1
|
Zhao YY, Xie L, Wang RY, Yan Y, Liu LL. Treponema pallidum Protein TpF1 Inhibits Migration by Impairing Actin Polymerization via Toll-Like Receptor 4/PI3K/AKT in Microglia. ACS Infect Dis 2025; 11:1104-1113. [PMID: 40272988 DOI: 10.1021/acsinfecdis.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Treponema pallidum induces a host immune response during central nervous system (CNS) invasion, prompting microglia to migrate to the site of injury, where they release effector molecules or phagocytose pathogens. However, the role of impaired microglial migration in the pathogenesis of T. pallidum infection remains poorly understood. In this study, we sought to explore the molecular mechanisms by which the T. pallidum protein TpF1 inhibits microglial migration. Microglial HMC3 cells were used to assess the effects of TpF1 on cellular migration and its impact on actin polymerization. Our findings demonstrate that TpF1 significantly reduces microglial migration in both horizontal and vertical directions. This effect correlates with a marked decrease in the filamentous actin (F-actin)/globular actin (G-actin) ratio, as confirmed by immunofluorescence analysis, which revealed a considerable reduction in F-actin levels. Moreover, TpF1 was found to suppress the expression of Toll-like receptor 4 (TLR4), phosphorylated PI3K (P-PI3K)/PI3K, phosphorylated AKT (P-AKT)/AKT, and Rac1. Inhibition of the TLR4/PI3K/AKT signaling pathway further impaired actin polymerization and migration. Collectively, our study identifies a novel mechanism by which TpF1 disrupts microglial migration via the TLR4/PI3K/AKT pathway, providing valuable insights into immune evasion strategies during T. pallidum-induced CNS infection.
Collapse
Affiliation(s)
- Yuan-Yi Zhao
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Lin Xie
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Ruo-Ying Wang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Ya Yan
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
- Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen 361004, China
- Xiamen Clinical Laboratory Quality Control Center, Xiamen 361004, Fujian, China
| |
Collapse
|
2
|
Yao L, Li Y. Implementation of actin polymerization and depolymerization in a two-dimensional cell migration model and its implications on mammalian cell morphology and velocity. J Theor Biol 2025; 596:111977. [PMID: 39510349 DOI: 10.1016/j.jtbi.2024.111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Cell migration, a pivotal process in wound healing, immune response, and even cancer metastasis, manifests through intricate interplay between morphology, speed, and cytoskeletal dynamics. Mathematical modeling emerges as a powerful tool to dissect these complex interactions. This work presents a two-dimensional immersed boundary model for mammalian cell migration, incorporating both filamentous actin (F-actin) and monomeric actin (G-actin) to explicitly capture polymerization and depolymerization. This model builds upon our previous one-dimensional efforts, now enabling us to explore the impact of G-actin on not just cell velocity but also morphology. We compare predictions from both models, revealing that while the one-dimensional model captures core dynamics along the cell's axis, the two-dimensional model excels in portraying cell shape evolution and transverse variations in actin concentration and velocity. Our findings highlight the crucial role of including G-actin in shaping cell morphology. Actin velocity aligned with migration direction elongates the cell, while velocity normal to the membrane promotes spreading. Importantly, the model establishes a link between these microscopic aspects and macroscopic observables like cell shape, offering a deeper understanding of cell migration dynamics. This work not only provides a more comprehensive picture of cell migration but also paves the way for future studies exploring the interplay of actin dynamics, cell morphology, and biophysical parameters in diverse biological contexts.
Collapse
Affiliation(s)
- Lingxing Yao
- Department of Mathematics, University of Akron, Akron, OH 44325, USA
| | - Yizeng Li
- Department of Biomedical Engineering, Binghamton University, SUNY, Binghamton, NY 13902, USA.
| |
Collapse
|
3
|
Napoli M, Immler R, Rohwedder I, Lupperger V, Pfabe J, Gonzalez Pisfil M, Yevtushenko A, Vogl T, Roth J, Salvermoser M, Dietzel S, Slak Rupnik M, Marr C, Walzog B, Sperandio M, Pruenster M. Cytosolic S100A8/A9 promotes Ca 2+ supply at LFA-1 adhesion clusters during neutrophil recruitment. eLife 2024; 13:RP96810. [PMID: 39699020 DOI: 10.7554/elife.96810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
S100A8/A9 is an endogenous alarmin secreted by myeloid cells during many acute and chronic inflammatory disorders. Despite increasing evidence of the proinflammatory effects of extracellular S100A8/A9, little is known about its intracellular function. Here, we show that cytosolic S100A8/A9 is indispensable for neutrophil post-arrest modifications during outside-in signaling under flow conditions in vitro and neutrophil recruitment in vivo, independent of its extracellular functions. Mechanistically, genetic deletion of S100A9 in mice caused dysregulated Ca2+ signatures in activated neutrophils resulting in reduced Ca2+ availability at the formed LFA-1/F-actin clusters with defective β2 integrin outside-in signaling during post-arrest modifications. Consequently, we observed impaired cytoskeletal rearrangement, cell polarization, and spreading, as well as cell protrusion formation in S100a9-/- compared to wildtype (WT) neutrophils, making S100a9-/- cells more susceptible to detach under flow, thereby preventing efficient neutrophil recruitment and extravasation into inflamed tissue.
Collapse
Affiliation(s)
- Matteo Napoli
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Roland Immler
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Ina Rohwedder
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Valerio Lupperger
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Pfabe
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Mariano Gonzalez Pisfil
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Anna Yevtushenko
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, Muenster, Germany
| | - Melanie Salvermoser
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Steffen Dietzel
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Marjan Slak Rupnik
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Walzog
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| | - Monika Pruenster
- Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany
| |
Collapse
|
4
|
Bui VT, Wu KW, Chen CC, Nguyen AT, Huang WJ, Lee LY, Chen WP, Huang CY, Shiao YJ. Exploring the Synergistic Effects of Erinacines on Microglial Regulation and Alzheimer's Pathology Under Metabolic Stress. CNS Neurosci Ther 2024; 30:e70137. [PMID: 39690860 DOI: 10.1111/cns.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Hericium erinaceus mycelium and its constituents, erinacines A and S, have shown neuroprotective effects in APP/PS1 transgenic mice; however, the precise mechanisms by which they modulate microglial phenotypes remain unclear. Our study is the first to explore the effect of erinacines on microglia morphology and the underlying mechanisms using a novel primary mixed glia cell model and advanced bioinformatic tools. Furthermore, we emphasize the clinical relevance by evaluating erinacines in a metabolically stressed APP/PS1 mouse model, which more accurately reflects the complexities of human Alzheimer's disease (AD), where metabolic syndrome is a common comorbidity. METHODS Rat primary mixed glial cultures were used to simulate the spectrum of microglial phenotypes, particularly the transition from immature to mature states. Microarray sequencing, along with Connectivity Map, ConsensusPathDB, and Gene Set Enrichment Analysis, identified pathways influenced by erinacines. The therapeutic efficacy was further evaluated in metabolically stressed APP/PS1 mice. RESULTS Erinacines significantly promoted the development of a ramified, neuroprotective microglial phenotype. Bioinformatics revealed potential modulation of microglia via histone deacetylase inhibition, actin filament dynamics, and synaptic structure modification-pathways not previously linked to erinacines in AD. Importantly, erinacines significantly lower fasting blood glucose and insulin levels while reducing amyloid-beta plaque burden, suppressing hyperactivated glial responses, and enhancing neurogenesis in the metabolically stressed APP/PS1 mice. CONCLUSION Our findings demonstrate the dual action of erinacines in modulating microglia morphology and phenotype while providing neuroprotection in a model that closely mimic the complexities of human Alzheimer's disease. Additionally, this study provides the foundation for understanding the potential mechanisms of action of erinacines, highlighting their promise as a novel treatment approach for Alzheimer's, particularly in cases complicated by metabolic dysfunction.
Collapse
Affiliation(s)
- Van Thanh Bui
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan National Graduate Program in Molecular Medicine, Academia Sinica, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuan-Wei Wu
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | | | - Anh Thuc Nguyen
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan National Graduate Program in Molecular Medicine, Academia Sinica, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Jan Huang
- PhD. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Li-Ya Lee
- Grape King Bio Ltd, Taoyuan City, Taiwan
| | | | - Chi-Ying Huang
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Taiwan National Graduate Program in Molecular Medicine, Academia Sinica, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Chong Hin Loon Memorial Cancer and Biotherapy Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Young-Ji Shiao
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- PhD. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| |
Collapse
|
5
|
Tao Y, Ghagre A, Molter CW, Clouvel A, Al Rahbani J, Brown CM, Nowrouzezahrai D, Ehrlicher AJ. Inferring cellular contractile forces and work using deep morphology traction microscopy. Biophys J 2024; 123:3217-3230. [PMID: 39033326 PMCID: PMC11427771 DOI: 10.1016/j.bpj.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Traction-force microscopy (TFM) has emerged as a widely used standard methodology to measure cell-generated traction forces and determine their role in regulating cell behavior. While TFM platforms have enabled many discoveries, their implementation remains limited due to complex experimental procedures, specialized substrates, and the ill-posed inverse problem whereby low-magnitude high-frequency noise in the displacement field severely contaminates the resulting traction measurements. Here, we introduce deep morphology traction microscopy (DeepMorphoTM), a deep-learning alternative to conventional TFM approaches. DeepMorphoTM first infers cell-induced substrate displacement solely from a sequence of cell shapes and subsequently computes cellular traction forces, thus avoiding the requirement of a specialized fiduciarily marked deformable substrate or force-free reference image. Rather, this technique drastically simplifies the overall experimental methodology, imaging, and analysis needed to conduct cell-contractility measurements. We demonstrate that DeepMorphoTM quantitatively matches conventional TFM results while offering stability against the biological variability in cell contractility for a given cell shape. Without high-frequency noise in the inferred displacement, DeepMorphoTM also resolves the ill-posedness of traction computation, increasing the consistency and accuracy of traction analysis. We demonstrate the accurate extrapolation across several cell types and substrate materials, suggesting robustness of the methodology. Accordingly, we present DeepMorphoTM as a capable yet simpler alternative to conventional TFM for characterizing cellular contractility in two dimensions.
Collapse
Affiliation(s)
- Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada; Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
| | - Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Clayton W Molter
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Anna Clouvel
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Jalal Al Rahbani
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Claire M Brown
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada; Advanced BioImaging Facility (ABIF), McGill University, Montreal, Quebec, Canada
| | - Derek Nowrouzezahrai
- Department of Electrical and Computer Engineering, McGill University, Montreal, Quebec, Canada
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada; Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, Quebec, Canada; Centre for Structural Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Zhou WH, Yin X, Xie SJ, Ji FP, Chang Z, Xu GK. A tensegrity-based mechanochemical model for capturing cell oscillation and reorientation. JOURNAL OF APPLIED PHYSICS 2024; 136. [DOI: 10.1063/5.0226910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The cytoskeleton, a dynamic network of structural proteins within cells, is essential for cellular deformation and responds to external mechanical cues. Here, based on the structure of the cytoskeleton, combined with the biochemical reactions of the activator RhoA and the inhibitor F-actin, we develop a novel mechanochemical cytoskeleton model to investigate the mechanical behavior of cells. Interestingly, we find that active stress fibers exhibit diverse dynamical modes at specific inhibitor concentration thresholds. The existence of concentration differences and sustained mechanochemical feedback in activators and inhibitors trigger a global oscillation of isolated cells. In addition, under uniaxial and biaxial stretches, activators and inhibitors preferentially diffuse toward the more significantly deformed cytoskeletal elements, and their dynamic interactions regulate the cell to align with the main stretching direction. Our findings, consistent with many experimental results, provide fundamental insights into cytoskeletal remodeling and cellular mechanosensing mechanisms.
Collapse
Affiliation(s)
- Wei-Hua Zhou
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University 1 , Xi’an 710049, China
| | - Xu Yin
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University 1 , Xi’an 710049, China
| | - She-Juan Xie
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University 1 , Xi’an 710049, China
| | - Fan-pu Ji
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University 2 , Xi’an 710049, China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University 3 , Xi’an 710049, China
| | - Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University 1 , Xi’an 710049, China
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University 1 , Xi’an 710049, China
| |
Collapse
|
7
|
Chen F, Ren P, Xu R, Zhang J, Liang C, Qiang G. FAM65A promotes the progression and growth of lung squamous cell carcinoma in vivo and vitro. BMC Cancer 2024; 24:944. [PMID: 39095743 PMCID: PMC11295694 DOI: 10.1186/s12885-024-12701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUNDS Currently, family with sequence similarity 65 member A (FAM65A) is reported as a pivotal regulator in various cancers. However, the effect of FAM65A in lung squamous cell carcinoma (LSCC) is still unclear, the prime objective of this research is to explore the role of FAM65A in LSCC. METHODS Gene expression data and correlated clinical information were downloaded from the public database and the expression of FAM65A was detected. The expression of FAM65A was also detected in our collected clinical samples and LSCC cell lines. Survival package of R language was used to determine the survival significance of FAM65A. Proteins expression level was determined via western blot assay. Cell function experiments and in vivo experiments were performed to explore the effect of FAM65A on LSCC cell biological behaviors. RESULTS FAM65A expression was significantly increased in LSCC clinical samples and cell lines. High FAM65A expression predicted poor prognosis in LSCC patients. After silencing FAM65A, the ability of LSCC cell proliferation, invasion and migration was decreased, and LSCC cell cycle was blocked. Moreover, in vivo experiments revealed that silencing FAM65A could inhibit LSCC cell proliferation. CONCLUSIONS High FAM65A expression could enhance proliferative, invasive and migratory abilities of LSCC. FAM65A might be a novel biomarker of LSCC.
Collapse
Affiliation(s)
- Fangjun Chen
- Department of Thoracic Surgery, Chine-Japan Friendship Institute of Clinical Medicine, Beijing, China
| | - Peng Ren
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China
| | - Rui Xu
- Department of Nuclear Medicine, Chine-Japan Friendship Hospital, Beijing, China
| | - Jin Zhang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, Chine-Japan Friendship Hospital, Beijing, China
| | - Guangliang Qiang
- Department of Thoracic Surgery, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, 100191, China.
| |
Collapse
|
8
|
Coscia SM, Moore AS, Wong YC, Holzbaur ELF. Mitochondrially-associated actin waves maintain organelle homeostasis and equitable inheritance. Curr Opin Cell Biol 2024; 88:102364. [PMID: 38692079 PMCID: PMC11179979 DOI: 10.1016/j.ceb.2024.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
First identified in dividing cells as revolving clusters of actin filaments, these are now understood as mitochondrially-associated actin waves that are active throughout the cell cycle. These waves are formed from the polymerization of actin onto a subset of mitochondria. Within minutes, this F-actin depolymerizes while newly formed actin filaments assemble onto neighboring mitochondria. In interphase, actin waves locally fragment the mitochondrial network, enhancing mitochondrial content mixing to maintain organelle homeostasis. In dividing cells actin waves spatially mix mitochondria in the mother cell to ensure equitable partitioning of these organelles between daughter cells. Progress has been made in understanding the consequences of actin cycling as well as the underlying molecular mechanisms, but many questions remain, and here we review these elements. Also, we draw parallels between mitochondrially-associated actin cycling and cortical actin waves. These dynamic systems highlight the remarkable plasticity of the actin cytoskeleton.
Collapse
Affiliation(s)
- Stephen M Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. https://twitter.com/StephenMCoscia
| | - Andrew S Moore
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Yvette C Wong
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Zhu W, Knoll P, Steinbock O. Exploring the Synthesis of Self-Organization and Active Motion. J Phys Chem Lett 2024; 15:5476-5487. [PMID: 38748082 DOI: 10.1021/acs.jpclett.4c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Proteins, genetic material, and membranes are fundamental to all known organisms, yet these components alone do not constitute life. Life emerges from the dynamic processes of self-organization, assembly, and active motion, suggesting the existence of similar artificial systems. Against this backdrop, our Perspective explores a variety of chemical phenomena illustrating how nonequilibrium self-organization and micromotors contribute to life-like behavior and functionalities. After explaining key terms, we discuss specific examples including enzymatic motion, diffusiophoretic and bubble-driven self-propulsion, pattern-forming reaction-diffusion systems, self-assembling inorganic aggregates, and hierarchically emergent phenomena. We also provide a roadmap for combining self-organization and active motion and discuss possible outcomes through biological analogs. We suggest that this research direction, deeply rooted in physical chemistry, offers opportunities for further development with broad impacts on related sciences and technologies.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Pamela Knoll
- UK Centre for Astrobiology, School of Physics and Astronomy, Institute for Condensed Matter and Complex Systems, University of Edinburgh, Edinburgh EH9 3FD, U.K
| | - Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
10
|
Vepřek NA, Cooper MH, Laprell L, Yang EJN, Folkerts S, Bao R, Boczkowska M, Palmer NJ, Dominguez R, Oertner TG, Pon LA, Zuchero JB, Trauner DH. Optical Control of G-Actin with a Photoswitchable Latrunculin. J Am Chem Soc 2024; 146:8895-8903. [PMID: 38511265 PMCID: PMC11302737 DOI: 10.1021/jacs.3c10776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Actin is one of the most abundant proteins in eukaryotic cells and is a key component of the cytoskeleton. A range of small molecules has emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Among these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390-490 nm pulsed light and rapidly relaxes to its inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated via live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of the microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.
Collapse
Affiliation(s)
- Nynke A. Vepřek
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilian University, D-80539 Munich, Germany
| | - Madeline H. Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Laprell
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sander Folkerts
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Ruiyang Bao
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Palmer
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas G. Oertner
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Liza A. Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - J. Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dirk H. Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Tong CS, Su M, Sun H, Chua XL, Xiong D, Guo S, Raj R, Ong NWP, Lee AG, Miao Y, Wu M. Collective dynamics of actin and microtubule and its crosstalk mediated by FHDC1. Front Cell Dev Biol 2024; 11:1261117. [PMID: 38567385 PMCID: PMC10985548 DOI: 10.3389/fcell.2023.1261117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/19/2023] [Indexed: 04/04/2024] Open
Abstract
The coordination between actin and microtubule network is crucial, yet this remains a challenging problem to dissect and our understanding of the underlying mechanisms remains limited. In this study, we used travelling waves in the cell cortex to characterize the collective dynamics of cytoskeletal networks. Our findings show that Cdc42 and F-BAR-dependent actin waves in mast cells are mainly driven by formin-mediated actin polymerization, with the microtubule-binding formin FH2 domain-containing protein 1 (FHDC1) as an early regulator. Knocking down FHDC1 inhibits actin wave formation, and this inhibition require FHDC1's interaction with both microtubule and actin. The phase of microtubule depolymerization coincides with the nucleation of actin waves and microtubule stabilization inhibit actin waves, leading us to propose that microtubule shrinking and the concurrent release of FHDC1 locally regulate actin nucleation. Lastly, we show that FHDC1 is crucial for multiple cellular processes such as cell division and migration. Our data provided molecular insights into the nucleation mechanisms of actin waves and uncover an antagonistic interplay between microtubule and actin polymerization in their collective dynamics.
Collapse
Affiliation(s)
- Chee San Tong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
| | - Maohan Su
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiang Le Chua
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Su Guo
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
| | - Ravin Raj
- Special Programme in Science, National University of Singapore, Singapore, Singapore
| | - Nicole Wen Pei Ong
- Special Programme in Science, National University of Singapore, Singapore, Singapore
| | - Ann Gie Lee
- Special Programme in Science, National University of Singapore, Singapore, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Min Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, United States
- Department of Biological Sciences, Centre for Bioimaging Sciences, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Shao X, Dang Y, Zhang T, Bai N, Huang J, Guo M, Sun L, Li M, Sun X, Zhang X, Han F, Zhang N, Zhuang H, Li Y. LINC00869 Promotes Hepatocellular Carcinoma Metastasis via Protrusion Formation. Mol Cancer Res 2024; 22:282-294. [PMID: 37934195 DOI: 10.1158/1541-7786.mcr-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Coordination of filament assembly and membrane remodeling is required for the directional migration of cancer cells. The Wiskott-Aldrich syndrome protein (WASP) recruits the actin-related protein (ARP) 2/3 complex to assemble branched actin networks. The goal of our study was to assess the potential regulatory role exerted by the novel long noncoding RNA (lncRNA) LINC00869 on hepatocellular carcinoma (HCC) cells. We used HCC cells to overexpress or knockdown LINC00869, analyzed patient data from publicly available databases and Cancer Hospital Affiliated with Zhengzhou University, and used a xenograft mouse model of HCC to study the molecular mechanism associated with LINC00869 expression. We found that high levels of LINC00869 expression were associated with poor prognosis in patients with HCC. Next, we detected an interaction between LINC00869 and both WASP and ARP2 in HCC cells, and observed a modulatory effect of LINC00869 on the phosphorylation of WASP at Y291 and the activity of cell division control protein 42 (CDC42). These modulatory roles were required for WASP/CDC42 activity on F-actin polymerization to enhance membrane protrusion formation and maintain persistent cell polarization. This, in turn, promoted the migration and invasion abilities of HCC cells. Finally, we confirmed the role of LINC00869in vivo, using the tumor xenograft mouse model; and identified a positive correlation between LINC00869 expression levels and the phosphorylation levels of WASP in HCC samples. Overall, our findings suggest a unique mechanism by which LINC00869 orchestrates membrane protrusion during migration and invasion of HCC cells. IMPLICATIONS LncRNA LINC00869 regulates the activity of CDC42-WASP pathway and positively affects protrusion formation in HCC cells, which expands the current understanding of lncRNA functions as well as gives a better understanding of carcinogenesis.
Collapse
Affiliation(s)
- Xiaowen Shao
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yamei Dang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Zhang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Nan Bai
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianing Huang
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengya Guo
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li Sun
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Minghe Li
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Sun
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinran Zhang
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yongmei Li
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. Nat Commun 2023; 14:7909. [PMID: 38036511 PMCID: PMC10689845 DOI: 10.1038/s41467-023-43615-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The plasma membrane is widely regarded as the hub of the numerous signal transduction activities. Yet, the fundamental biophysical mechanisms that spatiotemporally compartmentalize different classes of membrane proteins remain unclear. Using multimodal live-cell imaging, here we first show that several lipid-anchored membrane proteins are consistently depleted from the membrane regions where the Ras/PI3K/Akt/F-actin network is activated. The dynamic polarization of these proteins does not depend upon the F-actin-based cytoskeletal structures, recurring shuttling between membrane and cytosol, or directed vesicular trafficking. Photoconversion microscopy and single-molecule measurements demonstrate that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane which enable their selective segregation. When these diffusion coefficients are incorporated into an excitable network-based stochastic reaction-diffusion model, simulations reveal that the altered affinity mediated selective partitioning is sufficient to drive familiar propagating wave patterns. Furthermore, normally uniform integral and lipid-anchored membrane proteins partition successfully when membrane domain-specific peptides are optogenetically recruited to them. We propose "dynamic partitioning" as a new mechanism that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins during various physiological processes where membrane polarizes.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Satomi Matsuoka
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Masahiro Ueda
- Laboratory for Cell Signaling Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Qu J, Qiu B, Zhang Y, Hu Y, Wang Z, Guan Z, Qin Y, Sui T, Wu F, Li B, Han W, Peng X. The tumor-enriched small molecule gambogic amide suppresses glioma by targeting WDR1-dependent cytoskeleton remodeling. Signal Transduct Target Ther 2023; 8:424. [PMID: 37935665 PMCID: PMC10630452 DOI: 10.1038/s41392-023-01666-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 09/17/2023] [Accepted: 09/30/2023] [Indexed: 11/09/2023] Open
Abstract
Glioma is the most prevalent brain tumor, presenting with limited treatment options, while patients with malignant glioma and glioblastoma (GBM) have poor prognoses. The physical obstacle to drug delivery imposed by the blood‒brain barrier (BBB) and glioma stem cells (GSCs), which are widely recognized as crucial elements contributing to the unsatisfactory clinical outcomes. In this study, we found a small molecule, gambogic amide (GA-amide), exhibited the ability to effectively penetrate the blood-brain barrier (BBB) and displayed a notable enrichment within the tumor region. Moreover, GA-amide exhibited significant efficacy in inhibiting tumor growth across various in vivo glioma models, encompassing transgenic and primary patient-derived xenograft (PDX) models. We further performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen to determine the druggable target of GA-amide. By the combination of the cellular thermal shift assay (CETSA), the drug affinity responsive target stability (DARTS) approach, molecular docking simulation and surface plasmon resonance (SPR) analysis, WD repeat domain 1 (WDR1) was identified as the direct binding target of GA-amide. Through direct interaction with WDR1, GA-amide promoted the formation of a complex involving WDR1, MYH9 and Cofilin, which accelerate the depolymerization of F-actin to inhibit the invasion of patient-derived glioma cells (PDCs) and induce PDC apoptosis via the mitochondrial apoptotic pathway. In conclusion, our study not only identified GA-amide as an effective and safe agent for treating glioma but also shed light on the underlying mechanisms of GA-amide from the perspective of cytoskeletal homeostasis.
Collapse
Affiliation(s)
- Jiaorong Qu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Bojun Qiu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Yuxin Zhang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Yan Hu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Zhixing Wang
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Zhiang Guan
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Yiming Qin
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Tongtong Sui
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Boyang Li
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| | - Wei Han
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China.
| | - Xiaozhong Peng
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
- National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
15
|
Riedl M, Sixt M. The excitable nature of polymerizing actin and the Belousov-Zhabotinsky reaction. Front Cell Dev Biol 2023; 11:1287420. [PMID: 38020899 PMCID: PMC10643615 DOI: 10.3389/fcell.2023.1287420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The intricate regulatory processes behind actin polymerization play a crucial role in cellular biology, including essential mechanisms such as cell migration or cell division. However, the self-organizing principles governing actin polymerization are still poorly understood. In this perspective article, we compare the Belousov-Zhabotinsky (BZ) reaction, a classic and well understood chemical oscillator known for its self-organizing spatiotemporal dynamics, with the excitable dynamics of polymerizing actin. While the BZ reaction originates from the domain of inorganic chemistry, it shares remarkable similarities with actin polymerization, including the characteristic propagating waves, which are influenced by geometry and external fields, and the emergent collective behavior. Starting with a general description of emerging patterns, we elaborate on single droplets or cell-level dynamics, the influence of geometric confinements and conclude with collective interactions. Comparing these two systems sheds light on the universal nature of self-organization principles in both living and inanimate systems.
Collapse
Affiliation(s)
- Michael Riedl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | |
Collapse
|
16
|
Sitarska E, Almeida SD, Beckwith MS, Stopp J, Czuchnowski J, Siggel M, Roessner R, Tschanz A, Ejsing C, Schwab Y, Kosinski J, Sixt M, Kreshuk A, Erzberger A, Diz-Muñoz A. Sensing their plasma membrane curvature allows migrating cells to circumvent obstacles. Nat Commun 2023; 14:5644. [PMID: 37704612 PMCID: PMC10499897 DOI: 10.1038/s41467-023-41173-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
To navigate through diverse tissues, migrating cells must balance persistent self-propelled motion with adaptive behaviors to circumvent obstacles. We identify a curvature-sensing mechanism underlying obstacle evasion in immune-like cells. Specifically, we propose that actin polymerization at the advancing edge of migrating cells is inhibited by the curvature-sensitive BAR domain protein Snx33 in regions with inward plasma membrane curvature. The genetic perturbation of this machinery reduces the cells' capacity to evade obstructions combined with faster and more persistent cell migration in obstacle-free environments. Our results show how cells can read out their surface topography and utilize actin and plasma membrane biophysics to interpret their environment, allowing them to adaptively decide if they should move ahead or turn away. On the basis of our findings, we propose that the natural diversity of BAR domain proteins may allow cells to tune their curvature sensing machinery to match the shape characteristics in their environment.
Collapse
Affiliation(s)
- Ewa Sitarska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Silvia Dias Almeida
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | | | - Julian Stopp
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Jakub Czuchnowski
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Marc Siggel
- EMBL Hamburg, European Molecular Biology Laboratory, 22607, Hamburg, Germany
- Centre for Structural Systems Biology, 22607, Hamburg, Germany
| | - Rita Roessner
- EMBL Hamburg, European Molecular Biology Laboratory, 22607, Hamburg, Germany
- Centre for Structural Systems Biology, 22607, Hamburg, Germany
| | - Aline Tschanz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Christer Ejsing
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Jan Kosinski
- EMBL Hamburg, European Molecular Biology Laboratory, 22607, Hamburg, Germany
- Centre for Structural Systems Biology, 22607, Hamburg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Michael Sixt
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117, Heidelberg, Germany.
| |
Collapse
|
17
|
Riedl M, Mayer I, Merrin J, Sixt M, Hof B. Synchronization in collectively moving inanimate and living active matter. Nat Commun 2023; 14:5633. [PMID: 37704595 PMCID: PMC10499792 DOI: 10.1038/s41467-023-41432-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Whether one considers swarming insects, flocking birds, or bacterial colonies, collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. In particular, in close confinements, such as those encountered by dense cell populations during development or regeneration, collective migration can only arise coordinately. Yet, how individuals unify their velocities is often not understood. Focusing on a finite number of cells in circular confinements, we identify waves of polymerizing actin that function as a pacemaker governing the speed of individual cells. We show that the onset of collective motion coincides with the synchronization of the wave nucleation frequencies across the population. Employing a simpler and more readily accessible mechanical model system of active spheres, we identify the synchronization of the individuals' internal oscillators as one of the essential requirements to reach the corresponding collective state. The mechanical 'toy' experiment illustrates that the global synchronous state is achieved by nearest neighbor coupling. We suggest by analogy that local coupling and the synchronization of actin waves are essential for the emergent, self-organized motion of cell collectives.
Collapse
Affiliation(s)
- Michael Riedl
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| | - Isabelle Mayer
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Jack Merrin
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| | - Björn Hof
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| |
Collapse
|
18
|
Bai F, Bertram R, Karamched BR. A mathematical study of the efficacy of possible negative feedback pathways involved in neuronal polarization. J Theor Biol 2023; 571:111561. [PMID: 37331648 DOI: 10.1016/j.jtbi.2023.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Neuronal polarization, a process wherein nascent neurons develop a single long axon and multiple short dendrites, can occur within in vitro cell cultures without environmental cues. This is an apparently random process in which one of several short processes, called neurites, grows to become long, while the others remain short. In this study, we propose a minimum model for neurite growth, which involves bistability and random excitations reflecting actin waves. Positive feedback is needed to produce the bistability, while negative feedback is required to ensure that no more than one neurite wins the winner-takes-all contest. By applying the negative feedback to different aspects of the neurite growth process, we demonstrate that targeting the negative feedback to the excitation amplitude results in the most persistent polarization. Also, we demonstrate that there are optimal ranges of values for the neurite count, and for the excitation rate and amplitude that best maintain the polarization. Finally, we show that a previously published model for neuronal polarization based on competition for limited resources shares key features with our best-performing minimal model: bistability and negative feedback targeted to the size of random excitations.
Collapse
Affiliation(s)
- Fan Bai
- Department of Mathematics, Florida State University, Tallahassee FL 32306, United States
| | - Richard Bertram
- Department of Mathematics, Florida State University, Tallahassee FL 32306, United States; Program in Molecular Biophysics, Florida State University, Tallahassee FL 32306, United States; Program in Neuroscience, Florida State University, Tallahassee FL 32306, United States
| | - Bhargav R Karamched
- Department of Mathematics, Florida State University, Tallahassee FL 32306, United States; Program in Molecular Biophysics, Florida State University, Tallahassee FL 32306, United States; Program in Neuroscience, Florida State University, Tallahassee FL 32306, United States.
| |
Collapse
|
19
|
Hey G, Willman M, Patel A, Goutnik M, Willman J, Lucke-Wold B. Stem Cell Scaffolds for the Treatment of Spinal Cord Injury—A Review. BIOMECHANICS 2023; 3:322-342. [PMID: 37664542 PMCID: PMC10469078 DOI: 10.3390/biomechanics3030028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Spinal cord injury (SCI) is a profoundly debilitating yet common central nervous system condition resulting in significant morbidity and mortality rates. Major causes of SCI encompass traumatic incidences such as motor vehicle accidents, falls, and sports injuries. Present treatment strategies for SCI aim to improve and enhance neurologic functionality. The ability for neural stem cells (NSCs) to differentiate into diverse neural and glial cell precursors has stimulated the investigation of stem cell scaffolds as potential therapeutics for SCI. Various scaffolding modalities including composite materials, natural polymers, synthetic polymers, and hydrogels have been explored. However, most trials remain largely in the preclinical stage, emphasizing the need to further develop and refine these treatment strategies before clinical implementation. In this review, we delve into the physiological processes that underpin NSC differentiation, including substrates and signaling pathways required for axonal regrowth post-injury, and provide an overview of current and emerging stem cell scaffolding platforms for SCI.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matthew Willman
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Goutnik
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Wang M, Zhu M, Zhao Z, Li X, Zhang J. A Novel and Versatile Microfluidic Device for Cell Assays under Radio Frequency Exposure. BIOSENSORS 2023; 13:763. [PMID: 37622849 PMCID: PMC10452282 DOI: 10.3390/bios13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 08/26/2023]
Abstract
Wound healing is a complex process composed of different stages, which involves extensive communication between the different cellular factors of the extracellular matrix (ECM). The radio frequency electromagnetic field (RF-EMF) has been used to accelerate the wound-healing process and it has been found to enhance cell alignment and mobility. The conventional methods for cell mobility analysis in an electromagnetic field generated by a radiation source are not advisable due to the low-precision, nonuniform distribution of the field, low efficiency of the analysis in batch and the lack of system integration for autonomous on-body operation. Here, a novel and versatile electromagnetic exposure system integrated with a microfluidic chip was fabricated to explore the EMF-induced response. A gradient electromagnetic field in a two-dimensional plane has been successfully established in the microchambers placed along the field line. In this work, by deploying our radiation experiments in vitro, we validated the on-chip monitoring of cell response to exposure. This electromagnetic field was simulated and human amniotic epithelial cells (HAECs) were cultured in different microchambers for continuous exposure to the electromagnetic field excited by a monopole RF antenna (1.8 GHz). New protrusions were generated and an obvious increase in filopodia with the increased field intensity was investigated. Meanwhile, the variation in intracellular Ca2+ concentration under the electromagnetic field was examined. The inhibitory effect of the Ca2+ circulation was further inspected to reveal the potential downstream signaling pathway in the RF-EMF-related bioassay, suggesting that cytoskeletal dynamics of cells under exposure are highly associated with the EGF receptor (EGFR)-cytoskeleton downstream signaling pathway. Finally, the field-induced cell elongation and alignment parallel to the field direction were observed. Additionally, the subsequent recovery (field withdrawal) and re-establishment (field re-exposure) were explored. These results indicated that this reliable and versatile exposure system for bioassay could achieve precise and high-throughput detection of the RF-EMF-induced cytoskeletal reorganization in vitro and evaluate the possible health risk from RF-EMF exposure.
Collapse
Affiliation(s)
| | | | | | - Xin Li
- Shanghai Key Laboratory of Magnetic Resonance, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jie Zhang
- Shanghai Key Laboratory of Magnetic Resonance, Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
21
|
Vepřek NA, Cooper MH, Laprell L, Yang EJN, Folkerts S, Bao R, Oertner TG, Pon LA, Zuchero JB, Trauner DH. Optical Control of G-Actin with a Photoswitchable Latrunculin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549222. [PMID: 37502978 PMCID: PMC10370057 DOI: 10.1101/2023.07.17.549222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Actin is one of the most abundant proteins in eukaryotic cells and a key component of the cytoskeleton. A range of small molecules have emerged that interfere with actin dynamics by either binding to polymeric F-actin or monomeric G-actin to stabilize or destabilize filaments or prevent their formation and growth, respectively. Amongst these, the latrunculins, which bind to G-actin and affect polymerization, are widely used as tools to investigate actin-dependent cellular processes. Here, we report a photoswitchable version of latrunculin, termed opto-latrunculin (OptoLat), which binds to G-actin in a light-dependent fashion and affords optical control over actin polymerization. OptoLat can be activated with 390 - 490 nm pulsed light and rapidly relaxes to the inactive form in the dark. Light activated OptoLat induced depolymerization of F-actin networks in oligodendrocytes and budding yeast, as shown by fluorescence microscopy. Subcellular control of actin dynamics in human cancer cell lines was demonstrated by live cell imaging. Light-activated OptoLat also reduced microglia surveillance in organotypic mouse brain slices while ramification was not affected. Incubation in the dark did not alter the structural and functional integrity of microglia. Together, our data demonstrate that OptoLat is a useful tool for the elucidation of G-actin dependent dynamic processes in cells and tissues.
Collapse
Affiliation(s)
- Nynke A Vepřek
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilian University, D-80539 Munich, Germany
| | - Madeline H Cooper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Laprell
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Emily Jie-Ning Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sander Folkerts
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Ruiyang Bao
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Thomas G Oertner
- Institute for Synaptic Physiology, ZMNH, University Medical Center Hamburg-Eppendorf, D-20251 Hamburg, Germany
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dirk H Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
23
|
Hamster C, van Heijster P. Waves in a Stochastic Cell Motility Model. Bull Math Biol 2023; 85:70. [PMID: 37329390 PMCID: PMC10276800 DOI: 10.1007/s11538-023-01164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/04/2023] [Indexed: 06/19/2023]
Abstract
In Bhattacharya et al. (Sci Adv 6(32):7682, 2020), a set of chemical reactions involved in the dynamics of actin waves in cells was studied at two levels. The microscopic level, where the individual chemical reactions are directly modelled using Gillespie-type algorithms, and on a macroscopic level where a deterministic reaction-diffusion equation arises as the large-scale limit of the underlying chemical reactions. In this work, we derive, and subsequently study, the related mesoscopic stochastic reaction-diffusion system, or chemical Langevin equation, that arises from the same set of chemical reactions. We explain how the stochastic patterns that arise from this equation can be used to understand the experimentally observed dynamics from Bhattacharya et al. In particular, we argue that the mesoscopic stochastic model better captures the microscopic behaviour than the deterministic reaction-diffusion equation, while being more amenable for mathematical analysis and numerical simulations than the microscopic model.
Collapse
Affiliation(s)
- Christian Hamster
- Biometris, Wageningen University and Research, Droevendaalse steeg 1, 6708 PB Wageningen, The Netherlands
| | - Peter van Heijster
- Biometris, Wageningen University and Research, Droevendaalse steeg 1, 6708 PB Wageningen, The Netherlands
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD Australia
| |
Collapse
|
24
|
Mo Y, Wang K, Li L, Xing S, Ye S, Wen J, Duan X, Luo Z, Gou W, Chen T, Zhang YH, Guo C, Fan J, Chen L. Quantitative structured illumination microscopy via a physical model-based background filtering algorithm reveals actin dynamics. Nat Commun 2023; 14:3089. [PMID: 37248215 PMCID: PMC10227022 DOI: 10.1038/s41467-023-38808-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Despite the prevalence of superresolution (SR) microscopy, quantitative live-cell SR imaging that maintains the completeness of delicate structures and the linearity of fluorescence signals remains an uncharted territory. Structured illumination microscopy (SIM) is the ideal tool for live-cell SR imaging. However, it suffers from an out-of-focus background that leads to reconstruction artifacts. Previous post hoc background suppression methods are prone to human bias, fail at densely labeled structures, and are nonlinear. Here, we propose a physical model-based Background Filtering method for living cell SR imaging combined with the 2D-SIM reconstruction procedure (BF-SIM). BF-SIM helps preserve intricate and weak structures down to sub-70 nm resolution while maintaining signal linearity, which allows for the discovery of dynamic actin structures that, to the best of our knowledge, have not been previously monitored.
Collapse
Affiliation(s)
- Yanquan Mo
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Kunhao Wang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Shijia Xing
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Shouhua Ye
- Guangzhou Computational Super-resolution Biotech Co., Ltd, Guangzhou, 510535, China
| | - Jiayuan Wen
- Guangzhou Computational Super-resolution Biotech Co., Ltd, Guangzhou, 510535, China
| | - Xinxin Duan
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ziying Luo
- Guangzhou Computational Super-resolution Biotech Co., Ltd, Guangzhou, 510535, China
| | - Wen Gou
- Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yu-Hui Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Changliang Guo
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China
| | - Junchao Fan
- Chongqing Key Laboratory of Image Cognition, College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Center for Life Sciences, College of Future Technology, Peking University, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Beijing Academy of Artificial Intelligence, Beijing, 100871, China.
- National Biomedical Imaging Center, Beijing, 100871, China.
| |
Collapse
|
25
|
Villard C. Spatial confinement: A spur for axonal growth. Semin Cell Dev Biol 2023; 140:54-62. [PMID: 35927121 DOI: 10.1016/j.semcdb.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 01/28/2023]
Abstract
The concept of spatial confinement is the basis of cell positioning and guidance in in vitro studies. In vivo, it reflects many situations faced during embryonic development. In vitro, spatial confinement of neurons is achieved using different technological approaches: adhesive patterning, topographical structuring, microfluidics and the use of hydrogels. The notion of chemical or physical frontiers is particularly central to the behaviors of growth cones and neuronal processes under confinement. They encompass phenomena of cell spreading, boundary crossing, and path finding on surfaces with different adhesive properties. However, the most universal phenomenon related to confinement, regardless of how it is implemented, is the acceleration of neuronal growth. Overall, a bi-directional causal link emerges between the shape of the growth cone and neuronal elongation dynamics, both in vivo and in vitro. The sensing of adhesion discontinuities by filopodia and the subsequent spatial redistribution and size adaptation of these actin-rich filaments seem critical for the growth rate in conditions in which adhesive contacts and actin-associated clutching forces dominate. On the other hand, the involvement of microtubules, specifically demonstrated in 3D hydrogel environments and leading to ameboid-like locomotion, could be relevant in a wider range of growth situations. This review brings together a literature collected in distinct scientific fields such as development, mechanobiology and bioengineering that highlight the consequences of confinement and raise new questions at different cellular scales. Its ambition is to stimulate new research that could lead to a better understanding of what gives neurons their ability to establish and regulate their exceptional size.
Collapse
Affiliation(s)
- Catherine Villard
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université Paris Cité, UMR 8236 CNRS, F-75013 Paris, France.
| |
Collapse
|
26
|
Kastian RF, Baba K, Kaewkascholkul N, Sasaki H, Watanabe R, Toriyama M, Inagaki N. Dephosphorylation of neural wiring protein shootin1 by PP1 phosphatase regulates netrin-1-induced axon guidance. J Biol Chem 2023; 299:104687. [PMID: 37044214 DOI: 10.1016/j.jbc.2023.104687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Axon pathfinding is an essential step in neuronal network formation. Shootin1a is a clutch-linker molecule that is mechanically involved in axon outgrowth and guidance. It was previously shown that concentration gradients of axon guidance molecule netrin-1 in the extracellular environment elicit asymmetrically localized Pak1 kinase-mediated phosphorylation of shootin1a within axonal growth cones, which is higher on the netrin-1 source side. This asymmetric phosphorylation promotes shootin1a-mediated local actin-adhesion coupling within growth cones, thereby generating directional forces for turning the growth cone toward the netrin-1 source. However, how the spatial differences in netrin-1 concentration are transduced into the asymmetrically localized signaling within growth cones remains unclear. Moreover, the protein phosphatases that dephosphorylate shootin1a remain unidentified. Here, we report that protein phosphatase-1 (PP1) dephosphorylates shootin1a in growth cones. We found that PP1 overexpression abolished the netrin-1-induced asymmetric localization of phosphorylated-shootin1a as well as axon turning. In addition, we show PP1 inhibition reversed the asymmetrically localized shootin1a phosphorylation within growth cones under netrin-1 gradient, thereby changing the netrin-1-induced growth cone turning from attraction to repulsion. These data indicate that PP1-mediated shootin1a dephosphorylation plays a key role in organizing asymmetrically-localized phosphorylated shootin1a within growth cones, which regulates netrin-1-induced axon guidance.
Collapse
Affiliation(s)
- Ria Fajarwati Kastian
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Mammalian Cell Engineering and Signal Transduction Research Group, Research Center for Genetic Engineering, National Research and Innovation Agency, KST Soekarno, Jl. Raya Bogor, KM. 46, Cibinong, Bogor, West Java, 16911, Indonesia
| | - Kentarou Baba
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Napol Kaewkascholkul
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hisashi Sasaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Rikiya Watanabe
- Molecular Physiology Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Michinori Toriyama
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
27
|
Banerjee T, Matsuoka S, Biswas D, Miao Y, Pal DS, Kamimura Y, Ueda M, Devreotes PN, Iglesias PA. A dynamic partitioning mechanism polarizes membrane protein distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522496. [PMID: 36712016 PMCID: PMC9881856 DOI: 10.1101/2023.01.03.522496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The plasma membrane is widely regarded as the hub of the signal transduction network activities that drives numerous physiological responses, including cell polarity and migration. Yet, the symmetry breaking process in the membrane, that leads to dynamic compartmentalization of different proteins, remains poorly understood. Using multimodal live-cell imaging, here we first show that multiple endogenous and synthetic lipid-anchored proteins, despite maintaining stable tight association with the inner leaflet of the plasma membrane, were unexpectedly depleted from the membrane domains where the signaling network was spontaneously activated such as in the new protrusions as well as within the propagating ventral waves. Although their asymmetric patterns resembled those of standard peripheral "back" proteins such as PTEN, unlike the latter, these lipidated proteins did not dissociate from the membrane upon global receptor activation. Our experiments not only discounted the possibility of recurrent reversible translocation from membrane to cytosol as it occurs for weakly bound peripheral membrane proteins, but also ruled out the necessity of directed vesicular trafficking and cytoskeletal supramolecular structure-based restrictions in driving these dynamic symmetry breaking events. Selective photoconversion-based protein tracking assays suggested that these asymmetric patterns instead originate from the inherent ability of these membrane proteins to "dynamically partition" into distinct domains within the plane of the membrane. Consistently, single-molecule measurements showed that these lipid-anchored molecules have substantially dissimilar diffusion profiles in different regions of the membrane. When these profiles were incorporated into an excitable network-based stochastic reaction-diffusion model of the system, simulations revealed that our proposed "dynamic partitioning" mechanism is sufficient to give rise to familiar asymmetric propagating wave patterns. Moreover, we demonstrated that normally uniform integral and lipid-anchored membrane proteins in Dictyostelium and mammalian neutrophil cells can be induced to partition spatiotemporally to form polarized patterns, by optogenetically recruiting membrane domain-specific peptides to these proteins. Together, our results indicate "dynamic partitioning" as a new mechanism of plasma membrane organization, that can account for large-scale compartmentalization of a wide array of lipid-anchored and integral membrane proteins in different physiological processes.
Collapse
|
28
|
Takada S, Yoshinaga N, Doi N, Fujiwara K. Controlling the Periodicity of a Reaction-Diffusion Wave in Artificial Cells by a Two-Way Energy Supplier. ACS NANO 2022; 16:16853-16861. [PMID: 36214379 DOI: 10.1021/acsnano.2c06756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reaction-diffusion (RD) waves, which are dynamic self-organization structures generated by nanosize molecules, are a fundamental mechanism from patterning in nano- and micromaterials to spatiotemporal regulations in living cells, such as cell division and motility. Although the periods of RD waves are the critical element for these functions, the development of a system to control their period is challenging because RD waves result from nonlinear physical dynamics under far-from-equilibrium conditions. Here, we developed an artificial cell system with tunable period of an RD-driven wave (Min protein wave), which determines a cell division site plane in living bacterial cells. The developed system is based on our finding that Min waves are generated by energy consumption of either ATP or dATP, and the period of the wave is different between these two energy suppliers. We showed that the Min-wave period was modulated linearly by the mixing ratio of ATP and dATP and that it was also possible to estimate the mixing ratio of ATP and dATP from the period. Our findings illuminated a previously unidentified principle to control the dissipative dynamics of biomolecules and, simultaneously, built an important framework to construct molecular robots with spatiotemporal units.
Collapse
Affiliation(s)
- Sakura Takada
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Katahira 2-1-1, Aoba-Ku, Sendai 9808577, Japan
- MathAM-OIL, AIST, Sendai 980-8577, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
29
|
Banerjee T, Biswas D, Pal DS, Miao Y, Iglesias PA, Devreotes PN. Spatiotemporal dynamics of membrane surface charge regulates cell polarity and migration. Nat Cell Biol 2022; 24:1499-1515. [PMID: 36202973 PMCID: PMC10029748 DOI: 10.1038/s41556-022-00997-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 08/18/2022] [Indexed: 12/12/2022]
Abstract
During cell migration and polarization, numerous signal transduction and cytoskeletal components self-organize to generate localized protrusions. Although biochemical and genetic analyses have delineated many specific interactions, how the activation and localization of so many different molecules are spatiotemporally orchestrated at the subcellular level has remained unclear. Here we show that the regulation of negative surface charge on the inner leaflet of the plasma membrane plays an integrative role in the molecular interactions. Surface charge, or zeta potential, is transiently lowered at new protrusions and within cortical waves of Ras/PI3K/TORC2/F-actin network activation. Rapid alterations of inner leaflet anionic phospholipids-such as PI(4,5)P2, PI(3,4)P2, phosphatidylserine and phosphatidic acid-collectively contribute to the surface charge changes. Abruptly reducing the surface charge by recruiting positively charged optogenetic actuators was sufficient to trigger the entire biochemical network, initiate de novo protrusions and abrogate pre-existing polarity. These effects were blocked by genetic or pharmacological inhibition of key signalling components such as AKT and PI3K/TORC2. Conversely, increasing the negative surface charge deactivated the network and locally suppressed chemoattractant-induced protrusions or subverted EGF-induced ERK activation. Computational simulations involving excitable biochemical networks demonstrated that slight changes in feedback loops, induced by recruitment of the charged actuators, could lead to outsized effects on system activation. We propose that key signalling network components act on, and are in turn acted upon, by surface charge, closing feedback loops, which bring about the global-scale molecular self-organization required for spontaneous protrusion formation, cell migration and polarity establishment.
Collapse
Affiliation(s)
- Tatsat Banerjee
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Debojyoti Biswas
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dhiman Sankar Pal
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuchuan Miao
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo A Iglesias
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter N Devreotes
- Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
30
|
Wang H, Zou B, Su J, Wang D, Xu X. Variational methods and deep Ritz method for active elastic solids. SOFT MATTER 2022; 18:6015-6031. [PMID: 35920447 DOI: 10.1039/d2sm00404f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Variational methods have been widely used in soft matter physics for both static and dynamic problems. These methods are mostly based on two variational principles: the variational principle of minimum free energy (MFEVP) and Onsager's variational principle (OVP). Our interests lie in the applications of these variational methods to active matter physics. In our former work [H. Wang, T. Qian and X. Xu, Soft Matter, 2021, 17, 3634-3653], we have explored the applications of OVP-based variational methods for the modeling of active matter dynamics. In the present work, we explore variational (or energy) methods that are based on MFEVP for static problems in active elastic solids. We show that MFEVP can be used not only to derive equilibrium equations, but also to develop approximate solution methods, such as the Ritz method, for active solid statics. Moreover, the power of the Ritz-type method can be further enhanced using deep learning methods if we use deep neural networks to construct the trial functions of the variational problems. We then apply these variational methods and the deep Ritz method to study the spontaneous bending and contraction of a thin active circular plate that is induced by internal asymmetric active contraction. The circular plate is found to be bent towards its contracting side. The study of such a simple toy system gives implications for understanding the morphogenesis of solid-like confluent cell monolayers. In addition, we introduce a so-called activogravity length to characterize the importance of gravitational forces relative to internal active contraction in driving the bending of the active plate. When the lateral plate dimension is larger than the activogravity length (about 100 micron), gravitational forces become important. Such gravitaxis behaviors at multicellular scales may play significant roles in the morphogenesis and in the up-down symmetry broken during tissue development.
Collapse
Affiliation(s)
- Haiqin Wang
- Physics Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Boyi Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Jian Su
- Physics Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
| | - Dong Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
- Shenzhen International Center for Industrial and Applied Mathematics, Shenzhen Research Institute of Big Data, Shenzhen, Guangdong, 518172, China
| | - Xinpeng Xu
- Physics Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
31
|
Bull AL, Campanello L, Hourwitz MJ, Yang Q, Zhao M, Fourkas JT, Losert W. Actin Dynamics as a Multiscale Integrator of Cellular Guidance Cues. Front Cell Dev Biol 2022; 10:873567. [PMID: 35573675 PMCID: PMC9092214 DOI: 10.3389/fcell.2022.873567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 01/22/2023] Open
Abstract
Migrating cells must integrate multiple, competing external guidance cues. However, it is not well understood how cells prioritize among these cues. We investigate external cue integration by monitoring the response of wave-like, actin-polymerization dynamics, the driver of cell motility, to combinations of nanotopographies and electric fields in neutrophil-like cells. The electric fields provide a global guidance cue, and approximate conditions at wound sites in vivo. The nanotopographies have dimensions similar to those of collagen fibers, and act as a local esotactic guidance cue. We find that cells prioritize guidance cues, with electric fields dominating long-term motility by introducing a unidirectional bias in the locations at which actin waves nucleate. That bias competes successfully with the wave guidance provided by the bidirectional nanotopographies.
Collapse
Affiliation(s)
- Abby L. Bull
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Leonard Campanello
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Matt J. Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Qixin Yang
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Min Zhao
- Institute for Regenerative Cures, Department of Ophthalmology and Vision Science, Department of Dermatology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - John T. Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
- Department of Physics, University of Maryland, College Park, MD, United States
- *Correspondence: Wolfgang Losert,
| |
Collapse
|
32
|
Lv Z, Ding Y, Cao W, Wang S, Gao K. Role of RHO family interacting cell polarization regulators (RIPORs) in health and disease: Recent advances and prospects. Int J Biol Sci 2022; 18:800-808. [PMID: 35002526 PMCID: PMC8741841 DOI: 10.7150/ijbs.65457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022] Open
Abstract
The RHO GTPase family has been suggested to play critical roles in cell growth, migration, and polarization. Regulators and effectors of RHO GTPases have been extensively explored in recent years. However, little attention has been given to RHO family interacting cell polarization regulators (RIPORs), a recently discovered protein family of RHO regulators. RIPOR proteins, namely, RIPOR1-3, bind directly to RHO proteins (A, B and C) via a RHO-binding motif and exert suppressive effects on RHO activity, thereby negatively influencing RHO-regulated cellular functions. In addition, RIPORs are phosphorylated by upstream protein kinases under chemokine stimulation, and this phosphorylation affects not only their subcellular localization but also their interaction with RHO proteins, altering the activation of RHO downstream targets and ultimately impacting cell polarity and migration. In this review, we provide an overview of recent studies on the function of RIPOR proteins in regulating RHO-dependent directional movement in immune responses and other pathophysiological functions.
Collapse
Affiliation(s)
- Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Ding
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenxin Cao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuyun Wang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
33
|
Ghabache E, Cao Y, Miao Y, Groisman A, Devreotes PN, Rappel W. Coupling traction force patterns and actomyosin wave dynamics reveals mechanics of cell motion. Mol Syst Biol 2021; 17:e10505. [PMID: 34898015 PMCID: PMC8666840 DOI: 10.15252/msb.202110505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Motile cells can use and switch between different modes of migration. Here, we use traction force microscopy and fluorescent labeling of actin and myosin to quantify and correlate traction force patterns and cytoskeletal distributions in Dictyostelium discoideum cells that move and switch between keratocyte-like fan-shaped, oscillatory, and amoeboid modes. We find that the wave dynamics of the cytoskeletal components critically determine the traction force pattern, cell morphology, and migration mode. Furthermore, we find that fan-shaped cells can exhibit two different propulsion mechanisms, each with a distinct traction force pattern. Finally, the traction force patterns can be recapitulated using a computational model, which uses the experimentally determined spatiotemporal distributions of actin and myosin forces and a viscous cytoskeletal network. Our results suggest that cell motion can be generated by friction between the flow of this network and the substrate.
Collapse
Affiliation(s)
| | - Yuansheng Cao
- Department of PhysicsUniversity of California, San DiegoLa JollaCAUSA
| | - Yuchuan Miao
- Department of Cell BiologySchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Alex Groisman
- Department of PhysicsUniversity of California, San DiegoLa JollaCAUSA
| | - Peter N Devreotes
- Department of Cell BiologySchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Wouter‐Jan Rappel
- Department of PhysicsUniversity of California, San DiegoLa JollaCAUSA
| |
Collapse
|
34
|
Guo B, Qi M, Huang S, Zhuo R, Zhang W, Zhang Y, Xu M, Liu M, Guan T, Liu Y. Cadherin-12 Regulates Neurite Outgrowth Through the PKA/Rac1/Cdc42 Pathway in Cortical Neurons. Front Cell Dev Biol 2021; 9:768970. [PMID: 34820384 PMCID: PMC8606577 DOI: 10.3389/fcell.2021.768970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Cadherins play an important role in tissue homeostasis, as they are responsible for cell-cell adhesion during embryogenesis, tissue morphogenesis, and differentiation. In this study, we identified Cadherin-12 (CDH12), which encodes a type II classical cadherin, as a gene that promotes neurite outgrowth in an in vitro model of neurons with differentiated intrinsic growth ability. First, the effects of CDH12 on neurons were evaluated via RNA interference, and the results indicated that the knockdown of CDH12 expression restrained the axon extension of E18 neurons. The transcriptome profile of neurons with or without siCDH12 treatment revealed a set of pathways positively correlated with the effect of CDH12 on neurite outgrowth. We further revealed that CDH12 affected Rac1/Cdc42 phosphorylation in a PKA-dependent manner after testing using H-89 and 8-Bromo-cAMP sodium salt. Moreover, we investigated the expression of CDH12 in the brain, spinal cord, and dorsal root ganglia (DRG) during development using immunofluorescence staining. After that, we explored the effects of CDH12 on neurite outgrowth in vivo. A zebrafish model of CDH12 knockdown was established using the NgAgo-gDNA system, and the vital role of CDH12 in peripheral neurogenesis was determined. In summary, our study is the first to report the effect of CDH12 on axonal extension in vitro and in vivo, and we provide a preliminary explanation for this mechanism.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mengwei Qi
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuai Huang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Run Zhuo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yufang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
35
|
Yeo T, She DT, Nai MH, Marcelo Valerio VL, Pan Y, Middha E, Lim CT, Liu B. Differential Collective Cell Migratory Behaviors Modulated by Phospholipid Nanocarriers. ACS NANO 2021; 15:17412-17425. [PMID: 34767716 DOI: 10.1021/acsnano.1c03060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phospholipid nanocarriers have been widely explored for theranostic and nanomedicine applications. These amphiphilic nanocarriers possess outstanding cargo encapsulation efficiency, high water dispersibility, and excellent biocompatibility, which render them promising for drug delivery and bioimaging applications. While the biological applications of phospholipid nanocarriers have been well documented, the fundamental aspects of the phospholipid-cell interactions beyond cytotoxicity have been less investigated. In particular, the effect of phospholipid nanocarriers on collective cell behaviors has not been elucidated. Herein, we evaluate the interactions of phospholipid nanocarriers possessing different functional groups and sizes with normal and cancerous immortalized breast epithelial cell sheets with varying metastatic potential. Specifically, we examine the impact of nanocarrier treatments on the collective migratory dynamics of these cell sheets. We observe that phospholipid nanocarriers induce differential collective cell migratory behaviors, where the migration speed of normal and cancerous breast epithelial cell sheets is retarded and accelerated, respectively. To a certain extent, the nanocarriers are able to alter the migration trajectory of the cancerous breast epithelial cells. Furthermore, phospholipid nanocarriers could modulate the stiffness of the nuclei, cytoplasm, and cell-cell junctions of the breast epithelial cell sheets, remodel their actin filament arrangement, and regulate the expressions of the actin-related proteins. We anticipate that this work will further shed light on nanomaterial-cell interactions and provide guidelines for rational and safer designs and applications of phospholipid nanocarriers for cancer theranostics and nanomedicine.
Collapse
Affiliation(s)
- Trifanny Yeo
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
| | - David T She
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
| | - Mui Hoon Nai
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Von Luigi Marcelo Valerio
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, MD6, 14 Medical Drive, Singapore 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
36
|
Actin filament debranching regulates cell polarity during cell migration and asymmetric cell division. Proc Natl Acad Sci U S A 2021; 118:2100805118. [PMID: 34507987 DOI: 10.1073/pnas.2100805118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 01/10/2023] Open
Abstract
The formation of the branched actin networks is essential for cell polarity, but it remains unclear how the debranching activity of actin filaments contributes to this process. Here, we showed that an evolutionarily conserved coronin family protein, the Caenorhabditis elegans POD-1, debranched the Arp2/3-nucleated actin filaments in vitro. By fluorescence live imaging analysis of the endogenous POD-1 protein, we found that POD-1 colocalized with Arp2/3 at the leading edge of the migrating C. elegans neuroblasts. Conditional mutations of POD-1 in neuroblasts caused aberrant actin assembly, disrupted cell polarity, and impaired cell migration. In C. elegans one-cell-stage embryos, POD-1 and Arp2/3, moved together during cell polarity establishment, and inhibition of POD-1 blocked Arp2/3 motility and affected the polarized cortical flow, leading to symmetric segregation of cell fate determinants. Together, these results indicate that F-actin debranching organizes actin network and cell polarity in migrating neuroblasts and asymmetrically dividing embryos.
Collapse
|
37
|
Song X, Wang W, Wang H, Yuan X, Yang F, Zhao L, Mullen M, Du S, Zohbi N, Muthusamy S, Cao Y, Jiang J, Xia P, He P, Ding M, Emmett N, Ma M, Wu Q, Green HN, Ding X, Wang D, Wang F, Liu X. Acetylation of ezrin regulates membrane-cytoskeleton interaction underlying CCL18-elicited cell migration. J Mol Cell Biol 2021; 12:424-437. [PMID: 31638145 PMCID: PMC7333480 DOI: 10.1093/jmcb/mjz099] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/29/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
Ezrin, a membrane–cytoskeleton linker protein, plays an essential role in cell polarity establishment, cell migration, and division. Recent studies show that ezrin phosphorylation regulates breast cancer metastasis by promoting cancer cell survivor and promotes intrahepatic metastasis via cell migration. However, it was less characterized whether there are additional post-translational modifications and/or post-translational crosstalks on ezrin underlying context-dependent breast cancer cell migration and invasion. Here we show that ezrin is acetylated by p300/CBP-associated factor (PCAF) in breast cancer cells in response to CCL18 stimulation. Ezrin physically interacts with PCAF and is a cognate substrate of PCAF. The acetylation site of ezrin was mapped by mass spectrometric analyses, and dynamic acetylation of ezrin is essential for CCL18-induced breast cancer cell migration and invasion. Mechanistically, the acetylation reduced the lipid-binding activity of ezrin to ensure a robust and dynamic cycling between the plasma membrane and cytosol in response to CCL18 stimulation. Biochemical analyses show that ezrin acetylation prevents the phosphorylation of Thr567. Using atomic force microscopic measurements, our study revealed that acetylation of ezrin induced its unfolding into a dominant structure, which prevents ezrin phosphorylation at Thr567. Thus, these results present a previously undefined mechanism by which CCL18-elicited crosstalks between the acetylation and phosphorylation on ezrin control breast cancer cell migration and invasion. This suggests that targeting PCAF signaling could be a potential therapeutic strategy for combating hyperactive ezrin-driven cancer progression.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Wanjuan Wang
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Haowei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Optics and Optical Engineering, University of Science and Technology of China, Hefei, China
| | - Xiao Yuan
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Lingli Zhao
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - McKay Mullen
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Shihao Du
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Najdat Zohbi
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Saravanakumar Muthusamy
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Yalei Cao
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Jiying Jiang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Peng Xia
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Ping He
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Mingrui Ding
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Nerimah Emmett
- Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Mingming Ma
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Quan Wu
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Hadiyah-Nicole Green
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Xia Ding
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China
| | - Fengsong Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,School of Life Science, Anhui Medical University, Hefei, China
| | - Xing Liu
- School of Traditional Medicine, Beijing University of Chinese Medicine, Beijing, China.,MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Center for Physical Sciences at the Microscale, Hefei, China.,Morehouse School of Medicine, Keck Center for Organoids Plasticity, Atlanta, GA, USA
| |
Collapse
|
38
|
Song S, McConnell KW, Amores D, Levinson A, Vogel H, Quarta M, Rando TA, George PM. Electrical stimulation of human neural stem cells via conductive polymer nerve guides enhances peripheral nerve recovery. Biomaterials 2021; 275:120982. [PMID: 34214785 PMCID: PMC8325644 DOI: 10.1016/j.biomaterials.2021.120982] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023]
Abstract
Severe peripheral nerve injuries often result in permanent loss of function of the affected limb. Current treatments are limited by their efficacy in supporting nerve regeneration and behavioral recovery. Here we demonstrate that electrical stimulation through conductive nerve guides (CNGs) enhances the efficacy of human neural progenitor cells (hNPCs) in treating a sciatic nerve transection in rats. Electrical stimulation strengthened the therapeutic potential of NPCs by upregulating gene expression of neurotrophic factors which are critical in augmenting synaptic remodeling, nerve regeneration, and myelination. Electrically-stimulated hNPC-containing CNGs are significantly more effective in improving sensory and motor functions starting at 1-2 weeks after treatment than either treatment alone. Electrophysiology and muscle assessment demonstrated successful re-innervation of the affected target muscles in this group. Furthermore, histological analysis highlighted an increased number of regenerated nerve fibers with thicker myelination in electrically-stimulated hNPC-containing CNGs. The elevated expression of tyrosine kinase receptors (Trk) receptors, known to bind to neurotrophic factors, indicated the long-lasting effect from electrical stimulation on nerve regeneration and distal nerve re-innervation. These data suggest that electrically-enhanced stem cell-based therapy provides a regenerative rehabilitative approach to promote peripheral nerve regeneration and functional recovery.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Danielle Amores
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marco Quarta
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Restoration and Repair, Veterans Affairs Hospital, Palo Alto, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
39
|
Masner M, Lujea N, Bisbal M, Acosta C, Kunda P. Linoleic and oleic acids enhance cell migration by altering the dynamics of microtubules and the remodeling of the actin cytoskeleton at the leading edge. Sci Rep 2021; 11:14984. [PMID: 34294745 PMCID: PMC8298526 DOI: 10.1038/s41598-021-94399-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/30/2021] [Indexed: 01/22/2023] Open
Abstract
Fatty acids (FA) have a multitude of biological actions on living cells. A target of their action is cell motility, a process of critical importance during cancer cell dissemination. Here, we studied the effect of unsaturated FA on ovarian cancer cell migration in vitro and its role in regulating cytoskeleton structures that are essential for cell motility. Scratch wound assays on human ovary cancer SKOV-3 cell monolayers revealed that low doses (16 μM) of linoleic acid (LA, 18:2 ω6) and oleic acid (OA; 18:1 ω9) promoted migration, while α-linolenic acid (ALA, 18:3 ω3), showed a migration rate similar to that of the control group. Single cell tracking demonstrated that LA and OA-treated cells migrated faster and were more orientated towards the wound closure than control. In vitro addition of those FA resulted in an increased number, length and protrusion speed of filopodia and also in a prominent and dynamic lamellipodia at the cell leading edge. Using time-lapse video-microscopy and FRAP we observed an increase in both the speed and frequency of actin waves associated with more mobile actin and augmented Rac1 activity. We also observed that FA induced microtubule-organizing center (MTOC)-orientation towards the cell front and affected the dynamics of microtubules (MT) in the direction of cell migration. We propose that environmental cues such as OA and LA present in ascitic fluid, should be taken into account as key factors for the regulation of cell migration.
Collapse
Affiliation(s)
- M Masner
- Centro de Investigación en Medicina Traslacional "Severo Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Naciones Unidas 420, Córdoba, Argentina
| | - N Lujea
- Centro de Investigación en Medicina Traslacional "Severo Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Naciones Unidas 420, Córdoba, Argentina
| | - M Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C Acosta
- Instituto de Histología y Embriología de Mendoza (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia Kunda
- Centro de Investigación en Medicina Traslacional "Severo Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Naciones Unidas 420, Córdoba, Argentina.
| |
Collapse
|
40
|
Guo H, D'Andrea D, Zhao J, Xu Y, Qiao Z, Janes LE, Murthy NK, Li R, Xie Z, Song Z, Meda R, Koo J, Bai W, Choi YS, Jordan SW, Huang Y, Franz CK, Rogers JA. Advanced Materials in Wireless, Implantable Electrical Stimulators That Offer Rapid Rates of Bioresorption for Peripheral Axon Regeneration. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2102724. [PMID: 36189172 PMCID: PMC9521812 DOI: 10.1002/adfm.202102724] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 06/01/2023]
Abstract
Injured peripheral nerves typically exhibit unsatisfactory and incomplete functional outcomes, and there are no clinically approved therapies for improving regeneration. Post-operative electrical stimulation (ES) increases axon regrowth, but practical challenges from the cost of extended operating room time to the risks and pitfalls associated with transcutaneous wire placement have prevented broad clinical adoption. This study presents a possible solution in the form of advanced bioresorbable materials for thin, flexible, wireless implant that provides precisely controlled ES of the injured nerve for a brief time in the immediate post-operative period. Afterward, rapid, complete and safe modes of bioresorption naturally and quickly eliminate all of the constituent materials in their entirety, without the need for surgical extraction. The unusually high rate of bioresorption follows from the use of a unique, bilayer enclosure that combines two distinct formulations of a biocompatible form of polyanhydride as an encapsulating structure, to accelerate the resorption of active components and confine fragments until complete resorption. Results from mouse models of tibial nerve transection with re-anastomosis indicate that this system offers levels of performance and efficacy that match those of conventional wired stimulators, but without the need to extend the operative period or to extract the device hardware.
Collapse
Affiliation(s)
- Hexia Guo
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Dom D'Andrea
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Jie Zhao
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yue Xu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zheng Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lindsay E Janes
- Department of Physical Medicine and Rehabilitation, Neurological Surgery, Division of Plastic and Reconstructive Surgery, Northwestern University, Chicago, IL 60611, USA
| | - Nikhil K Murthy
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
| | - Rui Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Zhen Song
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Rohan Meda
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Jahyun Koo
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- School of Biomedical Engineering, Interdisciplinary Program in precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Wubin Bai
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Yeon Sik Choi
- Department of Materials Science and Engineering, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Sumanas W Jordan
- Biologics, Shirley Ryan AbilityLab, Division of Plastic and Reconstructive Surgery, Northwestern University, Chicago, IL 60611, USA
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Colin K Franz
- Laboratory of Regenerative Rehabilitation, Shirley Ryan AbilityLab, Department of Physical Medicine and Rehabilitation, The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical and Computer Engineering, Center for Bio-integrated Electronics, Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
41
|
Tamemoto N, Noguchi H. Reaction-diffusion waves coupled with membrane curvature. SOFT MATTER 2021; 17:6589-6596. [PMID: 34166481 DOI: 10.1039/d1sm00540e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reaction-diffusion waves of proteins are known to be involved in fundamental cellular functions, such as cell migration, cell division, and vesicular transportation. In some of these phenomena, pattern formation on the membranes is induced by the coupling between membrane deformation and the reaction-diffusion system through curvature-inducing proteins that bend the biological membranes. Although the membrane shape and the dynamics of the curvature-inducing proteins affect each other in these systems, the effect of such mechanochemical feedback loops on the waves has not been studied in detail. In this study, reaction-diffusion waves coupled with membrane deformation are investigated using simulations combining a dynamically triangulated membrane model with the Brusselator model extended to include the effect of membrane curvature. It is found that the propagating wave patterns change into nonpropageting patterns and spiral wave patterns due to the mechanochemical effects. Moreover, the wave speed is positively or negatively correlated with the local membrane curvature depending on the spontaneous curvature and bending rigidity. In addition, self-oscillation of the vesicle shape occurs, associated with the reaction-diffusion waves of curvature-inducing proteins. This agrees with the experimental observation of GUVs with a reconstituted Min system, which plays a key role in the cell division of Escherichia coli. The findings of this study demonstrate the importance of mechanochemical coupling in biological phenomena.
Collapse
Affiliation(s)
- Naoki Tamemoto
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
| |
Collapse
|
42
|
Avila Ponce de León MA, Félix B, Othmer HG. A phosphoinositide-based model of actin waves in frustrated phagocytosis. J Theor Biol 2021; 527:110764. [PMID: 34029577 DOI: 10.1016/j.jtbi.2021.110764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022]
Abstract
Phagocytosis is a complex process by which phagocytes such as lymphocytes or macrophages engulf and destroy foreign bodies called pathogens in a tissue. The process is triggered by the detection of antibodies that trigger signaling mechanisms that control the changes of the cellular cytoskeleton needed for engulfment of the pathogen. A mathematical model of the entire process would be extremely complicated, because the signaling and cytoskeletal changes produce large mechanical deformations of the cell. Recent experiments have used a confinement technique that leads to a process called frustrated phagocytosis, in which the membrane does not deform, but rather, signaling triggers actin waves that propagate along the boundary of the cell. This eliminates the large-scale deformations and facilitates modeling of the wave dynamics. Herein we develop a model of the actin dynamics observed in frustrated phagocytosis and show that it can replicate the experimental observations. We identify the key components that control the actin waves and make a number of experimentally-testable predictions. In particular, we predict that diffusion coefficients of membrane-bound species must be larger behind the wavefront to replicate the internal structure of the waves. Our model is a first step toward a more complete model of phagocytosis, and provides insights into circular dorsal ruffles as well.
Collapse
Affiliation(s)
| | - Bryan Félix
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
43
|
Wang H, Qian T, Xu X. Onsager's variational principle in active soft matter. SOFT MATTER 2021; 17:3634-3653. [PMID: 33480912 DOI: 10.1039/d0sm02076a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Onsagers variational principle (OVP) was originally proposed by Lars Onsager in 1931 [L. Onsager, Phys. Rev., 1931, 37, 405]. This fundamental principle provides a very powerful tool for formulating thermodynamically consistent models. It can also be employed to find approximate solutions, especially in the study of soft matter dynamics. In this work, OVP is extended and applied to the dynamic modeling of active soft matter such as suspensions of bacteria and aggregates of animal cells. We first extend the general formulation of OVP to active matter dynamics where active forces are included as external non-conservative forces. We then use OVP to analyze the directional motion of individual active units: a molecular motor walking on a stiff biofilament and a toy two-sphere microswimmer. Next we use OVP to formulate a diffuse-interface model for an active polar droplet on a solid substrate. In addition to the generalized hydrodynamic equations for active polar fluids in the bulk region, we have also derived thermodynamically consistent boundary conditions. Finally, we consider the dynamics of a thin active polar droplet under the lubrication approximation. We use OVP to derive a generalized thin film equation and then employ OVP as an approximation tool to find the spreading laws for the thin active polar droplet. By incorporating the activity of biological systems into OVP, we develop a general approach to construct thermodynamically consistent models for better understanding the emergent behaviors of individual animal cells and cell aggregates or tissues.
Collapse
Affiliation(s)
- Haiqin Wang
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | | | | |
Collapse
|
44
|
Liu Y, Rens EG, Edelstein-Keshet L. Spots, stripes, and spiral waves in models for static and motile cells : GTPase patterns in cells. J Math Biol 2021; 82:28. [PMID: 33660145 PMCID: PMC7929972 DOI: 10.1007/s00285-021-01550-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
The polarization and motility of eukaryotic cells depends on assembly and contraction of the actin cytoskeleton and its regulation by proteins called GTPases. The activity of GTPases causes assembly of filamentous actin (by GTPases Cdc42, Rac), resulting in protrusion of the cell edge. Mathematical models for GTPase dynamics address the spontaneous formation of patterns and nonuniform spatial distributions of such proteins in the cell. Here we revisit the wave-pinning model for GTPase-induced cell polarization, together with a number of extensions proposed in the literature. These include introduction of sources and sinks of active and inactive GTPase (by the group of A. Champneys), and negative feedback from F-actin to GTPase activity. We discuss these extensions singly and in combination, in 1D, and 2D static domains. We then show how the patterns that form (spots, waves, and spirals) interact with cell boundaries to create a variety of interesting and dynamic cell shapes and motion.
Collapse
Affiliation(s)
- Yue Liu
- Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, BC, Canada. .,Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| | - Elisabeth G Rens
- Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, BC, Canada.,Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, V6T 1Z2, BC, Canada
| |
Collapse
|
45
|
Vuononvirta J, Marelli-Berg FM, Poobalasingam T. Metabolic regulation of T lymphocyte motility and migration. Mol Aspects Med 2021; 77:100888. [PMID: 32814624 DOI: 10.1016/j.mam.2020.100888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/25/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
In order to fulfill their effector and patrolling functions, lymphocytes traffic through the body and need to adapt to different tissue microenvironments. First, mature lymphocytes egress the bone marrow and the thymus into the vascular system. Circulating lymphocytes can exit the vasculature and penetrate into the tissues, either for patrolling in search for pathogens or to eliminate infection and activate the adaptive immune response. The cytoskeletal reorganization necessary to sustain migration require high levels of energy thus presenting a substantial bioenergetic challenge to migrating cells. The metabolic regulation of lymphocyte motility and trafficking has only recently begun to be investigated. In this review we will summarize current knowledge of the crosstalk between cell metabolism and the cytoskeleton in T lymphocytes, and discuss the concept that lymphocyte metabolism may reprogram in response to migratory stimuli and adapt to the different environmental cues received during recirculation in tissues.
Collapse
Affiliation(s)
- Juho Vuononvirta
- William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | | | | |
Collapse
|
46
|
Teng L, Guan T, Guo B, Ma C, Lin G, Wu R, Xu M, Liu M, Liu Y. GIP-GIPR promotes neurite outgrowth of cortical neurons in Akt dependent manner. Biochem Biophys Res Commun 2021; 534:121-127. [PMID: 33321289 DOI: 10.1016/j.bbrc.2020.11.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
The intrinsic capacity of axonal growth is varied among the neurons form different tissues or different developmental stages. In this study, we established an in vitro model to compare the axonal growth of neurons from embryonic 18 days, post-natal 1 day and post-natal 3 days rat. The E18 neurons showed powerful ability of neuritogenensis and axon outgrowth and the ability decreased rapidly along with development. The transcriptome profile of these neurons revealed a set of genes positively correlated with the capacity of neurite outgrowth. Glucose-dependent insulinotropic polypeptide receptor (GIPR) is identified as a gene to promote neurite outgrowth, which was approved by siRNA knock down assay in E18 neuron. Glucose-dependent insulinotropic polypeptide (GIP), a ligand of GIPR secreted from enteroendocrine K cells, is well-known for its role in nutrient sensing and intake. To verify the effect of GIP-GIPR signal on neurite outgrowth, we administrated GIP to stimulate the E18 neurons, the results showed that GIP significantly improved extension of axon. We further revealed that GIP increased Rac1/Cdc42 phosphorylation in Akt dependent manner. In summary, our study established an in vitro model to screen the genes involved in neurite outgrowth, and we provided mechanical insight on the GIP-GIPR axis to promote axonal outgrowth.
Collapse
Affiliation(s)
- Long Teng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Chao Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Ge Lin
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China.
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, China.
| |
Collapse
|
47
|
Kang DE, Woo JA. Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer's Disease. J Alzheimers Dis 2020; 72:S131-S144. [PMID: 31594228 PMCID: PMC6971827 DOI: 10.3233/jad-190585] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The defining pathological hallmarks of Alzheimer’s disease (AD) are proteinopathies marked by the amyloid-β (Aβ) peptide and hyperphosphorylated tau. In addition, Hirano bodies and cofilin-actin rods are extensively found in AD brains, both of which are associated with the actin cytoskeleton. The actin-binding protein cofilin known for its actin filament severing, depolymerizing, nucleating, and bundling activities has emerged as a significant player in AD pathogenesis. In this review, we discuss the regulation of cofilin by multiple signaling events impinging on LIM kinase-1 (LIMK1) and/or Slingshot homolog-1 (SSH1) downstream of Aβ. Such pathophysiological signaling pathways impact actin dynamics to regulate synaptic integrity, mitochondrial translocation of cofilin to promote neurotoxicity, and formation of cofilin-actin pathology. Other intracellular signaling proteins, such as β-arrestin, RanBP9, Chronophin, PLD1, and 14-3-3 also impinge on the regulation of cofilin downstream of Aβ. Finally, we discuss the role of activated cofilin as a bridge between actin and microtubule dynamics by displacing tau from microtubules, thereby destabilizing tau-induced microtubule assembly, missorting tau, and promoting tauopathy.
Collapse
Affiliation(s)
- David E Kang
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, USA.,Division of Research, James A. Haley VA Hospital, Tampa, FL, USA
| | - Jung A Woo
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
48
|
Wang Q, Yuan W, Yang X, Wang Y, Li Y, Qiao H. Role of Cofilin in Alzheimer's Disease. Front Cell Dev Biol 2020; 8:584898. [PMID: 33324642 PMCID: PMC7726191 DOI: 10.3389/fcell.2020.584898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease and has an inconspicuous onset and progressive development. Clinically, it is characterized by severe dementia manifestations, including memory impairment, aphasia, apraxia, loss of recognition, impairment of visual-spatial skills, executive dysfunction, and changes in personality and behavior. Its etiology is unknown to date. However, several cellular biological signatures of AD have been identified such as synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies which are related to the actin cytoskeleton. Cofilin is one of the most affluent and common actin-binding proteins and plays a role in cell motility, migration, shape, and metabolism. They also play an important role in severing actin filament, nucleating, depolymerizing, and bundling activities. In this review, we summarize the structure of cofilins and their functional and regulating roles, focusing on the synaptic dysfunction, β-amyloid plaques, hyperphosphorylated tau, cofilin-actin rods, and Hirano bodies of AD.
Collapse
Affiliation(s)
- Qiang Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Wei Yuan
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Xiaohang Yang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yuan Wang
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Yongfeng Li
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Haifa Qiao
- College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
- Xianyang Key Laboratory of Neurobiology and Acupuncture, Xi’an, China
| |
Collapse
|
49
|
Zhao N, Dong W, Kim H, Moallemian R, Lv J, Wang H, Zheng H, Wei F, Ma X. Capping protein regulator and myosin 1 linker 3 regulates transcription of key cytokines in activated phagocytic cells. Cell Signal 2020; 78:109848. [PMID: 33246003 DOI: 10.1016/j.cellsig.2020.109848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/02/2023]
Abstract
We have recently reported that capping protein regulator and myosin 1 linker 3 (CARMIL3), first identified as an oncofetal-like gene, is required for metastasis of breast and prostate cancer cells via regulating the actin cytoskeletal dynamics near the plasma membrane. Here, we demonstrate a novel function of CARMIL3 as an essential regulator of the transcription of several key proinflammatory cytokines in macrophages engulfing apoptotic cells and/or exposed to lipopolysaccharides (LPS). CARMIL3-deficient macrophages expressed strongly abrogated levels of interleukin (IL)-6, TNF-α, IL-1β and IL-23 in response to LPS, whereas IL-10 expression was enhanced. An RNA-seq analysis of CARMIL3-deficient and wild-type (WT) RAW264.7 cells stimulated with LPS revealed many differentially expressed genes, impacting several important inflammatory pathways. At the molecular level, CARMIL3 deficiency caused a strong impairment in LPS-activated nuclear factor-κB (NF-κB) signaling with decreased IKKα/β and IκBα phosphorylation and severely reduced p65 protein levels. This study uncovers a crucial role of CARMIL3 in impacting the balance between inflammation and tissue homeostasis via regulating major cytokines production in phagocytic cells.
Collapse
Affiliation(s)
- Na Zhao
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjuan Dong
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Hajeong Kim
- Department of Physiology, Kyungpook National University School of Medicine, Daegu 41944, Republic of Korea
| | - Rezvan Moallemian
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiyang Lv
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Wang
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua Zheng
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fang Wei
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaojing Ma
- State Key Laboratory of Microbial Metabolism, Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
50
|
Macropinocytosis-mediated membrane recycling drives neural crest migration by delivering F-actin to the lamellipodium. Proc Natl Acad Sci U S A 2020; 117:27400-27411. [PMID: 33087579 PMCID: PMC7959501 DOI: 10.1073/pnas.2007229117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Membrane and cytoskeletal dynamics are critical to cell motility. Extensively studied in cell culture, their roles in cell movement in vivo are less understood, especially in higher vertebrates. We use dynamic imaging to visualize membrane and cytoskeletal behavior in migrating neural crest cells in living tissue. We found that forward movement of individual neural crest cells is accompanied by circular membrane flow, from anterior-to-posterior apically and posterior-to-anterior basally, coupled with internalization of lipid vesicles via macropinocytosis in the soma. Macropinosomes become wrapped with actin, then undergo anterograde translocation via microtubules toward the lamellipodium, resulting in its expansion. We elucidate how actin dynamics and membrane flow are interacted to drive forward locomotion of individual cells. Individual cell migration requires front-to-back polarity manifested by lamellipodial extension. At present, it remains debated whether and how membrane motility mediates this cell morphological change. To gain insights into these processes, we perform live imaging and molecular perturbation of migrating chick neural crest cells in vivo. Our results reveal an endocytic loop formed by circular membrane flow and anterograde movement of lipid vesicles, resulting in cell polarization and locomotion. Rather than clathrin-mediated endocytosis, macropinosomes encapsulate F-actin in the cell body, forming vesicles that translocate via microtubules to deliver actin to the anterior. In addition to previously proposed local conversion of actin monomers to polymers, we demonstrate a surprising role for shuttling of F-actin across cells for lamellipodial expansion. Thus, the membrane and cytoskeleton act in concert in distinct subcellular compartments to drive forward cell migration.
Collapse
|