regarding the relationship between zinc and the effectiveness of respiratory viruses' vaccines are reviewed. The results of reviewed studies have shown that zinc and some zinc-dependent proteins are involved in anti-viral defense and immune regulation in the respiratory tract. It seems that zinc can reduce the viral titer following influenza infection. Zinc may reduce RSV burden in the lungs. Zinc can be effective in reducing the duration of viral pneumonia symptoms. Zinc may enhance the effectiveness of hydroxychloroquine in reducing mortality rate in COVID-19 patients. Besides, zinc has a positive effect in preventing ARDS and ventilator-induced lung damage. The relationship between zinc levels and the effectiveness of respiratory viruses' vaccines, especially influenza vaccines, is still unclear, and the findings are somewhat contradictory. In conclusion, zinc has anti-viral properties and is important in defending against respiratory viral infections and regulating the immune response in the respiratory tract.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Iraj Mohammadzadeh
- Non-Communicable Pediatric Diseases Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mir-Meghdad Safari
- Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran
| | - Melika Izadpanah
- Department of Anatomy, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Daneshgah Street, P.O. Box 51666-14711, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Lüscher B, Verheirstraeten M, Krieg S, Korn P. Intracellular mono-ADP-ribosyltransferases at the host-virus interphase. Cell Mol Life Sci 2022; 79:288. [PMID: 35536484 PMCID: PMC9087173 DOI: 10.1007/s00018-022-04290-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 01/22/2023]
Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products disseminate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases (mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerging evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification with the innate immune response as part of the arms race between host and viruses.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Maud Verheirstraeten
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Patricia Korn
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022; 10:jitc-2021-002838. [PMID: 35459733 PMCID: PMC9035837 DOI: 10.1136/jitc-2021-002838] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Collapse
Affiliation(s)
- Gabriel Levy
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium.,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, University of Florence, Firenze, Italy.,Center of Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Peter Langmuir
- Oncology Targeted Therapeutics, Incyte Corp, Wilmington, Delaware, USA
| | - Stefan Constantinescu
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium .,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Nuffield Department of Medicine, Oxford University, Ludwig Institute for Cancer Research, Oxford, UK
| |
Collapse
|
21
|
The low abundance of CpG in the SARS-CoV-2 genome is not an evolutionarily signature of ZAP. Sci Rep 2022; 12:2420. [PMID: 35165300 PMCID: PMC8844275 DOI: 10.1038/s41598-022-06046-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
The zinc finger antiviral protein (ZAP) is known to restrict viral replication by binding to the CpG rich regions of viral RNA, and subsequently inducing viral RNA degradation. This enzyme has recently been shown to be capable of restricting SARS-CoV-2. These data have led to the hypothesis that the low abundance of CpG in the SARS-CoV-2 genome is due to an evolutionary pressure exerted by the host ZAP. To investigate this hypothesis, we performed a detailed analysis of many coronavirus sequences and ZAP RNA binding preference data. Our analyses showed neither evidence for an evolutionary pressure acting specifically on CpG dinucleotides, nor a link between the activity of ZAP and the low CpG abundance of the SARS-CoV-2 genome.
Collapse
|
22
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
23
|
Zhao B, Wang W, Zhao Y, Qiao H, Gao Z, Chuai X. Regulation of Antiviral Immune Response by N 6-Methyladenosine of mRNA. Front Microbiol 2022; 12:789605. [PMID: 34975810 PMCID: PMC8716812 DOI: 10.3389/fmicb.2021.789605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Host innate and adaptive immune responses play a vital role in clearing infected viruses. Meanwhile, viruses also evolve a series of mechanisms to weaken the host immune responses and evade immune defense. Recently, N6-methyladenosine (m6A), the most prevalent mRNA modification, has been revealed to regulate multiple steps of RNA metabolism, such as mRNA splicing, localization, stabilization, and translation, thus participating in many biological phenomena, including viral infection. In the process of virus–host interaction, the m6A modification that presents on the virus RNA impedes capture by the pattern recognition receptors, and the m6A modification appearing on the host immune-related molecules regulate interferon response, immune cell differentiation, inflammatory cytokine production, and other immune responses induced by viral infection. This review summarizes the research advances about the regulatory role of m6A modification in the innate and adaptive immune responses during viral infections.
Collapse
Affiliation(s)
- Baoxin Zhao
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Weijie Wang
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Hongxiu Qiao
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Zhiyun Gao
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Xia Chuai
- Department of Pathogen Biology, Hebei Medical University, Shijiazhuang, China.,Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Silva JMF, Nagata T, Melo FL, Elena SF. Heterogeneity in the Response of Different Subtypes of Drosophila melanogaster Midgut Cells to Viral Infections. Viruses 2021; 13:2284. [PMID: 34835089 PMCID: PMC8623525 DOI: 10.3390/v13112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) offers the possibility to monitor both host and pathogens transcriptomes at the cellular level. Here, public scRNA-seq datasets from Drosophila melanogaster midgut cells were used to compare the differences in replication strategy and cellular responses between two fly picorna-like viruses, Thika virus (TV) and D. melanogaster Nora virus (DMelNV). TV exhibited lower levels of viral RNA accumulation but infected a higher number of cells compared to DMelNV. In both cases, viral RNA accumulation varied according to cell subtype. The cellular heat shock response to TV and DMelNV infection was cell-subtype- and virus-specific. Disruption of bottleneck genes at later stages of infection in the systemic response, as well as of translation-related genes in the cellular response to DMelNV in two cell subtypes, may affect the virus replication.
Collapse
Affiliation(s)
- João M. F. Silva
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Brazil; (J.M.F.S.); (T.N.); (F.L.M.)
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, 46980 Paterna, València, Spain
| | - Tatsuya Nagata
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Brazil; (J.M.F.S.); (T.N.); (F.L.M.)
| | - Fernando L. Melo
- Departamento de Biologia Celular, Universidade de Brasília, Brasília 70910-900, Brazil; (J.M.F.S.); (T.N.); (F.L.M.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, 46980 Paterna, València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
25
|
Abstract
Human noroviruses (HuNoVs) are increasingly becoming the main cause of transmissible gastroenteritis worldwide, with hundreds of thousands of deaths recorded annually. Yet, decades after their discovery, there is still no effective treatment or vaccine. Efforts aimed at developing vaccines or treatment will benefit from a greater understanding of norovirus-host interactions, including the host response to infection. In this review, we provide a concise overview of the evidence establishing the significance of type I and type III interferon (IFN) responses in the restriction of noroviruses. We also critically examine our current understanding of the molecular mechanisms of IFN induction in norovirus-infected cells, and outline the diverse strategies deployed by noroviruses to supress and/or avoid host IFN responses. It is our hope that this review will facilitate further discussion and increase interest in this area.
Collapse
Affiliation(s)
- Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- *Correspondence: Aminu S. Jahun,
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
26
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The translational landscape of SARS-CoV-2 and infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.03.367516. [PMID: 33173862 PMCID: PMC7654850 DOI: 10.1101/2020.11.03.367516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2 infected model cell lines and primary airway cells grown at the air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We find that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy in comparison to HIV-1, suggesting utilization of distinct structural elements. In the highly permissive cell models, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokines, cytokines and interferon stimulated genes, many of these mRNAs were not translated efficiently. Impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hung R Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sean P Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James B Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
27
|
Qiao X, Wang L, Song L. The primitive interferon-like system and its antiviral function in molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103997. [PMID: 33444647 DOI: 10.1016/j.dci.2021.103997] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The phylum mollusca is a very important group in the animal kingdom for the large number and diversified species. Recently, interest in molluscan immunity has increased due to their phylogenetic position and importance in worldwide aquaculture and aquatic environment. As the main aquaculture animal, most molluscs live in the water environment and they have to cope with many pathogen challenges, in which virus is one of the primary causes for the mass mortality. In vertebrates, interferon (IFN) system is generally recognized as the first line of defence against viral infection, while the antiviral mechanisms in molluscs remain to be clearly illuminated. Recently, some IFN-like proteins and IFN-related components have been characterized from molluscs, such as pattern recognition receptors (PRRs), interferon regulatory factors (IRFs), IFN-like receptors, JAK/STAT and IFN-stimulated genes (ISGs), which reinforce the existence of IFN-like system in molluscs. This system can be activated by virus or poly (I:C) challenges and further regulate the antiviral response of haemocytes in molluscs. This review summarizes the research progresses of IFN-like system in molluscs with the emphases on the uniformity and heterogeneity of IFN-like system of molluscs compared to that of other animals, which will be helpful for elucidating the antiviral modulation in molluscs and understanding the origin and evolution of IFN system.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
28
|
Judd EN, Gilchrist AR, Meyerson NR, Sawyer SL. Positive natural selection in primate genes of the type I interferon response. BMC Ecol Evol 2021; 21:65. [PMID: 33902453 PMCID: PMC8074226 DOI: 10.1186/s12862-021-01783-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one.
Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.
Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01783-z.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Alison R Gilchrist
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
29
|
Chavez JS, Rabe JL, Loeffler D, Higa KC, Hernandez G, Mills TS, Ahmed N, Gessner RL, Ke Z, Idler BM, Niño KE, Kim H, Myers JR, Stevens BM, Davizon-Castillo P, Jordan CT, Nakajima H, Ashton J, Welner RS, Schroeder T, DeGregori J, Pietras EM. PU.1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. J Exp Med 2021; 218:211996. [PMID: 33857288 PMCID: PMC8056754 DOI: 10.1084/jem.20201169] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/01/2021] [Accepted: 03/17/2021] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are capable of entering the cell cycle to replenish the blood system in response to inflammatory cues; however, excessive proliferation in response to chronic inflammation can lead to either HSC attrition or expansion. The mechanism(s) that limit HSC proliferation and expansion triggered by inflammatory signals are poorly defined. Here, we show that long-term HSCs (HSCLT) rapidly repress protein synthesis and cell cycle genes following treatment with the proinflammatory cytokine interleukin (IL)-1. This gene program is associated with activation of the transcription factor PU.1 and direct PU.1 binding at repressed target genes. Notably, PU.1 is required to repress cell cycle and protein synthesis genes, and IL-1 exposure triggers aberrant protein synthesis and cell cycle activity in PU.1-deficient HSCs. These features are associated with expansion of phenotypic PU.1-deficient HSCs. Thus, we identify a PU.1-dependent mechanism triggered by innate immune stimulation that limits HSC proliferation and pool size. These findings provide insight into how HSCs maintain homeostasis during inflammatory stress.
Collapse
Affiliation(s)
- James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dirk Loeffler
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Kelly C Higa
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Giovanny Hernandez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Taylor S Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nouraiz Ahmed
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Rachel L Gessner
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zhonghe Ke
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Beau M Idler
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katia E Niño
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hyunmin Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jason R Myers
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Brett M Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Craig T Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University School of Medicine, Yokohama, Japan
| | - John Ashton
- Genomics Research Center, University of Rochester, Rochester, NY
| | - Robert S Welner
- Division of Hematology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - James DeGregori
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
30
|
Dicker K, Järvelin AI, Garcia-Moreno M, Castello A. The importance of virion-incorporated cellular RNA-Binding Proteins in viral particle assembly and infectivity. Semin Cell Dev Biol 2021; 111:108-118. [PMID: 32921578 PMCID: PMC7482619 DOI: 10.1016/j.semcdb.2020.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
RNA is a central molecule in RNA virus biology due to its dual function as messenger and genome. However, the small number of proteins encoded by viral genomes is insufficient to enable virus infection. Hence, viruses hijack cellular RNA-binding proteins (RBPs) to aid replication and spread. In this review we discuss the 'knowns' and 'unknowns' regarding the contribution of host RBPs to the formation of viral particles and the initial steps of infection in the newly infected cell. Through comparison of the virion proteomes of ten different human RNA viruses, we confirm that a pool of cellular RBPs are typically incorporated into viral particles. We describe here illustrative examples supporting the important functions of these RBPs in viral particle formation and infectivity and we propose that the role of host RBPs in these steps can be broader than previously anticipated. Understanding how cellular RBPs regulate virus infection can lead to the discovery of novel therapeutic targets against viruses.
Collapse
Affiliation(s)
- Kate Dicker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK; MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
31
|
Kotliar D, Lin AE, Logue J, Hughes TK, Khoury NM, Raju SS, Wadsworth MH, Chen H, Kurtz JR, Dighero-Kemp B, Bjornson ZB, Mukherjee N, Sellers BA, Tran N, Bauer MR, Adams GC, Adams R, Rinn JL, Melé M, Schaffner SF, Nolan GP, Barnes KG, Hensley LE, McIlwain DR, Shalek AK, Sabeti PC, Bennett RS. Single-Cell Profiling of Ebola Virus Disease In Vivo Reveals Viral and Host Dynamics. Cell 2020; 183:1383-1401.e19. [PMID: 33159858 PMCID: PMC7707107 DOI: 10.1016/j.cell.2020.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.
Collapse
Affiliation(s)
- Dylan Kotliar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| | - James Logue
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Travis K Hughes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Nadine M Khoury
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Siddharth S Raju
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marc H Wadsworth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Han Chen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan R Kurtz
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Bonnie Dighero-Kemp
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Zach B Bjornson
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Brian A Sellers
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20814, USA
| | - Nancy Tran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Matthew R Bauer
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gordon C Adams
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ricky Adams
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - John L Rinn
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Marta Melé
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia 08034, Spain
| | - Stephen F Schaffner
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kayla G Barnes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - David R McIlwain
- Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
32
|
Zhang B, Goraya MU, Chen N, Xu L, Hong Y, Zhu M, Chen JL. Zinc Finger CCCH-Type Antiviral Protein 1 Restricts the Viral Replication by Positively Regulating Type I Interferon Response. Front Microbiol 2020; 11:1912. [PMID: 32922375 PMCID: PMC7456897 DOI: 10.3389/fmicb.2020.01912] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023] Open
Abstract
Zinc finger CCCH-type antiviral protein 1 (ZC3HAV1) is a host antiviral factor that can repress translation and promote degradation of specific viral mRNAs. In this study, we found that expression of ZC3HAV1 was significantly induced by infection with influenza A virus (IAV) and Sendai virus (Sev). It was shown that deficiency of IFNAR resulted in a dramatic decrease in the virus-induced expression of ZC3HAV1. Furthermore, transfection with poly(I:C) and treatment with interferon β (IFN-β) induced the ZC3HAV1 expression. Interference with the endogenous expression of ZC3HAV1 enhanced the replication of influenza virus by impairing the production of IFN-β and MxA, following the infection of influenza virus. In contrast, ectopic expression of ZC3HAV1 significantly restricted the replication of influenza virus by increasing the IFN-β expression. In addition, ZC3HAV1 also promoted the induction of tumor necrosis factor and interleukin 6. These results suggest that ZC3HAV1 is induced by IFN-β/IFNAR signaling during IAV and Sev infection and involved in positive regulation of IFN-dependent innate antiviral response.
Collapse
Affiliation(s)
- Baoge Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohsan Ullah Goraya
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lifeng Xu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Hong
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meiyi Zhu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Lee KJ, Lee SW, Woo HN, Cho HM, Yu DB, Jeong SY, Joo CH, Jeong GS, Lee H. Real-time monitoring of oncolytic VSV properties in a novel in vitro microphysiological system containing 3D multicellular tumor spheroids. PLoS One 2020; 15:e0235356. [PMID: 32628693 PMCID: PMC7337297 DOI: 10.1371/journal.pone.0235356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/14/2020] [Indexed: 12/28/2022] Open
Abstract
As a new class of cancer therapeutic agents, oncolytic viruses (OVs) have gained much attention not only due to their ability to selectively replicate in and lyse tumor cells, but also for their potential to stimulate antitumor immune responses. As a result, there is an increasing need for in vitro modeling systems capable of recapitulating the 3D physiological tumor microenvironment. Here, we investigated the potential of our recently developed microphysiological system (MPS), featuring a vessel-like channel to reflect the in vivo tumor microenvironment and serving as culture spaces for 3D multicellular tumor spheroids (MCTSs). The MCTSs consist of cancer A549 cells, stromal MRC5 cells, endothelial HUVECs, as well as the extracellular matrix. 3D MCTSs residing in the MPS were infected with oncolytic VSV expressing GFP (oVSV-GFP). Post-infection, GFP signal intensity increased only in A549 cells of the MPS. On the other hand, HUVECs were susceptible to virus infection under 2D culture and IFN-β secretion was quite delayed in HUVECs. These results thus demonstrate that OV antitumoral characteristics can be readily monitored in the MPS and that its behavior therein somewhat differs compared to its activity in 2D system. In conclusion, we present the first application of the MPS, an in vitro model that was developed to better reflect in vivo conditions. Its various advantages suggest the 3D MCTS-integrated MPS can serve as a first line monitoring system to validate oncolytic virus efficacy.
Collapse
Affiliation(s)
- Kyoung Jin Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Woo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Ha-Na Woo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Hae Mi Cho
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Bong Yu
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Yeon Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Chul Hyun Joo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail: (HL); (GSJ)
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail: (HL); (GSJ)
| |
Collapse
|
34
|
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. An unbalanced immune response, characterized by a weak production of type I interferons (IFN-Is) and an exacerbated release of proinflammatory cytokines, contributes to the severe forms of the disease. SARS-CoV-2 is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2003 and 2013, respectively. Although IFN treatment gave some encouraging results against SARS-CoV and MERS-CoV in animal models, its potential as a therapeutic against COVID-19 awaits validation. Here, we describe our current knowledge of the complex interplay between SARS-CoV-2 infection and the IFN system, highlighting some of the gaps that need to be filled for a better understanding of the underlying molecular mechanisms. In addition to the conserved IFN evasion strategies that are likely shared with SARS-CoV and MERS-CoV, novel counteraction mechanisms are being discovered in SARS-CoV-2-infected cells. Since the last coronavirus epidemic, we have made considerable progress in understanding the IFN-I response, including its spatiotemporal regulation and the prominent role of plasmacytoid dendritic cells (pDCs), which are the main IFN-I-producing cells. While awaiting the results of the many clinical trials that are evaluating the efficacy of IFN-I alone or in combination with antiviral molecules, we discuss the potential benefits of a well-timed IFN-I treatment and propose strategies to boost pDC-mediated IFN responses during the early stages of viral infection.
Collapse
Affiliation(s)
- Margarida Sa Ribero
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | | | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
35
|
Topham JT, Titmuss E, Pleasance ED, Williamson LM, Karasinska JM, Culibrk L, Lee MKC, Mendis S, Denroche RE, Jang GH, Kalloger SE, Wong HL, Moore RA, Mungall AJ, O'Kane GM, Knox JJ, Gallinger S, Loree JM, Mager DL, Laskin J, Marra MA, Jones SJM, Schaeffer DF, Renouf DJ. Endogenous Retrovirus Transcript Levels Are Associated with Immunogenic Signatures in Multiple Metastatic Cancer Types. Mol Cancer Ther 2020; 19:1889-1897. [PMID: 32518206 DOI: 10.1158/1535-7163.mct-20-0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing of solid tumors has revealed variable signatures of immunogenicity across tumors, but underlying molecular characteristics driving such variation are not fully understood. Although expression of endogenous retrovirus (ERV)-containing transcripts can provide a source of tumor-specific neoantigen in some cancer models, associations between ERV levels and immunogenicity across different types of metastatic cancer are not well established. We performed bioinformatics analysis of genomic, transcriptomic, and clinical data across an integrated cohort of 199 patients with metastatic breast, colorectal, and pancreatic ductal adenocarcinoma tumors. Within each cancer type, we identified a subgroup of viral mimicry tumors in which increased ERV levels were coupled with transcriptional signatures of autonomous antiviral response and immunogenicity. In addition, viral mimicry colorectal and pancreatic tumors showed increased expression of DNA demethylation gene TET2 Taken together, these data demonstrate the existence of an ERV-associated viral mimicry phenotype across three distinct metastatic cancer types, while indicating links between ERV abundance, epigenetic dysregulation, and immunogenicity.
Collapse
Affiliation(s)
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Erin D Pleasance
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | | | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Michael K C Lee
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Shehara Mendis
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | | | - Gun-Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steve E Kalloger
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Li Wong
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Grainne M O'Kane
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer J Knox
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan M Loree
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Dixie L Mager
- Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Janessa Laskin
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, British Columbia, Canada. .,Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Muendlein HI, Sarhan J, Liu BC, Connolly WM, Schworer SA, Smirnova I, Tang AY, Ilyukha V, Pietruska J, Tahmasebi S, Sonenberg N, Degterev A, Poltorak A. Constitutive Interferon Attenuates RIPK1/3-Mediated Cytokine Translation. Cell Rep 2020; 30:699-713.e4. [PMID: 31968247 PMCID: PMC7183097 DOI: 10.1016/j.celrep.2019.12.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 11/24/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023] Open
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) are well known for their capacity to drive necroptosis via mixed-lineage kinase-like domain (MLKL). Recently, RIPK1/3 kinase activity has been shown to drive inflammation via activation of MAPK signaling. However, the regulatory mechanisms underlying this kinase-dependent cytokine production remain poorly understood. In the present study, we establish that the kinase activity of RIPK1/3 regulates cytokine translation in mouse and human macrophages. Furthermore, we show that this inflammatory response is downregulated by type I interferon (IFN) signaling, independent of type I IFN-promoted cell death. Specifically, low-level constitutive IFN signaling attenuates RIPK-driven activation of cap-dependent translation initiation pathway components AKT, mTORC1, 4E-BP and eIF4E, while promoting RIPK-dependent cell death. Altogether, these data characterize constitutive IFN signaling as a regulator of RIPK-dependent inflammation and establish cap-dependent translation as a crucial checkpoint in the regulation of cytokine production.
Collapse
Affiliation(s)
- Hayley I Muendlein
- Graduate Program in Genetics, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Joseph Sarhan
- Medical Scientist Training Program (MSTP), Tufts University School of Medicine, Boston, MA 02111, USA; Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Beiyun C Liu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38104, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen A Schworer
- Allergy and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Amy Y Tang
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Vladimir Ilyukha
- Petrozavodsk State University, Petrozavodsk, Republic of Karelia 185910, Russia
| | - Jodie Pietruska
- Department of Cell, Molecular & Developmental Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Soroush Tahmasebi
- Department of Biochemistry, Goodman Cancer Research Center McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Research Center McGill University, Montreal, QC H3A 1A3, Canada
| | - Alexei Degterev
- Department of Cell, Molecular & Developmental Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; Petrozavodsk State University, Petrozavodsk, Republic of Karelia 185910, Russia.
| |
Collapse
|
37
|
Özdemir S, Şengez B, Arslanoğlu A. Human immunodeficiency virus type-1 Tat protein induces secretory leukocyte protease inhibitor expression in African green monkey but not human cells. Virus Genes 2020; 56:182-193. [PMID: 31925640 DOI: 10.1007/s11262-020-01731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/04/2020] [Indexed: 10/25/2022]
Abstract
African monkeys are resistant to HIV-1 infection due to intrinsic restriction mechanisms found in their cells. However, although they can be infected by monkey-adapted modified HIV-1 particles that are designed to overcome known restriction factors, virus numbers drop to undetectable levels in immunocompetent animals. These results indicate the possibility of the presence of yet unidentified factor(s) that restrict HIV-1 in old-world monkey (OWM) cells after integration of the viral genome into the host cell chromosome. In the light of these findings, we hypothesized that OWMs might have evolved resistance mechanism(s) against HIV-1 by switching specific gene(s) on in response to the synthesis of viral proteins in infected cells. In an attempt to mimic post-infection status, we expressed HIV-1 Tat gene in African green monkey cells and compared the whole proteome with normal cells and identified secretory leukocyte protease inhibitor (SLPI), a protein with known extracellular anti-HIV-1 activity, as an over-expressed protein in the presence of HIV-1 Tat protein by 2D-PAGE and mass spectrometry analysis. We also showed that overexpression of SLPI in the presence of HIV-1 Tat was specific to monkey cells. Our results also suggest that SLPI had a previously undiscovered intracellular anti-HIV activity in addition to its extracellular activity.
Collapse
Affiliation(s)
- Selçuk Özdemir
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey.,Department of Genetics, Division of Zootechnics and Animal Nutrition, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Burcu Şengez
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey.,Izmir Biomedicine and Genome Centre, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Alper Arslanoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
38
|
The Autophagy Protein ATG16L1 Is Required for Sindbis Virus-Induced eIF2α Phosphorylation and Stress Granule Formation. Viruses 2019; 12:v12010039. [PMID: 31905741 PMCID: PMC7019544 DOI: 10.3390/v12010039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
Sindbis virus (SINV) infection induces eIF2α phosphorylation, which leads to stress granule (SG) assembly. SINV infection also stimulates autophagy, which has an important role in controlling the innate immune response. The importance of autophagy to virus-induced translation arrest is not well understood. In this study, we show that the autophagy protein ATG16L1 not only regulates eIF2α phosphorylation and the translation of viral and antiviral proteins, but also controls SG assembly. Early in infection (2hpi), capsids were recruited by host factors Cytotoxic Granule-Associated RNA Binding Protein (TIA1), Y-box binding protein 1 (YBX1), and vasolin-containing protein 1 (VCP), to a single perinuclear body, which co-localized with the viral pattern recognition sensors, double stranded RNA-activated protein-kinase R (PKR) and RIG-I. By 6hpi, there was increased eIF2α phosphorylation and viral protein synthesis. However, in cells lacking the autophagy protein ATG16L1, SG assembly was inhibited and capsid remained in numerous small foci in the cytoplasm containing YBX1, TIA1 with RIG-I, and these persisted for over 8hpi. In the absence of ATG16L1, there was little phosphorylation of eIF2α and low levels of viral protein synthesis. Compared to wild type cells, there was potentiated interferon protein and interferon-stimulated gene (ISG) mRNA expression. These results show that ATG16L1 is required for maximum eIF2α phosphorylation, proper SG assembly into a single perinuclear focus, and for attenuating the innate immune response. Therefore, this study shows that, in the case of SINV, ATG16L1 is pro-viral, required for SG assembly and virus replication.
Collapse
|
39
|
Malik MS, Bjørgen H, Dhamotharan K, Wessel Ø, Koppang EO, Di Cicco E, Hansen EF, Dahle MK, Rimstad E. Erythroid Progenitor Cells in Atlantic Salmon ( Salmo salar) May Be Persistently and Productively Infected with Piscine Orthoreovirus (PRV). Viruses 2019; 11:E824. [PMID: 31491892 PMCID: PMC6784031 DOI: 10.3390/v11090824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Piscine orthoreovirus (PRV-1) can cause heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). The virus targets erythrocytes in the acute peak phase, followed by cardiomyocytes, before the infection subsides into persistence. The persistent phase is characterized by high level of viral RNA, but low level of viral protein. The origin and nature of persistent PRV-1 are not clear. Here, we analyzed for viral persistence and activity in various tissues and cell types in experimentally infected Atlantic salmon. Plasma contained PRV-1 genomic dsRNA throughout an 18-week long infection trial, indicating that viral particles are continuously produced and released. The highest level of PRV-1 RNA in the persistent phase was found in kidney. The level of PRV-1 ssRNA transcripts in kidney was significantly higher than that of blood cells in the persistent phase. In-situ hybridization assays confirmed that PRV-1 RNA was present in erythroid progenitor cells, erythrocytes, macrophages, melano-macrophages and in some additional un-characterized cells in kidney. These results show that PRV-1 establishes a productive, persistent infection in Atlantic salmon and that erythrocyte progenitor cells are PRV target cells.
Collapse
Affiliation(s)
- Muhammad Salman Malik
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Håvard Bjørgen
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Kannimuthu Dhamotharan
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Øystein Wessel
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Erling Olaf Koppang
- Department of Basic Science and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Emiliano Di Cicco
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada.
| | - Elisabeth F Hansen
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Maria K Dahle
- Department of Fish Health, Norwegian Veterinary Institute, 0454 Oslo, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
40
|
Characterization of Novel Splice Variants of Zinc Finger Antiviral Protein (ZAP). J Virol 2019; 93:JVI.00715-19. [PMID: 31118263 DOI: 10.1128/jvi.00715-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Given the unprecedented scale of the recent Ebola and Zika viral epidemics, it is crucial to understand the biology of host factors with broad antiviral action in order to develop novel therapeutic approaches. Here, we look into one such factor: zinc finger antiviral protein (ZAP) inhibits a variety of RNA and DNA viruses. Alternative splicing results in two isoforms that differ at their C termini: ZAPL (long) encodes a poly(ADP-ribose) polymerase (PARP)-like domain that is missing in ZAPS (short). Previously, it has been shown that ZAPL is more antiviral than ZAPS, while the latter is more induced by interferon (IFN). In this study, we discovered and confirmed the expression of two additional splice variants of human ZAP: ZAPXL (extralong) and ZAPM (medium). We also found two haplotypes of human ZAP. Since ZAPL and ZAPS have differential activities, we hypothesize that all four ZAP isoforms have evolved to mediate distinct antiviral and/or cellular functions. By taking a gene-knockout-and-reconstitution approach, we have characterized the antiviral, translational inhibition, and IFN activation activities of individual ZAP isoforms. Our work demonstrates that ZAPL and ZAPXL are more active against alphaviruses and hepatitis B virus (HBV) than ZAPS and ZAPM and elucidates the effects of splice variants on the action of a broad-spectrum antiviral factor.IMPORTANCE ZAP is an IFN-induced host factor that can inhibit a wide range of viruses, and there is great interest in fully characterizing its antiviral mechanism. This is the first study that defines the antiviral capacities of individual ZAP isoforms in the absence of endogenous ZAP expression and, hence, cross talk with other isoforms. Our data demonstrate that ZAP is expressed as four different forms: ZAPS, ZAPM, ZAPL, and ZAPXL. The longer ZAP isoforms better inhibit alphaviruses and HBV, while all isoforms equally inhibit Ebola virus transcription and replication. In addition, there is no difference in the abilities of ZAP isoforms to enhance the induction of type I IFN expression. Our results show that the full spectrum of ZAP activities can change depending on the virus target and the relative levels of basal expression and induction by IFN or infection.
Collapse
|
41
|
McIntyre W, Netzband R, Bonenfant G, Biegel JM, Miller C, Fuchs G, Henderson E, Arra M, Canki M, Fabris D, Pager CT. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Res 2019; 46:5776-5791. [PMID: 29373715 PMCID: PMC6009648 DOI: 10.1093/nar/gky029] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
More than 140 post-transcriptional modifications (PTMs) are known to decorate cellular RNAs, but their incidence, identity and significance in viral RNA are still largely unknown. We have developed an agnostic analytical approach to comprehensively survey PTMs on viral and cellular RNAs. Specifically, we used mass spectrometry to analyze PTMs on total RNA isolated from cells infected with Zika virus, Dengue virus, hepatitis C virus (HCV), poliovirus and human immunodeficiency virus type 1. All five RNA viruses significantly altered global PTM landscapes. Examination of PTM profiles of individual viral genomes isolated by affinity capture revealed a plethora of PTMs on viral RNAs, which far exceeds the handful of well-characterized modifications. Direct comparison of viral epitranscriptomes identified common and virus-specific PTMs. In particular, specific dimethylcytosine modifications were only present in total RNA from virus-infected cells, and in intracellular HCV RNA, and viral RNA from Zika and HCV virions. Moreover, dimethylcytosine abundance during viral infection was modulated by the cellular DEAD-box RNA helicase DDX6. By opening the Pandora's box on viral PTMs, this report presents numerous questions and hypotheses on PTM function and strongly supports PTMs as a new tier of regulation by which RNA viruses subvert the host and evade cellular surveillance systems.
Collapse
Affiliation(s)
- Will McIntyre
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rachel Netzband
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Gaston Bonenfant
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Jason M Biegel
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Clare Miller
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Gabriele Fuchs
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Eric Henderson
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Manoj Arra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Mario Canki
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Daniele Fabris
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T Pager
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
42
|
Ficarelli M, Wilson H, Pedro Galão R, Mazzon M, Antzin-Anduetza I, Marsh M, Neil SJD, Swanson CM. KHNYN is essential for the zinc finger antiviral protein (ZAP) to restrict HIV-1 containing clustered CpG dinucleotides. eLife 2019; 8:e46767. [PMID: 31284899 PMCID: PMC6615859 DOI: 10.7554/elife.46767] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
CpG dinucleotides are suppressed in most vertebrate RNA viruses, including HIV-1, and introducing CpGs into RNA virus genomes inhibits their replication. The zinc finger antiviral protein (ZAP) binds regions of viral RNA containing CpGs and targets them for degradation. ZAP does not have enzymatic activity and recruits other cellular proteins to inhibit viral replication. We found that KHNYN, a protein with no previously known function, interacts with ZAP. KHNYN overexpression selectively inhibits HIV-1 containing clustered CpG dinucleotides and this requires ZAP and its cofactor TRIM25. KHNYN requires both its KH-like domain and NYN endonuclease domain for antiviral activity. Crucially, depletion of KHNYN eliminated the deleterious effect of CpG dinucleotides on HIV-1 RNA abundance and infectious virus production and also enhanced the production of murine leukemia virus. Overall, we have identified KHNYN as a novel cofactor for ZAP to target CpG-containing retroviral RNA for degradation.
Collapse
Affiliation(s)
- Mattia Ficarelli
- Department of Infectious Diseases, School of Immunology and Microbial SciencesKing’s College LondonLondonUnited Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology and Microbial SciencesKing’s College LondonLondonUnited Kingdom
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology and Microbial SciencesKing’s College LondonLondonUnited Kingdom
| | - Michela Mazzon
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUnited Kingdom
| | - Irati Antzin-Anduetza
- Department of Infectious Diseases, School of Immunology and Microbial SciencesKing’s College LondonLondonUnited Kingdom
| | - Mark Marsh
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUnited Kingdom
| | - Stuart JD Neil
- Department of Infectious Diseases, School of Immunology and Microbial SciencesKing’s College LondonLondonUnited Kingdom
| | - Chad M Swanson
- Department of Infectious Diseases, School of Immunology and Microbial SciencesKing’s College LondonLondonUnited Kingdom
| |
Collapse
|
43
|
Williams GD, Gokhale NS, Horner SM. Regulation of Viral Infection by the RNA Modification N6-Methyladenosine. Annu Rev Virol 2019; 6:235-253. [PMID: 31283446 DOI: 10.1146/annurev-virology-092818-015559] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the RNA modification N6-methyladenosine (m6A) has been found to play a role in the life cycles of numerous viruses and also in the cellular response to viral infection. m6A has emerged as a regulator of many fundamental aspects of RNA biology. Here, we highlight recent advances in techniques for the study of m6A, as well as advances in our understanding of the cellular machinery that controls the addition, removal, recognition, and functions of m6A. We then summarize the many newly discovered roles of m6A during viral infection, including how it regulates innate and adaptive immune responses to infection. Overall, the goals of this review are to summarize the roles of m6A on both cellular and viral RNAs and to describe future directions for uncovering new functions of m6A during infection.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , ,
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA; , , .,Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
44
|
Thomas E, Baumert TF. Hepatitis B Virus-Hepatocyte Interactions and Innate Immune Responses: Experimental Models and Molecular Mechanisms. Semin Liver Dis 2019; 39:301-314. [PMID: 31266064 PMCID: PMC7377277 DOI: 10.1055/s-0039-1685518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide. While current therapeutic approaches can efficiently control viral infection, efficient curative antivirals are absent. The understanding of virus-hepatocyte interactions and sensing of viral infection is an important prerequisite for the development of novel antiviral therapies for cure. Hepatocyte intrinsic innate immunity provides a rapid first line of defense to combat viral infection through the upregulation of antiviral and inflammatory genes. However, the functional relevance of many of these antiviral signaling pathways in the liver and their role in HBV pathogenesis is still only partially understood. The recent identification of intracellular RNA and DNA sensing pathways and their involvement in disease biology, including viral pathogenesis and carcinogenesis, is currently transforming our understanding of virus-host interactions. Here the authors review the current knowledge on intrinsic antiviral innate immune responses including the role of viral nucleic acid sensing pathways in the liver. Since HBV has been designated as a "stealth virus," the study of the impact of HBV on signaling pathways in the hepatocyte is of significant interest to understand viral pathogenesis. Characterizing the mechanism underlying these HBV-host interactions and targeting related pathways to enhance antiviral innate responses may open new strategies to trigger noncytopathic clearance of covalently closed circular DNA to ultimately cure patients with chronic HBV infection.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida,Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France,Laboratory of Excellence HEPSYS, University of Strasbourg, Strasbourg, France,Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
45
|
Mouse Norovirus Infection Arrests Host Cell Translation Uncoupled from the Stress Granule-PKR-eIF2α Axis. mBio 2019; 10:mBio.00960-19. [PMID: 31213553 PMCID: PMC6581855 DOI: 10.1128/mbio.00960-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrated stress response (ISR) is a cellular response system activated upon different types of stresses, including viral infection, to restore cellular homeostasis. However, many viruses manipulate this response for their own advantage. In this study, we investigated the association between murine norovirus (MNV) infection and the ISR and demonstrate that MNV regulates the ISR by activating and recruiting key ISR host factors. We observed that during MNV infection, there is a progressive increase in phosphorylated eukaryotic initiation factor 2α (p-eIF2α), resulting in the suppression of host translation, and yet MNV translation still progresses under these conditions. Interestingly, the shutoff of host translation also impacts the translation of key signaling cytokines such as beta interferon, interleukin-6, and tumor necrosis factor alpha. Our subsequent analyses revealed that the phosphorylation of eIF2α was mediated via protein kinase R (PKR), but further investigation revealed that PKR activation, phosphorylation of eIF2α, and translational arrest were uncoupled during infection. We further observed that stress granules (SGs) are not induced during MNV infection and that MNV can restrict SG nucleation and formation. We observed that MNV recruited the key SG nucleating protein G3BP1 to its replication sites and intriguingly the silencing of G3BP1 negatively impacts MNV replication. Thus, it appears that MNV utilizes G3BP1 to enhance replication but equally to prevent SG formation, suggesting an anti-MNV property of SGs. Overall, this study highlights MNV manipulation of SGs, PKR, and translational control to regulate cytokine translation and to promote viral replication.IMPORTANCE Viruses hijack host machinery and regulate cellular homeostasis to actively replicate their genome, propagate, and cause disease. In retaliation, cells possess various defense mechanisms to detect, destroy, and clear infecting viruses, as well as signal to neighboring cells to inform them of the imminent threat. In this study, we demonstrate that the murine norovirus (MNV) infection stalls host protein translation and the production of antiviral and proinflammatory cytokines. However, virus replication and protein translation still ensue. We show that MNV further prevents the formation of cytoplasmic RNA granules, called stress granules (SGs), by recruiting the key host protein G3BP1 to the MNV replication complex, a recruitment that is crucial to establishing and maintaining virus replication. Thus, MNV promotes immune evasion of the virus by altering protein translation. Together, this evasion strategy delays innate immune responses to MNV infection and accelerates disease onset.
Collapse
|
46
|
Herbert A. ADAR and Immune Silencing in Cancer. Trends Cancer 2019; 5:272-282. [DOI: 10.1016/j.trecan.2019.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/03/2023]
|
47
|
Amarelle L, Katzen J, Shigemura M, Welch LC, Cajigas H, Peteranderl C, Celli D, Herold S, Lecuona E, Sznajder JI. Cardiac glycosides decrease influenza virus replication by inhibiting cell protein translational machinery. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1094-L1106. [PMID: 30892074 DOI: 10.1152/ajplung.00173.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac glycosides (CGs) are used primarily for cardiac failure and have been reported to have other effects, including inhibition of viral replication. Here we set out to study mechanisms by which CGs as inhibitors of the Na-K-ATPase decrease influenza A virus (IAV) replication in the lungs. We found that CGs inhibit influenza virus replication in alveolar epithelial cells by decreasing intracellular potassium, which in turn inhibits protein translation, independently of viral entry, mRNA transcription, and protein degradation. These effects were independent of the Src signaling pathway and intracellular calcium concentration changes. We found that short-term treatment with ouabain prevented IAV replication without cytotoxicity. Rodents express a Na-K-ATPase-α1 resistant to CGs. Thus we utilized Na-K-ATPase-α1-sensitive mice, infected them with high doses of influenza virus, and observed a modest survival benefit when treated with ouabain. In summary, we provide evidence that the inhibition of the Na-K-ATPase by CGs decreases influenza A viral replication by modulating the cell protein translational machinery and results in a modest survival benefit in mice.
Collapse
Affiliation(s)
- Luciano Amarelle
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| | - Jeremy Katzen
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Pulmonary, Allergy, and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Masahiko Shigemura
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Lynn C Welch
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Héctor Cajigas
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Christin Peteranderl
- Department of Internal Medicine II, University of Giessen and Marburg Lung Center , Giessen , Germany
| | - Diego Celli
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Susanne Herold
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,Department of Internal Medicine II, University of Giessen and Marburg Lung Center , Giessen , Germany
| | - Emilia Lecuona
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
48
|
Lemay G. Synthesis and Translation of Viral mRNA in Reovirus-Infected Cells: Progress and Remaining Questions. Viruses 2018; 10:E671. [PMID: 30486370 PMCID: PMC6315682 DOI: 10.3390/v10120671] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/23/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
At the end of my doctoral studies, in 1988, I published a review article on the major steps of transcription and translation during the mammalian reovirus multiplication cycle, a topic that still fascinates me 30 years later. It is in the nature of scientific research to generate further questioning as new knowledge emerges. Our understanding of these fascinating viruses thus remains incomplete but it seemed appropriate at this moment to look back and reflect on our progress and most important questions that still puzzle us. It is also essential of being careful about concepts that seem so well established, but could still be better validated using new approaches. I hope that the few reflections presented here will stimulate discussions and maybe attract new investigators into the field of reovirus research. Many other aspects of the viral multiplication cycle would merit our attention. However, I will essentially limit my discussion to these central aspects of the viral cycle that are transcription of viral genes and their phenotypic expression through the host cell translational machinery. The objective here is not to review every aspect but to put more emphasis on important progress and challenges in the field.
Collapse
Affiliation(s)
- Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
49
|
Brunkard JO, Baker B. A Two-Headed Monster to Avert Disaster: HBS1/SKI7 Is Alternatively Spliced to Build Eukaryotic RNA Surveillance Complexes. FRONTIERS IN PLANT SCIENCE 2018; 9:1333. [PMID: 30258456 PMCID: PMC6143672 DOI: 10.3389/fpls.2018.01333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/24/2018] [Indexed: 05/19/2023]
Abstract
The cytosolic RNA exosome, a 3'→5' exoribonuclease complex, contributes to mRNA degradation in eukaryotes, limiting the accumulation of poorly-translated, improperly translated, or aberrant mRNA species. Disruption of cytosolic RNA exosome activity allows aberrant RNA species to accumulate, which can then be detected by host antiviral immune systems as a signature of pathogen infection, activating antiviral defenses. SKI7 is a critical component of the cytosolic RNA exosome in yeast, bridging the catalytic exoribonuclease core with the SKI2/SKI3/SKI8 adaptor complex that guides aberrant RNA substrates into the exosome. The ortholog of SKI7 was only recently identified in humans as an alternative splice form of the HBS1 gene, which encodes a decoding factor translational GTPase that rescues stalled ribosomes. Here, we identify the plant orthologs of HBS1/SKI7. We found that HBS1 and SKI7 are typically encoded by alternative splice forms of a single locus, although some plant lineages have evolved subfunctionalized genes that apparently encode only HBS1 or only SKI7. In all plant lineages examined, the SKI7 gene is subject to regulation by alternative splicing that can yield unproductive transcripts, either by removing deeply conserved SKI7 coding sequences, or by introducing premature stop codons that render SKI7 susceptible to nonsense-mediated decay. Taking a comparative, evolutionary approach, we define crucial features of the SKI7 protein shared by all eukaryotes, and use these deeply conserved features to identify SKI7 proteins in invertebrate lineages. We conclude that SKI7 is a conserved cytosolic RNA exosome subunit across eukaryotic lineages, and that SKI7 is consistently regulated by alternative splicing, suggesting broad coordination of nuclear and cytosolic RNA metabolism.
Collapse
Affiliation(s)
- Jacob O. Brunkard
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA, United States
| |
Collapse
|
50
|
Abstract
Tripartite motif (TRIM) proteins are a versatile family of ubiquitin E3 ligases involved in a multitude of cellular processes. Studies in recent years have demonstrated that many TRIM proteins play central roles in the host defense against viral infection. While some TRIM proteins directly antagonize distinct steps in the viral life cycle, others regulate signal transduction pathways induced by innate immune sensors, thereby modulating antiviral cytokine responses. Furthermore, TRIM proteins have been implicated in virus-induced autophagy and autophagy-mediated viral clearance. Given the important role of TRIM proteins in antiviral restriction, it is not surprising that several viruses have evolved effective maneuvers to neutralize the antiviral action of specific TRIM proteins. Here, we describe the major antiviral mechanisms of TRIM proteins as well as viral strategies to escape TRIM-mediated host immunity.
Collapse
Affiliation(s)
- Michiel van Gent
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Konstantin M J Sparrer
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| | - Michaela U Gack
- Department of Microbiology, The University of Chicago, Chicago, Illinois 60637, USA; , ,
| |
Collapse
|