1
|
Majumder P, Chatterjee B, Akter K, Ahsan A, Tan SJ, Huang CC, Chu JF, Shen CKJ. Molecular switch of the dendrite-to-spine transport of TDP-43/FMRP-bound neuronal mRNAs and its impairment in ASD. Cell Mol Biol Lett 2025; 30:6. [PMID: 39815169 PMCID: PMC11737055 DOI: 10.1186/s11658-024-00684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive. METHOD Different molecular and imaging techniques, e.g., immunoprecipitation (IP), RNA-IP, Immunofluorescence (IF)/fluorescence in situ hybridization (FISH), live cell imaging, live cell tracking of RNA using beacon, and mouse model study are used to elucidate a novel mechanism regulating dendritic spine transport of mRNAs in mammalian neurons. RESULTS We demonstrate here that brief mGluR1 activation-mediated dephosphorylation of pFMRP (S499) results in the dissociation of FMRP from TDP-43 and handover of TDP-43/Rac1 mRNA complex from the dendritic transport track on microtubules to myosin V track on the spine actin filaments. Rac1 mRNA thus enters the spines for translational reactivation and increases the mature spine density. In contrast, during mGluR1-mediated neuronal LTD, FMRP (S499) remains phosphorylated and the TDP-43/Rac1 mRNA complex, being associated with kinesin 1-FMRP/cortactin/drebrin, enters the spines owing to Ca2+-dependent microtubule invasion into spines, but without translational reactivation. In a VPA-ASD mouse model, this regulation become anomalous. CONCLUSIONS This study, for the first time, highlights the importance of posttranslational modification of RBPs, such as the neurodevelopmental disease-related protein FMRP, as the molecular switch regulating the dendrite-to-spine transport of specific mRNAs under mGluR1-mediated neurotransmissions. The misregulation of this switch could contribute to the pathogenesis of FMRP-related neurodisorders including the autism spectrum disorder (ASD). It also could indicate a molecular connection between ASD and neurodegenerative disease-related protein TDP-43 and opens up a new perspective of research to elucidate TDP-43 proteinopathy among patients with ASD.
Collapse
Affiliation(s)
- Pritha Majumder
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
- Institute of Molecular Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan (R.O.C.).
| | - Biswanath Chatterjee
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Khadiza Akter
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Asmar Ahsan
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Su Jie Tan
- Institute of Molecular Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan (R.O.C.)
| | - Chi-Chen Huang
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Jen-Fei Chu
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
| | - Che-Kun James Shen
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei, 115, Taiwan (R.O.C.).
| |
Collapse
|
2
|
Zheng H, Liu X, Liu L, Hu J, Chen X. Imaging of endogenous RNA in live cells using sequence-activated fluorescent RNA probes. Nucleic Acids Res 2025; 53:gkae1209. [PMID: 39657756 PMCID: PMC11754654 DOI: 10.1093/nar/gkae1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
RNA performs a remarkable range of functions, such as RNA processing, chromosome maintenance and dosage compensation. Technologies that robustly and specifically image RNA in its native state are highly desirable, as these technologies can help researchers clarify the localization and functionality of diverse RNAs. Here, we describe the development of a sequence-activated fluorescent RNA (SaFR) technique. In SaFR, in the absence of target RNA, the structure of fluorogenic RNA is disrupted by the invader sequence, and the ability to activate the Pepper's cognate fluorophores is lost as a result. In the presence of target RNA, SaFR undergoes conformational reorganization and transforms into the fluorogenic conformation of Pepper, enabling the activation of fluorophores to produce fluorescent signals. SaFR exhibits favourable properties, such as large dynamic ranges, high specificity and fast fluorescence generation. Further studies showed that exogenous or endogenous RNAs can be tracked in live and fixed cells through SaFR. We further demonstrated the usefulness of SaFR in monitoring the assembly and disassembly of stress granules in real-time. Overall, this study offers a robust and versatile tool for labelling and imaging endogenous RNA in cells, which will be useful for clarifying the functionality and molecular mechanism of RNA.
Collapse
Affiliation(s)
- Haifeng Zheng
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xiyu Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Luhui Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jiarui Hu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
3
|
Cohen IJ, Zhu T, Ng M, Wu H, Dictenberg J. Optimization of Existing RNA Visualization Methods Reveals Novel Dendritic mRNA Dynamics. FRONT BIOSCI-LANDMRK 2024; 29:430. [PMID: 39735972 DOI: 10.31083/j.fbl2912430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 12/31/2024]
Abstract
BACKGROUND Spatial-temporal control of mRNA translation in dendrites is important for synaptic plasticity. In response to pre-synaptic stimuli, local mRNA translation can be rapidly triggered near stimulated synapses to supply the necessary proteins for synapse maturation or elimination, and 3' untranslated regions (UTRs) are responsible for proper localization of mRNAs in dendrites. Although FISH is a robust technique for analyzing RNA localization in fixed neurons, live-cell imaging of RNA dynamics remains challenging. METHODS In this study, we optimized existing RNA visualization techniques (MS2-tagging and microinjection of fluorescently-labeled mRNAs) to observe novel behaviors of dendritic mRNAs. RESULTS We found that the signal-to-noise ratio (SNR) of MS2-tagged mRNAs was greatly improved by maximizing the ratio of the MS2-RNA to MS2 coat protein-fluorescent protein (MCP-FP) constructs, as well as by the choice of promoter. Our observations also showed that directly fluorescently labeled mRNAs result in brighter granules compared to other methods. Importantly, we visualized the dynamic movement of co-labeled mRNA/protein complexes in dendrites and within dendritic spines. In addition, we observed the simultaneous movement of three distinct mRNAs within a single neuron. Surprisingly, we observed splitting of these complexes within dendritic spines. CONCLUSIONS Using highly optimized RNA-labeling methods for live-cell imaging, one can now visualize the dynamics of multiple RNA / protein complexes within the context of diverse cellular events. Newly observed RNA movements in dendrites and synapses may shed light on the complexities of spatio-temporal control of gene expression in neurons.
Collapse
Affiliation(s)
- Ivan J Cohen
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Tianhui Zhu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Biology Program, The Graduate School and University Center of the City University of New York, New York, NY 10016, USA
| | - Marcus Ng
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Hao Wu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Biology Program, The Graduate School and University Center of the City University of New York, New York, NY 10016, USA
| | - Jason Dictenberg
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Biology Program, The Graduate School and University Center of the City University of New York, New York, NY 10016, USA
- SUNY Downstate Medical Center and AccelBio Labs, Brooklyn, NY 11226, USA
| |
Collapse
|
4
|
Novoselsky R, Harnik Y, Yakubovsky O, Katina C, Levin Y, Bahar Halpern K, Pencovich N, Nachmany I, Itzkovitz S. Intracellular polarization of RNAs and proteins in the human small intestinal epithelium. PLoS Biol 2024; 22:e3002942. [PMID: 39621797 PMCID: PMC11637431 DOI: 10.1371/journal.pbio.3002942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/12/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
The intestinal epithelium is a polarized monolayer of cells, with an apical side facing the lumen and a basal side facing the blood stream. In mice, both proteins and mRNAs have been shown to exhibit global basal-apical polarization; however, polarization in the human intestine has not been systematically explored. Here, we employed laser-capture microdissection to isolate apical and basal epithelial segments from intestinal tissues of 8 individuals and performed RNA sequencing and mass-spectrometry proteomics. We find a substantial polarization of mRNA molecules that largely overlaps polarization patterns observed in mice. This mRNA polarization remains consistent across different zones of the intestinal villi and is generally correlated with the polarization of proteins. Our protein analysis exposes streamlined intracellular nutrient transport and processing and reveals that mitochondria and ribosomes are less polarized in humans compared to mice. Our study provides a resource for understanding human intestinal epithelial biology.
Collapse
Affiliation(s)
- Roy Novoselsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Harnik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oran Yakubovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Corine Katina
- The De Botton Protein Profiling, The Nancy and Stephen Grand Israel and Health Sciences National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- The De Botton Protein Profiling, The Nancy and Stephen Grand Israel and Health Sciences National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Niv Pencovich
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Nachmany
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Lee M, Moon HC, Jeong H, Kim DW, Park HY, Shin Y. Optogenetic control of mRNA condensation reveals an intimate link between condensate material properties and functions. Nat Commun 2024; 15:3216. [PMID: 38622120 PMCID: PMC11018775 DOI: 10.1038/s41467-024-47442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Biomolecular condensates, often assembled through phase transition mechanisms, play key roles in organizing diverse cellular activities. The material properties of condensates, ranging from liquid droplets to solid-like glasses or gels, are key features impacting the way resident components associate with one another. However, it remains unclear whether and how different material properties would influence specific cellular functions of condensates. Here, we combine optogenetic control of phase separation with single-molecule mRNA imaging to study relations between phase behaviors and functional performance of condensates. Using light-activated condensation, we show that sequestering target mRNAs into condensates causes translation inhibition. Orthogonal mRNA imaging reveals highly transient nature of interactions between individual mRNAs and condensates. Tuning condensate composition and material property towards more solid-like states leads to stronger translational repression, concomitant with a decrease in molecular mobility. We further demonstrate that β-actin mRNA sequestration in neurons suppresses spine enlargement during chemically induced long-term potentiation. Our work highlights how the material properties of condensates can modulate functions, a mechanism that may play a role in fine-tuning the output of condensate-driven cellular activities.
Collapse
Affiliation(s)
- Min Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hyeonjeong Jeong
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
| | - Dong Wook Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea.
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA.
| | - Yongdae Shin
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Korea.
- Department of Mechanical Engineering, Seoul National University, Seoul, Korea.
| |
Collapse
|
6
|
Ahn H, Durang X, Shim JY, Park G, Jeon J, Park HY. Statistical modeling of mRNP transport in dendrites: A comparative analysis of β-actin and Arc mRNP dynamics. Traffic 2023; 24:522-532. [PMID: 37545033 PMCID: PMC10946522 DOI: 10.1111/tra.12913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Localization of messenger RNA (mRNA) in dendrites is crucial for regulating gene expression during long-term memory formation. mRNA binds to RNA-binding proteins (RBPs) to form messenger ribonucleoprotein (mRNP) complexes that are transported by motor proteins along microtubules to their target synapses. However, the dynamics by which mRNPs find their target locations in the dendrite have not been well understood. Here, we investigated the motion of endogenous β-actin and Arc mRNPs in dissociated mouse hippocampal neurons using the MS2 and PP7 stem-loop systems, respectively. By evaluating the statistical properties of mRNP movement, we found that the aging Lévy walk model effectively describes both β-actin and Arc mRNP transport in proximal dendrites. A critical difference between β-actin and Arc mRNPs was the aging time, the time lag between transport initiation and measurement initiation. The longer mean aging time of β-actin mRNP (~100 s) compared with that of Arc mRNP (~30 s) reflects the longer half-life of constitutively expressed β-actin mRNP. Furthermore, our model also permitted us to estimate the ratio of newly generated and pre-existing β-actin mRNPs in the dendrites. This study offers a robust theoretical framework for mRNP transport, which provides insight into how mRNPs locate their targets in neurons.
Collapse
Affiliation(s)
- Hyerim Ahn
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinneapolisUSA
| | - Xavier Durang
- Department of PhysicsPohang University of Science and TechnologyPohangRepublic of Korea
| | - Jae Youn Shim
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
| | - Gaeun Park
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
| | - Jae‐Hyung Jeon
- Department of PhysicsPohang University of Science and TechnologyPohangRepublic of Korea
- Asia Pacific Center for Theoretical PhysicsPohangRepublic of Korea
| | - Hye Yoon Park
- Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinneapolisUSA
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
- Institute of Applied PhysicsSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
7
|
Birnbaum R, Biswas J, Singer RH, Sharp DJ. mRNA Localization and Local Translation of the Microtubule Severing Enzyme, Fidgetin-Like 2, in Polarization, Migration and Outgrowth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537087. [PMID: 37131812 PMCID: PMC10153175 DOI: 10.1101/2023.04.17.537087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell motility requires strict spatiotemporal control of protein expression. During cell migration, mRNA localization and local translation in subcellular areas like the leading edge and protrusions are particularly advantageous for regulating the reorganization of the cytoskeleton. Fidgetin-Like 2 (FL2), a microtubule severing enzyme (MSE) that restricts migration and outgrowth, localizes to the leading edge of protrusions where it severs dynamic microtubules. FL2 is primarily expressed during development but in adulthood, is spatially upregulated at the leading edge minutes after injury. Here, we show mRNA localization and local translation in protrusions of polarized cells are responsible for FL2 leading edge expression after injury. The data suggests that the RNA binding protein IMP1 is involved in the translational regulation and stabilization of FL2 mRNA, in competition with the miRNA let-7. These data exemplify the role of local translation in microtubule network reorganization during migration and elucidate an unexplored MSE protein localization mechanism.
Collapse
Affiliation(s)
- Rayna Birnbaum
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeetayu Biswas
- Present address: Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H. Singer
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David J. Sharp
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Microcures, Inc., Research and Development, Bronx, NY, 10461, USA
| |
Collapse
|
8
|
Lee BH, Bang S, Lee S, Jeon NL, Park HY. Dynamics of axonal β-actin mRNA in live hippocampal neurons. Traffic 2022; 23:496-505. [PMID: 36054788 PMCID: PMC9804286 DOI: 10.1111/tra.12865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/09/2022] [Accepted: 08/10/2022] [Indexed: 01/05/2023]
Abstract
Localization of mRNA facilitates spatiotemporally controlled protein expression in neurons. In axons, mRNA transport followed by local protein synthesis plays a critical role in axonal growth and guidance. However, it is not yet clearly understood how mRNA is transported to axonal subcellular sites and what regulates axonal mRNA localization. Using a transgenic mouse model in which endogenous β-actin mRNA is fluorescently labeled, we investigated β-actin mRNA movement in axons of hippocampal neurons. We cultured neurons in microfluidic devices to separate axons from dendrites and performed single-particle tracking of axonal β-actin mRNA. Compared with dendritic β-actin mRNA, axonal β-actin mRNA showed less directed motion and exhibited mostly subdiffusive motion, especially near filopodia and boutons in mature dissociated hippocampal neurons. We found that axonal β-actin mRNA was likely to colocalize with actin patches (APs), regions that have a high density of filamentous actin (F-actin) and are known to have a role in branch initiation. Moreover, simultaneous imaging of F-actin and axonal β-actin mRNA in live neurons revealed that moving β-actin mRNA tended to be docked in the APs. Our findings reveal that axonal β-actin mRNA localization is facilitated by actin networks and suggest that localized β-actin mRNA plays a potential role in axon branch formation.
Collapse
Affiliation(s)
- Byung Hun Lee
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea
| | - Seokyoung Bang
- Department of Mechanical EngineeringSeoul National UniversitySeoulRepublic of Korea,Department of Medical BiotechnologyDongguk UniversityGoyangRepublic of Korea
| | - Seung‐Ryeol Lee
- Department of Mechanical EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Noo Li Jeon
- Department of Mechanical EngineeringSeoul National UniversitySeoulRepublic of Korea
| | - Hye Yoon Park
- Department of Physics and AstronomySeoul National UniversitySeoulRepublic of Korea,The Institute of Applied PhysicsSeoul National UniversitySeoulRepublic of Korea,Department of Electrical and Computer EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
9
|
Núñez L, Buxbaum AR, Katz ZB, Lopez-Jones M, Nwokafor C, Czaplinski K, Pan F, Rosenberg J, Monday HR, Singer RH. Tagged actin mRNA dysregulation in IGF2BP1[Formula: see text] mice. Proc Natl Acad Sci U S A 2022; 119:e2208465119. [PMID: 36067310 PMCID: PMC9477413 DOI: 10.1073/pnas.2208465119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Gene expression is tightly regulated by RNA-binding proteins (RBPs) to facilitate cell survival, differentiation, and migration. Previous reports have shown the importance of the Insulin-like Growth Factor II mRNA-Binding Protein (IGF2BP1/IMP1/ZBP1) in regulating RNA fate, including localization, transport, and translation. Here, we generated and characterized a knockout mouse to study RBP regulation. We report that IGF2BP1 is essential for proper brain development and neonatal survival. Specifically, these mice display disorganization in the developing neocortex, and further investigation revealed a loss of cortical marginal cell density at E17.5. We also investigated migratory cell populations in the IGF2BP1[Formula: see text] mice, using BrdU labeling, and detected fewer mitotically active cells in the cortical plate. Since RNA localization is important for cellular migration and directionality, we investigated the regulation of β-actin messenger RNA (mRNA), a well-characterized target with established roles in cell motility and development. To aid in our understanding of RBP and target mRNA regulation, we generated mice with endogenously labeled β-actin mRNA (IGF2BP1[Formula: see text]; β-actin-MS2[Formula: see text]). Using endogenously labeled β-actin transcripts, we report IGF2BP1[Formula: see text] neurons have increased transcription rates and total β-actin protein content. In addition, we found decreased transport and anchoring in knockout neurons. Overall, we present an important model for understanding RBP regulation of target mRNA.
Collapse
Affiliation(s)
- Leti Núñez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | | | | | - Melissa Lopez-Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | - Chiso Nwokafor
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
| | | | - Feng Pan
- Eli Lilly and Company, Indianapolis, IN 46285
| | | | | | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY 10461
| |
Collapse
|
10
|
Zhu KW, Burton SD, Nagai MH, Silverman JD, de March CA, Wachowiak M, Matsunami H. Decoding the olfactory map through targeted transcriptomics links murine olfactory receptors to glomeruli. Nat Commun 2022; 13:5137. [PMID: 36050313 PMCID: PMC9437035 DOI: 10.1038/s41467-022-32267-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sensory processing in olfactory systems is organized across olfactory bulb glomeruli, wherein axons of peripheral sensory neurons expressing the same olfactory receptor co-terminate to transmit receptor-specific activity to central neurons. Understanding how receptors map to glomeruli is therefore critical to understanding olfaction. High-throughput spatial transcriptomics is a rapidly advancing field, but low-abundance olfactory receptor expression within glomeruli has previously precluded high-throughput mapping of receptors to glomeruli in the mouse. Here we combined sequential sectioning along the anteroposterior, dorsoventral, and mediolateral axes with target capture enrichment sequencing to overcome low-abundance target expression. This strategy allowed us to spatially map 86% of olfactory receptors across the olfactory bulb and uncover a relationship between OR sequence and glomerular position.
Collapse
Affiliation(s)
- Kevin W Zhu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shawn D Burton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, 18015, USA
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Maira H Nagai
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Justin D Silverman
- College of Information Science and Technology, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Statistics, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
- Institute for Computational and Data Science, Pennsylvania State University, University Park, PA, 16802, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Matt Wachowiak
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
11
|
Wang Q, Xiao F, Su H, Liu H, Xu J, Tang H, Qin S, Fang Z, Lu Z, Wu J, Weng X, Zhou X. Inert Pepper aptamer-mediated endogenous mRNA recognition and imaging in living cells. Nucleic Acids Res 2022; 50:e84. [PMID: 35580055 PMCID: PMC9371900 DOI: 10.1093/nar/gkac368] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
The development of RNA aptamers/fluorophores system is highly desirable for understanding the dynamic molecular biology of RNAs in vivo. Peppers-based imaging systems have been reported and applied for mRNA imaging in living cells. However, the need to insert corresponding RNA aptamer sequences into target RNAs and relatively low fluorescence signal limit its application in endogenous mRNA imaging. Herein, we remolded the original Pepper aptamer and developed a tandem array of inert Pepper (iPepper) fluorescence turn-on system. iPepper allows for efficient and selective imaging of diverse endogenous mRNA species in live cells with minimal agitation of the target mRNAs. We believe iPepper would significantly expand the applications of the aptamer/fluorophore system in endogenous mRNA imaging, and it has the potential to become a powerful tool for real-time studies in living cells and biological processing.
Collapse
Affiliation(s)
- Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Haomiao Su
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China.,Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Hui Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Jinglei Xu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Shanshan Qin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Zhentian Fang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Ziang Lu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Jian Wu
- School of Medicine, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China.,The Institute of Advanced Studies, Wuhan University, Luojiashan Street, Wuchang District, Wuhan, HuBei 430072, PR China
| |
Collapse
|
12
|
Cao H, Wang Y, Zhang N, Xia S, Tian P, Lu L, Du J, Du Y. Progress of CRISPR-Cas13 Mediated Live-Cell RNA Imaging and Detection of RNA-Protein Interactions. Front Cell Dev Biol 2022; 10:866820. [PMID: 35356276 PMCID: PMC8959342 DOI: 10.3389/fcell.2022.866820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/26/2022] Open
Abstract
Ribonucleic acid (RNA) and proteins play critical roles in gene expression and regulation. The relevant study increases the understanding of various life processes and contributes to the diagnosis and treatment of different diseases. RNA imaging and mapping RNA-protein interactions expand the understanding of RNA biology. However, the existing methods have some limitations. Recently, precise RNA targeting of CRISPR-Cas13 in cells has been reported, which is considered a new promising platform for RNA imaging in living cells and recognition of RNA-protein interactions. In this review, we first described the current findings on Cas13. Furthermore, we introduced current tools of RNA real-time imaging and mapping RNA-protein interactions and highlighted the latest advances in Cas13-mediated tools. Finally, we discussed the advantages and disadvantages of Cas13-based methods, providing a set of new ideas for the optimization of Cas13-mediated methods.
Collapse
Affiliation(s)
- Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Pengfei Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Lu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
- *Correspondence: Yinan Du, ; Juan Du,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Juan Du,
| |
Collapse
|
13
|
Koppers M, Holt CE. Receptor-Ribosome Coupling: A Link Between Extrinsic Signals and mRNA Translation in Neuronal Compartments. Annu Rev Neurosci 2022; 45:41-61. [DOI: 10.1146/annurev-neuro-083021-110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axons receive extracellular signals that help to guide growth and synapse formation during development and to maintain neuronal function and survival during maturity. These signals relay information via cell surface receptors that can initiate local intracellular signaling at the site of binding, including local messenger RNA (mRNA) translation. Direct coupling of translational machinery to receptors provides an attractive way to activate this local mRNA translation and change the local proteome with high spatiotemporal resolution. Here, we first discuss the increasing evidence that different external stimuli trigger translation of specific subsets of mRNAs in axons via receptors and thus play a prominent role in various processes in both developing and mature neurons. We then discuss the receptor-mediated molecular mechanisms that regulate local mRNA translational with a focus on direct receptor-ribosome coupling. We advance the idea that receptor-ribosome coupling provides several advantages over other translational regulation mechanisms and is a common mechanism in cell communication. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Max Koppers
- Department of Biology, Division of Cell Biology, Neurobiology and Biophysics, Utrecht University, Utrecht, The Netherlands
| | - Christine E. Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Hees JT, Harbauer AB. Live-Cell Imaging of RNA Transport in Axons of Cultured Primary Neurons. Methods Mol Biol 2022; 2431:225-237. [PMID: 35412279 DOI: 10.1007/978-1-0716-1990-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of fluorescent proteins has revolutionized the study of protein localization and transport. However, the visualization of other molecules and specifically RNA during live-cell imaging remains challenging. In this chapter, we provide guidance to the available methods, their advantages and drawbacks as well as provide a detailed protocol for the detection of RNA transport using the MS2/PP7-split-Venus system for background-free RNA imaging.
Collapse
Affiliation(s)
- J Tabitha Hees
- Max Planck Institute for Neurobiology, Martinsried, Germany
| | | |
Collapse
|
15
|
Rodrigues EC, Grawenhoff J, Baumann SJ, Lorenzon N, Maurer SP. Mammalian Neuronal mRNA Transport Complexes: The Few Knowns and the Many Unknowns. Front Integr Neurosci 2021; 15:692948. [PMID: 34211375 PMCID: PMC8239176 DOI: 10.3389/fnint.2021.692948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of messenger RNAs (mRNAs) are transported into neurites to provide templates for the assembly of local protein networks. These networks enable a neuron to configure different cellular domains for specialized functions. According to current evidence, mRNAs are mostly transported in rather small packages of one to three copies, rarely containing different transcripts. This opens up fascinating logistic problems: how are hundreds of different mRNA cargoes sorted into distinct packages and how are they coupled to and released from motor proteins to produce the observed mRNA distributions? Are all mRNAs transported by the same transport machinery, or are there different adaptors or motors for different transcripts or classes of mRNAs? A variety of often indirect evidence exists for the involvement of proteins in mRNA localization, but relatively little is known about the essential activities required for the actual transport process. Here, we summarize the different types of available evidence for interactions that connect mammalian mRNAs to motor proteins to highlight at which point further research is needed to uncover critical missing links. We further argue that a combination of discovery approaches reporting direct interactions, in vitro reconstitution, and fast perturbations in cells is an ideal future strategy to unravel essential interactions and specific functions of proteins in mRNA transport processes.
Collapse
Affiliation(s)
- Elsa C. Rodrigues
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Julia Grawenhoff
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sebastian J. Baumann
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Nicola Lorenzon
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sebastian P. Maurer
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
16
|
Gindina S, Botsford B, Cowansage K, LeDoux J, Klann E, Hoeffer C, Ostroff L. Upregulation of eIF4E, but not other translation initiation factors, in dendritic spines during memory formation. J Comp Neurol 2021; 529:3112-3126. [PMID: 33864263 DOI: 10.1002/cne.25158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/27/2021] [Accepted: 04/11/2021] [Indexed: 11/09/2022]
Abstract
Local translation can provide a rapid, spatially targeted supply of new proteins in distal dendrites to support synaptic changes that underlie learning. Learning and memory are especially sensitive to manipulations of translational control mechanisms, particularly those that target the initiation step, and translation initiation at synapses could be a means of maintaining synapse specificity during plasticity. Initiation predominantly occurs via recruitment of ribosomes to the 5' mRNA cap by complexes of eukaryotic initiation factors (eIFs), and the interaction between eIF4E and eIF4G1 is a particularly important target of translational control pathways. Pharmacological inhibition of eIF4E-eIF4G1 binding impairs formation of memory for aversive Pavlovian conditioning as well as the accompanying increase in polyribosomes in the heads of dendritic spines in the lateral amygdala (LA). This is consistent with a role for initiation at synapses in memory formation, but whether eIFs are even present near synapses is unknown. To determine whether dendritic spines contain eIFs and whether eIF distribution is affected by learning, we combined immunolabeling with serial section transmission electron microscopy (ssTEM) volume reconstructions of LA dendrites after Pavlovian conditioning. Labeling for eIF4E, eIF4G1, and eIF2α-another key target of regulation-occurred in roughly half of dendritic spines, but learning effects were only found for eIF4E, which was upregulated in the heads of dendritic spines. Our results support the possibility of regulated translation initiation as a means of synapse-specific protein targeting during learning and are consistent with the model of eIF4E availability as a central point of control.
Collapse
Affiliation(s)
- Sofya Gindina
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Benjamin Botsford
- Center for Neural Science, New York University, New York, New York, USA
| | - Kiriana Cowansage
- Center for Neural Science, New York University, New York, New York, USA
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, New York, USA.,Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York, USA
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| | - Linnaea Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
17
|
Bellotti A, Murphy J, Lin L, Petralia R, Wang YX, Hoffman D, O'Leary T. Paradoxical relationships between active transport and global protein distributions in neurons. Biophys J 2021; 120:2085-2101. [PMID: 33812847 PMCID: PMC8390833 DOI: 10.1016/j.bpj.2021.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Neural function depends on continual synthesis and targeted trafficking of intracellular components, including ion channel proteins. Many kinds of ion channels are trafficked over long distances to specific cellular compartments. This raises the question of whether cargo is directed with high specificity during transit or whether cargo is distributed widely and sequestered at specific sites. We addressed this question by experimentally measuring transport and expression densities of Kv4.2, a voltage-gated transient potassium channel that exhibits a specific dendritic expression that increases with distance from the soma and little or no functional expression in axons. In over 500 h of quantitative live imaging, we found substantially higher densities of actively transported Kv4.2 subunits in axons as opposed to dendrites. This paradoxical relationship between functional expression and traffic density supports a model—commonly known as the sushi belt model—in which trafficking specificity is relatively low and active sequestration occurs in compartments where cargo is expressed. In further support of this model, we find that kinetics of active transport differs qualitatively between axons and dendrites, with axons exhibiting strong superdiffusivity, whereas dendritic transport resembles a weakly directed random walk, promoting mixing and opportunity for sequestration. Finally, we use our data to constrain a compartmental reaction-diffusion model that can recapitulate the known Kv4.2 density profile. Together, our results show how nontrivial expression patterns can be maintained over long distances with a relatively simple trafficking mechanism and how the hallmarks of a global trafficking mechanism can be revealed in the kinetics and density of cargo.
Collapse
Affiliation(s)
- Adriano Bellotti
- National Institute of Child Health and Human Development, Bethesda, Maryland; Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Murphy
- National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Lin Lin
- National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Ronald Petralia
- National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Ya-Xian Wang
- National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland
| | - Dax Hoffman
- National Institute of Child Health and Human Development, Bethesda, Maryland.
| | - Timothy O'Leary
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
18
|
Monti G, Kjolby M, Jensen AMG, Allen M, Reiche J, Møller PL, Comaposada-Baró R, Zolkowski BE, Vieira C, Jørgensen MM, Holm IE, Valdmanis PN, Wellner N, Vægter CB, Lincoln SJ, Nykjær A, Ertekin-Taner N, Young JE, Nyegaard M, Andersen OM. Expression of an alternatively spliced variant of SORL1 in neuronal dendrites is decreased in patients with Alzheimer's disease. Acta Neuropathol Commun 2021; 9:43. [PMID: 33726851 PMCID: PMC7962264 DOI: 10.1186/s40478-021-01140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
SORL1 is strongly associated with both sporadic and familial forms of Alzheimer's disease (AD), but a lack of information about alternatively spliced transcripts currently limits our understanding of the role of SORL1 in AD. Here, we describe a SORL1 transcript (SORL1-38b) characterized by inclusion of a novel exon (E38b) that encodes a truncated protein. We identified E38b-containing transcripts in several brain regions, with the highest expression in the cerebellum and showed that SORL1-38b is largely located in neuronal dendrites, which is in contrast to the somatic distribution of transcripts encoding the full-length SORLA protein (SORL1-fl). SORL1-38b transcript levels were significantly reduced in AD cerebellum in three independent cohorts of postmortem brains, whereas no changes were observed for SORL1-fl. A trend of lower 38b transcript level in cerebellum was found for individuals carrying the risk variant at rs2282649 (known as SNP24), although not reaching statistical significance. These findings suggest synaptic functions for SORL1-38b in the brain, uncovering novel aspects of SORL1 that can be further explored in AD research.
Collapse
Affiliation(s)
- Giulia Monti
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Anne Mette G Jensen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Juliane Reiche
- Department of Biochemistry, Jena University Hospital, Jena, Germany
| | - Peter L Møller
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Raquel Comaposada-Baró
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Bartlomiej E Zolkowski
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Cármen Vieira
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Margarita Melnikova Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Ida E Holm
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Paul N Valdmanis
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Niels Wellner
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Christian B Vægter
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Sarah J Lincoln
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Anders Nykjær
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
- Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jessica E Young
- Department of Pathology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
- Center for Proteins in Memory - PROMEMO, Danish National Research Foundation, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
19
|
The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166046. [PMID: 33383105 DOI: 10.1016/j.bbadis.2020.166046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Tight control of mRNA expression is required for cell differentiation; imbalanced regulation may lead to developmental disorders and cancer. The activity of the translational machinery (including ribosomes and translation factors) regulates the rate (slow or fast) of translation of encoded proteins, and the quality of these proteins highly depends on which mRNAs are available for translation. Specific RNA-binding and ribosomal proteins seem to play a key role in controlling gene expression to determine the differentiation fate of the cell. This demonstrates the important role of RNA-binding proteins, specific ribosome-binding proteins and microRNAs as key molecules in controlling the specific proteins required for the differentiation or dedifferentiation of cells. This delicate balance between specific proteins (in terms of quality and availability) and post-translational modifications occurring in the cytoplasm is crucial for cell differentiation, dedifferentiation and oncogenic potential. In this review, we report how defects in the regulation of mRNA translation can be dependent on specific proteins and can induce an imbalance between differentiation and dedifferentiation in cell fate determination.
Collapse
|
20
|
Madugalle SU, Meyer K, Wang DO, Bredy TW. RNA N 6-Methyladenosine and the Regulation of RNA Localization and Function in the Brain. Trends Neurosci 2020; 43:1011-1023. [PMID: 33041062 PMCID: PMC7688512 DOI: 10.1016/j.tins.2020.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
A major challenge in neurobiology in the 21st century is to understand how the brain adapts with experience. Activity-dependent gene expression is integral to the synaptic plasticity underlying learning and memory; however, this process cannot be explained by a simple linear trajectory of transcription to translation within a specific neuronal population. Many other regulatory mechanisms can influence RNA metabolism and the capacity of neurons to adapt. In particular, the RNA modification N6-methyladenosine (m6A) has recently been shown to regulate RNA processing through alternative splicing, RNA stability, and translation. Here, we discuss the emerging idea that m6A could also coordinate the transport, localization, and local translation of key mRNAs in learning and memory and expand on the notion of dynamic functional RNA states in the brain.
Collapse
Affiliation(s)
- Sachithrani U Madugalle
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| | - Kate Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | - Dan Ohtan Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
21
|
Chu JF, Majumder P, Chatterjee B, Huang SL, Shen CKJ. TDP-43 Regulates Coupled Dendritic mRNA Transport-Translation Processes in Co-operation with FMRP and Staufen1. Cell Rep 2020; 29:3118-3133.e6. [PMID: 31801077 DOI: 10.1016/j.celrep.2019.10.061] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 01/24/2023] Open
Abstract
Tightly regulated transport of messenger ribonucleoprotein (mRNP) granules to diverse locations of dendrites and axons is essential for appropriately timed protein synthesis within distinct sub-neuronal compartments. Perturbations of this regulation lead to various neurological disorders. Using imaging and molecular approaches, we demonstrate how TDP-43 co-operates with two other RNA-binding proteins, FMRP and Staufen1, to regulate the anterograde and retrograde transport, respectively, of Rac1 mRNPs in mouse neuronal dendrites. We also analyze the mechanisms by which TDP-43 mediates coupled mRNA transport-translation processes in dendritic sub-compartments by following in real-time the co-movement of RNA and endogenous fluorescence-tagged protein in neurons and by simultaneous examination of transport/translation dynamics by using an RNA biosensor. This study establishes the pivotal roles of TDP-43 in transporting mRNP granules in dendrites, inhibiting translation inside those granules, and reactivating it once the granules reach the dendritic spines.
Collapse
Affiliation(s)
- Jen-Fei Chu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Pritha Majumder
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan.
| | | | - Shih-Ling Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
22
|
Liao J, Lu X, Shao X, Zhu L, Fan X. Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatially Resolved Transcriptomics. Trends Biotechnol 2020; 39:43-58. [PMID: 32505359 DOI: 10.1016/j.tibtech.2020.05.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
Abstract
Revealing fine-scale cellular heterogeneity among spatial context and the functional and structural foundations of tissue architecture is fundamental within biological research and pharmacology. Unlike traditional approaches involving single molecules or bulk omics, cutting-edge, spatially resolved transcriptomics techniques offer near-single-cell or even subcellular resolution within tissues. Massive information across higher dimensions along with position-coordinating labels can better map the whole 3D transcriptional landscape of tissues. In this review, we focus on developments and strategies in spatially resolved transcriptomics, compare the cell and gene throughput and spatial resolution in detail for existing methods, and highlight the enormous potential in biomedical research.
Collapse
Affiliation(s)
- Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ling Zhu
- The Save Sight Institute, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2000, Australia
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; The Save Sight Institute, Faculty of Medicine and Health, the University of Sydney, Sydney, NSW 2000, Australia.
| |
Collapse
|
23
|
Xu C, He XY, Peng Y, Dai BS, Liu BY, Cheng SX. Facile Strategy To Enhance Specificity and Sensitivity of Molecular Beacons by an Aptamer-Functionalized Delivery Vector. Anal Chem 2020; 92:2088-2096. [PMID: 31855408 DOI: 10.1021/acs.analchem.9b04596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To enhance the specificity and sensitivity of molecular beacons (MBs) in detecting mRNA in living tumor cells, we introduced an aptamer (AS1411) to the delivery system of MBs to form an aptamer-decorated nanoprobe (ANP), which was prepared through self-assembly between AS1411-conjugated carboxymethyl chitosan (ACMC) with protamine sulfate (PS)/CaCO3/MB cores. Owing to the specific binding of AS1411 to nucleolin, which is overexpressed in tumor cell membranes and nuclei, an AS1411-decorated MB-delivery system leads to dramatically increased cell uptake of MBs for probing survivin mRNA and thus induces strong intracellular fluorescence emission in targeted tumorous cells and cell nuclei. Furthermore, we demonstrate that ANP can efficiently detect survivin mRNA in mitochondria. In other words, the effective delivery of MBs ensures the precise detection of mRNA distribution in diverse organelles. In addition, we evaluated the efficiency of ANP in probing tumor cells in simulated blood as well as in peripheral blood from a healthy donor and found that the nanoprobe can specifically deliver MBs to tumor cells and identify tumor cells in blood. The targeting delivery system we constructed holds promising applications in precise detection of subcellular distribution of mRNA in living tumor cells as well as in fluorescence-guided cancer detection in liquid biopsy technology. This study provides a facile strategy to effectively improve the specificity and sensitivity of conventional molecular beacons.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Yan Peng
- Department of Pharmacy , The Renmin Hospital of Wuhan University , Wuhan 430060 , P. R. China
| | - Bao-Sheng Dai
- Department of Clinical Laboratory , The Renmin Hospital of Wuhan University , Wuhan 430060 , P. R. China
| | - Bo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
24
|
Roy R, Shiina N, Wang DO. More dynamic, more quantitative, unexpectedly intricate: Advanced understanding on synaptic RNA localization in learning and memory. Neurobiol Learn Mem 2019; 168:107149. [PMID: 31881355 DOI: 10.1016/j.nlm.2019.107149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/25/2019] [Accepted: 12/23/2019] [Indexed: 01/13/2023]
Abstract
Synaptic signaling exhibits great diversity, complexity, and plasticity which necessitates maintenance and rapid modification of a local proteome. One solution neurons actively exploit to meet such demands is the strategic deposition of mRNAs encoding proteins for both basal and experience-driven activities into ribonucleoprotein complexes at the synapse. Transcripts localized in this manner can be rapidly accessed for translation in response to a diverse range of stimuli in a temporal- and spatially-restricted manner. Here we review recent findings on localized RNAs and RNA binding proteins in the context of learning and memory, as revealed by cutting-edge in-vitro and in-vivo technologies capable of yielding quantitative and dynamic information. The new technologies include proteomic and transcriptomic analyses, high-resolution multiplexed RNA imaging, single-molecule RNA tracking in living neurons, animal models and human neuron cell models. Among many recent advances in the field, RNA chemical modification has emerged as one of the new regulatory layers of gene expression at synapse that is complex and yet largely unexplored. These exciting new discoveries have enhanced our understanding of the modulation mechanisms of synaptic gene expression and their roles in cognition.
Collapse
Affiliation(s)
- Rohini Roy
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic Biology, Okazaki, Japan; Department of Basic Biology, SOKENDAI, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan.
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Liaoning, China; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto, Japan.
| |
Collapse
|
25
|
Ostroff LE, Santini E, Sears R, Deane Z, Kanadia RN, LeDoux JE, Lhakhang T, Tsirigos A, Heguy A, Klann E. Axon TRAP reveals learning-associated alterations in cortical axonal mRNAs in the lateral amgydala. eLife 2019; 8:e51607. [PMID: 31825308 PMCID: PMC6924958 DOI: 10.7554/elife.51607] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Local translation can support memory consolidation by supplying new proteins to synapses undergoing plasticity. Translation in adult forebrain dendrites is an established mechanism of synaptic plasticity and is regulated by learning, yet there is no evidence for learning-regulated protein synthesis in adult forebrain axons, which have traditionally been believed to be incapable of translation. Here, we show that axons in the adult rat amygdala contain translation machinery, and use translating ribosome affinity purification (TRAP) with RNASeq to identify mRNAs in cortical axons projecting to the amygdala, over 1200 of which were regulated during consolidation of associative memory. Mitochondrial and translation-related genes were upregulated, whereas synaptic, cytoskeletal, and myelin-related genes were downregulated; the opposite effects were observed in the cortex. Our results demonstrate that axonal translation occurs in the adult forebrain and is altered after learning, supporting the likelihood that local translation is more a rule than an exception in neuronal processes.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | | | - Robert Sears
- Center for Neural ScienceNew York UniversityNew YorkUnited States
- Emotional Brain InstituteNathan Kline Institute for Psychiatry ResearchOrangeburgUnited States
- Department of Child and Adolescent PsychiatryNew York University School of MedicineNew YorkUnited States
| | - Zachary Deane
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Rahul N Kanadia
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsUnited States
| | - Joseph E LeDoux
- Center for Neural ScienceNew York UniversityNew YorkUnited States
- Emotional Brain InstituteNathan Kline Institute for Psychiatry ResearchOrangeburgUnited States
| | - Tenzin Lhakhang
- Applied Bioinformatics LaboratoriesNew York University School of MedicineNew YorkUnited States
| | - Aristotelis Tsirigos
- Applied Bioinformatics LaboratoriesNew York University School of MedicineNew YorkUnited States
- Department of PathologyNew York University School of MedicineNew YorkUnited States
| | - Adriana Heguy
- Department of PathologyNew York University School of MedicineNew YorkUnited States
- Genome Technology CenterNew York University School of MedicineNew YorkUnited States
| | - Eric Klann
- Center for Neural ScienceNew York UniversityNew YorkUnited States
| |
Collapse
|
26
|
Anhäuser L, Hüwel S, Zobel T, Rentmeister A. Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Res 2019; 47:e42. [PMID: 30726958 PMCID: PMC6468298 DOI: 10.1093/nar/gkz084] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
Post-transcriptional regulation of gene expression occurs by multiple mechanisms, including subcellular localization of mRNA and alteration of the poly(A) tail length. These mechanisms play crucial roles in the dynamics of cell polarization and embryonic development. Furthermore, mRNAs are emerging therapeutics and chemical alterations to increase their translational efficiency are highly sought after. We show that yeast poly(A) polymerase can be used to install multiple azido-modified adenosine nucleotides to luciferase and eGFP-mRNAs. These mRNAs can be efficiently reacted in a bioorthogonal click reaction with fluorescent reporters without degradation and without sequence alterations in their coding or untranslated regions. Importantly, the modifications in the poly(A) tail impact positively on the translational efficiency of reporter-mRNAs in vitro and in cells. Therefore, covalent fluorescent labeling at the poly(A) tail presents a new way to increase the amount of reporter protein from exogenous mRNA and to label genetically unaltered and translationally active mRNAs.
Collapse
Affiliation(s)
- Lea Anhäuser
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Straße 2, 48149 Münster, Germany
| | - Sabine Hüwel
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Straße 2, 48149 Münster, Germany
| | - Thomas Zobel
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| | - Andrea Rentmeister
- Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Straße 2, 48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
27
|
Simchovitz A, Hanan M, Niederhoffer N, Madrer N, Yayon N, Bennett ER, Greenberg DS, Kadener S, Soreq H. NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J 2019; 33:11223-11234. [PMID: 31311324 PMCID: PMC6766647 DOI: 10.1096/fj.201900830r] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Recent reports attribute numerous regulatory functions to the nuclear paraspeckle-forming long noncoding RNA, nuclear enriched assembly transcript 1 (NEAT1), but the implications of its involvement in Parkinson's disease (PD) remain controversial. To address this issue, we assessed NEAT1 expression levels and cell type patterns in the substantia nigra (SN) from 53 donors with and without PD, as well as in interference tissue culture tests followed by multiple in-house and web-available models of PD. PCR quantification identified elevated levels of NEAT1 expression in the PD SN compared with control brains, an elevation that was reproducible across a multitude of disease models. In situ RNA hybridization supported neuron-specific formation of NEAT1-based paraspeckles at the SN and demonstrated coincreases of NEAT1 and paraspeckles in cultured cells under paraquat (PQ)-induced oxidative stress. Furthermore, neuroprotective agents, including fenofibrate and simvastatin, induced NEAT1 up-regulation, whereas RNA interference-mediated depletion of NEAT1 exacerbated death of PQ-exposed cells in a leucine-rich repeat kinase 2-mediated manner. Our findings highlight a novel protective role for NEAT1 in PD and suggest a previously unknown mechanism for the neuroprotective traits of widely used preventive therapeutics.-Simchovitz, A., Hanan, M., Niederhoffer, N., Madrer, N., Yayon, N., Bennett, E. R., Greenberg, D. S., Kadener, S., Soreq, H. NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress.
Collapse
Affiliation(s)
- Alon Simchovitz
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Hanan
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Niederhoffer
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nimrod Madrer
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadav Yayon
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Estelle R. Bennett
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David S. Greenberg
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sebastian Kadener
- Biology Department, Brandeis University, Waltham, Massachusetts, USA
| | - Hermona Soreq
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
28
|
Das S, Singer RH, Yoon YJ. The travels of mRNAs in neurons: do they know where they are going? Curr Opin Neurobiol 2019; 57:110-116. [PMID: 30784978 PMCID: PMC6650148 DOI: 10.1016/j.conb.2019.01.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022]
Abstract
Neurons are highly polarized cells that can extend processes far from the cell body. As such, transport of messenger RNAs serves as a set of blueprints for the synthesis of specific proteins at distal sites. RNA localization to dendrites and axons confers the ability to regulate translation with extraordinary precision in space and time. Although the rationale for RNA localization is quite compelling, it is unclear how a neuron orchestrates such a complex task of distributing over a thousand different mRNAs to their respective subcellular compartments. Recent single-molecule imaging studies have led to insights into the kinetics of individual mRNAs. We can now peer into the transport dynamics of mRNAs in both dendrites and axons.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Janelia Research Campus, Ashburn, VA, USA.
| | - Young J Yoon
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Janelia Research Campus, Ashburn, VA, USA.
| |
Collapse
|
29
|
Bauer KE, Segura I, Gaspar I, Scheuss V, Illig C, Ammer G, Hutten S, Basyuk E, Fernández-Moya SM, Ehses J, Bertrand E, Kiebler MA. Live cell imaging reveals 3'-UTR dependent mRNA sorting to synapses. Nat Commun 2019; 10:3178. [PMID: 31320644 PMCID: PMC6639396 DOI: 10.1038/s41467-019-11123-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
mRNA transport restricts translation to specific subcellular locations, which is the basis for many cellular functions. However, the precise process of mRNA sorting to synapses in neurons remains elusive. Here we use Rgs4 mRNA to investigate 3′-UTR-dependent transport by MS2 live-cell imaging. The majority of observed RNA granules display 3′-UTR independent bidirectional transport in dendrites. Importantly, the Rgs4 3′-UTR causes an anterograde transport bias, which requires the Staufen2 protein. Moreover, the 3′-UTR mediates dynamic, sustained mRNA recruitment to synapses. Visualization at high temporal resolution enables us to show mRNA patrolling dendrites, allowing transient interaction with multiple synapses, in agreement with the sushi-belt model. Modulation of neuronal activity by either chemical silencing or local glutamate uncaging regulates both the 3′-UTR-dependent transport bias and synaptic recruitment. This dynamic and reversible mRNA recruitment to active synapses would allow translation and synaptic remodeling in a spatially and temporally adaptive manner. Asymmetric subcellular mRNA distribution is important for local translation of neuronal mRNAs. Here the authors employed MS2 live-cell imaging and showed that the reporter mRNA containing the 3’ UTR of Rgs4 shows an anterograde transport bias, dependent on neuronal activity and the protein Staufen2, and mediates sustained mRNA recruitment to synapses.
Collapse
Affiliation(s)
- Karl E Bauer
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Inmaculada Segura
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Imre Gaspar
- EMBL, Meyerhofstraße 1, 69117, Heidelberg, Germany.,Institute of Molecular Biotechnology, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Volker Scheuss
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Christin Illig
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Georg Ammer
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.,MPI of Neurobiology, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Saskia Hutten
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Eugénia Basyuk
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France.,Institut de Génétique Humaine de Montpellier, CNRS UMR9002, Université de Montpellier, 141 rue de la Cardonille, 34396, Montpellier, France
| | - Sandra M Fernández-Moya
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Janina Ehses
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Michael A Kiebler
- BioMedical Center, Medical Faculty, Ludwig Maximilians University, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
30
|
de la Peña JBI, Song JJ, Campbell ZT. RNA control in pain: Blame it on the messenger. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1546. [PMID: 31090211 DOI: 10.1002/wrna.1546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/12/2022]
Abstract
mRNA function is meticulously controlled. We provide an overview of the integral role that posttranscriptional controls play in the perception of painful stimuli by sensory neurons. These specialized cells, termed nociceptors, precisely regulate mRNA polarity, translation, and stability. A growing body of evidence has revealed that targeted disruption of mRNAs and RNA-binding proteins robustly diminishes pain-associated behaviors. We propose that the use of multiple independent regulatory paradigms facilitates robust temporal and spatial precision of protein expression in response to a range of pain-promoting stimuli. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- June Bryan I de la Peña
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Jane J Song
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| | - Zachary T Campbell
- Department of Biological Sciences and the Center for Advanced Pain Studies, University of Texas, Dallas, Richardson, Texas
| |
Collapse
|
31
|
Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proc Natl Acad Sci U S A 2018; 115:E9697-E9706. [PMID: 30254174 PMCID: PMC6187124 DOI: 10.1073/pnas.1806189115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
De novo protein synthesis in neuronal axons plays important roles in neural circuit formation, maintenance, and disease. Key to the selectivity of axonal protein synthesis is whether an mRNA is present at the right place to be translated, but the mechanisms behind axonal mRNA localization remain poorly understood. In this work, we quantitatively analyze the link between axonal β-actin mRNA trafficking and its localization patterns. By developing a single-molecule approach to live-image β-actin mRNAs in axons, we explore the biophysical drivers behind β-actin mRNA motion and uncover a mechanism for generating increased density at the axon tip by differences in motor protein-driven transport speeds. These results provide mechanistic insight into the control of local translation through mRNA trafficking. During embryonic nervous system assembly, mRNA localization is precisely regulated in growing axons, affording subcellular autonomy by allowing controlled protein expression in space and time. Different sets of mRNAs exhibit different localization patterns across the axon. However, little is known about how mRNAs move in axons or how these patterns are generated. Here, we couple molecular beacon technology with highly inclined and laminated optical sheet microscopy to image single molecules of identified endogenous mRNA in growing axons. By combining quantitative single-molecule imaging with biophysical motion models, we show that β-actin mRNA travels mainly as single copies and exhibits different motion-type frequencies in different axonal subcompartments. We find that β-actin mRNA density is fourfold enriched in the growth cone central domain compared with the axon shaft and that a modicum of directed transport is vital for delivery of mRNA to the axon tip. Through mathematical modeling we further demonstrate that directional differences in motor-driven mRNA transport speeds are sufficient to generate β-actin mRNA enrichment at the growth cone. Our results provide insight into how mRNAs are trafficked in axons and a mechanism for generating different mRNA densities across axonal subcompartments.
Collapse
|
32
|
Alon S, Huynh GH, Boyden ES. Expansion microscopy: enabling single cell analysis in intact biological systems. FEBS J 2018; 286:1482-1494. [PMID: 29938896 DOI: 10.1111/febs.14597] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/23/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022]
Abstract
There is a need for single cell analysis methods that enable the identification and localization of different kinds of biomolecules throughout cells and intact tissues, thereby allowing characterization and classification of individual cells and their relationships to each other within intact systems. Expansion microscopy (ExM) is a technology that physically magnifies tissues in an isotropic way, thereby achieving super-resolution microscopy on diffraction-limited microscopes, enabling rapid image acquisition and large field of view. As a result, ExM is well-positioned to integrate molecular content and cellular morphology, with the spatial precision sufficient to resolve individual biological building blocks, and the scale and accessibility required to deploy over extended 3-D objects like tissues and organs.
Collapse
Affiliation(s)
- Shahar Alon
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.,McGovern Institute, MIT, Cambridge, MA, USA
| | - Grace H Huynh
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.,McGovern Institute, MIT, Cambridge, MA, USA.,Microsoft Research, Seattle, WA, USA
| | - Edward S Boyden
- Media Lab, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.,McGovern Institute, MIT, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.,Koch Institute, MIT, Cambridge, MA, USA
| |
Collapse
|
33
|
Das S, Moon HC, Singer RH, Park HY. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons. SCIENCE ADVANCES 2018; 4:eaar3448. [PMID: 29938222 PMCID: PMC6010337 DOI: 10.1126/sciadv.aar3448] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/10/2018] [Indexed: 05/05/2023]
Abstract
Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3' untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hyungseok C. Moon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
- Corresponding author. (H.Y.P.); (R.H.S.)
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
- The Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
- Corresponding author. (H.Y.P.); (R.H.S.)
| |
Collapse
|
34
|
Chudinova EM, Nadezhdina ES. Interactions between the Translation Machinery and Microtubules. BIOCHEMISTRY (MOSCOW) 2018; 83:S176-S189. [PMID: 29544439 DOI: 10.1134/s0006297918140146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microtubules are components of eukaryotic cytoskeleton that are involved in the transport of various components from the nucleus to the cell periphery and back. They also act as a platform for assembly of complex molecular ensembles. Ribonucleoprotein (RNP) complexes, such as ribosomes and mRNPs, are transported over significant distances (e.g. to neuronal processes) along microtubules. The association of RNPs with microtubules and their transport along these structures are essential for compartmentalization of protein biosynthesis in cells. Microtubules greatly facilitate assembly of stress RNP granules formed by accumulation of translation machinery components during cell stress response. Microtubules are necessary for the cytoplasm-to-nucleus transport of proteins, including ribosomal proteins. At the same time, ribosomal proteins and RNA-binding proteins can influence cell mobility and cytoplasm organization by regulating microtubule dynamics. The molecular mechanisms underlying the association between the translation machinery components and microtubules have not been studied systematically; the results of such studies are mostly fragmentary. In this review, we attempt to fill this gap by summarizing and discussing the data on protein and RNA components of the translation machinery that directly interact with microtubules or microtubule motor proteins.
Collapse
Affiliation(s)
- E M Chudinova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
35
|
|
36
|
Song MS, Moon HC, Jeon JH, Park HY. Neuronal messenger ribonucleoprotein transport follows an aging Lévy walk. Nat Commun 2018; 9:344. [PMID: 29367597 PMCID: PMC5783941 DOI: 10.1038/s41467-017-02700-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Localization of messenger ribonucleoproteins (mRNPs) plays an essential role in the regulation of gene expression for long-term memory formation and neuronal development. Knowledge concerning the nature of neuronal mRNP transport is thus crucial for understanding how mRNPs are delivered to their target synapses. Here, we report experimental and theoretical evidence that the active transport dynamics of neuronal mRNPs, which is distinct from the previously reported motor-driven transport, follows an aging Lévy walk. Such nonergodic, transient superdiffusion occurs because of two competing dynamic phases: the motor-involved ballistic run and static localization of mRNPs. Our proposed Lévy walk model reproduces the experimentally extracted key dynamic characteristics of mRNPs with quantitative accuracy. Moreover, the aging status of mRNP particles in an experiment is inferred from the model. This study provides a predictive theoretical model for neuronal mRNP transport and offers insight into the active target search mechanism of mRNP particles in vivo.
Collapse
Affiliation(s)
- Minho S Song
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea.
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea. .,The Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
37
|
Lee BH, Park HY. HybTrack: A hybrid single particle tracking software using manual and automatic detection of dim signals. Sci Rep 2018; 8:212. [PMID: 29317715 PMCID: PMC5760724 DOI: 10.1038/s41598-017-18569-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 02/08/2023] Open
Abstract
Single particle tracking is a compelling technique for investigating the dynamics of nanoparticles and biological molecules in a broad range of research fields. In particular, recent advances in fluorescence microscopy have made single molecule tracking a prevalent method for studying biomolecules with a high spatial and temporal precision. Particle tracking algorithms have matured over the past three decades into more easily accessible platforms. However, there is an inherent difficulty in tracing particles that have a low signal-to-noise ratio and/or heterogeneous subpopulations. Here, we present a new MATLAB based tracking program which combines the benefits of manual and automatic tracking methods. The program prompts the user to manually locate a particle when an ambiguous situation occurs during automatic tracking. We demonstrate the utility of this program by tracking the movement of β-actin mRNA in the dendrites of cultured hippocampal neurons. We show that the diffusion coefficient of β-actin mRNA decreases upon neuronal stimulation by bicuculline treatment. This tracking method enables an efficient dissection of the dynamic regulation of biological molecules in highly complex intracellular environments.
Collapse
Affiliation(s)
- Byung Hun Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea. .,Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
38
|
Kocks C, Boltengagen A, Piwecka M, Rybak-Wolf A, Rajewsky N. Single-Molecule Fluorescence In Situ Hybridization (FISH) of Circular RNA CDR1as. Methods Mol Biol 2018; 1724:77-96. [PMID: 29322442 DOI: 10.1007/978-1-4939-7562-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Individual mRNA molecules can be imaged in fixed cells by hybridization with multiple, singly labeled oligonucleotide probes, followed by computational identification of fluorescent signals. This approach, called single-molecule RNA fluorescence in situ hybridization (smRNA FISH), allows subcellular localization and absolute quantification of RNA molecules in individual cells. Here, we describe a simple smRNA FISH protocol for two-color imaging of a circular RNA, CDR1as, simultaneously with an unrelated messenger RNA. The protocol can be adapted to circRNAs that coexist with overlapping, noncircular mRNA isoforms produced from the same genetic locus.
Collapse
Affiliation(s)
- Christine Kocks
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
| | - Anastasiya Boltengagen
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Monika Piwecka
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Agnieszka Rybak-Wolf
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene-Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
39
|
He D, Wong KW, Dong Z, Li HW. Recent progress in live cell mRNA/microRNA imaging probes based on smart and versatile nanomaterials. J Mater Chem B 2018; 6:7773-7793. [DOI: 10.1039/c8tb02285b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We summarize the recent progress in live cell mRNA/miRNA imaging probes based on various versatile nanomaterials, describing their structures and their working principles of bio-imaging applications.
Collapse
Affiliation(s)
- Dinggeng He
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
- State Key Laboratory of Developmental Biology of Freshwater Fish
| | - Ka-Wang Wong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Zhenzhen Dong
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Hung-Wing Li
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|
40
|
Exciting Times: New Advances Towards Understanding the Regulation and Roles of Kainate Receptors. Neurochem Res 2017; 44:572-584. [PMID: 29270706 PMCID: PMC6420428 DOI: 10.1007/s11064-017-2450-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Kainate receptors (KARs) are glutamate-gated ion channels that play fundamental roles in regulating neuronal excitability and network function in the brain. After being cloned in the 1990s, important progress has been made in understanding the mechanisms controlling the molecular and cellular properties of KARs, and the nature and extent of their regulation of wider neuronal activity. However, there have been significant recent advances towards understanding KAR trafficking through the secretory pathway, their precise synaptic positioning, and their roles in synaptic plasticity and disease. Here we provide an overview highlighting these new findings about the mechanisms controlling KARs and how KARs, in turn, regulate other proteins and pathways to influence synaptic function.
Collapse
|
41
|
Fontes MM, Guvenek A, Kawaguchi R, Zheng D, Huang A, Ho VM, Chen PB, Liu X, O'Dell TJ, Coppola G, Tian B, Martin KC. Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation During Hippocampal Long-Term Potentiation. Sci Rep 2017; 7:17377. [PMID: 29234016 PMCID: PMC5727029 DOI: 10.1038/s41598-017-17407-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Long-lasting forms of synaptic plasticity that underlie learning and memory require new transcription and translation for their persistence. The remarkable polarity and compartmentalization of neurons raises questions about the spatial and temporal regulation of gene expression within neurons. Alternative cleavage and polyadenylation (APA) generates mRNA isoforms with different 3' untranslated regions (3'UTRs) and/or coding sequences. Changes in the 3'UTR composition of mRNAs can alter gene expression by regulating transcript localization, stability and/or translation, while changes in the coding sequences lead to mRNAs encoding distinct proteins. Using specialized 3' end deep sequencing methods, we undertook a comprehensive analysis of APA following induction of long-term potentiation (LTP) of mouse hippocampal CA3-CA1 synapses. We identified extensive LTP-induced APA changes, including a general trend of 3'UTR shortening and activation of intronic APA isoforms. Comparison with transcriptome profiling indicated that most APA regulatory events were uncoupled from changes in transcript abundance. We further show that specific APA regulatory events can impact expression of two molecules with known functions during LTP, including 3'UTR APA of Notch1 and intronic APA of Creb1. Together, our results reveal that activity-dependent APA provides an important layer of gene regulation during learning and memory.
Collapse
Affiliation(s)
- Mariana M Fontes
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Graduate Program in Areas of Basic and Applied Biology, University of Porto, Porto, Portugal
| | - Aysegul Guvenek
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Alden Huang
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Victoria M Ho
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick B Chen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Interdepartmental Graduate Program in Neuroscience, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Kelsey C Martin
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Yoshimura H. Live Cell Imaging of Endogenous RNAs Using Pumilio Homology Domain Mutants: Principles and Applications. Biochemistry 2017; 57:200-208. [PMID: 29164876 DOI: 10.1021/acs.biochem.7b00983] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently, dynamic changes in the location of RNA in space and time in living cells have become a target of interest in biology because of their essential roles in controlling physiological phenomena. To visualize RNA, methods for the fluorescent labeling of RNA in living cells have been developed. For RNA labeling, oligonucleotide-based RNA probes have mainly been used because of their high selectivity for target RNAs. By contrast, protein-based RNA probes have not been used widely because of their lack of design flexibility, although they have various potential advantages compared with nucleotide-based probes, such as controllability of intracellular localization, high detectability, and ease of introduction into cells and transgenic organisms in a cell type and tissue specific manner by genetic engineering techniques. This Perspective focuses on a possible approach to the development of protein-based RNA probes using Pumilio homology domain (PUM-HD) mutants. The PUM-HD is a domain of an RNA binding protein that allows custom-made modifications to recognize a given eight-base RNA sequence. PUM-HD-based RNA probes have been applied to visualize various RNAs in living cells. Here, the techniques and RNA imaging results obtained using the PUM-HD are introduced.
Collapse
Affiliation(s)
- Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Epigenetic Etiology of Intellectual Disability. J Neurosci 2017; 37:10773-10782. [PMID: 29118205 DOI: 10.1523/jneurosci.1840-17.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.
Collapse
|
44
|
Johnson B, Zhao Y, Fasolino M, Lamonica J, Kim Y, Georgakilas G, Wood K, Bu D, Cui Y, Goffin D, Vahedi G, Kim T, Zhou Z. Biotin tagging of MeCP2 in mice reveals contextual insights into the Rett syndrome transcriptome. Nat Med 2017; 23:1203-1214. [PMID: 28920956 PMCID: PMC5630512 DOI: 10.1038/nm.4406] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 08/18/2017] [Indexed: 12/12/2022]
Abstract
Mutations in MECP2 cause Rett syndrome (RTT), an X-linked neurological disorder characterized by regressive loss of neurodevelopmental milestones and acquired psychomotor deficits. However, the cellular heterogeneity of the brain impedes an understanding of how MECP2 mutations contribute to RTT. Here we developed a Cre-inducible method for cell-type-specific biotin tagging of MeCP2 in mice. Combining this approach with an allelic series of knock-in mice carrying frequent RTT-associated mutations (encoding T158M and R106W) enabled the selective profiling of RTT-associated nuclear transcriptomes in excitatory and inhibitory cortical neurons. We found that most gene-expression changes were largely specific to each RTT-associated mutation and cell type. Lowly expressed cell-type-enriched genes were preferentially disrupted by MeCP2 mutations, with upregulated and downregulated genes reflecting distinct functional categories. Subcellular RNA analysis in MeCP2-mutant neurons further revealed reductions in the nascent transcription of long genes and uncovered widespread post-transcriptional compensation at the cellular level. Finally, we overcame X-linked cellular mosaicism in female RTT models and identified distinct gene-expression changes between neighboring wild-type and mutant neurons, providing contextual insights into RTT etiology that support personalized therapeutic interventions.
Collapse
Affiliation(s)
- B.S. Johnson
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Y.T. Zhao
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - M. Fasolino
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - J.M. Lamonica
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Y.J. Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - G. Georgakilas
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - K.H. Wood
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - D. Bu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Y. Cui
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - D. Goffin
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - G. Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - T.H. Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Z. Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
45
|
Bauer KE, Kiebler MA, Segura I. Visualizing RNA granule transport and translation in living neurons. Methods 2017. [DOI: 10.1016/j.ymeth.2017.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
46
|
Abstract
Neurons are amongst the most structurally complex cells and exhibit a high degree of spatial compartmentalization. Also, neurons exhibit rapid and dynamic signaling by processing information in a precise and, sometimes, spatially-restricted manner. The signaling that occurs in axons and dendrites necessitates the maintenance and modification of their local proteomes. Local translation of mRNAs into protein is one solution that neurons use to meet synaptic demand and activity. Here we review some of the key findings and recent discoveries that have shaped our understanding of local translation in neuronal function and highlight important new techniques that might pave the way for new insights.
Collapse
|
47
|
Xia Y, Zhang R, Wang Z, Tian J, Chen X. Recent advances in high-performance fluorescent and bioluminescent RNA imaging probes. Chem Soc Rev 2017; 46:2824-2843. [PMID: 28345687 PMCID: PMC5472208 DOI: 10.1039/c6cs00675b] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA plays an important role in life processes. Imaging of messenger RNAs (mRNAs) and micro-RNAs (miRNAs) not only allows us to learn the formation and transcription of mRNAs and the biogenesis of miRNAs involved in various life processes, but also helps in detecting cancer. High-performance RNA imaging probes greatly expand our view of life processes and enhance the cancer detection accuracy. In this review, we summarize the state-of-the-art high-performance RNA imaging probes, including exogenous probes that can image RNA sequences with special modification and endogeneous probes that can directly image endogenous RNAs without special treatment. For each probe, we review its structure and imaging principle in detail. Finally, we summarize the application of mRNA and miRNA imaging probes in studying life processes as well as in detecting cancer. By correlating the structures and principles of various probes with their practical uses, we compare different RNA imaging probes and offer guidance for better utilization of the current imaging probes and the future design of higher-performance RNA imaging probes.
Collapse
Affiliation(s)
- Yuqiong Xia
- Engineering Research Center of Molecular-imaging and Neuro-imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.
| | | | | | | | | |
Collapse
|
48
|
Vera M, Biswas J, Senecal A, Singer RH, Park HY. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation. Annu Rev Genet 2017; 50:267-291. [PMID: 27893965 DOI: 10.1146/annurev-genet-120215-034854] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology.
Collapse
Affiliation(s)
- Maria Vera
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , ,
| | - Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , ,
| | - Adrien Senecal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , ,
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY 10461; , , , .,Janelia Research Campus of the HHMI, Ashburn, Virginia 20147
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea; .,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
49
|
Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface. Cell Discov 2017; 3:17005. [PMID: 28377822 PMCID: PMC5368712 DOI: 10.1038/celldisc.2017.5] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Astrocytes send out long processes that are terminated by endfeet at the vascular surface and regulate vascular functions as well as homeostasis at the vascular interface. To date, the astroglial mechanisms underlying these functions have been poorly addressed. Here we demonstrate that a subset of messenger RNAs is distributed in astrocyte endfeet. We identified, among this transcriptome, a pool of messenger RNAs bound to ribosomes, the endfeetome, that primarily encodes for secreted and membrane proteins. We detected nascent protein synthesis in astrocyte endfeet. Finally, we determined the presence of smooth and rough endoplasmic reticulum and the Golgi apparatus in astrocyte perivascular processes and endfeet, suggesting for local maturation of membrane and secreted proteins. These results demonstrate for the first time that protein synthesis occurs in astrocyte perivascular distal processes that may sustain their structural and functional polarization at the vascular interface.
Collapse
|
50
|
Namjoshi SV, Raab-Graham KF. Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Front Mol Neurosci 2017; 10:45. [PMID: 28286470 PMCID: PMC5323403 DOI: 10.3389/fnmol.2017.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
In the last decade, bioinformatic analyses of high-throughput proteomics and transcriptomics data have enabled researchers to gain insight into the molecular networks that may underlie lasting changes in synaptic efficacy. Development and utilization of these techniques have advanced the field of learning and memory significantly. It is now possible to move from the study of activity-dependent changes of a single protein to modeling entire network changes that require local protein synthesis. This data revolution has necessitated the development of alternative computational and statistical techniques to analyze and understand the patterns contained within. Thus, the focus of this review is to provide a synopsis of the journey and evolution toward big data techniques to address still unanswered questions regarding how synapses are modified to strengthen neuronal circuits. We first review the seminal studies that demonstrated the pivotal role played by local mRNA translation as the mechanism underlying the enhancement of enduring synaptic activity. In the interest of those who are new to the field, we provide a brief overview of molecular biology and biochemical techniques utilized for sample preparation to identify locally translated proteins using RNA sequencing and proteomics, as well as the computational approaches used to analyze these data. While many mRNAs have been identified, few have been shown to be locally synthesized. To this end, we review techniques currently being utilized to visualize new protein synthesis, a task that has proven to be the most difficult aspect of the field. Finally, we provide examples of future applications to test the physiological relevance of locally synthesized proteins identified by big data approaches.
Collapse
Affiliation(s)
- Sanjeev V Namjoshi
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA
| | - Kimberly F Raab-Graham
- Center for Learning and Memory, The University of Texas at Austin, AustinTX, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, AustinTX, USA; Department of Physiology and Pharmacology, Wake Forest Health Sciences, Medical Center Boulevard, Winston-SalemNC, USA
| |
Collapse
|