1
|
Lazo PA. VRK2 kinase pathogenic pathways in cancer and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119949. [PMID: 40187568 DOI: 10.1016/j.bbamcr.2025.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The VRK2 ser-thr kinase, belonging to the dark kinome, is implicated in the pathogenesis of cancer progression, neurological and psychiatric diseases. The VRK2 gene codes for two isoforms. The main isoform (VRK2A) is mainly located in the cytoplasm, and anchored to different types of membranes, such as the endoplasmic reticulum, mitochondria and nuclear envelope. The VRK2A isoform interacts with signaling modules assembled on scaffold proteins such as JIP1 or KSR1, forming stable complexes and blocking the activation of regulatory signaling pathways by altering their intracellular localization and the balance among them. VRK2 regulates apoptosis, nuclear membrane organization, immune responses, and Cajal bodies. Wild-type VRK2 is overexpressed in tumors and contributes to cancer development. In cells and tumors with low levels of nuclear VRK1, VRK2 generates by alternative splicing a shorter isoform (VRK2B) that lacks the C-terminal hydrophobic tail and permits its relocation to nuclei. Furthermore, rare VRK2 gene variants are associated with different neurological or psychiatric diseases such as schizophrenia, epilepsy, bipolar disorder, depression, autism, circadian clock alterations and insomnia, but their pathogenic mechanism is unknown. These diseases are a likely consequence of an altered balance among different signaling pathways that are regulated by VRK2.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Teng C, Chen JW, Shen LS, Chen S, Chen GQ. Research advances in natural sesquiterpene lactones: overcoming cancer drug resistance through modulation of key signaling pathways. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:13. [PMID: 40201307 PMCID: PMC11977367 DOI: 10.20517/cdr.2024.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Cancer remains a significant global health challenge, with current chemotherapeutic strategies frequently limited by the emergence of resistance. In this context, natural compounds with the potential to overcome resistance have garnered considerable attention. Among these, sesquiterpene lactones, primarily derived from plants in the Asteraceae family, stand out for their potential anticancer properties. This review specifically focuses on five key signaling pathways: PI3K/Akt/mTOR, NF-κB, Wnt/β-catenin, MAPK/ERK, and STAT3, which play central roles in the mechanisms of cancer resistance. For each of these pathways, we detail their involvement in both cancer development and the emergence of drug resistance. Additionally, we investigate how sesquiterpene lactones modulate these pathways to overcome resistance across diverse cancer types. These insights highlight the potential of sesquiterpene lactones to drive the advancement of novel therapies that can effectively combat both cancer progression and drug resistance.
Collapse
Affiliation(s)
- Chi Teng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Jia-Wen Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Authors contributed equally
| | - Li-Sha Shen
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Sibao Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Guo-Qing Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, Guangdong, China
| |
Collapse
|
3
|
Alicia SV, Rivera-Moctezuma FG, Marrero Valentín JL, Pérez D, Tosado-Rodríguez EL, Roche Lima A, Ferchmin PA, Sabeva N. Neuroprotection by 4R-cembranoid against Gulf War Illness-related Chemicals is mediated by ERK, PI3K, and CaMKII pathways. Neuropharmacology 2025; 264:110199. [PMID: 39447735 DOI: 10.1016/j.neuropharm.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Gulf War Illness (GWI) has been consistently linked to exposure to pyridostigmine (PB), N,N-Diethyl-meta-toluamide (DEET), permethrin (PER), and traces of sarin. In this study, diisopropylfluorophosphate (DFP, sarin surrogate) and the GWI-related chemicals were found to reduce the number of functionally active neurons in rat hippocampal slices. These findings confirm a link between GWI neurotoxicants and N-Methyl-D-Aspartate (NMDA)-mediated excitotoxicity, which was successfully reversed by Edelfosine (a phospholipase Cβ (PLCβ3) inhibitor) and Flupirtine (a Kv7 channel agonist). To test whether 4R-cembranoid (4R), a nicotinic α7 acetylcholinesterase receptor (α7AChR) modulator known for its neuroprotective properties, can restore hippocampal neurons from glutamate-induced neurotoxicity, we exposed rat hippocampal slices with DFP for 10 min followed by 60 min treatment with 4R. We investigated the 4R mechanisms of neuroprotection after preincubation with LY294002, PD98059, and KN-62. The inhibition of the phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MEK1/2), and calcium/calmodulin-dependent protein kinase (CaMKII) abrogated the protective effect of 4R against DFP-induced neurotoxicity. In separate experiments, after incubation with DFP, followed by 4R for 1 h, cellular extracts were prepared for Western blotting of phospho-Akt, phospho-GSK3β, phosphorylated extracellular signal-regulated kinase (ERK)1/2, CaMKII and cAMP response element-binding protein (CREB). Our results show that DFP induces neuronal dysfunction by dephosphorylation, while 4R restores the phosphorylation of Akt, GSK3, ERK1/2, CREB, and CaMKII. Moreover, our proteomics analysis supported the notion that 4R activates additional signaling pathways related to enhancing neuronal signaling, synaptic plasticity, and apoptotic inhibition to promote cell survival against DFP, offering biomarkers for developing treatment against GWI.
Collapse
Affiliation(s)
- Sorangely Vázquez Alicia
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA; University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan, PR, 00935, USA
| | - Félix G Rivera-Moctezuma
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA; Polytechnic University of Puerto Rico, San Juan, Hato Rey, PR, 00918, USA
| | | | - Dinely Pérez
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, 00956, USA
| | - Eduardo L Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00935, USA
| | - Abiel Roche Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00935, USA
| | - Pedro A Ferchmin
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA
| | - Nadezhda Sabeva
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA.
| |
Collapse
|
4
|
Zhu Q, Wu K, Lv J, Yang R, Li C, Liu W, Zhang J, Lian S, Wang L, Zhang X. CAVIN2 attenuates ventilator-induced lung injury in rats by MAPK/ERK1/2 signaling pathway. Int Immunopharmacol 2025; 144:113669. [PMID: 39586229 DOI: 10.1016/j.intimp.2024.113669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Mechanical ventilation is an important treatment in medical treatment, but it may cause or aggravate lung injury, which is called ventilator-induced lung injury (VILI). Studies have shown that CAVIN2 plays an important role in regulating inflammatory responses and cell death. However, its functional mechanism in VILI remains unclear. This study explores the potential role and mechanisms of CAVIN2 in the pathogenesis of VILI. METHODS We constructed rat and cell models of VILI. Real-time quantitative polymerase chain reactions (qRT-PCR), Western blot (WB), immunohistochemistry (IHC) and immunofluorescence (IF) were used to detect CAVIN2, ERK1/2, p-ERK1/2, autophagy-associated marker proteins LC3II/I, Beclin1 and P62, and the expression level of pro-inflammatory factors IL-1β and IL-6. Hematoxylin and eosin (H&E) staining were used to evaluate the degree of pathological injury of lung tissue, and the lung permeability was evaluated by measuring the wet-dry ratio of lung tissue and the total protein content in bronchoalveolar lavage fluid (BALF). Molecular docking, co-immunoprecipitation and immunofluorescence were used to verify the binding of CAVIN2 and ERK1/2, and the regulatory mechanisms of both were investigated by rescue experiments. RESULTS CAVIN2 expression was downregulated in VILI rat lung tissues and ATII cells, whereas p-ERK1/2 expression was up-regulated. Overexpressing CAVIN2 alleviated pathological damage in VILI rat lung tissues and reduced the expression of pro-inflammatory factors and autophagy-related marker proteins in both lung tissues and ATII cells. Conversely, knockdown of CAVIN2 led to increased expression of pro-inflammatory factors and autophagy-related marker proteins in ATII cells. Further mechanism studies showed that CAVIN2 binds to ERK1/2 and inhibits ERK1/2 phosphorylation. Conversely when treated with the p-ERK1/2 agonist Ro67-7476, the protective, anti-inflammatory, and anti-autophagic effects of overexpressing CAVIN2 in VILI rats and ATII cells were reversed. CONCLUSION CAVIN2 can bind to ERK1/2 and inhibit the activation of MAPK/ERK1/2 signaling pathway to reduce inflammatory response and autophagy in VILI, thereby reducing lung injury. Therefore, CAVIN2 may be a potential intervention target to provide a new strategy for the treatment of VILI.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ke Wu
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jun Lv
- Jinan Obstetrics and Gynecology Hospital, Jinan, Shandong, China
| | - Rui Yang
- Department of Internal Medicine, Guiyang First People's Hospital, Guiyang, China
| | - Chunyu Li
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenqu Liu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Anshun City Guizhou Province, Anshun, China
| | - Jiayi Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Siyu Lian
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Li Wang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xianming Zhang
- Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Song Z, Jiang M, Wang M, Zou J, Chen Z, Zheng F, Wang Q. MAPK pathways regulated apoptosis and pyroptosis in respiratory epithelial cells of a primitive vertebrate model during bacterial infection. Int J Biol Macromol 2025; 286:138587. [PMID: 39662566 DOI: 10.1016/j.ijbiomac.2024.138587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Respiratory diseases caused by bacterial and viral infection have seriously affected human health. The invaginated lung structure in mammals caused difficulties in relevant research, here we evaluated the regulatory roles of MAPK pathways in apoptosis and pyroptosis during bacterial infection in an evaginated respiratory organ model for the first time. F. columnare was adopted for bacterial infection in rainbow trout in vivo and RTgill-W1 cells in vitro. Infected trout gills were separated for histological analysis, transcriptomic sequencing, TUNEL, RT-qPCR and enzyme activity assay. RTgill-W1 cells were treated with different inhibitors of MAPK pathway for evaluating apoptosis and pyroptosis. Bacterial infection induced serious histological changes and apoptosis in trout gill, accompanied with p38MAPK/ JNK pathway activation, while pyroptosis were induced after secondary infection along with ERK pathway activation. In vitro study confirmed pro-apoptotic roles of bacterial infection, accompanied with the increased phosphorylation of p38 MAPK and JNK. Moreover, p38 MAPK inhibition significantly decreased the F. columnare infection-induced apoptosis of RTgill-W1 cell via affecting Bcl2 protein expression and mitochondrial membrane potential. Therefore, our study indicated that MAPK pathways regulated apoptosis and pyroptosis in teleost respiratory organ during bacterial infection, which will benefit developing strategies in fighting against bacterial disease in aquaculture practice.
Collapse
Affiliation(s)
- Zixi Song
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China
| | - Mingxu Jiang
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China
| | - Mengya Wang
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jiahong Zou
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhenwei Chen
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China
| | - Feifei Zheng
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qingchao Wang
- Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
6
|
Krummeich J, Nardi L, Caliendo C, Aschauer D, Engelhardt V, Arlt A, Maier J, Bicker F, Kwiatkowski MD, Rolski K, Vincze K, Schneider R, Rumpel S, Gerber S, Schmeisser MJ, Schweiger S. Premature cognitive decline in a mouse model of tuberous sclerosis. Aging Cell 2024; 23:e14318. [PMID: 39192595 PMCID: PMC11634721 DOI: 10.1111/acel.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Little is known about the influence of (impaired) neurodevelopment on cognitive aging. We here used a mouse model for tuberous sclerosis (TS) carrying a heterozygous deletion of the Tsc2 gene. Loss of Tsc2 function leads to mTOR hyperactivity in mice and patients. In a longitudinal behavioral analysis, we found premature decline of hippocampus-based cognitive functions together with a significant reduction of immediate early gene (IEG) expression. While we did not detect any morphological changes of hippocampal projections and synaptic contacts, molecular markers of neurodegeneration were increased and the mTOR signaling cascade was downregulated in hippocampal synaptosomes. Injection of IGF2, a molecule that induces mTOR signaling, could fully rescue cognitive impairment and IEG expression in aging Tsc2+/- animals. This data suggests that TS is an exhausting disease that causes erosion of the mTOR pathway over time and IGF2 is a promising avenue for treating age-related degeneration in mTORopathies.
Collapse
Affiliation(s)
- J. Krummeich
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Bioscientia Institut für Medizinische Diagnostik GmbH HumangenetikIngelheimGermany
| | - L. Nardi
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - C. Caliendo
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - D. Aschauer
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - V. Engelhardt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - A. Arlt
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Present address:
Institute for Genomic Statistics and BioinformaticsUniversity of BonnBonnGermany
| | - J. Maier
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - F. Bicker
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | | | - K. Rolski
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - K. Vincze
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - R. Schneider
- Department of BiochemistryUniversity of InnsbruckInnsbruckAustria
| | - S. Rumpel
- Institute of PhysiologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Gerber
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - M. J. Schmeisser
- Institute of AnatomyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - S. Schweiger
- Institute of Human GeneticsUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Leibniz Institute of Resilience ResearchMainzGermany
- Institute of Molecular BiologyMainzGermany
| |
Collapse
|
7
|
Balavaishnavi B, Kamaraj M, Nithya TG, Sathish S, Madhavan T, Mahajan M, Pandiaraj S. Targeting Yes-Associated Protein (YAP) in Breast Cancer: In Silico Molecular Dynamics, Luminescence-Based In Vitro, and In Vivo Validation of Rauvolfia tetraphylla-Derived Inhibitors. LUMINESCENCE 2024; 39:e70051. [PMID: 39681523 DOI: 10.1002/bio.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/02/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
The study aims to elucidate the pharmacological mechanism of Rauvolfia tetraphylla against breast cancer through a comprehensive, multi-faceted approach. This includes molecular docking, molecular dynamics, and experimental validation. Initial screening via ADME analysis and network pharmacology identified key compounds and potential targets. Protein-protein interaction (PPI) network analysis pinpointed Yes-associated protein-1 (YAP) as a crucial target. Molecular docking revealed that three compounds-ajmaline, reserpine, and serpentine-exhibited strong binding affinities with YAP, with scores of -6.5 to -6.7 kcal/mol. Molecular dynamics simulations were conducted to assess the stability of these interactions further. Experimental validation showed R. tetraphylla inhibited breast cancer cell proliferation, with an IC50 of 348.69 μg/mL, while demonstrating cytoprotective effects on Vero cells (IC50: 1056.23 μg/mL). Migration assays indicated an 88.5% reduction in cell migration, and increased ROS levels signaled elevated stress in cancer cells. Apoptosis was confirmed by AO/EtBr staining. In vivo validation in a DMBA-induced mouse model confirmed significant tumor growth inhibition, supported by changes in YAP expression and histopathological analysis. These findings highlight R. tetraphylla as a promising therapeutic candidate against breast cancer, offering insights into its mechanisms and potential for future drug development and clinical applications.
Collapse
Affiliation(s)
- B Balavaishnavi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology- Ramapuram, Chennai, Tamil Nadu, India
- Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - T G Nithya
- Department of Biochemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Sruthy Sathish
- Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Thirumurthy Madhavan
- Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Megha Mahajan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Saravanan Pandiaraj
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Toledano-Macías E, Martínez-Pascual MA, Cecilia-Matilla A, Bermejo-Martínez M, Pérez-González A, Jara RC, Sacristán S, Hernández-Bule ML. Radiofrequency Currents Modulate Inflammatory Processes in Keratinocytes. Int J Mol Sci 2024; 25:10663. [PMID: 39408993 PMCID: PMC11476504 DOI: 10.3390/ijms251910663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Keratinocytes play an essential role in the inflammatory phase of wound regeneration. In addition to migrating and proliferating for tissue regeneration, they produce a large amount of cytokines that modulate the inflammatory process. Previous studies have shown that subthermal treatment with radiofrequency (RF) currents used in capacitive resistive electric transfer (CRET) therapy promotes the proliferation of HaCat keratinocytes and modulates their cytokine production. Although physical therapies have been shown to have anti-inflammatory effects in a variety of experimental models and in patients, knowledge of the biological basis of these effects is still limited. The aim of this study was to investigate the effect of CRET on keratinocyte proliferation, cytokine production (IL-8, MCP-1, RANTES, IL-6, IL-11), TNF-α secretion, and the expression of MMP9, MMP1, NF-κB, ERK1/2, and EGFR. Human keratinocytes (HaCat) were treated with an intermittent 448 kHz electric current (CRET signal) in subthermal conditions and for different periods of time. Cell proliferation was analyzed by XTT assay, cytokine and TNF-α production by ELISA, NF-κB expression and activation by immunofluorescence, and MMP9, MMP1, ERK1/2, and EGF receptor expression and activation by immunoblot. Compared to a control, CRET increases keratinocyte proliferation, increases the transient release of MCP-1, TNF-α, and IL-6 while decreasing IL-8. In addition, it modifies the expression of MMPs and activates EGFR, NF-κB, and ERK1/2 proteins. Our results indicate that CRET reasonably modifies cytokine production through the EGF receptor and the ERK1/2/NF-κB pathway, ultimately modulating the inflammatory response of human keratinocytes.
Collapse
Affiliation(s)
- Elena Toledano-Macías
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| | - María Antonia Martínez-Pascual
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| | - Almudena Cecilia-Matilla
- Angiology and Vascular Surgery Service, Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (A.C.-M.); (M.B.-M.)
| | - Mariano Bermejo-Martínez
- Angiology and Vascular Surgery Service, Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (A.C.-M.); (M.B.-M.)
| | - Alfonso Pérez-González
- Dermatology Service, Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - Rosa Cristina Jara
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| | - Silvia Sacristán
- Aptamer Group, Histology Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain;
| | - María Luisa Hernández-Bule
- Photobiology and Bioelectromagnetic Lab, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Crta. Colmenar Viejo, km. 9.100, 28034 Madrid, Spain; (E.T.-M.); (M.A.M.-P.); (R.C.J.)
| |
Collapse
|
9
|
Sigaud R, Brummer T, Kocher D, Milde T, Selt F. MOST wanted: navigating the MAPK-OIS-SASP-tumor microenvironment axis in primary pediatric low-grade glioma and preclinical models. Childs Nerv Syst 2024; 40:3209-3221. [PMID: 38789691 PMCID: PMC11511703 DOI: 10.1007/s00381-024-06463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Understanding the molecular and cellular mechanisms driving pediatric low-grade glioma (pLGG)-the most prevalent brain tumor in children-is essential for the identification and evaluation of novel effective treatments. This review explores the intricate relationship between the mitogen-activated protein kinase (MAPK) pathway, oncogene-induced senescence (OIS), the senescence-associated secretory phenotype (SASP), and the tumor microenvironment (TME), integrating these elements into a unified framework termed the MAPK/OIS/SASP/TME (MOST) axis. This integrated approach seeks to deepen our understanding of pLGG and improve therapeutic interventions by examining the MOST axis' critical influence on tumor biology and response to treatment. In this review, we assess the axis' capacity to integrate various biological processes, highlighting new targets for pLGG treatment, and the need for characterized in vitro and in vivo preclinical models recapitulating pLGG's complexity to test targets. The review underscores the need for a comprehensive strategy in pLGG research, positioning the MOST axis as a pivotal approach in understanding pLGG. This comprehensive framework will open promising avenues for patient care and guide future research towards inventive treatment options.
Collapse
Affiliation(s)
- Romain Sigaud
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Tilman Brummer
- Institute, of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, University of Freiburg and German Consortium for Translational Cancer Research (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Kocher
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Selt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
10
|
Yu L, Yang R, Long Z, Tao Q, Liu B. Targeted therapy of non-small cell lung cancer: mechanisms and clinical trials. Front Oncol 2024; 14:1451230. [PMID: 39391239 PMCID: PMC11464343 DOI: 10.3389/fonc.2024.1451230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths globally, and traditional chemotherapy has limited efficacy in treating advanced non-small cell lung cancer (NSCLC). In recent years, the prognosis for patients with NSCLC has significantly improved due to the development of new treatment modalities, including targeted therapies. Targeted therapies utilize monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), or small molecule tyrosine kinase inhibitors (TKIs) directed against specific mutated genes such as EGFR and ALK. The development of these drugs has deepened our understanding of NSCLC and improved treatment outcomes for patients. This review aims to summarize the mechanisms and current status of targeted therapy for NSCLC, discuss strategies to overcome acquired resistance, and address current challenges in the field.
Collapse
Affiliation(s)
- Le Yu
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ruoyi Yang
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zeng Long
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingxiu Tao
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bin Liu
- Sichuan Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Virard F, Giraud S, Bonnet M, Magadoux L, Martin L, Pham TH, Skafi N, Deneuve S, Frem R, Villoutreix BO, Sleiman NH, Reboulet J, Merabet S, Chaptal V, Chaveroux C, Hussein N, Aznar N, Fenouil T, Treilleux I, Saintigny P, Ansieau S, Manié S, Lebecque S, Renno T, Coste I. Targeting ERK-MYD88 interaction leads to ERK dysregulation and immunogenic cancer cell death. Nat Commun 2024; 15:7037. [PMID: 39147750 PMCID: PMC11327251 DOI: 10.1038/s41467-024-51275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
The quest for targeted therapies is critical in the battle against cancer. The RAS/MAP kinase pathway is frequently implicated in neoplasia, with ERK playing a crucial role as the most distal kinase in the RAS signaling cascade. Our previous research demonstrated that the interaction between ERK and MYD88, an adaptor protein in innate immunity, is crucial for RAS-dependent transformation and cancer cell survival. In this study, we examine the biological consequences of disrupting the ERK-MYD88 interaction through the ERK D-recruitment site (DRS), while preserving ERK's kinase activity. Our results indicate that EI-52, a small-molecule benzimidazole targeting ERK-MYD88 interaction induces an HRI-mediated integrated stress response (ISR), resulting in immunogenic apoptosis specific to cancer cells. Additionally, EI-52 exhibits anti-tumor efficacy in patient-derived tumors and induces an anti-tumor T cell response in mice in vivo. These findings suggest that inhibiting the ERK-MYD88 interaction may be a promising therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- François Virard
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculté d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Stéphane Giraud
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- Center for Drug Discovery and Development, Synergy Lyon Cancer Foundation, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Mélanie Bonnet
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Léa Magadoux
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Laetitia Martin
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- Center for Drug Discovery and Development, Synergy Lyon Cancer Foundation, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Thuy Ha Pham
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Najwa Skafi
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Sophie Deneuve
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Rita Frem
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Bruno O Villoutreix
- Université de Paris, NeuroDiderot, Inserm, Hôpital Robert Debré, 75019, Paris, France
| | - Nawal Hajj Sleiman
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242-CNRS/ENSL, Université Claude Bernard Lyon 1, Lyon, France
| | - Jonathan Reboulet
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242-CNRS/ENSL, Université Claude Bernard Lyon 1, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, UMR 5242-CNRS/ENSL, Université Claude Bernard Lyon 1, Lyon, France
| | - Vincent Chaptal
- Drug Resistance & Membrane Proteins group, Molecular Microbiology and Structural Biochemistry Laboratory (CNRS UMR 5086), University of Lyon, Lyon, France
| | - Cédric Chaveroux
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Nader Hussein
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Nicolas Aznar
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Tanguy Fenouil
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculté de Médecine, Hospices Civils de Lyon, Lyon, France
| | | | - Pierre Saintigny
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Stéphane Ansieau
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Serge Manié
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Serge Lebecque
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France
- University of Lyon, Faculté de Médecine, Hospices Civils de Lyon, Lyon, France
| | - Toufic Renno
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France.
| | - Isabelle Coste
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Lyon Cancer Research Center, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
12
|
Pinheiro-Junior EL, Alirahimi E, Peigneur S, Isensee J, Schiffmann S, Erkoc P, Fürst R, Vilcinskas A, Sennoner T, Koludarov I, Hempel BF, Tytgat J, Hucho T, von Reumont BM. Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling. BMC Biol 2024; 22:164. [PMID: 39075558 PMCID: PMC11288129 DOI: 10.1186/s12915-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold. RESULTS Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib1 and xib13 with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib1 and xib13 increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib13 either originates from the common ancestor of pancrustaceans or earlier while xib1 is more restricted to remipedes. The ten-cysteine scaffolded xib2 emerged from xib1, a result that is supported by our phylogenetic and machine learning-based analyses. CONCLUSIONS Our functional characterization of synthesized variants of xib1, xib2, and xib13 elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib2 with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib1 and xib13 activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib1, xib2, and xib13 requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib2 from xib1. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Ehsan Alirahimi
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Steve Peigneur
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - Pelin Erkoc
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), Ohlebergsweg 14, 35394, Giessen, Germany
| | - Tobias Sennoner
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Ivan Koludarov
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Benjamin-Florian Hempel
- Freie Unveristät Berlin, Veterinary Centre for Resistance Research (TZR), Robert-Von-Ostertag Str. 8, 14163, Berlin, Germany
| | - Jan Tytgat
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Björn M von Reumont
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
- Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Goethe, Frankfurt, Max-Von-Laue-Str 13, 60438, Frankfurt, Germany.
| |
Collapse
|
13
|
Darwish M, El Hajj R, Khayat L, Alaaeddine N. Stem Cell Secretions as a Potential Therapeutic Agent for Autism Spectrum Disorder: A Narrative Review. Stem Cell Rev Rep 2024; 20:1252-1272. [PMID: 38630359 DOI: 10.1007/s12015-024-10724-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 07/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by impaired social interaction and restricted repetitive behaviors or interests. The rising prevalence of ASD diagnosis has triggered a surge in research into investigating the underlying neuropathological processes and finding new therapeutic approaches. ASD is characterized by neuroinflammation and dysregulation of neuro-immune cross-talk, which suggests that stem cell treatment might be a potential therapeutic approach. The beneficial and restorative effects of stem cells are mainly due to their paracrine activity, in which stem cells generate and release extracellular vesicles such as exosomes and distinct secreted non-vesicle soluble proteins, including, growth factors, chemokines, cytokines, and immunomodulatory molecules referred to as the Secretome. In this paper, we reviewed the existing research exploring the therapeutic potential of stem cell secretome focusing on their role in addressing ASD pathology. Furthermore, we proposed a comprehensive mechanism of action for stem cell secretions, encompassing the broader secretome as well as the specific contribution of exosomes, in alleviating ASD neuropathology. Across the reviewed studies, exosomes and secreted soluble factors of the transplanted stem cell demonstrate a potential efficacy in ameliorating autistic-like behaviors. The proposed mechanism of action involves the modulation of signaling pathways implicated in neuroinflammation, angiogenesis, cellular apoptosis, and immunomodulation.
Collapse
Affiliation(s)
- Mariam Darwish
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | | | | | - Nada Alaaeddine
- Dean of Health Sciences, Modern University for Business & Science, Beirut, Lebanon.
| |
Collapse
|
14
|
Suman I, Šimić L, Čanadi Jurešić G, Buljević S, Klepac D, Domitrović R. The interplay of mitophagy, autophagy, and apoptosis in cisplatin-induced kidney injury: involvement of ERK signaling pathway. Cell Death Discov 2024; 10:98. [PMID: 38402208 PMCID: PMC10894217 DOI: 10.1038/s41420-024-01872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024] Open
Abstract
AKI induced by CP chemotherapy remains an obstacle during patient treatments. Extracellular signal-regulated protein kinases 1/2 (ERK), key participants in CP-induced nephrotoxicity, are suggested to be involved in the regulation of mitophagy, autophagy, and apoptosis. Human renal proximal tubular cells (HK-2) and BALB/cN mice were used to determine the role of ERK in CP-induced AKI. We found that active ERK is involved in cell viability reduction during apoptotic events but exerts a protective role in the early stages of treatment. Activation of ERK acts as a maintainer of the mitochondrial population and is implicated in mitophagy initiation but has no significant role in its conduction. In the late stages of CP treatment when ATP is deprived, general autophagy that requires ERK activation is initiated as a response, in addition to apoptosis activation. Furthermore, activation of ERK is responsible for the decrease in reserve respiratory capacity and controls glycolysis regulation during CP treatment. Additionally, we found that ERK activation is also required for the induction of NOXA gene and protein expression as well as FoxO3a nuclear translocation, but not for the regular ERK-induced phosphorylation of FoxO3a on Ser294. In summary, this study gives detailed insight into the involvement of ERK activation and its impact on key cellular processes at different time points during CP-induced kidney injury. Inhibitors of ERK activation, including Mirdametinib, are important in the development of new therapeutic strategies for the treatment of AKI in patients receiving CP chemotherapy.
Collapse
Affiliation(s)
- Iva Suman
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Lidija Šimić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Point-of-Care Laboratory, Emergency Department Sušak, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sunčica Buljević
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Damir Klepac
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Rijeka, Croatia
| | - Robert Domitrović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
15
|
Lazarte JMS, Lamango NS. Activation of MAP Kinase Pathway by Polyisoprenylated Cysteinyl Amide Inhibitors Causes Apoptosis and Disrupts Breast Cancer Cell Invasion. Biomedicines 2024; 12:470. [PMID: 38540084 PMCID: PMC10968070 DOI: 10.3390/biomedicines12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 01/11/2025] Open
Abstract
Prognoses for TNBC remain poor due to its aggressive nature and the lack of therapies that target its "drivers". RASA1, a RAS-GAP or GTPase-activating protein whose activity inhibits RAS signaling, is downregulated in up to 77% of TNBC cases. As such, RAS proteins become hyperactive and similar in effect to mutant hyperactive RAS proteins with impaired GTPase activities. PCAIs are a novel class of agents designed to target and disrupt the activities of KRAS and other G-proteins that are hyperactive in various cancers. This study shows the anticancer mechanisms of the PCAIs in two breast cancer cell lines, MDA-MB-468 and MDA-MB-231. PCAIs (NSL-YHJ-2-27) treatment increased BRAF phosphorylation, whereas CRAF phosphorylation significantly decreased in both cell lines. Moreover, the PCAIs also stimulated the phosphorylation of MEK, ERK, and p90RSK by 116, 340, and 240% in MDA-MB-468 cells, respectively. However, in MDA-MB-231 cells, a significant increase of 105% was observed only in p90RSK phosphorylation. Opposing effects were observed for AKT phosphorylation, whereby an increase was detected in MDA-MB-468 cells and a decrease in MDA-MB-231 cells. The PCAIs also induced apoptosis, as observed in the increased pro-apoptotic protein BAK1, by 51%, after treatment. The proportion of live cells in PCAIs-treated spheroids decreased by 42 and 34% in MDA-MB-468 and MDA-MB-231 cells, respectively, which further explains the PCAIs-induced apoptosis. The movement of the cells through the Matrigel was also inhibited by 74% after PCAIs exposure, which could have been due to the depleted levels of F-actin and vinculin punctate, resulting in the shrinkage of the cells by 76%, thereby impeding cell movement. These results show promise for PCAIs as potential therapies for TNBC as they significantly inhibit the hallmark processes and pathways that promote cell proliferation, migration, and invasion, which result in poor prognoses for breast cancer patients.
Collapse
Affiliation(s)
| | - Nazarius S. Lamango
- College of Pharmacy Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
16
|
Sato J, Nakano K, Miyazaki H. Decreased intracellular chloride enhances cell migration and invasion via activation of the ERK1/2 signaling pathway in DU145 human prostate carcinoma cells. Biochem Biophys Res Commun 2023; 685:149170. [PMID: 37924777 DOI: 10.1016/j.bbrc.2023.149170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Our previous study revealed that changes of the intracellular Cl- concentration ([Cl-]i) affected cell proliferation in cancer cells. However, the role of Cl- on cell migration and invasion in cancer cells remains unanalyzed. Therefore, the aim of the present study is to investigate whether changes of [Cl-]i affects cell migration and invasion of cancer cells. In human prostate cancer DU145 cells, cell migration and invasion were enhanced by culturing in the low Cl- medium (replacement of Cl- by NO3-). We also found that DU145 cells in the low Cl- condition caused significant transient ERK1/2 activation followed by an increase of MMP-1 mRNA levels. Inhibition of ERK1/2 activation in the low Cl- condition reduced enhancement of MMP-1 mRNA levels and decreased cell migration and invasion. These observations indicate that [Cl-]i plays important roles in metastatic function by regulating the ERK1/2 signaling pathway in human prostate cancer cells, and intracellular Cl- would be one of the key targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Junichi Sato
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Koya Nakano
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hiroaki Miyazaki
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
17
|
Lin S, Shen R, Huang J, Liu Y, Li H, Xu Q. Identification of genomic-wide genetic links between cutaneous melanoma and obesity-related physical traits via cFDR. Genes Genomics 2023; 45:1549-1562. [PMID: 37768517 DOI: 10.1007/s13258-023-01446-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Both epidemiological and clinical studies have suggested the comorbidity between cutaneous melanoma (CM) and obesity-related physical traits. However, it remains unclear about their shared genetic architecture. OBJECTIVE To determine the shared genetic architecture between CM and obesity-related physical traits through conditional false discovery rate (cFDR) analysis. METHOD Quantile-quantile plots were firstly built to assess the pleiotropic enrichment of shared single nucleotide polymorphisms between CM and each trait. Then, cFDR and conjunctional cFDR (ccFDR) were used to identify the shared risk loci between CM and each trait. Moreover, the functional evaluation of shared risk genes was carried out through analyses of expression quantitative trait loci (eQTL), Kyoto Encyclopedia of Genes and Genomes and gene ontology, respectively. Finally, single-cell sequence analysis was performed to locate the expression of eQTL-mapped genes in tissues. RESULTS Successive pleiotropic enrichment was found between CM and 5 obesity-related traits or height. 24 shared risk loci were identified between CM and 13 traits except appendicular lean mass using ccFDR analysis, with 17 novel and 4 validated loci. The functions of ccFDR-identified and eQTL-mapped genes were revealed to be mainly involved in cellular senescence, proliferation, meiotic nuclear division, cell cycle, and the metabolism of lipid, cholesterol and glucose. Single-cell sequence analysis showed that keratinocytes contribute to the occurrence and aggressiveness of CM through secreting paracrine cytokines. CONCLUSION Our findings demonstrate the significant genetic correlation between CM and obesity-related physical traits, which may provide a novel genetical basis for the pathogenesis and treatment of CM.
Collapse
Affiliation(s)
- Shen Lin
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Runnan Shen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jingqian Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanhan Liu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongpeng Li
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Kim EY, Ji Kim E, Park H, Lee Y, Kyung Kim D, Sohn Y, Jung HS. A study on specific factors related to inflammation and autophagy in BEAS-2B cells induced by urban particulate matter (PM, 1648a) and histological evaluation of PM-induced bronchial asthma model in mice. Int Immunopharmacol 2023; 123:110730. [PMID: 37543014 DOI: 10.1016/j.intimp.2023.110730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
As particulate matter (PM) poses an increasing risk, research on its correlation with diseases is active. However, researchers often use their own PM, making it difficult to determine its components. To address this, we investigated the effects of PM with known constituents on BEAS-2B cells, examining cytokine levels, reactive oxygen species ROS production, DNA damage, and MAPK phosphorylation. Additionally, we evaluated the effects of PM on normal and OVA-induced asthmatic mice by measuring organ weight, cytokine levels, and inflammatory cells in bronchoalveolar lavage fluid, and examining histological changes. PM markedly increased levels of IL-6, GM-CSF, TNF-α, ROS, nitric oxide, and DNA damage, while surprisingly reducing IL-8 and MCP-1. Moreover, PM increased MAPK phosphorylation and inhibited mTOR and AKT phosphorylation. In vivo, lung and spleen weights, IgE, OVA-specific IgE, IL-4, IL-13, total cells, macrophages, lymphocytes, mucus generation, and LC3II were higher in the asthma group. PM treatment in asthmatic mice increased lung weight and macrophage infiltration, but decreased IL-4 and IL-13 in BALF. Meanwhile, PM treatment in the Nor group increased total cells, macrophages, lymphocytes, and mucus generation. Our study suggests that PM may induce and exacerbate lung disease by causing immune imbalance via the MAPK and autophagy pathways, resulting in decreased lung function due to increased smooth muscle thickness and mucus generation.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hoyeon Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yujin Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Do Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
19
|
Pardo-Pastor C, Rosenblatt J. Piezo1 activates noncanonical EGFR endocytosis and signaling. SCIENCE ADVANCES 2023; 9:eadi1328. [PMID: 37756411 PMCID: PMC10530101 DOI: 10.1126/sciadv.adi1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
EGFR-ERK signaling controls cell cycle progression during development, homeostasis, and disease. While EGF ligand and mechanical inputs can activate EGFR-ERK signaling, the molecules linking mechanical force to this axis have remained mysterious. We previously found that stretch promotes mitosis via the stretch-activated ion channel Piezo1 and ERK signaling. Here, we show that Piezo1 provides the missing link between mechanical signals and EGFR-ERK activation. While both EGF- and Piezo1-dependent activation trigger clathrin-mediated EGFR endocytosis and ERK activation, EGF relies on canonical tyrosine autophosphorylation, whereas Piezo1 involves Src-p38 kinase-dependent serine phosphorylation. In addition, unlike EGF, ex vivo lung slices treated with Piezo1 agonist promoted cell cycle re-entry via nuclear ERK, AP-1 (FOS and JUN), and YAP accumulation, typical of regenerative and malignant signaling. Our results suggest that mechanical activation via Piezo1, Src, and p38 may be more relevant to controlling repair, regeneration, and cancer growth than tyrosine kinase signaling via canonical EGF signaling, suggesting an alternative therapeutic approach.
Collapse
Affiliation(s)
- Carlos Pardo-Pastor
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| | - Jody Rosenblatt
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, School of Basic & Medical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, SE1 1UL London, UK
| |
Collapse
|
20
|
Houser JS, Patel M, Wright K, Onopiuk M, Tsiokas L, Humphrey MB. The inhibitor of MyoD Family A (I-MFA) regulates megakaryocyte lineage commitment and terminal differentiation. Blood Cells Mol Dis 2023; 102:102760. [PMID: 37267696 DOI: 10.1016/j.bcmd.2023.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Hematopoiesis and lineage commitment are regulated by several conserved cell-intrinsic signaling pathways, including MAPKs and β-catenin/TCF/LEF. The Inhibitor of MyoD Family A (I-MFA), a transcriptional repressor and tumor suppressor gene, interacts with these pathways and is dysregulated in chronic and acute myeloid leukemias, suggesting it may play a role in development and differentiation during hematopoiesis. To study this, immune cell populations in the bone marrow (BM) and periphery were analyzed in mice lacking Mdfi, encoding I-MFA (I-MFA-/-), and wild type (WT) controls. I-MFA-/- mice had reduced spleen and BM cellularity, with significant hyposplenism, compared to WT mice. In blood, total red blood cells and platelet counts were significantly reduced in I-MFA-/- mice, accompanied by a reduction in megakaryocyte (MK)/erythrocyte progenitor cells and an increase in myeloid progenitors in BM compared to WT mice. The K562 cell line exhibits PMA-induced MK differentiation, and shRNA knockdown of I-MFA resulted in reduced differentiation compared to control, with an increase and prolongation in phospho-JNK and phospho-ERK signaling. Overexpression of I-MFA promoted MK differentiation. These results suggest I-MFA plays a cell-intrinsic role in the response to differentiation signals, an effect that can be explored in the context of hematological cancers or other blood proliferative disorders.
Collapse
Affiliation(s)
- Jeremy S Houser
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Maulin Patel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Kyle Wright
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Marta Onopiuk
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Mary Beth Humphrey
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America; Oklahoma City Veteran's Affairs Medical Center, Oklahoma City, OK, United States of America.
| |
Collapse
|
21
|
Buscà R, Onesto C, Egensperger M, Pouysségur J, Pagès G, Lenormand P. N-terminal alanine-rich (NTAR) sequences drive precise start codon selection resulting in elevated translation of multiple proteins including ERK1/2. Nucleic Acids Res 2023; 51:7714-7735. [PMID: 37414542 PMCID: PMC10450180 DOI: 10.1093/nar/gkad528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
We report the discovery of N-terminal alanine-rich sequences, which we term NTARs, that act in concert with their native 5'-untranslated regions to promote selection of the proper start codon. NTARs also facilitate efficient translation initiation while limiting the production of non-functional polypeptides through leaky scanning. We first identified NTARs in the ERK1/2 kinases, which are among the most important signaling molecules in mammals. Analysis of the human proteome reveals that hundreds of proteins possess NTARs, with housekeeping proteins showing a particularly high prevalence. Our data indicate that several of these NTARs act in a manner similar to those found in the ERKs and suggest a mechanism involving some or all of the following features: alanine richness, codon rarity, a repeated amino acid stretch and a nearby second AUG. These features may help slow down the leading ribosome, causing trailing pre-initiation complexes (PICs) to pause near the native AUG, thereby facilitating accurate translation initiation. Amplification of erk genes is frequently observed in cancer, and we show that NTAR-dependent ERK protein levels are a rate-limiting step for signal output. Thus, NTAR-mediated control of translation may reflect a cellular need to precisely control translation of key transcripts such as potential oncogenes. By preventing translation in alternative reading frames, NTAR sequences may be useful in synthetic biology applications, e.g. translation from RNA vaccines.
Collapse
Affiliation(s)
- Roser Buscà
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Cercina Onesto
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
- Polytech’Nice Sophia, Bioengineering Department, Sophia-Antipolis, France
| | - Mylène Egensperger
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Jacques Pouysségur
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
- Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco
| | - Gilles Pagès
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
- Centre Scientifique de Monaco, Biomedical Department, Principality of Monaco
| | - Philippe Lenormand
- Université Côte d’Azur (UCA), CNRS UMR 7284 and INSERM U 1081, Institute for Research on Cancer and Aging Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice, France
- Centre Antoine Lacassagne, Nice, France
| |
Collapse
|
22
|
Dall'Olmo L, Papa N, Surdo NC, Marigo I, Mocellin S. Alpha-melanocyte stimulating hormone (α-MSH): biology, clinical relevance and implication in melanoma. J Transl Med 2023; 21:562. [PMID: 37608347 PMCID: PMC10463388 DOI: 10.1186/s12967-023-04405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) and its receptor, melanocortin 1 receptor (MC1R), have been proposed as potential target for anti-cancer strategies in melanoma research, due to their tissue specific expression and involvement in melanocyte homeostasis. However, their role in prevention and treatment of melanoma is still debated and controversial. Although a large body of evidence supports α-MSH in preventing melanoma development, some preclinical findings suggest that the α-MSH downstream signalling may promote immune escape and cancer resistance to therapy. Additionally, in metastatic melanoma both MC1R and α-MSH have been reported to be overexpressed at levels much higher than normal cells. Furthermore, targeted therapy (e.g. BRAF inhibition in BRAFV600E mutant tumours) has been shown to enhance this phenomenon. Collectively, these data suggest that targeting MC1R could serve as an approach in the treatment of metastatic melanoma. In this review, we explore the molecular biology of α-MSH with particular emphasis into its tumor-related properties, whilst elaborating the experimental evidence currently available regarding the interplay between α-MSH/MC1R axis, melanoma and antitumor strategies.
Collapse
Affiliation(s)
- Luigi Dall'Olmo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy.
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy.
| | - Nicole Papa
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Nicoletta Concetta Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121, Padua, Italy
- Veneto Institute of Molecular Medicine VIMM, Foundation for Advanced Biomedical Research, 35129, Padua, Italy
| | - Ilaria Marigo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Simone Mocellin
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| |
Collapse
|
23
|
Kesarwani M, Kincaid Z, Azhar M, Menke J, Schwieterman J, Ansari S, Reaves A, Deininger ME, Levine R, Grimes HL, Azam M. MAPK-negative feedback regulation confers dependence to JAK2 V617F signaling. Leukemia 2023; 37:1686-1697. [PMID: 37430058 PMCID: PMC10976185 DOI: 10.1038/s41375-023-01959-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
Despite significant advances in developing selective JAK2 inhibitors, JAK2 kinase inhibitor (TKI) therapy is ineffective in suppressing the disease. Reactivation of compensatory MEK-ERK and PI3K survival pathways sustained by inflammatory cytokine signaling causes treatment failure. Concomitant inhibition of MAPK pathway and JAK2 signaling showed improved in vivo efficacy compared to JAK2 inhibition alone but lacked clonal selectivity. We hypothesized that cytokine signaling in JAK2V617F induced MPNs increases the apoptotic threshold that causes TKI persistence or refractoriness. Here, we show that JAK2V617F and cytokine signaling converge to induce MAPK negative regulator, DUSP1. Enhanced DUSP1 expression blocks p38 mediated p53 stabilization. Deletion of Dusp1 increases p53 levels in the context of JAK2V617F signaling that causes synthetic lethality to Jak2V617F expressing cells. However, inhibition of Dusp1 by a small molecule inhibitor (BCI) failed to impart Jak2V617F clonal selectivity due to pErk1/2 rebound caused by off-target inhibition of Dusp6. Ectopic expression of Dusp6 and BCI treatment restored clonal selectively and eradicated the Jak2V617F cells. Our study shows that inflammatory cytokines and JAK2V617F signaling converge to induce DUSP1, which downregulates p53 and establishes a higher apoptotic threshold. These data suggest that selectively targeting DUSP1 may provide a curative response in JAK2V617F-driven MPN.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Zachary Kincaid
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Mohammad Azhar
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jacob Menke
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | | | - Sekhu Ansari
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Angela Reaves
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Michael E Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ross Levine
- Center for Hematologic Malignancies, and Molecular Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Mohammad Azam
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
24
|
Fei X, Dou YN, Sun K, Wei J, Guo Q, Wang L, Wu X, Lv W, Jiang X, Fei Z. TRIM22 promotes the proliferation of glioblastoma cells by activating MAPK signaling and accelerating the degradation of Raf-1. Exp Mol Med 2023; 55:1203-1217. [PMID: 37258577 PMCID: PMC10318069 DOI: 10.1038/s12276-023-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/14/2023] [Accepted: 03/15/2023] [Indexed: 06/02/2023] Open
Abstract
The tripartite motif (TRIM) 22 and mitogen-activated protein kinase (MAPK) signaling pathways play critical roles in the growth of glioblastoma (GBM). However, the molecular mechanism underlying the relationship between TRIM22 and MAPK signaling remains unclear. Here, we found that TRIM22 binds to exon 2 of the sphingosine kinase 2 (SPHK2) gene. An ERK1/2-driven luciferase reporter construct identified TRIM22 as a potential activator of MAPK signaling. Knockout and overexpression of TRIM22 regulate the inhibition and activation of MAPK signaling through the RING-finger domain. TRIM22 binds to Raf-1, a negative regulator of MAPK signaling, and accelerates its degradation by inducing K48-linked ubiquitination, which is related to the CC and SPRY domains of TRIM22 and the C1D domain of Raf-1. In vitro and in vivo, an SPHK2 inhibitor (K145), an ERK1/2 inhibitor (selumetinib), and the nonphosphorylated mutant Raf-1S338A inhibited GBM growth. In addition, deletion of the RING domain and the nuclear localization sequence of TRIM22 significantly inhibited TRIM22-induced proliferation of GBM cells in vivo and in vitro. In conclusion, our study showed that TRIM22 regulates SPHK2 transcription and activates MAPK signaling through posttranslational modification of two critical regulators of MAPK signaling in GBM cells.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Kai Sun
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
25
|
Shehadeh-Tout F, Milioli HH, Roslan S, Jansson PJ, Dharmasivam M, Graham D, Anderson R, Wijesinghe T, Azad MG, Richardson DR, Kovacevic Z. Innovative Thiosemicarbazones that Induce Multi-Modal Mechanisms to Down-Regulate Estrogen-, Progesterone-, Androgen- and Prolactin-Receptors in Breast Cancer. Pharmacol Res 2023:106806. [PMID: 37244387 DOI: 10.1016/j.phrs.2023.106806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
The estrogen receptor-α (ER-α) is a key driver of breast cancer (BC) and the ER-antagonist, tamoxifen, is a central pillar of BC treatment. However, cross-talk between ER-α, other hormone and growth factor receptors enables development of de novo resistance to tamoxifen. Herein, we mechanistically dissect the activity of a new class of anti-cancer agents that inhibit multiple growth factor receptors and down-stream signaling for the treatment of ER-positive BC. Using RNA sequencing and comprehensive protein expression analysis, we examined the activity of di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), on the expression and activation of hormone and growth factor receptors, co-factors, and key resistance pathways in ER-α-positive BC. DpC differentially regulated 106 estrogen-response genes, and this was linked to decreased mRNA levels of 4 central hormone receptors involved in BC pathogenesis, namely ER, progesterone receptor (PR), androgen receptor (AR), and prolactin receptor (PRL-R). Mechanistic investigation demonstrated that due to DpC and Dp44mT binding metal ions, these agents caused a pronounced decrease in ER-α, AR, PR, and PRL-R protein expression. DpC and Dp44mT also inhibited activation and down-stream signaling of the epidermal growth factor (EGF) family receptors, and expression of co-factors that promote ER-α transcriptional activity, including SRC3, NF-κB p65, and SP1. In vivo, DpC was highly tolerable and effectively inhibited ER-α-positive BC growth. Through bespoke, non-hormonal, multi-modal mechanisms, Dp44mT and DpC decrease the expression of PR, AR, PRL-R, and tyrosine kinases that act with ER-α to promote BC, constituting an innovative therapeutic approach.
Collapse
Affiliation(s)
- Faten Shehadeh-Tout
- School of Medical Sciences, University of Sydney, NSW 2006, Australia; Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Heloisa H Milioli
- Connie Johnson Breast Cancer Research Laboratory, Garvan Institute of Medical Research, NSW 2010 Australia
| | - Suraya Roslan
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg Vic 3084, Australia
| | - Patric J Jansson
- Cancer Drug Resistance and Stem Cell Program, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Dinny Graham
- Breast Cancer Group, The Westmead Institute for Medical Research and Westmead Clinical School, University of Sydney, NSW 2145 Australia
| | - Robin Anderson
- Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg Vic 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Tharushi Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, 4111, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Zaklina Kovacevic
- School of Medical Sciences, University of Sydney, NSW 2006, Australia; Department of Physiology, School of Biomedical Sciences, University of NSW, NSW 2052 Australia.
| |
Collapse
|
26
|
Yoo DH, Im YS, Oh JY, Gil D, Kim YO. DUSP6 is a memory retention feedback regulator of ERK signaling for cellular resilience of human pluripotent stem cells in response to dissociation. Sci Rep 2023; 13:5683. [PMID: 37029196 PMCID: PMC10082014 DOI: 10.1038/s41598-023-32567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Cultured human pluripotent stem cells (hPSCs) grow as colonies that require breakdown into small clumps for further propagation. Although cell death mechanism by single-cell dissociation of hPSCs has been well defined, how hPSCs respond to the deadly stimulus and recover the original status remains unclear. Here we show that dissociation of hPSCs immediately activates ERK, which subsequently activates RSK and induces DUSP6, an ERK-specific phosphatase. Although the activation is transient, DUSP6 expression persists days after passaging. DUSP6 depletion using the CRISPR/Cas9 system reveals that DUSP6 suppresses the ERK activity over the long term. Elevated ERK activity by DUSP6 depletion increases both viability of hPSCs after single-cell dissociation and differentiation propensity towards mesoderm and endoderm lineages. These findings provide new insights into how hPSCs respond to dissociation in order to maintain pluripotency.
Collapse
Affiliation(s)
- Dae Hoon Yoo
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Young Sam Im
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Ji Young Oh
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Dayeon Gil
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea
| | - Yong-Ou Kim
- Division of Intractable Disease Research, Korea National Institute of Health, Osong, Cheongju, 28160, Republic of Korea.
- Center for National Stem Cell and Regenerative Medicine 202, Osongsaengmyung 2-Ro, Heundeok-Gu, Cheongju, Chungcheongbuk-Do, 28160, Republic of Korea.
| |
Collapse
|
27
|
Ding X, Xiang W, Meng D, Chao W, Fei H, Wang W. Osteoblasts Regulate the Expression of ADAMTS and MMPs in Chondrocytes through ERK Signaling Pathway. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2023; 161:201-210. [PMID: 34500490 DOI: 10.1055/a-1527-7900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Degradative enzymes such as matrix metalloproteinase (MMP) and disintegrin metalloproteinase with platelet thrombin-sensitive protein-like motifs (ADAMTS) play a key role in the development of osteoarthritis (OA). We aimed to investigate the effects of OA subchondral osteoblasts on the expression of ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 in chondrocytes and the regulation of mitogen-activated protein kinase (MAPK) signaling pathway. METHODS A rat knee OA model was constructed by cutting the anterior cruciate ligament of the knee joints, and normal rat articular cartilage chondrocytes (N-ACC), OA rat articular cartilage chondrocytes (O-ACC), normal subchondral bone osteoblasts (N-SBO), and OA subchondral bone osteoblasts (O-SBO) were isolated and extracted. The expressions of O-ACC and O-SBO COL1 and COL2 were detected respectively. Chondrocytes were identified by immunofluorescence of COL2 and toluidine blue staining, and osteoblasts were identified by COL1 immunofluorescence, alkaline phosphatase (ALP), and Alizarin Red staining. Gene expression of COL1, COL2, and aggrecan in normal chondrocytes and OA chondrocytes, and gene expression of osteoblast ALP and osteocalcin (OCN) were detected by RT-PCR to identify the two chondrocytes and the two osteoblast phenotypes. The constructing N-ACC group, O-ACC group, N-ACC + N-SBO group, N-ACC + O-SBO group, O-ACC + N-SBO group, O-ACC + O-SBO group, I + N-ACC + O-SBO group, and I + O-ACC + O-SBO group cell cultures, and the expression of ERK, ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 genes in chondrocytes cultured for 0, 24, 48, and 72 h were detected by RT-PCR. The protein expressions of pERK, ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 were detected by Western blot. RESULTS · The X-ray showed that the knee joint space of the affected limb became narrow.. · The results of RT-PCR of COL2 and aggrecan gene in OA and normal chondrocytes suggest that the relative expression of COL2 in OA articular chondrocytes (0.24 ± 0.07) is significantly lower than that in normal cartilage (0.61 ± 0.07) (p < 0.05). The relative expression of AGG (0.37 ± 0.16) in OA chondrocytes was significantly lower than that of normal chondrocytes AGG (1.30 ± 0.25) (p < 0.05). The expression of COL1 was very low, and was not statistically significant.. · The results of RT-PCR of the osteoblast ALP and OCN gene indicated that gene expression of ALP (12.30 ± 1.17) and OCN (20.47 ± 4.19)was upregulated when compared with the relative expression of ALP (4.66 ± 0.71) (p < 0.05) and OCN (12.17 ± 2.76) (p < 0.05) in normal osteoblasts, indicating that osteoblasts of OA have greater osteogenic potential than normal osteoblasts.. · The expressions of ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 genes and proteins in OA chondrocytes or normal chondrocytes were basically unchanged when they were cocultured with normal osteoblasts. Indirect coculture of OA osteoblasts and chondrocytes could promote the expression of ADAMTS4, ADAMTS5, MMP-3, MMP-9, and MMP-13 genes and proteins in chondrocytes. Overexpression of ADAMTS and MMP in coculture systems can be reversed by MAPK-ERK inhibitors.. CONCLUSIONS · OA subchondral bone osteoblasts can promote the overexpression of ADAMTS and MMPs in chondrocytes.. · The ERK signaling pathway may be involved in the regulation of the effect of subchondral bone osteoblasts on chondrocytes..
Collapse
Affiliation(s)
- Xiao Ding
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Wei Xiang
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Defeng Meng
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Wang Chao
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Han Fei
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| | - Weishan Wang
- Department of Orthopaedics, The First Affiliated Hospital of the Medical Colleges, Shihezi University, China
| |
Collapse
|
28
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
29
|
Lozano A, Souche FR, Chavey C, Dardalhon V, Ramirez C, Vegna S, Desandre G, Riviere A, Zine El Aabidine A, Fort P, Akkari L, Hibner U, Grégoire D. Ras/MAPK signalling intensity defines subclonal fitness in a mouse model of hepatocellular carcinoma. eLife 2023; 12:76294. [PMID: 36656749 PMCID: PMC9891719 DOI: 10.7554/elife.76294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Quantitative differences in signal transduction are to date an understudied feature of tumour heterogeneity. The MAPK Erk pathway, which is activated in a large proportion of human tumours, is a prototypic example of distinct cell fates being driven by signal intensity. We have used primary hepatocyte precursors transformed with different dosages of an oncogenic form of Ras to model subclonal variations in MAPK signalling. Orthotopic allografts of Ras-transformed cells in immunocompromised mice gave rise to fast-growing aggressive tumours, both at the primary location and in the peritoneal cavity. Fluorescent labelling of cells expressing different oncogene levels, and consequently varying levels of MAPK Erk activation, highlighted the selection processes operating at the two sites of tumour growth. Indeed, significantly higher Ras expression was observed in primary as compared to secondary, metastatic sites, despite the apparent evolutionary trade-off of increased apoptotic death in the liver that correlated with high Ras dosage. Analysis of the immune tumour microenvironment at the two locations suggests that fast peritoneal tumour growth in the immunocompromised setting is abrogated in immunocompetent animals due to efficient antigen presentation by peritoneal dendritic cells. Furthermore, our data indicate that, in contrast to the metastatic-like outgrowth, strong MAPK signalling is required in the primary liver tumours to resist elimination by NK (natural killer) cells. Overall, this study describes a quantitative aspect of tumour heterogeneity and points to a potential vulnerability of a subtype of hepatocellular carcinoma as a function of MAPK Erk signalling intensity.
Collapse
Affiliation(s)
- Anthony Lozano
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Francois-Régis Souche
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
- Department of surgery and liver transplantation, Hopital Saint Eloi Hopitaux universitaires de MontpelierMontpellierFrance
| | - Carine Chavey
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Christel Ramirez
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Oncode InstituteAmsterdamNetherlands
| | - Serena Vegna
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Oncode InstituteAmsterdamNetherlands
| | - Guillaume Desandre
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Anaïs Riviere
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Amal Zine El Aabidine
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Philippe Fort
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRSMontpellierFrance
| | - Leila Akkari
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Oncode InstituteAmsterdamNetherlands
| | - Urszula Hibner
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| | - Damien Grégoire
- Institut de Génétique Moléculaire de Montpellier, University of MontpellierMontpellierFrance
| |
Collapse
|
30
|
Jayarajan V, Hall GT, Xenakis T, Bulstrode N, Moulding D, Castellano S, Di WL. Short-Term Treatment with Rho-Associated Kinase Inhibitor Preserves Keratinocyte Stem Cell Characteristics In Vitro. Cells 2023; 12:cells12030346. [PMID: 36766688 PMCID: PMC9913223 DOI: 10.3390/cells12030346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Primary keratinocytes including keratinocyte stem cells (KSCs) can be cultured as epidermal sheets in vitro and are attractive for cell and gene therapies for genetic skin disorders. However, the initial slow growth of freshly isolated keratinocytes hinders clinical applications. Rho-associated kinase inhibitor (ROCKi) has been used to overcome this obstacle, but its influence on the characteristics of KSC and its safety for clinical application remains unknown. In this study, primary keratinocytes were treated with ROCKi Y-27632 for six days (short-term). Significant increases in colony formation and cell proliferation during the six-day ROCKi treatment were observed and confirmed by related protein markers and single-cell transcriptomic analysis. In addition, short-term ROCKi-treated cells maintained their differentiation ability as examined by 3D-organotypic culture. However, these changes could be reversed and became indistinguishable between treated and untreated cells once ROCKi treatment was withdrawn. Further, the short-term ROCKi treatment did not reduce the number of KSCs. In addition, AKT and ERK pathways were rapidly activated upon ROCKi treatment. In conclusion, short-term ROCKi treatment can transiently and reversibly accelerate initial primary keratinocyte expansion while preserving the holoclone-forming cell population (KSCs), providing a safe avenue for clinical applications.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - George T. Hall
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Theodoros Xenakis
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
| | - Neil Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children, Great Ormond Street, London WC1N 3JH, UK
| | - Dale Moulding
- Light Microscopy Core Facility, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Sergi Castellano
- Genetics and Genomic Medicine Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 20 Guilford Street, London WC1N 1DZ, UK
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, 20 Guilford Street, London WC1N 1DZ, UK
| | - Wei-Li Di
- Infection, Immunity and Inflammation Research & Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: ; Tel.: +44-(0)207905-2369; Fax: +44-(0)207905-2882
| |
Collapse
|
31
|
Romanos-Nanclares A, Tabung FK, Willett WC, Rosner B, Holmes MD, Chen WY, Tamimi RM, Eliassen AH. Insulinemic potential of diet and risk of total and subtypes of breast cancer among US females. Am J Clin Nutr 2022; 116:1530-1539. [PMID: 36178066 PMCID: PMC9761760 DOI: 10.1093/ajcn/nqac284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Insulin resistance and hyperinsulinemia play important roles in the progression of multiple chronic disease and conditions. Diet modulates insulin response; however, evidence is limited regarding whether diets with higher insulinemic potential increase the risk of invasive breast cancer. OBJECTIVES We aimed to prospectively evaluate the association between a food-based empirical dietary index for hyperinsulinemia (EDIH) and the incidence of invasive breast cancer. METHODS We prospectively followed 76,686 women from the Nurses' Health Study (NHS; 1984-2016) and 93,287 women from the Nurses' Health Study II (NHSII; 1991-2017). Diet was assessed by food-frequency questionnaires every 4 y. The insulinemic potential of diet was evaluated using the previously established EDIH based on circulating C-peptide concentrations. Higher scores indicate higher insulinemic potential of the diet. Covariates included reproductive, hormonal, and anthropometric factors (height and BMI at age 18 y); race; socioeconomic status; total alcohol intake; total caloric intake; and physical activity. RESULTS During 4,216,106 person-years of follow-up, we documented 10,602 breast cancer cases (6689 NHS, 3913 NHSII). In the pooled multivariable-adjusted analyses, women in the highest, compared with the lowest, EDIH quintile (Q) were at higher breast cancer risk (HRQ5 vs. Q1 = 1.15; 95% CI: 1.07, 1.24; P-trend < 0.01). Although heterogeneity by estrogen receptor (ER) status was nonsignificant, the strongest association between EDIH and breast cancer was observed for ER-negative tumors (HRQ5 vs. Q1 = 1.21; 95% CI: 1.00, 1.46; P-trend = 0.02). Among tumor molecular subtypes, the strongest associations were observed for human epidermal growth factor receptor 2 (HER2)-enriched tumors (HRQ5 vs. Q1 = 1.62; 95% CI: 1.01, 2.61; P-trend = 0.02). CONCLUSIONS A dietary pattern contributing to hyperinsulinemia and insulin resistance was associated with greater breast cancer risk, especially ER-negative and HER2-enriched tumors. Our findings suggest that dietary modifications to reduce insulinemic potential may reduce the risk of breast cancer.
Collapse
Affiliation(s)
- Andrea Romanos-Nanclares
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fred K Tabung
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center—Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Walter C Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Michelle D Holmes
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wendy Y Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
32
|
Boehme L, Roels J, Taghon T. Development of γδ T cells in the thymus - A human perspective. Semin Immunol 2022; 61-64:101662. [PMID: 36374779 DOI: 10.1016/j.smim.2022.101662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
γδ T cells are increasingly emerging as crucial immune regulators that can take on innate and adaptive roles in the defence against pathogens. Although they arise within the thymus from the same hematopoietic precursors as conventional αβ T cells, the development of γδ T cells is less well understood. In this review, we focus on summarising the current state of knowledge about the cellular and molecular processes involved in the generation of γδ T cells in human.
Collapse
Affiliation(s)
- Lena Boehme
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
33
|
Chen Y, Ma K, Si H, Duan Y, Zhai H. Network Pharmacology Integrated Molecular Docking to Reveal the Autism and Mechanism of Baohewan Heshiwei Wen Dan Tang. Curr Pharm Des 2022; 28:3231-3241. [PMID: 36165527 DOI: 10.2174/1381612828666220926095922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND In recent years, the prevalence and mortality of autism spectrum disorder (ASD) have been increasing. The clinical features are different with different cases, so the treatment ways are different for each one. OBJECTIVE Baohewan Heshiwei Wen Dan Tang (BHWDT) has been recommended for treating autistic spectrum disorder. To investigate the mechanism of action and how the compounds interact with ASD targets, network pharmacology and molecular docking methods were used in this study. METHODS Traditional Chinese Medicine Systems Pharmacology (TCMSP) was used to screen the active components according to index of oral bio-activity and drug-likeness. Then, TCMSP and Swiss Target Prediction databases were used to screen potential target genes of active components. The related target genes of ASD were obtained from the Gene Cards database. Matescape database was utilized to get gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation of gene targets. Composition- target-pathway (C-T-P) and a protein-protein interaction (PPI) networks were built with Cytoscape 3.8.2 software. RESULTS The interaction of the main active components of BHWDT was verified by molecular docking. The key targets of MAPK1, IL6, CXCL8 and TP53 of BHWDT were obtained. The key active components Quercetin, Kaempferol and Iuteolin of BHWDT could bind with MAPK1, IL6, CXCL8 and TP53 of BHWDT, respectively. CONCLUSION BHWDT can be highly effective for treating ASD and this study can help us to understand multiple targets and multiple pathways mechanism.
Collapse
Affiliation(s)
- Yongjian Chen
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Kang Ma
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Hongzong Si
- Laboratory of New Fibrous Materials and Modern Textile State Key Laboratory, Qingdao University, Qingdao 266071, China
| | - Yunbo Duan
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Honglin Zhai
- Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
34
|
Pan L, Zhang X, Gao Q. Histatin-1 alleviates high-glucose injury to skin keratinocytes through MAPK signaling pathway. J Cosmet Dermatol 2022; 21:6281-6291. [PMID: 35819887 DOI: 10.1111/jocd.15235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Damage to keratinocytes and other skin cells in a high-glucose environment has been proven to be an important reason for the poor wound healing ability of chronic diabetes mellitus. Histatin-1 has been preliminarily proven to stimulate the wound healing process of the oral and non-oral mucosa and has been found to be related to the activation of extracellular signal-regulated kinase (ERK). AIM OF THE STUDY The purpose of this study was to investigate the effect of histatin-1 on high-glucose-injured keratinocytes and the role of the Ras-Raf-MEK-ERK signaling pathway on the effect of histatin-1 to improve diabetic wound healing. METHODS A human keratinocyte model damaged by high glucose was constructed, cell proliferation was detected by the Cell Counting Kit-8 assay, and cell apoptosis was detected by flow cytometry. The expression level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) was detected by ELISA, and the mitogen-activated protein kinase (MAPK) signaling pathway protein expression level was detected by Western blot. C-fos mRNA expression was detected by real-time PCR. RESULTS The results indicated that histatin-1 promoted proliferation and reduced the rate of apoptosis and 8-OHdG content in keratinocytes with high-glucose injury. In addition, histatin-1 down-regulated MEK phosphorylation in keratinocytes with high-glucose injury. However, with the extension of the intervention, the effect of histatin-1 on c-fos mRNA expression was different. At the early stage of high-glucose injury (12 h), the expression of c-fos mRNA was not increased in high-glucose-injured keratinocytes treated with histatin-1 but then c-fos mRNA expression was gradually upregulated. CONCLUSION Histatin-1 could alleviate keratinocyte injury caused by high glucose levels and promoted wound healing in vitro. In addition, histatin-1 could exert anti-apoptotic and antioxidant damage effects under high-glucose injury states. These effects of histatin-1 may be related to its regulation of the MAPK signaling pathway. Therefore, these findings provide an essential theoretical basis for histatin-1 to become a safe and effective new peptide biological agent to promote wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Li Pan
- Department of Cardiopulmonary Bypass, Lanzhou University Second Hospital, Lanzhou, China
| | - Xuanfen Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Qiong Gao
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
35
|
Stern AD, Smith GR, Santos LC, Sarmah D, Zhang X, Lu X, Iuricich F, Pandey G, Iyengar R, Birtwistle MR. Relating individual cell division events to single-cell ERK and Akt activity time courses. Sci Rep 2022; 12:18077. [PMID: 36302844 PMCID: PMC9613772 DOI: 10.1038/s41598-022-23071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 10/25/2022] [Indexed: 02/01/2023] Open
Abstract
Biochemical correlates of stochastic single-cell fates have been elusive, even for the well-studied mammalian cell cycle. We monitored single-cell dynamics of the ERK and Akt pathways, critical cell cycle progression hubs and anti-cancer drug targets, and paired them to division events in the same single cells using the non-transformed MCF10A epithelial line. Following growth factor treatment, in cells that divide both ERK and Akt activities are significantly higher within the S-G2 time window (~ 8.5-40 h). Such differences were much smaller in the pre-S-phase, restriction point window which is traditionally associated with ERK and Akt activity dependence, suggesting unappreciated roles for ERK and Akt in S through G2. Simple metrics of central tendency in this time window are associated with subsequent cell division fates. ERK activity was more strongly associated with division fates than Akt activity, suggesting Akt activity dynamics may contribute less to the decision driving cell division in this context. We also find that ERK and Akt activities are less correlated with each other in cells that divide. Network reconstruction experiments demonstrated that this correlation behavior was likely not due to crosstalk, as ERK and Akt do not interact in this context, in contrast to other transformed cell types. Overall, our findings support roles for ERK and Akt activity throughout the cell cycle as opposed to just before the restriction point, and suggest ERK activity dynamics may be more important than Akt activity dynamics for driving cell division in this non-transformed context.
Collapse
Affiliation(s)
- Alan D Stern
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis C Santos
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepraj Sarmah
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Xiang Zhang
- School of Computing, Clemson University, Clemson, SC, USA
| | - Xiaoming Lu
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | | | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc R Birtwistle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
36
|
Yu J, Wang Z, Wang F, Wang W, Ge S, Fan Z, Liu B, Li M, Dong B, Dang R, Zhao F. Changes of sperm metabolites of Dezhou donkey after cryopreservation. Reprod Domest Anim 2022; 57:1593-1601. [PMID: 36018481 DOI: 10.1111/rda.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Sperm cryopreservation technology has laid the foundation for promoting the popularity of artificial insemination in donkey reproduction, but the freeze-thaw process can cause sperm damage, and the viability of frozen sperm is greatly reduced, resulting in low insemination ability. Sperm metabolites play an important role in the freezing process of spermatozoa and have a major influence on the freezability of spermatozoa. The aim of this study was to explore the differential metabolites in donkey spermatozoa before and after cryopreservation by liquid chromatography tandem mass spectrometry (LC-MS/MS). We analysed ejaculate samples from male donkeys obtained before and after freezing and identified 1323 metabolites. Compared with fresh sperm (F), the metabolites of cryopreserved sperm (CRY) were significantly changed, and 570 metabolites were significantly different between the two groups (P < 0.05). Among them, 277 metabolites were higher in frozen sperm, while the opposite was true for 293 metabolites. These metabolites mainly include phospholipids, lysophospholipids, and amino acids., most of which are associated with oxidative stress and sperm capacitation. We describe significantly different metabolites before and after freezing that are significantly associated with decreased sperm motility postfreezing and can be used as biomarkers of decreased sperm motility postfreezing.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Wenhao Wang
- College of Pharmacy, Heze University, Heze, China
| | - Shihao Ge
- College of Pharmacy, Heze University, Heze, China
| | - Zhaobin Fan
- College of Pharmacy, Heze University, Heze, China
| | - Bing Liu
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., China
| | - Min Li
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., China
| | - Boying Dong
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, China
| |
Collapse
|
37
|
Goudreault M, Gagné V, Jo CH, Singh S, Killoran RC, Gingras AC, Smith MJ. Afadin couples RAS GTPases to the polarity rheostat Scribble. Nat Commun 2022; 13:4562. [PMID: 35931706 PMCID: PMC9355967 DOI: 10.1038/s41467-022-32335-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
AFDN/Afadin is required for establishment and maintenance of cell-cell contacts and is a unique effector of RAS GTPases. The biological consequences of RAS complex with AFDN are unknown. We used proximity-based proteomics to generate an interaction map for two isoforms of AFDN, identifying the polarity protein SCRIB/Scribble as the top hit. We reveal that the first PDZ domain of SCRIB and the AFDN FHA domain mediate a direct but non-canonical interaction between these important adhesion and polarity proteins. Further, the dual RA domains of AFDN have broad specificity for RAS and RAP GTPases, and KRAS co-localizes with AFDN and promotes AFDN-SCRIB complex formation. Knockout of AFDN or SCRIB in epithelial cells disrupts MAPK and PI3K activation kinetics and inhibits motility in a growth factor-dependent manner. These data have important implications for understanding why cells with activated RAS have reduced cell contacts and polarity defects and implicate AFDN as a genuine RAS effector. Goudreault et al. investigate the role of Afadin downstream of RAS GTPases, substantiating this cell adhesion protein as a true RAS effector that couples its activation to cell polarity through the Scribble protein.
Collapse
Affiliation(s)
- Marilyn Goudreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Valérie Gagné
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Chang Hwa Jo
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Swati Singh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Ryan C Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1X5, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada. .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
38
|
2D-DIGE-MS Proteomics Approaches for Identification of Gelsolin and Peroxiredoxin 4 with Lymph Node Metastasis in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14133189. [PMID: 35804959 PMCID: PMC9265116 DOI: 10.3390/cancers14133189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Background/Aims: A combination of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time of flight mass spectrometry approach was used to search for potential markers for prognosis and intervention of colorectal cancer (CRC) at different stages of lymph node metastasis (LMN). This quantitative proteomic survey aimed to investigate the LNM-associated proteins and evaluate the clinicopathological characteristics of these target proteins in CRC from stage I to stage IV. Methods: Sixteen CRC cases were categorized into paired non-LNM and LNM groups, and two-dimensional difference gel electrophoresis and MS proteome analysis were performed. Differential protein expression between non-LNM and LNM CRC was further validated in a tissue microarray, including 40 paraffin-embedded samples by immunohistochemistry staining. Moreover, a Boyden chamber assay, flow cytometry, and shRNA were used to examine the epithelial–mesenchymal transition and mechanism invasiveness of the differentially expressed proteins in DLD-1 cells and in vivo xenograft mouse model. Results: Eighteen differentially expressed proteins were found between non-LNM and LNM CRC tissues. Among them, protein levels of Gelsolin (GSN) and peroxiredoxin 4 (PRDX4) were abundant in node-positive CRC. Downregulation of GSN and PRDX4 markedly suppressed migration and invasiveness and also induced cell cycle G1/S arrest in DLD-1. Mechanistically, the EGFR/RhoA/PKCα/ERK pathways are critical for transcriptional activation of histone modification of H3 lysine 4 trimethylation (H3K4me3) of GSN and PRDX4 promoters, resulting in upregulation of GSN, PRDX4, Twist-1/2, cyclinD1, proliferating cell-nuclear antigen, β-catenin, N-cadherin, and matrix metalloprotein-9. Conclusions: GSN and PRDX4 are novel regulators in CRC lymph node metastasis to potentially provide new insights into the mechanism of CRC progression and serve as a biomarker for CRC diagnosis at the metastatic stage.
Collapse
|
39
|
McFann SE, Shvartsman SY, Toettcher JE. Putting in the Erk: Growth factor signaling and mesoderm morphogenesis. Curr Top Dev Biol 2022; 149:263-310. [PMID: 35606058 DOI: 10.1016/bs.ctdb.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has long been known that FGF signaling contributes to mesoderm formation, a germ layer found in triploblasts that is composed of highly migratory cells that give rise to muscles and to the skeletal structures of vertebrates. FGF signaling activates several pathways in the developing mesoderm, including transient activation of the Erk pathway, which triggers mesodermal fate specification through the induction of the gene brachyury and activates morphogenetic programs that allow mesodermal cells to position themselves in the embryo. In this review, we discuss what is known about the generation and interpretation of transient Erk signaling in mesodermal tissues across species. We focus specifically on mechanisms that translate the level and duration of Erk signaling into cell fate and cell movement instructions and discuss strategies for further interrogating the role that Erk signaling dynamics play in mesodermal gastrulation and morphogenesis.
Collapse
Affiliation(s)
- Sarah E McFann
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
40
|
Sun S, Chen J, Weng C, Lu Y, Cai C, Lv B. Identification of AKIRIN2 as a potential biomarker and correlation with immunotherapy in gastric adenocarcinoma by integrated bioinformatics analysis. Sci Rep 2022; 12:8400. [PMID: 35589807 PMCID: PMC9120157 DOI: 10.1038/s41598-022-12531-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 12/07/2022] Open
Abstract
Gastric adenocarcinoma is major type of gastric cancer that endangers human health. AKIRIN2 has been shown to be associated with cholangiocarcinoma promoting invasion and angiogenesis. In this study, AKIRIN2 is highly expressed in Gastric adenocarcinoma through bioinformatics analysis based on Stomach adenocarcinoma samples data from The Cancer Genome Atlas. Correlation analysis showed that the high-expression of AKIRIN2 was associated with poor survival rate compared to the low-expression group. Univariate and multivariate Cox regression analyses determined the correlation between clinical characteristics and overall survival. Next, the correlation between AKIRIN2 and immune infiltration was evaluated. The distribution of 24 immune cells and their correlation with the expression of AKIRIN2 were explored using the immune cell database. In addition, three Immune cell methods were used to verify the positive correlation between immune cells and AKIRIN2. Also, Genomics of Drug Sensitivity in Cancer database was utilized to verify the correlation between AKIRIN2 expression level and the efficacy of chemotherapy and immunotherapy. The results showed that AKIRIN2 is an effective biomarker of Gastric adenocarcinoma prognosis, which can guide chemotherapy and immunotherapy and clarify the progress of Gastric adenocarcinoma promoted by immune microenvironment.
Collapse
Affiliation(s)
- Shaopeng Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajia Chen
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Chunyan Weng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifan Lu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Cai
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China.
| |
Collapse
|
41
|
Zhang Y, Zhong G, Zhu M, Chen L, Wan H, Luo F. Association Between Diabetes Risk Reduction Diet and Lung Cancer Risk in 98,159 Participants: Results From a Prospective Study. Front Oncol 2022; 12:855101. [PMID: 35574372 PMCID: PMC9097267 DOI: 10.3389/fonc.2022.855101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Purpose To evaluate the association between diabetes risk reduction diet (DRRD) score and the risk of lung cancer in a large population. Methods Data of participants in this study were collected from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated in the Cox proportional hazards regression model for the association of DRRD score and lung cancer incidence in all included participants. Prespecified subgroup analyses were performed to evaluate whether the observed association was modified by age, sex, BMI, race/ethnicity, family history of lung cancer, smoking status and history of diabetes. Results A total of 98,159 participants were included in this study. The mean (SD) age of the study participants cohort at baseline was 65.5 (5.73) years old. The mean (SD) follow-up time was 8.83 (1.96) years. The mean (SD) score of DRRD was 26.82 (5.19), and ranged from 20.47 (2.3) to 33.65 (2.42) from the lowest quartile to the highest quartile of the DRRD score, inferring the possibility of highest through the lowest risk of type 2 diabetes. The calculated HRs showed there was a trend that higher quartile indicated lower risk of lung cancer after adjusted for covariates (HRQ4vsQ1: 0.85; 95% CI:0.73,0.98; p for trend =0.036). The inverse trend between higher DRRD score and the risk of squamous cell carcinoma was more evident (HRQ4vsQ1: 0.50; 95% CI:0.34,0.73; p for trend =0.002). The inverse association between DRRD score and the incidence of lung cancer was more pronounced in participants who had a clear family history of lung cancer (p for interaction=0.016). Conclusion A protective association between DRRD score and risk of lung cancer is obtained. People are encouraged to adhere to higher DRRD score in their daily diet. Further studies should be conducted to confirm the result and explore the mechanism.
Collapse
Affiliation(s)
- Yin Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Guochao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Huajing Wan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Nakaji-Hirabayashi T, Matsumura K, Ishihara R, Ishiguro T, Nasu H, Kanno M, Ichida S, Hatashima T. Enhanced proliferation and differentiation of human mesenchymal stem cells in the gravity-controlled environment. Artif Organs 2022; 46:1760-1770. [PMID: 35403254 DOI: 10.1111/aor.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human bone marrow mesenchymal stem cells (hMSCs) present a promising cell source with a potential to be used for curing various intractable diseases. And it is expected that the development of regenerative medicine employing cell-based therapy would be significantly accelerated when such methods are established. For that, powerful methods for selective growth and differentiation of hMSCs should be developed. METHODS We developed an efficient method for hMSC proliferation and differentiation into osteoblasts and adipocytes using gravity-controlled environments. RESULTS The results indicate that the average doubling time of hMSCs cultured in a regular maintenance medium under microgravity conditions (0.001 G) was 1.5 times shorter than that of cells cultured under natural gravity conditions (1.0 G). Furthermore, 99.2% of cells grown in the microgravity environment showed the expression of hMSC markers, as indicated by flow cytometry analysis. Osteogenic and adipogenic differentiation of hMSCs expanded in the microgravity environment was enhanced under microgravity and hypergravity conditions, respectively, as evidenced by the downregulation of hMSC markers and upregulation of osteoblast and adipocyte markers, respectively. Most cells differentiated into osteoblasts in the microgravity environment after 14 days (~80%) and to adipocytes in the hypergravity environment after 12 days (~90%). CONCLUSIONS Our results indicate that hMSC proliferation and selective differentiation into specific cell lineages could be promoted under microgravity or hypergravity conditions, suggesting that cell culture in the gravity-controlled environment is a useful method to obtain cell preparations for potential clinical applications.
Collapse
Affiliation(s)
- Tadashi Nakaji-Hirabayashi
- Department of Applied Chemistry, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan.,Department of Advanced Nano- and Bio-sciences, Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan.,Frontier Research Core for Life Sciences, University of Toyama, Toyama, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
| | - Reiichi Ishihara
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Tatsuya Ishiguro
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Hiromitsu Nasu
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Masatsugu Kanno
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Shunji Ichida
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| | - Toshikatsu Hatashima
- New Business Project, Development Division, Kitagawa Iron Works Co., Ltd., Hiroshima, Japan
| |
Collapse
|
43
|
Sphingosine 1-Phosphate Receptor 5 (S1P5) Deficiency Promotes Proliferation and Immortalization of Mouse Embryonic Fibroblasts. Cancers (Basel) 2022; 14:cancers14071661. [PMID: 35406433 PMCID: PMC8996878 DOI: 10.3390/cancers14071661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Sphingosine 1-phosphate (S1P) is a lipid metabolite involved in cell proliferation, survival or migration. S1P is a ligand for five high-affinity G protein-coupled receptors (S1P1-5), which differ in their tissue distribution, and the specific effects of S1P depend on the suite of S1P receptor subtypes expressed. To date, information regarding the role of S1P5 in cell proliferation is limited and ambiguous. Our results suggest that, unlike other S1P receptors, the S1P5 receptor has an anti-proliferative function. We found that S1P5 deficiency promotes cell immortalization and proliferation by controlling the spatial activation of ERK. Abstract Sphingosine 1-phosphate (S1P), a bioactive lipid, interacts with five widely expressed G protein-coupled receptors (S1P1-5), regulating a variety of downstream signaling pathways with overlapping but also opposing functions. To date, data regarding the role of S1P5 in cell proliferation are ambiguous, and its role in controlling the growth of untransformed cells remains to be fully elucidated. In this study, we examined the effects of S1P5 deficiency on mouse embryonic fibroblasts (MEFs). Our results indicate that lack of S1P5 expression profoundly affects cell morphology and proliferation. First, S1P5 deficiency reduces cellular senescence and promotes MEF immortalization. Second, it decreases cell size and leads to cell elongation, which is accompanied by decreased cell spreading and migration. Third, it increases proliferation rate, a phenotype rescued by the reintroduction of exogenous S1P5. Mechanistically, S1P5 promotes the activation of FAK, controlling cell spreading and adhesion while the anti-proliferative function of the S1P/S1P5 signaling is associated with reduced nuclear accumulation of activated ERK. Our results suggest that S1P5 opposes the growth-promoting function of S1P1-3 through spatial control of ERK activation and provides new insights into the anti-proliferative function of S1P5.
Collapse
|
44
|
Mutti V, Bono F, Tomasoni Z, Bontempi L, Guglielmi A, Bolognin S, Schwamborn JC, Missale C, Fiorentini C. Structural Plasticity of Dopaminergic Neurons Requires the Activation of the D3R-nAChR Heteromer and the PI3K-ERK1/2/Akt-Induced Expression of c-Fos and p70S6K Signaling Pathway. Mol Neurobiol 2022; 59:2129-2149. [PMID: 35044626 PMCID: PMC9016044 DOI: 10.1007/s12035-022-02748-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
We have previously shown that the heteromer composed by the dopamine D3 receptor (D3R) and the nicotinic acetylcholine receptor (nAChR) (D3R-nAChR heteromer) is expressed in dopaminergic neurons, activated by nicotine and represents the molecular unit that, in these neurons, contributes to the modulation of critical events such as structural plasticity and neuroprotection. We now extended this study by investigating the D3R-nAChR heteromer properties using various cell models such as transfected HEK293 cells, primary cultures of mouse dopaminergic neurons and human dopaminergic neurons derived from induced pluripotent stem cells. We found that the D3R-nAChR heteromer is the molecular effector that transduces the remodeling properties not only associated with nicotine but also with D3R agonist stimulation: neither nAChR nor D3R, in fact, when express as monomers, are able to elicit these effects. Moreover, strong and sustained activation of the PI3K-ERK1/2/Akt pathways is coupled with D3R-nAChR heteromer stimulation, leading to the expression of the immediate-early gene c-Fos and to sustained phosphorylation of cytosolic p70 ribosomal S6 kinase (p70S6K), critical for dendritic remodeling. By contrast, while D3R stimulation results in rapid and transient activation of both Erk1/2 and Akt, that is PI3K-dependent, stimulation of nAChR is associated with persistent activation of Erk1/2 and Akt, in a PI3K-independent way. Thus, the D3R-nAChR heteromer and its ability to trigger the PI3K-ERK1/2/Akt signaling pathways may represent a novel target for preserving dopaminergic neurons healthy and for conferring neuronal protection against injuries.
Collapse
Affiliation(s)
- Veronica Mutti
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Federica Bono
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Zaira Tomasoni
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Leonardo Bontempi
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Adele Guglielmi
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Belvaux, Luxembourg
| | - Cristina Missale
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Chiara Fiorentini
- Section of Pharmacology, Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
45
|
Samson SC, Khan AM, Mendoza MC. ERK signaling for cell migration and invasion. Front Mol Biosci 2022; 9:998475. [PMID: 36262472 PMCID: PMC9573968 DOI: 10.3389/fmolb.2022.998475] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The RAS - Extracellular signal-regulated kinase (RAS-ERK) pathway plays a conserved role in promoting cell migration and invasion. Growth factors, adhesion, and oncogenes activate ERK. While historically studied with respect to its control of cell proliferation and differentiation, the signaling pattern and effectors specific for cell migration are now coming to light. New advances in pathway probes have revealed how steady-state ERK activity fluctuates within individual cells and propagates to neighboring cells. We review new findings on the different modes of ERK pathway stimulation and how an increased baseline level of activity promotes single cell and collective migration and invasion. We discuss how ERK drives actin polymerization and adhesion turnover for edge protrusion and how cell contraction stimulates cell movement and ERK activity waves in epithelial sheets. With the steady development of new biosensors for monitoring spatial and temporal ERK activity, determining how cells individually interpret the multiple in vivo signals to ERK is within reach.
Collapse
Affiliation(s)
- Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Akib M Khan
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
46
|
Li M, Zhao X, Yong H, Shang B, Lou W, Wang Y, Bai J. FBXO22 Promotes Growth and Metastasis and Inhibits Autophagy in Epithelial Ovarian Cancers via the MAPK/ERK Pathway. Front Pharmacol 2021; 12:778698. [PMID: 34950036 PMCID: PMC8688818 DOI: 10.3389/fphar.2021.778698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
E3 ubiquitin ligase F-box only protein 22 (FBXO22), which targets the key regulators of cellular activities for ubiquitylation and degradation, plays an important role in tumorigenesis and metastasis. However, the function of FBXO22 in epithelial ovarian cancers has not been reported. This study aims to explore the biological function of FBXO22 in epithelial ovarian cancers progression and metastasis and its specific regulation mechanism. Immunohistochemistry analysis of tissue microarray was performed to evaluate the expression of FBXO22 in epithelial ovarian cancers patients. The proliferative ability of epithelial ovarian cancers cells was examined by the CCK8. The metastasis ability was detected by the wound healing assay, migration and invasion assays. Western blot was used to verify the relationship between FBXO22 expression and mitogen-activated protein kinase related proteins. Autophagic flux was detected by electron microscopy, mRFP-GFP-LC3 adenovirus, lysosomal tracker and western blot. For in vivo experiments, the effect of FBXO22 on epithelial ovarian cancers resistance was observed in a xenograft tumor model and a metastatic mice model. We found that FBXO22 expression was significantly increased in epithelial ovarian cancers tissues and was closely correlated with clinical pathological factors. As a result, we found that FBXO22 promoted the growth and metastasis, as well as inhibited the autophagy flux. In addition, we identified that FBXO22 performed these functions via the MAPK/ERK pathway. Our results first reported the function of FBXO22 in epithelial ovarian cancer and the correlation between FBXO22 and autophagy, suggesting FBXO22 as a novel target of epithelial ovarian cancers assessment and treatment.
Collapse
Affiliation(s)
- Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xue Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Hongmei Yong
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Bingqing Shang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Weihua Lou
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - You Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
47
|
Ulrych A, Fabrik I, Kupčík R, Vajrychová M, Doubravová L, Branny P. Cell Wall Stress Stimulates the Activity of the Protein Kinase StkP of Streptococcus pneumoniae, Leading to Multiple Phosphorylation. J Mol Biol 2021; 433:167319. [PMID: 34688688 DOI: 10.1016/j.jmb.2021.167319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen that encodes a single eukaryotic-type Ser/Thr protein kinase StkP and its functional counterpart, the protein phosphatase PhpP. These signaling enzymes play critical roles in coordinating cell division and growth in pneumococci. In this study, we determined the proteome and phosphoproteome profiles of relevant mutants. Comparison of those with the wild-type provided a representative dataset of novel phosphoacceptor sites and StkP-dependent substrates. StkP phosphorylates key proteins involved in cell division and cell wall biosynthesis in both the unencapsulated laboratory strain Rx1 and the encapsulated virulent strain D39. Furthermore, we show that StkP plays an important role in triggering an adaptive response induced by a cell wall-directed antibiotic. Phosphorylation of the sensor histidine kinase WalK and downregulation of proteins of the WalRK core regulon suggest crosstalk between StkP and the WalRK two-component system. Analysis of proteomic profiles led to the identification of gene clusters regulated by catabolite control mechanisms, indicating a tight coupling of carbon metabolism and cell wall homeostasis. The imbalance of steady-state protein phosphorylation in the mutants as well as after antibiotic treatment is accompanied by an accumulation of the global Spx regulator, indicating a Spx-mediated envelope stress response. In summary, StkP relays the perceived signal of cell wall status to key cell division and regulatory proteins, controlling the cell cycle and cell wall homeostasis.
Collapse
Affiliation(s)
- Aleš Ulrych
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Rudolf Kupčík
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Marie Vajrychová
- Biomedical Research Center, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic.
| | - Linda Doubravová
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Pavel Branny
- Institute of Microbiology, v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
48
|
Sarma U, Maiti M, Nair A, Bhadange S, Bansode Y, Srivastava A, Saha B, Mukherjee D. Regulation of STAT3 signaling in IFNγ and IL10 pathways and in their cross-talk. Cytokine 2021; 148:155665. [PMID: 34366205 DOI: 10.1016/j.cyto.2021.155665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
The pro-inflammatory IFNγ-STAT1 pathway and anti-inflammatory IL10-STAT3 pathway elicit cellular responses primarily utilizing their canonical STATs. However IL10 mediated STAT1 and IFNγ mediated STAT3 activation is also observed, suggesting crosstalk of these functionally opposing signaling pathways can potentially reshape the canonical dynamics both STATs and alter the expression of their target genes. Herein, we measured the dynamics of STATs in response to different doses of IL10 or IFNγ and in their co-stimulation and employed quantitative modeling to understand the regulatory mechanisms controlling signal responses in individual and co-simulation scenarios. Our experiments show, STAT3 in particular, exhibits a bell-shaped dose-response while treated with IFNγ or IL10 and our model quantiatively captured the dose-dependent dynamics of both the STATs in both pathways. The model next predicted and subsequent experiments validated that STAT3 dynamics would robustly remain IL10 specific when subjected to a co-stimulation of both IFNγ and IL10. Genes common to both pathways also exhibited IL10 specific expression during the co-stimulation. The findings thus uncover anovel feature of the IL10-STAT3 signaling axis during pathway crosstalk. Finally, parameter sampling coupled to information theory based analysis showed that bell-shaped signal-response of STAT3 in both pathways is primarily dependent on receptor concentration whereas robustness of IL10-STAT3 signaling axis in co-stimulation results from the negative regulation of the IFNγ pathway.
Collapse
Affiliation(s)
- U Sarma
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| | - M Maiti
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - A Nair
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - S Bhadange
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Y Bansode
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - A Srivastava
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - B Saha
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - D Mukherjee
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
49
|
Tawfeeq N, Jin Y, Lamango NS. Synthetic Optimization and MAPK Pathway Activation Anticancer Mechanism of Polyisoprenylated Cysteinyl Amide Inhibitors. Cancers (Basel) 2021; 13:cancers13225757. [PMID: 34830912 PMCID: PMC8616522 DOI: 10.3390/cancers13225757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary RAS G-protein genes are frequently mutated and drive the progression of about 30% of human cancers. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) offer a novel approach to address the decades-long anti-RAS drug development challenge. This manuscript reports on the continuous development of the PCAIs and their anticancer molecular mechanisms that involve strong activation of MAP kinase pathway enzymes. Abstract Abnormalities of the MAPK pathway play vital roles in cancer initiation and progression. RAS GTPases that are key upstream mediators of the pathway are mutated in 30% of human cancers. Polyisoprenylated cysteinyl amide inhibitors (PCAIs) were designed as potential targeted therapies against the RAS-driven cancers. The current study reports on the optimization of the PCAIs and the determination of their mechanisms of action in KRAS-mutant cancer cells. They display ClogP values ranging from 3.01 to 6.35, suppressing the viabilities of KRAS-mutant MDA-MB-231, A549, MIA PaCa-2, and NCI-H1299 cells in 2D and 3D cultures with EC50 values of 2.2 to 6.8, 2.2 to 7.6, 2.3 to 6.5 and 5.0 to 14 µM, respectively. When A549 cells were treated with the PCAIs, NSL-YHJ-2-27, for 48 h, no significant difference was observed in the levels of total or phosphorylated B- and C-Raf proteins. However, at 5 µM, it stimulated the phosphorylation of MEK1/2, ERK1/2, and p90RSK by 84%, 59%, and 160%, respectively, relative to controls. A non-farnesylated analog, NSL-YHJ-2-62, did not elicit similar effects. These data reveal that effects on the RAS-MAPK signaling axis most likely contribute to the anticancer effects of the PCAIs, possibly through the proapoptotic isoforms of p90RSK. The PCAIs may thus have the potential to serve the unmet therapeutic needs of patients with aberrant hyperactive G-protein signaling.
Collapse
|
50
|
DNA origami patterning of synthetic T cell receptors reveals spatial control of the sensitivity and kinetics of signal activation. Proc Natl Acad Sci U S A 2021; 118:2109057118. [PMID: 34588308 DOI: 10.1073/pnas.2109057118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/27/2022] Open
Abstract
Receptor clustering plays a key role in triggering cellular activation, but the relationship between the spatial configuration of clusters and the elicitation of downstream intracellular signals remains poorly understood. We developed a DNA-origami-based system that is easily adaptable to other cellular systems and enables rich interrogation of responses to a variety of spatially defined inputs. Using a chimeric antigen receptor (CAR) T cell model system with relevance to cancer therapy, we studied signaling dynamics at single-cell resolution. We found that the spatial arrangement of receptors determines the ligand density threshold for triggering and encodes the temporal kinetics of signaling activities. We also showed that signaling sensitivity of a small cluster of high-affinity ligands is enhanced when surrounded by nonstimulating low-affinity ligands. Our results suggest that cells measure spatial arrangements of ligands, translate that information into distinct signaling dynamics, and provide insights into engineering immunotherapies.
Collapse
|