1
|
Pereira CM, Shimizu JF, Cassani NM, Santos IA, Bittar C, Oliveira Cintra AC, Sampaio SV, Harris M, Rahal P, Gomes Jardim AC. Bothropstoxins I and II as potent phospholipase A2 molecules from Bothrops jararacussu to impair Hepatitis C virus infection. Biochimie 2025:S0300-9084(25)00081-1. [PMID: 40288437 DOI: 10.1016/j.biochi.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/26/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Hepatitis C is a hepatological disorder induced by the Hepacivirus hominis (Hepatitis C virus, HCV), with approximately 170 million individuals estimated to be presently affected globally. The current treatment for infected patients primarily relies on direct-acting antivirals (DAAs). However, this treatment is marked by its high cost, numerous side effects, and documented instances of antiviral resistance. These challenges underscore the imperative for developing novel therapeutic strategies. In this framework, naturally occurring compounds have exhibited considerable medical significance attributable to their biological functionalities. Compounds extracted from snake venoms have evidenced antiviral efficacy against a variety of viral pathogens including Orthoflavivirus denguei (DENV), Orthoflavivirus flavi (YFV), Orthoflavivirus zikaense (ZIKV), and HCV. Here, the activity of 10 proteins isolated from snakes' venom of Bothrops genus were evaluated against HCV replicative cycle. The full-length JFH-1 HCV system was used to infect the Huh-7.5 cell. Cell viability was measured simultaneously through MTT assay. Eight compounds inhibited up to 99% of HCV infection, being the most potent inhibitory rates observed in BthTX-I and BthTX-II, with an SI of 13.5 and 1736, respectively, being able to block 84.7% and 96% of HCV infectivity, in the same order. BthTX-II also demonstrated a protective effect in cells treated prior to HCV infection of approximately 86.7%. Molecular docking calculations suggest interactions between the two proteins with HCV E1-E2 glycoprotein complex. BthTX-II exhibited stronger interactions, indicated by 22 hydrophobic interactions. In conclusion, these compounds were shown to inhibit HCV infectivity by either acting on the virus particles or protecting the cells against infection.
Collapse
Affiliation(s)
- Carina Machado Pereira
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, SP, Brazil
| | - Jacqueline Farinha Shimizu
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, SP, Brazil; Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Natasha Marques Cassani
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Igor Andrade Santos
- Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Cintia Bittar
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, SP, Brazil
| | | | - Suely Vilela Sampaio
- Laboratory of Toxinology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Paula Rahal
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Genomics Study Laboratory, São Paulo State University, IBILCE, S. José do Rio Preto, SP, Brazil; Laboratory of Antiviral Research, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
2
|
Simas Pereira Júnior LC, Coriolano de Oliveira E, Sanchez EF, Fuly AL. Use of commercial tannic acid against the toxic effects of Bothrops jararacussu venom. Toxicon 2025; 258:108325. [PMID: 40107425 DOI: 10.1016/j.toxicon.2025.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Snakebite envenomation is a neglected public health issue affecting thousands of victims worldwide. In Brazil, the genus Bothrops is responsible for 88 % of snakebites; bites from the species B. jararacussu present at a high frequency and are associated with high lethality and morbidity rates. B. jararacussu injects a large volume of venom, leading to massive tissue necrosis, hemorrhage, and eventually death. Antivenom is the only available treatment for neutralizing such toxic effects; it effectively prevents death but not the physical sequelae caused by muscle damage. Antivenom has other drawbacks, such as fever and anaphylactic reactions, high production costs, and the need for controlled storage temperatures. Thus, complementary treatments are sought to overcome these disadvantages of antivenoms. Here, we assessed the effects of commercial tannic acid on the major toxic activities of B. jararacussu venom, such as its proteolytic, plasma coagulation, edematogenic, hemorrhagic, and lethal effects. Overall, the incubation of tannic acid with B. jararacussu venom inhibited the venom's in vitro coagulant and proteolytic effects and in vivo hemorrhagic and edematogenic activities; however, it failed to prevent against lethality. Antibothropic serum protected mice from B. jararacussu venom-induced death and inhibited edema by approximately 45 % but did not protect against hemorrhage. In conclusion, tannic acid efficiently neutralized the main toxic activities of B. jararacussu venom, which causes severe envenomation in some South American countries. Thus, tannic acid is a candidate for managing Bothrops snakebites and, alongside antivenom, may hasten and improve victim recovery.
Collapse
Affiliation(s)
- Luis Carlos Simas Pereira Júnior
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação em Ciências Biomédicas (Fisiologia e Farmacologia), Instituto Biomédico, Universidade Federal Fluminense, Niterói, 24210-130, Rio de Janeiro, Brazil
| | - Eduardo Coriolano de Oliveira
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Eladio Flores Sanchez
- Laboratório de Bioquímica de Proteínas de Venenos de Animais, Fundação Ezequiel Dias, Belo Horizonte, 30510-010, Minas Gerais, Brazil
| | - André Lopes Fuly
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação em Ciências Biomédicas (Fisiologia e Farmacologia), Instituto Biomédico, Universidade Federal Fluminense, Niterói, 24210-130, Rio de Janeiro, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Sun J, Liu J, Liu M, Bi X, Huang C. New perspective for pathomechanism and clinical applications of animal toxins: Programmed cell death. Toxicon 2024; 249:108071. [PMID: 39134227 DOI: 10.1016/j.toxicon.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
Various animal toxins pose a significant threat to human safety, necessitating urgent attention to their treatment and research. The clinical potential of programmed cell death (PCD) is widely regarded as a target for envenomation, given its crucial role in regulating physiological and pathophysiological processes. Current research on animal toxins examines their specific components in pathomechanisms and injuries, as well as their clinical applications. This review explores the relationship between various toxins and several types of PCD, such as apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis, to provide a reference for future understanding of the pathophysiology of toxins and the development of their potential clinical value.
Collapse
Affiliation(s)
- Jiaqi Sun
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Jiahao Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Meiling Liu
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xiaowen Bi
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Chunhong Huang
- School of Basic Medicine Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
4
|
Godoy TAD, Lima EOVD, Silveira GPM, Rodrigues FS, Sant'anna SS, Hatakeyama DM, Grego KF, Tanaka-Azevedo AM. Analysis of the genus B othrops snake venom: An inter and intraspecific comparative study. Heliyon 2024; 10:e37262. [PMID: 39296225 PMCID: PMC11409068 DOI: 10.1016/j.heliyon.2024.e37262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The genus Bothrops are considered Category 1 of medical importance by the World Health Organization, responsible for approximately 85 % of snakebites occurring throughout Brazil. Main factors determining snake venom variations can be genetics, diet, gender, geographic distribution, age, or even seasonality. In this study, we compared the composition of protein profile, biochemical activities, and immunorecognition of toxins present in the venom of eight adults of Bothrops species (B. alternatus, B. atrox, B. jararaca, B. jararacussu, B. leucurus, B. moojeni, B. neuwiedi and B. pauloensis). The following methods were used to analyze the venoms: protein dosage; electrophoresis in polyacrylamide gel containing SDS; High Performance Liquid Chromatography - Reverse Phase; enzymatic activities, western blotting and Enzyme Linked Immuno Sorbent Assay. The results show inter and intraspecific differences in the electrophoretic profile. LAAO and PLA2 activities, in general, were higher in males than females and proteolytic activity was higher in females than males. The bothropic antivenom produced by Instituto Butantan recognized most of the protein bands in all Bothrops species analyzed, with only the regions between 37 and 25 kDa presenting lower intensity. A notable variability in the chromatograms was observed. Bothrops venom demonstrated inter-intraspecific disparities in protein composition and biochemical activity.
Collapse
Affiliation(s)
- Thais Almeida de Godoy
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
- Escola Superior do Instituto Butantan, São Paulo, Brazil
| | - Eduardo Oliveira Venancio de Lima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
| | | | | | | | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, São Paulo, Brazil
- Escola Superior do Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
5
|
Batista BKDC, Silva JFOD, Passos JGR, Ferreira MRA, Soares LAL, Rocha HADO, Silva-Júnior AA, Xavier-Santos JB, Fernandes-Pedrosa MDF. Nanoemulsion containing Jatropha gossypiifolia leaf extract reduces dermonecrosis induced by Bothrops erythromelas venom and accelerates wound closure. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118188. [PMID: 38608797 DOI: 10.1016/j.jep.2024.118188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The species Jatropha gossypiifolia, popularly known as "pinhão-roxo", is distributed throughout Brazil, is commonly employed for topical or oral administration in treating wounds, inflammations, and snake bites. Given the significant impact of snakebites on public health and the limitations of antivenom, coupled with the diverse molecular composition of this plant species, investigating its healing and antidermonecrotic capacities is relevant. AIM OF THE STUDY This study aimed to develop a topical nanoemulsion incorporating the hydroethanolic extract of J. gossypiifolia leaves, to evaluate its therapeutic potential, particularly in terms of its efficacy in wound healing and inhibition of dermonecrosis induced by B. erythromelas venom (BeV). MATERIAL AND METHODS The extract of J. gossypiifolia (JgE) leaves was obtained by maceration and remaceration. The phytochemical analysis was conducted and J. gossypiifolia nanoemulsion (JgNe) was obtained, characterized and assessed for stability. The cytotoxicity was determined in normal cells (erythrocytes and 3T3) using hemolytic assay and cell viability assay using crystal violet staining. The antioxidant activity was evaluated by the reduction of ABTS and DPPH radicals. The evaluation of wound healing was conducted in vivo following treatment with JgNe, wherein the percentage of wound closure and inflammatory mediators. The skin irritation test was assessed in vivo by applying JgNe directly to the animal's skin. In vitro, the antivenom capacity was evaluated through enzymatic inhibition assays (phospholipase A2 and hyaluronidase) of BeV. Additionally, the in vivo antidermonecrotic activity of JgNe was evaluated by measuring the reduction of the dermonecrotic halo. RESULTS The HPLC-DAD analysis identified flavonoids, specifically vitexin, luteolin derivatives and apigenin derivatives. In addition, 95.08 ± 5.46 mg of gallic acid/g of extract and 137.92 ± 0.99 mg quercetin/g extract, was quantified. JgNe maintained stability over a 4-week period. Moreover, JgE and JgNe demonstrated no cytotoxicity in human erythrocytes and murine fibroblasts at tested concentrations (32.25-250 μg/mL). Additionally, exhibited significant antioxidant activity by reducing ABTS and DPPH radicals. The treatment with JgNe did not induce skin irritation and accelerated wound healing, with significant wound closure observed from 5th day and reduction in nitrite levels, myeloperoxidase activity, and cytokine. Both JgE and JgNe demonstrated in vitro inhibition of the phospholipase and hyaluronidase enzymes of BeV. Moreover, JgNe exhibited antidermonecrotic activity by reducing the dermonecrotic halo caused by BeV after 24 h. CONCLUSIONS JgNe and JgE exhibited no cytotoxicity at the tested concentrations. Additionally, our findings demonstrate that JgNe has the ability to accelerate wound closure and reduce dermonecrosis caused by BeV, indicating to be promising formulation for complementary therapy to antivenom treatment.
Collapse
Affiliation(s)
- Beatriz Ketlyn da Cunha Batista
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, RN, Brazil.
| | - João Felipe Oliveira da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, RN, Brazil.
| | - Júlia Gabriela Ramos Passos
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, RN, Brazil.
| | - Magda Rhayanny Assunção Ferreira
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50740-560, Recife, PE, Brazil.
| | - Luiz Alberto Lira Soares
- Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Federal University of Pernambuco, 50740-560, Recife, PE, Brazil.
| | - Hugo Alexandre de Oliveira Rocha
- Natural Polymer Biotechnology Laboratory (BIOPOL), Biochemistry Department, Federal University of Rio Grande do Norte (UFRN), 59078-970, Natal, RN, Brazil.
| | - Arnóbio Antônio Silva-Júnior
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, RN, Brazil.
| | - Jacinthia Beatriz Xavier-Santos
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, RN, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, RN, Brazil.
| |
Collapse
|
6
|
Senji Laxme RR, Khochare S, Bhatia S, Martin G, Sunagar K. From birth to bite: the evolutionary ecology of India's medically most important snake venoms. BMC Biol 2024; 22:161. [PMID: 39075553 PMCID: PMC11287890 DOI: 10.1186/s12915-024-01960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell's viper (Daboia russelii) and spectacled cobra (Naja naja), India's two clinically most important snakes responsible for an alarming number of human deaths and disabilities. METHODOLOGY Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. RESULTS Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3-2.5 ×) and reptilian (2-10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. CONCLUSIONS Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.
Collapse
Affiliation(s)
- R R Senji Laxme
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Siddharth Bhatia
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gerard Martin
- The Liana Trust. Survey, #1418/1419 Rathnapuri, Hunsur, 571189, Karnataka, India
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
7
|
Tasima LJ, Lima EOVD, Hatakeyama DM, Vidueiros JP, Stuginski DR, Grego KF, Tanaka-Azevedo AM. Seasonality in Crotalus durissus venom. Toxicon 2024; 244:107748. [PMID: 38710309 DOI: 10.1016/j.toxicon.2024.107748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024]
Abstract
Rattlesnakes belonging to the genus Crotalus are widely distributed throughout the Americas. In Brazil, symptoms commonly associated with envenomation by Crotalus durissus collilineatus include myalgia, rhabdomyolysis, renal failure, neurotoxicity, and progressive paralysis, which are related to the protein composition of this venom. Snake venom composition exhibits compositional variability that may reflect geographic distribution, age, captivity, diet, sex, and even individual genetics. Although seasonality is also considered a possible source of variation, there are few reports of such variability in snake venom. In this work, venoms of the same eight C. durissus collilineatus were extracted every three months for two years, to analyze seasonal changes in composition and activities. To this end, venom composition was analyzed by protein quantification, SDS-PAGE, and HPLC, and the LAAO, PLA2 and coagulant activities were measured. Venoms of these C. d. collilineatus showed minor seasonal differences in venom activities and no composition differences were found. LAAO and coagulant activities displayed a pattern of seasonal change, while PLA2 activity seemed to have no seasonality tendency. Also, there are sexual differences, in which males seem to be more stable than females in regard to some activities. Individual variability occurs even in seasonal variation of activities, highlighting the importance of controlling circumstances of venom extraction before comparing results between groups of snakes.
Collapse
Affiliation(s)
- Lidia Jorge Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Eduardo Oliveira Venâncio de Lima
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Daniela Miki Hatakeyama
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil
| | | | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, 05503-900, SP, Brazil; Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas-Instituto de Pesquisas Tecnológicas-Instituto Butantan, Universidade de São Paulo, São Paulo, 05508-900, SP, Brazil.
| |
Collapse
|
8
|
Salihu M, Hassan LG, Faruq UZ, Yusuf AJ. Deciphering the interactions of scopoletin and scopolin from Catunaregam nilotica roots against Naja nigricollis phospholipase A 2 enzyme. Toxicon 2024; 243:107732. [PMID: 38642905 DOI: 10.1016/j.toxicon.2024.107732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Catuneragam nilotica has been used in ethnomedicine to treat snakebite, inflammation, and diarrhea among others. The aim of this research is to isolate, and characterize potential potential phospholipase A2 (PLA2) inhibitors from the roots of C. nilotica. The plant material was collected, authenticated, and sequentially extracted using solvents of increasing polarity starting from n-hexane, ethyl acetate, and methanol. The extracts as reported in our previous work, were screened in vitro for their inhibitory activity against PLA2 enzyme from N. nigricollis venom using acidimetric assay. In line with the bio-activity guided isolation, methanol extract (being the most active) was subjected to chromatographic separation using silica gel and sephadex LH-20 which resulted in the isolation and characterization of scopoletin, and scopolin; the compounds were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 67.82 to 100.00 % and 65.76-93.15 %, respectively while the standard Antisnake Venom (ASV) had 74.96-85.04 % after 10 min incubation at 37 °C. The molecular docking of the compounds against PLA2 enzyme was performed using Auto Dock Vina while ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers; The findings indicated that both compounds were able to bind to the active site of PLA2 enzyme with high affinity (-6.5 to -6.2 kcal/mol) and they exhibited favorable drug-likeness and pharmacokinetic properties, and according to toxicity predictions, scopolin was found to be non-toxic (LD50 of 5000 mg/kg) while scopoletin has a slight chance of being toxic (LD50 of 3800 mg/kg). In conclusion, the findings of the research revealed that the roots of C. nilotica contains phytoconstituents with anti-PLA2 enzyme activity and thus, validates the ethnomedicinal claim of the use of the plant as herbal therapy against N. nigricollis envenomation.
Collapse
Affiliation(s)
- M Salihu
- Department of Chemistry, Shehu Shagari College of Education, Sokoto, Nigeria.
| | - L G Hassan
- Department of Pure and Environmental Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - U Z Faruq
- Department of Pure and Environmental Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - A J Yusuf
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
9
|
Saladini LY, Magalhães-Junior MJ, da Silva CCF, Oliveira PGC, Kodama RT, Gomes L, Nishiyama-Jr MY, Spencer PJ, da Silva WD, Portaro FCV. Evaluation of the Inhibitory Potential of Synthetic Peptides Homologous to CDR3 Regions of a Monoclonal Antibody against Bothropic Venom Serine Proteases. Int J Mol Sci 2024; 25:5181. [PMID: 38791221 PMCID: PMC11121450 DOI: 10.3390/ijms25105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves lives, its efficacy is limited as it fails to neutralize certain serine proteases. Hence, developing new-generation antivenoms, like monoclonal antibodies, is crucial. This study aimed to explore the inhibitory potential of synthetic peptides homologous to the CDR3 regions of a monoclonal antibody targeting a snake venom thrombin-like enzyme (SVTLE) from B. atrox venom. Five synthetic peptides were studied, all stable against hydrolysis by venoms and serine proteases. Impressively, four peptides demonstrated uncompetitive SVTLE inhibition, with Ki values ranging from 10-6 to 10-7 M. These findings underscore the potential of short peptides homologous to CDR3 regions in blocking snake venom toxins, suggesting their promise as the basis for new-generation antivenoms. Thus, this study offers potential advancements in combatting snakebites, addressing a critical public health challenge in tropical and subtropical regions.
Collapse
Affiliation(s)
- Lucas Yuri Saladini
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, Brazil (C.C.F.d.S.); (P.G.C.O.); (R.T.K.); (L.G.)
| | | | | | - Priscila Gonçalves Coutinho Oliveira
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, Brazil (C.C.F.d.S.); (P.G.C.O.); (R.T.K.); (L.G.)
| | - Roberto Tadashi Kodama
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, Brazil (C.C.F.d.S.); (P.G.C.O.); (R.T.K.); (L.G.)
| | - Lais Gomes
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, Brazil (C.C.F.d.S.); (P.G.C.O.); (R.T.K.); (L.G.)
| | - Milton Yutaka Nishiyama-Jr
- Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN/CNEN/SP), São Paulo 05503-900, Brazil;
| | | | - Fernanda Calheta Vieira Portaro
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, Brazil (C.C.F.d.S.); (P.G.C.O.); (R.T.K.); (L.G.)
| |
Collapse
|
10
|
Castro-Pinheiro C, Junior LCSP, Sanchez EF, da Silva ACR, Dwan CA, Karpiniec SS, Critchley AT, Fuly AL. Effect of Seaweed-Derived Fucoidans from Undaria pinnatifida and Fucus vesiculosus on Coagulant, Proteolytic, and Phospholipase A 2 Activities of Snake Bothrops jararaca, B. jararacussu, and B. neuwiedi Venom. Toxins (Basel) 2024; 16:188. [PMID: 38668613 PMCID: PMC11053494 DOI: 10.3390/toxins16040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.
Collapse
Affiliation(s)
- Camila Castro-Pinheiro
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24001-970, Rio de Janeiro, Brazil; (C.C.-P.); (L.C.S.P.J.); (A.C.R.d.S.)
| | - Luiz Carlos Simas Pereira Junior
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24001-970, Rio de Janeiro, Brazil; (C.C.-P.); (L.C.S.P.J.); (A.C.R.d.S.)
| | - Eladio Flores Sanchez
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Minas Gerais, Brazil;
| | - Ana Cláudia Rodrigues da Silva
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24001-970, Rio de Janeiro, Brazil; (C.C.-P.); (L.C.S.P.J.); (A.C.R.d.S.)
| | - Corinna A. Dwan
- Marinova Pty, Ltd., Cambridge, TAS 7170, Australia; (C.A.D.); (S.S.K.)
| | | | - Alan Trevor Critchley
- Independent Researcher, The Evangeline Trail, Highway 1, Paradise, NS B0S 1R0, Canada;
| | - Andre Lopes Fuly
- Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói 24001-970, Rio de Janeiro, Brazil; (C.C.-P.); (L.C.S.P.J.); (A.C.R.d.S.)
| |
Collapse
|
11
|
Nachtigall PG, Durham AM, Rokyta DR, Junqueira-de-Azevedo ILM. ToxCodAn-Genome: an automated pipeline for toxin-gene annotation in genome assembly of venomous lineages. Gigascience 2024; 13:giad116. [PMID: 38241143 PMCID: PMC10797961 DOI: 10.1093/gigascience/giad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/19/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The rapid development of sequencing technologies resulted in a wide expansion of genomics studies using venomous lineages. This facilitated research focusing on understanding the evolution of adaptive traits and the search for novel compounds that can be applied in agriculture and medicine. However, the toxin annotation of genomes is a laborious and time-consuming task, and no consensus pipeline is currently available. No computational tool currently exists to address the challenges specific to toxin annotation and to ensure the reproducibility of the process. RESULTS Here, we present ToxCodAn-Genome, the first software designed to perform automated toxin annotation in genomes of venomous lineages. This pipeline was designed to retrieve the full-length coding sequences of toxins and to allow the detection of novel truncated paralogs and pseudogenes. We tested ToxCodAn-Genome using 12 genomes of venomous lineages and achieved high performance on recovering their current toxin annotations. This tool can be easily customized to allow improvements in the final toxin annotation set and can be expanded to virtually any venomous lineage. ToxCodAn-Genome is fast, allowing it to run on any personal computer, but it can also be executed in multicore mode, taking advantage of large high-performance servers. In addition, we provide a guide to direct future research in the venomics field to ensure a confident toxin annotation in the genome being studied. As a case study, we sequenced and annotated the toxin repertoire of Bothrops alternatus, which may facilitate future evolutionary and biomedical studies using vipers as models. CONCLUSIONS ToxCodAn-Genome is suitable to perform toxin annotation in the genome of venomous species and may help to improve the reproducibility of further studies. ToxCodAn-Genome and the guide are freely available at https://github.com/pedronachtigall/ToxCodAn-Genome.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, 05503-900 SP, Brazil
- Department of Biological Science, Florida State University, Tallahassee, 32306-4295 FL, USA
| | - Alan M Durham
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo (USP), São Paulo, 05508-090 SP, Brazil
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, 32306-4295 FL, USA
| | | |
Collapse
|
12
|
Cavecci-Mendonça B, Luciano KM, Vaccas T, de Oliveira LA, Clemente EF, Rossini BC, Vieira JCS, de Barros LC, Biondi I, de Magalhães Padilha P, dos Santos LD. Preliminary Insights of Brazilian Snake Venom Metalloproteomics. Toxins (Basel) 2023; 15:648. [PMID: 37999511 PMCID: PMC10675094 DOI: 10.3390/toxins15110648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Snakebite envenoming is one of the most significantly neglected tropical diseases in the world. The lack of diagnosis/prognosis methods for snakebite is one of our motivations to develop innovative technological solutions for Brazilian health. The objective of this work was to evaluate the protein and metallic ion composition of Crotalus durissus terrificus, Bothrops jararaca, B. alternatus, B. jararacussu, B. moojeni, B. pauloensis, and Lachesis muta muta snake venoms. Brazilian snake venoms were subjected to the shotgun proteomic approach using mass spectrometry, and metal ion analysis was performed by atomic spectrometry. Shotgun proteomics has shown three abundant toxin classes (PLA2, serine proteases, and metalloproteinases) in all snake venoms, and metallic ions analysis has evidenced that the Cu2+ ion is present exclusively in the L. m. muta venom; Ca2+ and Mg2+ ions have shown a statistical difference between the species of Bothrops and Crotalus genus, whereas the Zn2+ ion presented a statistical difference among all species studied in this work. In addition, Mg2+ ions have shown 42 times more in the C. d. terrificus venom when compared to the average concentration in the other genera. Though metal ions are a minor fraction of snake venoms, several venom toxins depend on them. We believe that these non-protein fractions are capable of assisting in the development of unprecedented diagnostic devices for Brazilian snakebites.
Collapse
Affiliation(s)
- Bruna Cavecci-Mendonça
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil; (B.C.-M.); (B.C.R.)
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.V.); (L.A.d.O.)
- Triad for Life Ltda, Prospecta–Botucatu Technological Incubator, Botucatu 18610-034, SP, Brazil
| | - Karen Monique Luciano
- Center of Studies of Venoms and Animals Venomous (CEVAP), São Paulo State University (UNESP), Botucatu 18619-002, SP, Brazil; (K.M.L.); (L.C.d.B.)
| | - Tauane Vaccas
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.V.); (L.A.d.O.)
| | - Laudicéia Alves de Oliveira
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.V.); (L.A.d.O.)
| | - Eloisa Fornaro Clemente
- Graduate Program in Research and Development (Medical Biotechnology), Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
| | - Bruno Cesar Rossini
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil; (B.C.-M.); (B.C.R.)
- Department of Chemical and Biological Sciences, Institute of Biosciences (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (J.C.S.V.); (P.d.M.P.)
| | - José Cavalcante Souza Vieira
- Department of Chemical and Biological Sciences, Institute of Biosciences (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (J.C.S.V.); (P.d.M.P.)
| | - Luciana Curtolo de Barros
- Center of Studies of Venoms and Animals Venomous (CEVAP), São Paulo State University (UNESP), Botucatu 18619-002, SP, Brazil; (K.M.L.); (L.C.d.B.)
| | - Ilka Biondi
- Laboratory of Venomous Animals and Herpetology, State University of Feira de Santana (UEFS), Feira de Santana 44036-900, BA, Brazil;
| | - Pedro de Magalhães Padilha
- Department of Chemical and Biological Sciences, Institute of Biosciences (IBB), São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil; (J.C.S.V.); (P.d.M.P.)
| | - Lucilene Delazari dos Santos
- Biotechnology Institute (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, SP, Brazil; (B.C.-M.); (B.C.R.)
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil; (T.V.); (L.A.d.O.)
- Graduate Program in Research and Development (Medical Biotechnology), Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
| |
Collapse
|
13
|
Takayasu BS, Rodrigues SS, Madureira Trufen CE, Machado-Santelli GM, Onuki J. Effects on cell cycle progression and cytoskeleton organization of five Bothrops spp. venoms in cell culture-based assays. Heliyon 2023; 9:e18317. [PMID: 37539139 PMCID: PMC10393766 DOI: 10.1016/j.heliyon.2023.e18317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Snake envenomation is a neglected tropical disease. In Brazil, the Bothrops genus is responsible for about 86% of snakebite accidents. Despite extensive evidence of the cytotoxicity of snake venoms, the cellular and molecular mechanisms involved are not fully understood, especially regarding the effects on cell cycle progression and cytoskeleton organization. Traditionally, the effectiveness and quality control tests of venoms and antivenoms are assessed by in vivo assays. Despite this, there is a rising effort to develop surrogate in vitro models according to the 3R principle (Replacement, Reduction, and Refinement). In this study, we treated rat liver cells (BRL-3A) with venoms from five Bothrops species (B. jararaca, B. jararacussu, B. moojeni, B. alternatus, and B. neuwiedi) and analyzed cell viability and IC50 by MTT assay, cell cycle phases distribution by flow cytometry, and morphology and cytoskeleton alterations by immunofluorescence. In addition, we evaluated the correlation between IC50 and the enzymatic and biological activities of each venom. Our results indicated that Bothrops spp. venoms decreased the cell viability of rat liver BRL-3A cells. The rank order of potency was B. jararacussu > B. moojeni > B. alternatus > B. jararaca > B. neuwiedi. The mechanisms of cytotoxicity were related to microtubules and actin network disruption, but not to cell cycle arrest. No clear correlation was found between the IC50 and retrieved literature data of in vitro enzymatic and in vivo biological activities. This work contributed to understanding cellular and molecular mechanisms underlying the Bothrops spp. venom cytotoxicity, which can help to improve envenomation treatment, as well as disclose potential therapeutic properties of snake venoms.
Collapse
Affiliation(s)
- Bianca Sayuri Takayasu
- Laboratory of Structural Biology, Butantan Institute, São Paulo, Brazil
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Glaucia Maria Machado-Santelli
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janice Onuki
- Laboratory of Structural Biology, Butantan Institute, São Paulo, Brazil
- Laboratory of Herpetology, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
14
|
Gabrili JJM, Pidde G, Magnoli FC, Marques-Porto R, Villas-Boas IM, Squaiella-Baptistão CC, Silva-de-França F, Burgher F, Blomet J, Tambourgi DV. New Insights into Immunopathology Associated to Bothrops lanceolatus Snake Envenomation: Focus on PLA 2 Toxin. Int J Mol Sci 2023; 24:9931. [PMID: 37373079 DOI: 10.3390/ijms24129931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The systemic increase in inflammatory mediator levels can induce diverse pathological disorders, including potentially thrombus formation, which may be lethal. Among the clinical conditions in which the formation of thrombi dictates the patient's prognosis, envenomation by Bothrops lanceolatus should be emphasized, as it can evolve to stroke, myocardial infarction and pulmonary embolism. Despite their life-threatening potential, the immunopathological events and toxins involved in these reactions remain poorly explored. Therefore, in the present study, we examined the immunopathological events triggered by a PLA2 purified from B. lanceolatus venom, using an ex vivo human blood model of inflammation. Our results showed that the purified PLA2 from the venom of B. lanceolatus damages human erythrocytes in a dose dependent way. The cell injury was associated with a decrease in the levels of CD55 and CD59 complement regulators on the cell surface. Moreover, the generation of anaphylatoxins (C3a and C5a) and the soluble terminal complement complex (sTCC) indicates that human blood exposure to the toxin activates the complement system. Increased production of TNF-α, CXCL8, CCL2 and CCL5 followed complement activation. The venom PLA2 also triggered the generation of lipid mediators, as evidenced by the detected high levels of LTB4, PGE2 and TXB2. The scenario here observed of red blood cell damage, dysfunctions of the complement regulatory proteins, accompanied by an inflammatory mediator storm, suggests that B. lanceolatus venom PLA2 contributes to the thrombotic disorders present in the envenomed individuals.
Collapse
Affiliation(s)
- Joel J M Gabrili
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
| | - Giselle Pidde
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
| | | | - Rafael Marques-Porto
- Development and Innovation Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
| | | | | | | | | | | | - Denise V Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
- Prevor Laboratory, 95760 Valmondois, France
| |
Collapse
|
15
|
Avella I, Damm M, Freitas I, Wüster W, Lucchini N, Zuazo Ó, Süssmuth RD, Martínez-Freiría F. One Size Fits All-Venomics of the Iberian Adder ( Vipera seoanei, Lataste 1878) Reveals Low Levels of Venom Variation across Its Distributional Range. Toxins (Basel) 2023; 15:371. [PMID: 37368672 PMCID: PMC10301717 DOI: 10.3390/toxins15060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
European vipers (genus Vipera) are medically important snakes displaying considerable venom variation, occurring at different levels in this group. The presence of intraspecific venom variation, however, remains understudied in several Vipera species. Vipera seoanei is a venomous snake endemic to the northern Iberian Peninsula and south-western France, presenting notable phenotypic variation and inhabiting several diverse habitats across its range. We analysed the venoms of 49 adult specimens of V. seoanei from 20 localities across the species' Iberian distribution. We used a pool of all individual venoms to generate a V. seoanei venom reference proteome, produced SDS-PAGE profiles of all venom samples, and visualised patterns of variation using NMDS. By applying linear regression, we then assessed presence and nature of venom variation between localities, and investigated the effect of 14 predictors (biological, eco-geographic, genetic) on its occurrence. The venom comprised at least 12 different toxin families, of which five (i.e., PLA2, svSP, DI, snaclec, svMP) accounted for about 75% of the whole proteome. The comparative analyses of the SDS-PAGE venom profiles showed them to be remarkably similar across the sampled localities, suggesting low geographic variability. The regression analyses suggested significant effects of biological and habitat predictors on the little variation we detected across the analysed V. seoanei venoms. Other factors were also significantly associated with the presence/absence of individual bands in the SDS-PAGE profiles. The low levels of venom variability we detected within V. seoanei might be the result of a recent population expansion, or of processes other than directional positive selection.
Collapse
Affiliation(s)
- Ignazio Avella
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Maik Damm
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.D.)
| | - Inês Freitas
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Wolfgang Wüster
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK;
| | - Nahla Lucchini
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Óscar Zuazo
- Calle La Puebla 1, 26250 Santo Domingo de la Calzada, Spain
| | - Roderich D. Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.D.)
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (I.F.); (N.L.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| |
Collapse
|
16
|
Deka A, Bhatia S, Santra V, Bharti OK, Lalremsanga HT, Martin G, Wüster W, Owens JB, Graham S, Doley R, Malhotra A. Multilevel Comparison of Indian Naja Venoms and Their Cross-Reactivity with Indian Polyvalent Antivenoms. Toxins (Basel) 2023; 15:toxins15040258. [PMID: 37104196 PMCID: PMC10142961 DOI: 10.3390/toxins15040258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 04/05/2023] Open
Abstract
Snake envenoming is caused by many biological species, rather than a single infectious agent, each with a multiplicity of toxins in their venom. Hence, developing effective treatments is challenging, especially in biodiverse and biogeographically complex countries such as India. The present study represents the first genus-wide proteomics analysis of venom composition across Naja species (N. naja, N. oxiana, and N. kaouthia) found in mainland India. Venom proteomes were consistent between individuals from the same localities in terms of the toxin families present, but not in the relative abundance of those in the venom. There appears to be more compositional variation among N. naja from different locations than among N. kaouthia. Immunoblotting and in vitro neutralization assays indicated cross-reactivity with Indian polyvalent antivenom, in which antibodies raised against N. naja are present. However, we observed ineffective neutralization of PLA2 activities of N. naja venoms from locations distant from the source of immunizing venoms. Antivenom immunoprofiling by antivenomics revealed differential antigenicity of venoms from N. kaouthia and N. oxiana, and poor reactivity towards 3FTxs and PLA2s. Moreover, there was considerable variation between antivenoms from different manufacturers. These data indicate that improvements to antivenom manufacturing in India are highly desirable.
Collapse
Affiliation(s)
- Archana Deka
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Siddharth Bhatia
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for Conservation of Endangered Species, Hyderabad 500048, Telangana, India
| | - Vishal Santra
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly 712407, West Bengal, India
- Captive and Field Herpetology, Anglesey LL65 1YU, UK
- Snake Research Institute, Gujarat Forest Department, Government of Gujarat, Valsad 396050, Gujarat, India
| | - Omesh K. Bharti
- State Institute of Health and Family Welfare, Shimla 171009, Himachal Pradesh, India
| | | | | | - Wolfgang Wüster
- Molecular Ecology and Evolution @ Bangor (MEEB), School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - John B. Owens
- Captive and Field Herpetology, Anglesey LL65 1YU, UK
- Molecular Ecology and Evolution @ Bangor (MEEB), School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Stuart Graham
- Molecular Ecology and Evolution @ Bangor (MEEB), School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Anita Malhotra
- Molecular Ecology and Evolution @ Bangor (MEEB), School of Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| |
Collapse
|
17
|
Silva de França F, Tambourgi DV. Hyaluronan breakdown by snake venom hyaluronidases: From toxins delivery to immunopathology. Front Immunol 2023; 14:1125899. [PMID: 37006255 PMCID: PMC10064005 DOI: 10.3389/fimmu.2023.1125899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/14/2023] [Indexed: 03/19/2023] Open
Abstract
Snake venom enzymes have a broad range of molecular targets in plasma, tissues, and cells, among which hyaluronan (HA) is outstanding. HA is encountered in the extracellular matrix of diverse tissues and in the bloodstream, and its different chemical configurations dictate the diverse morphophysiological processes in which it participates. Hyaluronidases are highlighted among the enzymes involved in HA metabolism. This enzyme has been detected along the phylogenetic tree, suggesting that hyaluronidases exert multiple biological effects on different organisms. Hyaluronidases have been described in tissues, blood and snake venoms. Snake venom hyaluronidases (SVHYA) contribute to tissue destruction in envenomations and are called spreading factors since their action potentiates venom toxin delivery. Interestingly, SVHYA are clustered in Enzyme Class 3.2.1.35 together with mammalian hyaluronidases (HYAL). Both HYAL and SVHYA of Class 3.2.1.35 act upon HA, generating low molecular weight HA fragments (LMW-HA). LMW-HA generated by HYAL becomes a damage-associated molecular pattern that is recognized by Toll-like receptors 2 and 4, triggering cell signaling cascades culminating in innate and adaptive immune responses that are characterized by lipid mediator generation, interleukin production, chemokine upregulation, dendritic cell activation and T cell proliferation. In this review, aspects of the structures and functions of HA and hyaluronidases in both snake venoms and mammals are presented, and their activities are compared. In addition, the potential immunopathological consequences of HA degradation products generated after snakebite envenoming and their use as adjuvant to enhance venom toxin immunogenicity for antivenom production as well as envenomation prognostic biomarker are also discussed.
Collapse
|
18
|
Use of adjuvant ISA VG 71 to produce neutralizing egg yolk antibodies against bothropic venom. Appl Microbiol Biotechnol 2023; 107:1947-1957. [PMID: 36723703 DOI: 10.1007/s00253-023-12409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
The use of egg yolk antibodies-IgY technology-represents an alternative to the production of mammalian immunoglobulins and has several advantages regarding animal welfare and lower costs of production. The use of adjuvants to achieve the hyperimmunization of laying hens plays a key role in the success of the production of high levels of the antibodies. In the present work, two different adjuvant systems (Freund's adjuvants and MontanideTM ISA 71 VG) were compared to produce IgY anti-Bothrops alternatus. For the first immunization, formalin-inactivated Salmonella was added to MontanideTM ISA 71 VG to emulate Freund's complete adjuvant which includes a mycobacteria antigen. After eight immunizations, IgY produced by using either adjuvant was able to neutralize the lethal activity of the venom in a mouse model, but differences were found regarding the recognition of components of the venom between the two adjuvants tested. Overall, MontanideTM adjuvant used in this work could be a good alternative choice to produce antibodies capable of neutralizing the lethality of complex antigens. This adjuvant is commercially available and used in the formulation of several poultry vaccines and could be used for the IgY technology instead of traditional immunomodulators such as Freund's adjuvants. Key points • IgY extracts recognized major components of the venom.• Avidity indexes of the IgY extracts increased after the successive immunizations.• IgY obtained by two adjuvant systems neutralized the lethal activity of the venom.
Collapse
|
19
|
Sialic acid-containing glycans play a role in the activity of snake venom proteases. Biochimie 2023; 204:140-153. [PMID: 36210615 DOI: 10.1016/j.biochi.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Structural variability is a feature of snake venom proteins, and glycosylation is a post-translational modification that contributes to the diversification of venom proteomes. Studies by our group have shown that Bothrops venoms are distinctly defined by their glycoprotein content, and that most hybrid/complex N-glycans identified in these venoms contain sialic acid. Considering that metalloproteases and serine proteases are abundant components of Bothrops venoms and essential in the envenomation process, and that these enzymes contain several glycosylation sites, the role of sialic acid in venom proteolytic activity was evaluated. Here we show that removal of sialic acid by treatment of nine Bothrops venoms with neuraminidase (i) altered the pattern of gelatinolysis in zymography of most venoms and reduced the gelatinolytic activity of all venoms, (ii) decreased the proteolytic activity of some venoms on fibrinogen and the clotting activity of human plasma of all venoms, and (iii) altered the proteolysis profile of plasma proteins by B. jararaca venom, suggesting that sialic acid may play a role in the interaction of proteases with their protein substrates. In contrast, the profile of venom amidolytic activity on Bz-Arg-pNA did not change after removal of sialic acid, indicating that this monosaccharide is not essential in N-glycans of serine proteases acting on small substrates. In summary, these results expand the knowledge about the variability of the subproteomes of Bothrops venom proteases, and for the first time point to the importance of carbohydrate chains containing sialic acid in the enzymatic activities of venom proteases relevant in human envenomation.
Collapse
|
20
|
Simas Pereira Junior LC, Souza JF, Rodrigues da Silva AC, Coriolano de Oliveira E, Sanchez EF, Fuly AL. Utilization of gallic acid to inhibit some toxic activities caused by Bothrops jararaca or B. jararacussu snake venoms. Toxicon 2022; 217:5-12. [PMID: 35931224 DOI: 10.1016/j.toxicon.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Snake bite envenoming is a serious public health issue, affecting thousands of people worldwide every year, especially in rural communities of tropical and subtropical countries. Injection of venom into victims may cause hemorrhaging, blood coagulation imbalance, inflammation, pain, edema, muscle necrosis, and eventually, death. The official validated treatment recommended by governments is the administration of antivenom that efficiently prevents morbidity and mortality. However, this therapy does not effectively neutralize the local effects of Viperidae venoms which constitute one of the leading causes of disability or amputation of the affected limb. Thus, bioprospecting studies seeking for alternative therapies to complement antivenom should be encouraged, especially those investigating the blockage of local venomic toxicity. Plants produce a great diversity of metabolites with a wide range of pharmacological and biological properties. Therefore, the objective of this study was to assess the utilization of gallic acid, which is widely found in plants, against some toxic in vitro (coagulation, proteolytic, and hemolytic) or in vivo (edematogenic, hemorrhagic, and lethal) activities of Bothrops jararaca or B. jararacussu venom. Gallic acid was incubated with B. jararaca or B. jararacussu venom (incubation protocol), after which, in vitro or in vivo assays were performed. Additionally, a gel containing gallic acid was developed and topically applied over the skin of mice after injection of B. jararaca or B. jararacussu venom (treatment protocol), and then, a hemorrhagic assay was carried out. As a result, gallic acid inhibited the toxic activities, with variable efficacy, and the gallic acid gel neutralized B. jararaca or B. jararacussu venom-induced hemorrhagic activity. Gallic acid was devoid of in vitro toxicity as shown through a hemocompatibility test. Thus, these findings demonstrate the potential of gallic acid in the development of an alternative agent to treat victims of snake bites inflicted by Bothrops species.
Collapse
Affiliation(s)
- Luiz Carlos Simas Pereira Junior
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências Biomédicas (Fisiologia e Farmacologia), Instituto Biomédico, Universidade Federal Fluminense, Niterói, 24210-130, Rio de Janeiro, Brazil
| | - Jenifer Frouche Souza
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Ana Cláudia Rodrigues da Silva
- Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Eduardo Coriolano de Oliveira
- Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil
| | - Eladio Flores Sanchez
- Laboratório de Bioquímica de Proteínas de Venenos de Animais, Fundação Ezequiel Dias, Belo Horizonte, 30510-010, Minas Gerais, Brazil
| | - André Lopes Fuly
- Laboratório de Venenos e Toxinas e Avaliação de Inibidores, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências Biomédicas (Fisiologia e Farmacologia), Instituto Biomédico, Universidade Federal Fluminense, Niterói, 24210-130, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, 24020-141, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Production of a murine mAb against Bothrops alternatus and B. neuwiedi snake venoms and its use to isolate a thrombin-like serine protease fraction. Int J Biol Macromol 2022; 214:530-541. [PMID: 35753516 DOI: 10.1016/j.ijbiomac.2022.06.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
Abstract
Accidents with snakes from the genus Bothrops represent ~90 % of all snakebites in Brazil. Monoclonal antibodies (mAbs) targeting venom components can be important assets for treating envenoming syndromes, for developing diagnostic tests and for research purposes. Therefore, in this study, we aimed to generate murine mAbs against the antigenic mixture of Bothropic venoms traditionally used as immunogen to produce Bothropic antivenoms in Brazil. ELISA showed that one of the produced mAbs recognizes B. alternatus and B. neuwiedi venoms (mAb anti-Ba/Bn) specifically and Western Blot revealed that this mAb binds to a single protein band of molecular mass of ≈50 kDa. MAb anti-Ba/Bn inhibited the coagulant activity but was unable to neutralize hemorrhagic and phospholipase A2 activities caused by the B. neuwiedi venom. MAb anti-Ba/Bn was immobilized to Sepharose beads and used for immunoaffinity chromatography of B. neuwiedi venom. Proteolytic activity assays indicated that the immunoaffinity-purified fraction (BnF-Bothrops neuwiedi fraction) has a serine protease thrombin-like profile, which was supported by coagulability assays in mice. Bottom-up proteomic analysis confirmed the prevalence of serine proteases in BnF using label-free quantification. In conclusion, this work characterized a mAb with neutralizing properties against B. neuwiedi coagulant activity and demonstrates that immunoaffinity chromatography using mAbs can be a useful technique for purification of bioactive toxic proteins from Bothrops spp. snake venoms.
Collapse
|
22
|
Analyzing the influence of age and sex in Bothrops pauloensis snake venom. Toxicon 2022; 214:78-90. [DOI: 10.1016/j.toxicon.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
|
23
|
Silva DPD, Ferreira SDS, Torres-Rêgo M, Furtado AA, Yamashita FDO, Diniz EADS, Vieira DS, Ururahy MAG, Silva-Júnior AAD, Luna KPDO, Fernandes-Pedrosa MDF. Antiophidic potential of chlorogenic acid and rosmarinic acid against Bothrops leucurus snake venom. Biomed Pharmacother 2022; 148:112766. [PMID: 35247716 DOI: 10.1016/j.biopha.2022.112766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/22/2022] Open
Abstract
Bothrops leucurus is responsible for most cases of snakebite in Northeast Brazil; however, this species is not included in the pool of venoms used in antivenom production in Brazil. The serotherapy has logistical and effectiveness limitations, which stimulates the search for therapeutic alternatives. Chlorogenic acid and rosmarinic acid present several biological activities, but their antiophidic potential has been poorly explored. Thus, the aim of this approach was to evaluate the potential inhibitory effects of these compounds on B. leucurus venom. Initially, the enzymatic inhibition of toxins was evaluated in vitro. Then, anti-hemorrhagic, anti-myotoxic, and anti-edematogenic assays were performed in vivo, as well analysis of several biochemical markers and hemostatic parameters. In addition, the interaction of inhibitors with SVMP and PLA2 was investigated by docking analysis. Results revealed that compounds inhibited in vitro the enzymatic activities and venom-induced edema, with a decrease in both myeloperoxidase and interleukin quantification. The inhibitors also attenuated the hemorrhagic and myotoxic actions and mitigated changes in serum biochemical and hemostatic markers, as well as decreased lipid peroxidation in liver and kidney tissues. Docking analysis revealed attractive interactions of both inhibitors with the zinc-binding site of SVMP and, in the case of PLA2, chlorogenic acid showed a similar inhibition mechanism to that described for rosmarinic acid. The results evidenced the antiophidic potential of both compounds, which showed higher efficiency than antivenom serum. Thus, both inhibitors are promising candidates for future adjuvants to be used to complement antivenom serotherapy.
Collapse
Affiliation(s)
- Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Manoela Torres-Rêgo
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil; Chemistry Institute, Federal University of Rio Grande do Norte, Avenue Senador Salgado Filho, 3000, Lagoa Nova, Natal 59072-970, Brazil.
| | - Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Fabiana de Oliveira Yamashita
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Eduardo Augusto da Silva Diniz
- Chemistry Institute, Federal University of Rio Grande do Norte, Avenue Senador Salgado Filho, 3000, Lagoa Nova, Natal 59072-970, Brazil.
| | - Davi Serradella Vieira
- Chemistry Institute, Federal University of Rio Grande do Norte, Avenue Senador Salgado Filho, 3000, Lagoa Nova, Natal 59072-970, Brazil.
| | - Marcela Abbott Galvão Ururahy
- Biochemistry Laboratory, Department of Clinical Analysis and Toxicological, College of Pharmacy, Federal University of Rio Grande do Norte, Rua General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| | - Karla Patrícia de Oliveira Luna
- Center of Biological and Health Sciences, State University of Paraíba, Avenue Baraúnas, S/N, Bodocongó, Campina Grande 58429-500, Brazil.
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, S/N, Petrópolis, Natal 59012-570, Brazil.
| |
Collapse
|
24
|
Dias ÊR, de Oliveira LA, Sales Lauria PS, Bordon KDCF, Rodrigues Domênico AM, da Silva Guerreiro ML, Wiezel GA, Cardoso IA, Rossini BC, Marino CL, Pimenta DC, Arantes EC, Casais-e-Silva LL, Branco A, dos Santos LD, Biondi I. Bothrops leucurus snake venom protein profile, isolation and biological characterization of its major toxin PLA2s-likeds. Toxicon 2022; 213:27-42. [DOI: 10.1016/j.toxicon.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022]
|
25
|
Differences in PLA2 Constitution Distinguish the Venom of Two Endemic Brazilian Mountain Lanceheads, Bothrops cotiara and Bothrops fonsecai. Toxins (Basel) 2022; 14:toxins14040237. [PMID: 35448846 PMCID: PMC9028134 DOI: 10.3390/toxins14040237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
Interspecific differences in snake venom compositions can result from distinct regulatory mechanisms acting in each species. However, comparative analyses focusing on identifying regulatory elements and patterns that led to distinct venom composition are still scarce. Among venomous snakes, Bothrops cotiara and Bothrops fonsecai represent ideal models to complement our understanding of the regulatory mechanisms of venom production. These recently diverged species share a similar specialized diet, habitat, and natural history, but each presents a distinct venom phenotype. Here, we integrated data from the venom gland transcriptome and miRNome and the venom proteome of B. fonsecai and B. cotiara to better understand the regulatory mechanisms that may be acting to produce differing venom compositions. We detected not only the presence of similar toxin isoforms in both species but also distinct expression profiles of phospholipases A2 (PLA2) and some snake venom metalloproteinases (SVMPs) and snake venom serine proteinases (SVSPs) isoforms. We found evidence of modular expression regulation of several toxin isoforms implicated in venom divergence and observed correlated expression of several transcription factors. We did not find strong evidence for miRNAs shaping interspecific divergence of the venom phenotypes, but we identified a subset of toxin isoforms whose final expression may be fine-tuned by specific miRNAs. Sequence analysis on orthologous toxins showed a high rate of substitutions between PLA2s, which indicates that these toxins may be under strong positive selection or represent paralogous toxins in these species. Our results support other recent studies in suggesting that gene regulation is a principal mode of venom evolution across recent timescales, especially among species with conserved ecotypes.
Collapse
|
26
|
Tsuruta LR, Moro AM, Tambourgi DV, Sant’Anna OA. Oral Tolerance Induction by Bothrops jararaca Venom in a Murine Model and Cross-Reactivity with Toxins of Other Snake Venoms. Toxins (Basel) 2021; 13:865. [PMID: 34941703 PMCID: PMC8706775 DOI: 10.3390/toxins13120865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/06/2023] Open
Abstract
Oral tolerance is defined as a specific suppression of cellular and humoral immune responses to a particular antigen through prior oral administration of an antigen. It has unique immunological importance since it is a natural and continuous event driven by external antigens. It is characterized by low levels of IgG in the serum of animals after immunization with the antigen. There is no report of induction of oral tolerance to Bothrops jararaca venom. Here, we induced oral tolerance to B. jararaca venom in BALB/c mice and evaluated the specific tolerance and cross-reactivity with the toxins of other Bothrops species after immunization with the snake venoms adsorbed to/encapsulated in nanostructured SBA-15 silica. Animals that received a high dose of B. jararaca venom (1.8 mg) orally responded by showing antibody titers similar to those of immunized animals. On the other hand, mice tolerized orally with three doses of 1 µg of B. jararaca venom showed low antibody titers. In animals that received a low dose of B. jararaca venom and were immunized with B. atrox or B. jararacussu venom, tolerance was null or only partial. Immunoblot analysis against the venom of different Bothrops species provided details about the main tolerogenic epitopes and clearly showed a difference compared to antiserum of immunized animals.
Collapse
Affiliation(s)
- Lilian Rumi Tsuruta
- Biopharmaceuticals Laboratory, Butantan Institute, São Paulo 05503-900, Brazil;
| | - Ana Maria Moro
- Biopharmaceuticals Laboratory, Butantan Institute, São Paulo 05503-900, Brazil;
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (D.V.T.); (O.A.S.)
| | | |
Collapse
|
27
|
Montealegre-Sánchez L, Montoya-Gómez A, Jiménez-Charris E. Individual variations in the protein profiles and functional activities of the eyelash palm pit-viper (Bothriechis schlegelii) venom from the Colombian southwest region. Acta Trop 2021; 223:106113. [PMID: 34450060 DOI: 10.1016/j.actatropica.2021.106113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Bothriechis schlegelii is a venomous snake found in Central and South America, mainly sighted in regions devoted to agriculture. However, in Colombia, little is known about its contribution to the total envenoming cases. Furthermore, there are no reports of the biochemical and functional activities of venoms from the southwest populations, and the differences respecting other populations are unknown. This study analyzed the protein profiles of venom samples obtained from three specimens originating from this region of Colombia using electrophoresis and chromatography. The lethality, edema-induction, hemorrhagic, defibrinating, coagulant, and indirect hemolytic activities were also evaluated. As a result, venoms were composed of proteins with a wide range of molecular weights, most of them below <37 kDa, with differences between male and female electrophoretic and chromatographic profiles. These variations were also observed in the evaluation of venom functional activities such as pro-coagulant, indirect hemolytic, and edema-inducing activities, whereas neither hemorrhagic nor defibrinating activities were detected. These results are also different considering reports with venom samples from other geographical locations, restating the existence of high intraspecific variability in B. schlegelii venoms, which could have relevant pathophysiological and therapeutic implications.
Collapse
|
28
|
Pintor AF, Ray N, Longbottom J, Bravo-Vega CA, Yousefi M, Murray KA, Ediriweera DS, Diggle PJ. Addressing the global snakebite crisis with geo-spatial analyses - Recent advances and future direction. Toxicon X 2021; 11:100076. [PMID: 34401744 PMCID: PMC8350508 DOI: 10.1016/j.toxcx.2021.100076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023] Open
Abstract
Venomous snakebite is a neglected tropical disease that annually leads to hundreds of thousands of deaths or long-term physical and mental ailments across the developing world. Insufficient data on spatial variation in snakebite risk, incidence, human vulnerability, and accessibility of medical treatment contribute substantially to ineffective on-ground management. There is an urgent need to collect data, fill knowledge gaps and address on-ground management problems. The use of novel, and transdisciplinary approaches that take advantage of recent advances in spatio-temporal models, 'big data', high performance computing, and fine-scale spatial information can add value to snakebite management by strategically improving our understanding and mitigation capacity of snakebite. We review the background and recent advances on the topic of snakebite related geospatial analyses and suggest avenues for priority research that will have practical on-ground applications for snakebite management and mitigation. These include streamlined, targeted data collection on snake distributions, snakebites, envenomings, venom composition, health infrastructure, and antivenom accessibility along with fine-scale models of spatio-temporal variation in snakebite risk and incidence, intraspecific venom variation, and environmental change modifying human exposure. These measures could improve and 'future-proof' antivenom production methods, antivenom distribution and stockpiling systems, and human-wildlife conflict management practices, while simultaneously feeding into research on venom evolution, snake taxonomy, ecology, biogeography, and conservation.
Collapse
Affiliation(s)
- Anna F.V. Pintor
- Division of Data, Analytics and Delivery for Impact (DDI), World Health Organization, Geneva, Switzerland
- Australian Institute of Tropical Health and Medicine, Division of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Carlos A. Bravo-Vega
- Research Group in Mathematical and Computational Biology (BIOMAC), Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia
| | - Masoud Yousefi
- School of Biology, College of Science, University of Tehran, Iran
| | - Kris A. Murray
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, UK
- MRC Unit the Gambia at London School of Hygiene and Tropical Medicine, Atlantic Blvd, Fajara, Gambia
| | - Dileepa S. Ediriweera
- Health Data Science Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Peter J. Diggle
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
29
|
Vieira SAPB, Dos Santos BM, Santos Júnior CD, de Paula VF, Gomes MSR, Ferreira GM, Gonçalves RL, Hirata MH, da Silva RA, Brandeburgo MIH, Mendes MM. Isohemigossypolone: Antiophidic properties of a naphthoquinone isolated from Pachira aquatica Aubl. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109028. [PMID: 33676005 DOI: 10.1016/j.cbpc.2021.109028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/17/2023]
Abstract
We investigated the antiophidic properties of isohemigossypolone (ISO), a naphthoquinone isolated from the outer bark of the Pachira aquatic Aubl. The inhibition of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic activities induced by Bothrops pauloensis venom (Pb) was investigated. For this, we use samples resulting from the incubation of Pb with ISO in different concentrations (1:1, 1:5 and 1:10 w/w), we also evaluated the condition of treatment using ISO after 15 min of venom inoculation. The activities of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic induced by the B. pauloensis venom were significantly inhibited when the ISO was pre-incubated with the crude venom. For in vivo neutralization tests, the results were observed even when the ISO was applied after 15 min of inoculation of the venom or metalloprotease (BthMP). Also, to identify the inhibition mechanism, we performed in silico assays, across simulations of molecular coupling and molecular dynamics, it was possible to identify the modes of interaction between ISO and bothropic toxins BmooMPα-I, Jararacussin-I and BNSP-7. The present study shows that naphthoquinone isohemigossypolone isolated from the P. aquatica plant inhibited part of the local and systemic damage caused by venom proteins, demonstrating the pharmacological potential of this compound in neutralizing the harmful effects caused by snakebites.
Collapse
Affiliation(s)
| | - Benedito Matheus Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Célio Dias Santos Júnior
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Vanderlúcia Fonseca de Paula
- Laboratory of Natural Products, Department of Sciences and Technology, State University of Bahia Southwest (UESB), Jequié, BA, Brazil
| | - Mario Sergio Rocha Gomes
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Mirian Machado Mendes
- Special Academic Unit of Biosciences, Federal University of Goiás (UFG), Jataí, GO, Brazil.
| |
Collapse
|
30
|
Hatakeyama DM, Jorge Tasima L, da Costa Galizio N, Serino-Silva C, Fabri Bittencourt Rodrigues C, Rodrigues Stuginski D, Stefanini Sant’Anna S, Fernandes Grego K, Tashima AK, Nishiduka ES, de Morais-Zani K, Tanaka-Azevedo AM. From birth to adulthood: An analysis of the Brazilian lancehead (Bothrops moojeni) venom at different life stages. PLoS One 2021; 16:e0253050. [PMID: 34111213 PMCID: PMC8191990 DOI: 10.1371/journal.pone.0253050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
The Brazilian lancehead (Bothrops moojeni) has a wide distribution in Brazil and represents a serious public health hazard. Previous works reported that the symptoms of snakebites caused by B. moojeni juveniles’ bites were mainly related to coagulation, while those caused by adults’ bites had a more prominent local damage. In this work, we analyzed the venoms of B. moojeni at different life stages to better understand the ontogeny shift in this species. Snakes were grouped by age and sex, and venom pools were formed accordingly. Compositional analyses by one-dimensional electrophoresis (1-DE), chromatography, and mass spectrometry revealed that ontogenetic changes might be mostly related to phospholipase A2 (PLA2) and metalloproteases. Regarding the venoms functional aspect, proteolytic, L-amino acid oxidase, PLA2, and coagulant in vitro activities were assayed, but only the first and the last ones showed age-related changes, with the venom of snakes up to 1 year-old displaying lower proteolytic and higher coagulant activities, while those from 2 years-old onward presented the opposite relation. The venoms of 3 years-old snakes were exceptions to the compositional and functional pattern of adults as both venoms presented profiles similar to neonates. Sex-related differences were observed in specific groups and were not age-related. In vivo experiments (median lethal dose and hemorrhagic activity) were statistically similar between neonates and adults, however we verified that the adult venom killed mice faster comparing to the neonates. All venoms were mostly recognized by the antibothropic serum and displayed similar profiles to 1-DE in western blotting. In conclusion, the Brazilian lancehead venom showed ontogenetic shift in its composition and activities. Furthermore, this change occurred in snakes from 1 to 2 years-old, and interestingly the venom pools from 3 years-old snakes had particular characteristics, which highlights the importance of comprehensive studies to better understand venom variability.
Collapse
Affiliation(s)
- Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Lídia Jorge Tasima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Nathália da Costa Galizio
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | | | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
31
|
Nascimento LS, Nogueira-Souza PD, Rocha-Junior JRS, Monteiro-Machado M, Strauch MA, Prado SAL, Melo PA, Veiga-Junior VF. Phytochemical composition, antisnake venom and antibacterial activities of ethanolic extract of Aegiphila integrifolia (Jacq) Moldenke leaves. Toxicon 2021; 198:121-131. [PMID: 33984369 DOI: 10.1016/j.toxicon.2021.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Snakebites are considered a major neglected tropical disease, resulting in around 100,000 deaths per year. The recommended treatment by the WHO is serotherapy, which has limited effectiveness against the toxins involved in local tissue damage. In some countries, patients use plants from folk medicines as antivenoms. Aegiphila species are common plants from the Brazilian Amazon and are used to treat snakebites. In this study, leaves from Aegiphila integrifolia (Jacq) Moldenke were collected from Roraima state, Brazil and its ethanolic extract was evaluated through in vitro and in vivo experiments to verify their antiophidic activity against Bothrops atrox crude venom. The isolated compounds from A. integrifolia were analyzed and the chemical structures were elucidated on the basis of infrared, ultraviolet, mass, 1H and 1³C NMR spectrometry data. Among the described compounds, lupeol (7), betulinic acid (1), β-sitosterol (6), stigmasterol (5), mannitol (4), and the flavonoids, pectolinarigenin (2) and hispidulin (3), were identified. The ethanolic extract and flavonoids (2 and 3) partially inhibited the proteolytic, phospholipase A2 and hyaluronidase activities of B. atrox venom, and the skin hemorrhage induced by this venom in mice. Antimicrobial activity against different bacteria was evaluated and the extract partially inhibited bacterial growth. Thus, taken together, A. integrifolia ethanolic extract has promising use as an antiophidic and antimicrobial.
Collapse
Affiliation(s)
- Leandro S Nascimento
- Chemical Engineering Section, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Pâmella D Nogueira-Souza
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | - José R S Rocha-Junior
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | - Marcos Monteiro-Machado
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | | | - Simone A L Prado
- Federal University of Roraima, Department of Chemistry, Boa Vista, RR, Brazil
| | - Paulo A Melo
- Federal University of Rio de Janeiro, Pharmacology and Medicinal Chemistry Program, Rio de Janeiro, RJ, Brazil
| | - Valdir F Veiga-Junior
- Chemical Engineering Section, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
32
|
Hansiya VS, Geetha N. In vitro anti-venom potential of various solvent based leaf extracts of Andrographis serpyllifolia (Rottler ex Vahl) Wight against Naja naja and Daboia russelli. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113687. [PMID: 33309916 DOI: 10.1016/j.jep.2020.113687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Snake bite is a major occupational hazard in tropical and subtropical countries including India as per the World Health Organization. Naja naja (Indian cobra) and Daboia russelli (Russell's viper) are the two poisonous snakes commonly associated with human mortality in India. Andrographis serpyllifolia (Rottler ex Vahl) Wight has been documented in ethnobotanical records as a plant possessing potent anti-snake venom activity. AIM OF THE STUDY The present study is aimed for systematic evaluation of in vitro anti-venom potential of various solvent based leaf extracts of A. serpyllifolia against toxic venom enzymes of Naja naja and Daboia russelli. MATERIALS AND METHODS Different solvent based leaf extracts of A. serpyllifolia were tested against the snake venoms of Naja naja and Daboia russelli obtained from Irula Snake Catchers Industrial Co-operative Society Limited, Kancheepuram, Tamil nadu, India. Three different in vitro neutralization assays such as indirect hemolysis, procoagulent and lytic activities and seven in vitro enzyme inhibition assays such as protease, acetylcholinesterase, phosphomonoesterase, phosphodiesterase, 5'nucleotidase, phospholipase A2, hyaluronidase and post synaptic acetylcholine receptor binding activity were carried out according to standard protocols. The results were analyzed using the standard ANOVA procedures. RESULTS Among various solvent based leaf extracts of A. serpyllifolia tested, aqueous extract showed maximum neutralizing and inhibitory activities against Naja naja and Daboia russelli venoms. CONCLUSIONS The various in vitro enzymatic studies reveal that the aqueous leaf extract of A. serpyllifolia plant could inhibit most of the toxic enzymes of the Naja naja and Daboia russelli venoms which could be further confirmed by in vivo studies.
Collapse
Affiliation(s)
- V S Hansiya
- Department of Botany, Bharathiar University, Coimbatore, 46, TN, India.
| | - N Geetha
- Department of Botany, Bharathiar University, Coimbatore, 46, TN, India.
| |
Collapse
|
33
|
Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochem Soc Trans 2021; 48:719-731. [PMID: 32267491 PMCID: PMC7200639 DOI: 10.1042/bst20200110] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The phospholipase A2 (PLA2) and l-amino acid oxidase (LAAO) are two major enzymes found in the venoms from most snake species. These enzymes have been structurally and functionally characterised for their pharmacological activities. Both PLA2 and LAAO from different venoms demonstrate considerable cytotoxic effects on cancer cells via induction of apoptosis, cell cycle arrest and suppression of proliferation. These enzymes produce more pronounced cytotoxic effects in cancer cells than normal cells, thus they can be potential sources as chemotherapeutic agents. It is proposed that PLA2 and LAAO contribute to an elevated oxidative stress due to their catalytic actions, for instance, the ability of PLA2 to produce reactive oxygen species during lipolysis and formation of H2O2 from LAAO catalytic activity which consequently lead to cell death. Nonetheless, the cell-death signalling pathways associated with exposure to these enzymatic toxins are not fully elucidated yet. Here in this review, we will discuss the cytotoxic effects of PLA2 and LAAO in relationship to their catalytic mechanisms and the underlying mechanisms of cytotoxic actions.
Collapse
|
34
|
Antivenomics and in vivo preclinical efficacy of six Latin American antivenoms towards south-western Colombian Bothrops asper lineage venoms. PLoS Negl Trop Dis 2021; 15:e0009073. [PMID: 33524033 PMCID: PMC7877754 DOI: 10.1371/journal.pntd.0009073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/11/2021] [Accepted: 12/15/2020] [Indexed: 11/19/2022] Open
Abstract
Background Bothrops asper represents the clinically most important snake species in Central America and Northern South America, where it is responsible for an estimated 50–80% of snakebites. Compositional variability among the venom proteomes of B. asper lineages across its wide range mirrors clinical differences in their envenomings. Bothropic antivenoms generated in a number of Latin American countries commonly exhibit a certain degree of paraspecific effectiveness in the neutralization of congeneric venoms. Defining the phylogeographic boundaries of an antivenom's effectivity has implications for optimizing its clinical use. However, the molecular bases and impact of venom compositions on the immune recognition and neutralization of the toxic activities of across geographically disparate populations of B. asper lineages has not been comprehensively studied. Methodology/Principal findings Third-generation antivenomics was applied to quantify the cross-immunorecognizing capacity against the individual components of venoms of three B. asper lineages (B. asper (sensu stricto), B. ayerbei and B. rhombeatus) distributed in south-western (SW) Colombia, of six Latin American antivenoms, produced against homologous (Colombia, INS-COL and PROBIOL) and Costa Rica (ICP)), and heterologous (Argentina (BIOL), Perú (INS-PERU) and Venezuela (UCV)) bothropic venoms. In vivo neutralization assays of the lethal, hemorrhagic, coagulant, defibrinogenating, myotoxic, edematogenic, indirect hemolytic, and proteolytic activities of the three SW Colombian B. asper lineage venoms were carried to compare the preclinical efficacy of three (Colombian INS-COL and PROBIOL, and Costa Rican ICP) antivenoms frequently used in Colombia. Antivenomics showed that all the six antivenom affinity matrices efficiently immunoretained most of the B. asper lineages venom proteins and exhibited impaired binding towards the venoms' peptidomes. The neutralization profile of the INS-COL, PROBIOL and ICP antivenoms towards the biological activities of the venoms of SW Colombian B. asper (sensu stricto), B. ayerbei and B. rhombeatus lineages was coherent with the antivenomics outcome. In addition, the combination of in vitro (antivenomics) and in vivo neutralization results allowed us to determine their toxin-specific and venom neutralizing antibody content. Noteworthy, heterologous INS-PERU, BIOL, and UCV bothropic antivenoms had equal or higher binding capacity towards the venoms components of SW Colombian B. asper lineages that the homologous Colombian and Costa Rican antivenoms. Conclusions/Significance The combined in vitro and in vivo preclinical outcome showed that antivenoms manufactured in Colombia and Costa Rica effectively neutralize the major toxic activities of SW Colombian B. asper lineage venoms. The antivenomics profiles of the heterologous antivenoms manufactured in Argentina, Venezuela, and Perú strongly suggests their (pre)clinical adequacy for the treatment of B. asper lineage envenomings in SW Colombia. However, their recommendation in the clinical setting is pending on in vivo neutralization testing and clinical testing in humans. Bothrops asper is a highly adaptable snake species complex, which is considered the most dangerous snake throughout much of its distribution range from the Atlantic lowland of eastern México to northwestern Perú. Antivenoms are the only scientifically validated treatment of snakebite envenomings. Venom variation is particularly common in wide ranging species, such as B. asper, and may result in variable clinical presentations of envenomings, as is the case for the B. asper species complex, potentially undermining the efficacy of snakebite treatments depending on the immunization mixture used in the generation of the antivenom. Conversely, phylogenetic conservation of antigenic determinants confers an unpredictable degree of paraspecificity to homologous antivenoms produced for a geographic area, but also to heterologous congeneric antivenoms, towards the venom components of allopatric conspecific populations. This work aimed at comparing the preclinical profile of a panel of Latin American homologous and heterologous antivenoms against the venoms of B. asper lineages distributed in SW Colombia. The outcome of this study strongly suggests the suitability of considering the heterologous antivenoms BIOL (Argentina), UCV (Venezuela) and INS-PERU (Perú) as alternatives to homologous Colombian INS-COL and PROBIOL and Costa Rican ICP antivenoms for the treatment of envenomings by B. asper (sensu stricto) in W Colombia and Ecuador, B. ayerbei in Cauca and Nariño (Colombia), and B. rhombeatus in Cauca river valley, SW Colombia. Snakebite envenoming is an important occupational health problem, particularly in rural areas of developing countries. The timely administration of an effective antivenom remains the mainstay of snakebite management. However, the use of antivenoms is often limited by non-availability due to high cost or by lack of effectiveness. Antivenom shortage can be addressed through the generation of novel polyspecific antivenoms of wide clinical efficacy against the venoms of the medically-relevant snake species within the geographical range where these antivenoms are intended to be deployed, but also by optimizing the paraspecific use of current antivenoms. In Colombia, antivenoms are supplied by two manufacturers, one public, the Instituto Nacional de Salud (INS), and one private, Laboratorios Probiol (PROBIOL). However, the antivenom supply in Colombia has traditionally been insufficient, a circumstance that has led the Colombian Ministerio de Salud y Protección Social to issue several resolutions and decrees to announce this health emergency in the country, and to import antivenoms produced in México and Costa Rica. Contrary to these countries, where B. asper represents the only species of the genus, in SW Colombia three close phylogenetically related B. asper lineages, B. asper (sensu stricto), B. rhombeatus, and B. ayerbei, are responsible for most severe cases of snakebite accidents and exhibit remarkable differences in the physiopathological profile of their envenomings. This work aimed to assess the immunorecognition characteristics of a panel of antivenoms manufactured in Colombia, Costa Rica, Argentina, Perú and Venezuela towards the venoms of the three SW Colombian B. asper lineages. Additionally, combined quantitative in vitro and in vivo data show that the homologous antivenoms produced in Colombia (INS-COL, PROBIOL) and Costa Rica (ICP) effectively neutralize the lethality and the major toxic activities tested of the three SW Colombian B. asper lineage venoms. Heterologous Argentinian (BIOL), Venezuelan (UCV) and Peruvian (INS-PERU) antivenoms also showed comparable, even higher, effective immunocapturing ability towards the venom proteomes of SW Colombian B. asper (sensu stricto), B. rhombeatus, and B. ayerbei, than the Colombian and Costa Rican antivenoms. These results are in line with previous studies highlighting the notable conservation of paraspecific antigenic determinants across the phylogeny of genus Bothrops, and advocate for considering the heterologous Argentinian, Venezuelan and Peruvian antivenoms as further therapeutic alternatives for the treatment of B. asper spp. snakebites in Colombia.
Collapse
|
35
|
Maia-Marques R, Nascimento IMR, Lauria PSS, Silva ECPD, Silva DF, Casais-E-Silva LL. Inflammatory mediators in the pronociceptive effects induced by Bothrops leucurus snake venom: The role of biogenic amines, nitric oxide, and eicosanoids. Toxicology 2020; 448:152649. [PMID: 33259823 DOI: 10.1016/j.tox.2020.152649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/10/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Bothrops leucurus is the major causative agent of venomous snakebites in Northeastern Brazil. Severe pain is the most frequent symptom in these envenomings, with an important inflammatory component. This work characterized the pronociceptive effects evoked by B. leucurus venom (BLV) in mice and the role of inflammatory mediators in these responses. The nociceptive behaviors were quantified by the modified formalin test. The mechanical hyperalgesia was assessed by the digital von Frey test. Pharmacological assays were performed with different antagonists and synthesis inhibitors to investigate the involvement of inflammatory mediators in both nociceptive events. BLV (1-15 μg/paw) injection in mice evoked intense and dose-dependent nociceptive behaviors that lasted for up to 1 h. BLV (10 μg/paw) also caused sustained mechanical hyperalgesia. Histamine and serotonin played a role in the nociception, but not in the BLV-induced mechanical hyperalgesia. Nitric oxide contributed to both responses, but only to the late stages of mechanical hyperalgesia. Eicosanoids were also present in both nociceptive responses. Prostanoid synthesis by COX-1 seemed to be more relevant for the nociception, whereas COX-2 had a more prominent role in the mechanical hyperalgesia. Leukotrienes were the most relevant mediators of BLV-induced mechanical hyperalgesia, hence inhibiting lipoxygenase pathway could be an efficient therapeutic strategy for pain management during envenoming. Our behavioral data demonstrates that BLV promotes nociceptive transmission mediated by biogenic amines, nitric oxide and eicosanoids, and nociceptor sensitization through nitric oxide and eicosanoids. Moreover, phospholipases A2 (PLA2), an important class of toxins present in bothropic venoms, appear to play an important role in the nociceptive and hypernociceptive response induced by BLV.
Collapse
Affiliation(s)
- Rodrigo Maia-Marques
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Igor M R Nascimento
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Pedro S S Lauria
- Laboratory of Pharmacology and Experimental Therapeutics, Federal University of Bahia, Salvador, BA, Brazil.
| | - Ellen C P da Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Darizy F Silva
- Laboratory of Endocrine and Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Luciana L Casais-E-Silva
- Laboratory of Neuroimmunoendocrinology and Toxinology, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
36
|
Effects of photobiomodulation therapy on the local experimental envenoming by Bothrops leucurus snake. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112087. [PMID: 33234463 DOI: 10.1016/j.jphotobiol.2020.112087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 02/03/2023]
Abstract
Bothrops leucurus is the major causative agent of snakebites in Brazil's Northeast. The systemic effects of its venom are effectively neutralized by antivenom therapy, preventing bitten patients' death. However, antivenom fails in neutralizing local effects that include intense pain, edema, bleeding, and myonecrosis. Such effects can lead to irreversible sequels, representing a clinically relevant issue for which there is no current effective treatment. Herein, the effects of photobiomodulation therapy (PBMT) were tested in the local actions induced by B. leucurus venom (BLV) in mice (n = 123 animals in 20 experimental groups). A continuous emission AlGaAs semiconductor diode laser was used in two wavelengths (660 or 780 nm). Mechanical nociceptive thresholds were assessed with the electronic von Frey apparatus. Local edema was determined by measuring the increase in paw thickness. Hemorrhage was quantified by digital measurement of the bleeding area. Myotoxicity was evaluated by serum creatine kinase (CK) activity and histopathological analysis. PBMT promoted anti-hypernociception in BLV-injected mice; irradiation with the 660 nm laser resulted in faster effect onset than the 780 nm laser. Both laser protocols reduced paw edema formation, whether irradiation was performed immediately or half an hour after venom injection. BLV-induced hemorrhage was not altered by PBMT. Laser irradiation delayed, but did not prevent myotoxicity caused by BLV, as shown by a late increase in CK activity and histopathological alterations. PBMT was effective in the control of some of the major local effects of BLV refractory to antivenom. It is a potential complementary therapy that could be used in bothropic envenoming, minimizing the morbidity of these snakebite accidents.
Collapse
|
37
|
Hatakeyama DM, Tasima LJ, Bravo-Tobar CA, Serino-Silva C, Tashima AK, Rodrigues CFB, Aguiar WDS, Galizio NDC, de Lima EOV, Kavazoi VK, Gutierrez-Marín JD, de Farias IB, Sant’Anna SS, Grego KF, de Morais-Zani K, Tanaka-Azevedo AM. Venom complexity of Bothrops atrox (common lancehead) siblings. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20200018. [PMID: 33101399 PMCID: PMC7553035 DOI: 10.1590/1678-9199-jvatitd-2020-0018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Variability in snake venoms is a well-studied phenomenon. However, sex-based variation of Bothrops atrox snake venom using siblings is poorly investigated. Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Differences in the venom composition of Bothrops genus have been linked to several factors such as ontogeny, geographical distribution, prey preferences and sex. Thus, in the current study, venom samples of Bothrops atrox male and female siblings were analyzed in order to compare their biochemical and biological characteristics. METHODS Venoms were collected from five females and four males born from a snake captured from the wild in São Bento (Maranhão, Brazil), and kept in the Laboratory of Herpetology of Butantan Intitute. The venoms were analyzed individually and as a pool of each gender. The assays consisted in protein quantification, 1-DE, mass spectrometry, proteolytic, phospholipase A2, L-amino acid oxidase activities, minimum coagulant dose upon plasma, minimum hemorrhagic dose and lethal dose 50%. RESULTS Electrophoretic profiles of male's and female's venom pools were quite similar, with minor sex-based variation. Male venom showed higher LAAO, PLA2 and hemorrhagic activities, while female venom showed higher coagulant activity. On the other hand, the proteolytic activities did not show statistical differences between pools, although some individual variations were observed. Meanwhile, proteomic profile revealed 112 different protein compounds; of which 105 were common proteins of female's and male's venom pools and seven were unique to females. Despite individual variations, lethality of both pools showed similar values. CONCLUSION Although differences between female and male venoms were observed, our results show that individual variations are significant even between siblings, highlighting that biological activities of venoms and its composition are influenced by other factors beyond gender.
Collapse
Affiliation(s)
- Daniela Miki Hatakeyama
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lídia Jorge Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cesar Adolfo Bravo-Tobar
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Caroline Serino-Silva
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Weslei da Silva Aguiar
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Nathália da Costa Galizio
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Victor Koiti Kavazoi
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Juan David Gutierrez-Marín
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Iasmim Baptista de Farias
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Karen de Morais-Zani
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
- Interinstitutional Graduate Program in Biotechnology (IPT, IBU and USP), University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
38
|
Machado Braga JR, de Morais-Zani K, Pereira DDS, Sant'Anna SS, da Costa Galizio N, Tanaka-Azevedo AM, Gomes Vilarinho AR, Rodrigues JL, Teixeira da Rocha MM. Sexual and ontogenetic variation of Bothrops leucurus venom. Toxicon 2020; 184:127-135. [PMID: 32553734 DOI: 10.1016/j.toxicon.2020.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 11/19/2022]
Abstract
Various factors, such as geographical origin, climate, sex, age and diet can influence the composition and pathophysiological activities of snake venoms. In this study, we examined the sexual and ontogenetic variations in the venom of Bothrops leucurus, a pitviper responsible for more than 80% of the snakebites in the state of Bahia, northeastern Brazilian. The venoms of 31 snakes were pooled according to sex and age (young, adult and old) and screened by SDS-PAGE (in reducing and non-reducing conditions), reverse-phase high performance liquid chromatography (RP-HPLC), gelatin zymography, and immunoblotting with therapeutic bothropic antivenom (BAV) from the Instituto Butantan. The electrophoretic and chromatographic profiles showed intraspecific ontogenetic variation, whereas sexual variations were less evident. All venoms showed gelatinolytic activity associated with 50-75 kDa protein bands. In addition, all venoms, regardless of the snakes' sex and age, cross-reacted to similar extents with BAV. Our findings show that B. leucurus venom changes during ontogenetic development and demonstrate sexual differences in its composition, indicating differences in biological activity.
Collapse
Affiliation(s)
- Jacqueline Ramos Machado Braga
- Centro de Ciências Agrárias, Ambientais e Biológicas - Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil.
| | - Karen de Morais-Zani
- Interunidades em Biotecnologia, Universidade de São Paulo-Instituto de Pesquisas Tecnológicas-Instituto Butantan, São Paulo, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Diego Dos Santos Pereira
- Centro de Ciências Agrárias, Ambientais e Biológicas - Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil
| | | | - Nathália da Costa Galizio
- Interunidades em Biotecnologia, Universidade de São Paulo-Instituto de Pesquisas Tecnológicas-Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Interunidades em Biotecnologia, Universidade de São Paulo-Instituto de Pesquisas Tecnológicas-Instituto Butantan, São Paulo, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - José Lucca Rodrigues
- Toxinas de Interesse em Saúde, Casa Afrânio do Amaral, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
39
|
Rodrigues CR, Molina DAM, Silva de Assis TC, Liberato C, Melo-Braga MN, Ferreyra CB, Cárdenas J, Costal-Oliveira F, Guerra-Duarte C, Chávez-Olórtegui C. Proteomic and toxinological characterization of Peruvian pitviper Bothrops brazili ("jergón shushupe"), venom. Toxicon 2020; 184:19-27. [PMID: 32479836 DOI: 10.1016/j.toxicon.2020.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
Abstract
Bothrops brazili is a pitviper from Amazonian region, responsible for many accidents in Peru. Despite its relevance, its venom has not been extensively characterized. In the present work, Bothrops brazili venom (BbV) components were analyzed by RP-HPLC, SDS-PAGE and MALDI-TOF/TOF. Approximately 37 proteins were identified, belonging to 7 families. Snake venom metalloproteinases (SVMPs) were the most abundant proteins of the venom (33.05%), followed by snake venom serine proteinases (SVSPs, 26.11%), phospholipases A2 (PLA2, 25.57%), snake C-type lectins (CTLs, 9.61%), L-aminoacid oxidase (LAAO, 3.80%), cystein-rich secretory proteins (CRISP, 1.67%) and Bradykinin-potentiating peptide (BPP, 0.20%). In vitro enzymatic activities of BbV showed high levels of SVMP activity and reduced Hyal activity in comparison with other bothropic venoms. Furthermore, BbV reduced VERO cells viability. ELISA and Western Blotting showed that both Peruvian and Brazilian bothropic antivenoms were able to recognize BbV components. This work provides an overview of BbV venom content and indicates a potential efficiency of Peruvian and Brazilian antivenoms to treat accidents with this species.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis Alexis Molina Molina
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thamyres C Silva de Assis
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Liberato
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
40
|
Sanz L, Pérez A, Quesada-Bernat S, Diniz-Sousa R, Calderón LA, Soares AM, Calvete JJ, Caldeira CAS. Venomics and antivenomics of the poorly studied Brazil's lancehead, Bothrops brazili (Hoge, 1954), from the Brazilian State of Pará. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190103. [PMID: 32362928 PMCID: PMC7179968 DOI: 10.1590/1678-9199-jvatitd-2019-0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/28/2020] [Indexed: 11/26/2022] Open
Abstract
Background: The Brazil’s lancehead, Bothrops brazili, is a poorly
studied pit viper distributed in lowlands of the equatorial rainforests of
southern Colombia, northeastern Peru, eastern Ecuador, southern and
southeastern Venezuela, Guyana, Suriname, French Guiana, Brazil, and
northern Bolivia. Few studies have been reported on toxins isolated from
venom of Ecuadorian and Brazilian B. brazili. The aim of
the present study was to elucidate the qualitative and quantitative protein
composition of B. brazili venom from Pará (Brazil), and to
carry out a comparative antivenomics assessment of the immunoreactivity of
the Brazilian antibothropic pentavalent antivenom [soro
antibotrópico (SAB) in Portuguese] against the venoms of
B. brazili and reference species, B.
jararaca. Methods: We have applied a quantitative snake venomics approach, including
reverse-phase and two-dimensional electrophoretic decomplexation of the
venom toxin arsenal, LC-ESI-MS mass profiling and peptide-centric MS/MS
proteomic analysis, to unveil the overall protein composition of B.
brazili venom from Pará (Brazil). Using third-generation
antivenomics, the specific and paraspecific immunoreactivity of the
Brazilian SAB against homologous (B. jararaca) and
heterologous (B. brazili) venoms was investigated. Results: The venom proteome of the Brazil’s lancehead (Pará) is predominantly composed
of two major and three minor acidic (19%) and two major and five minor basic
(14%) phospholipase A2 molecules; 7-11 snake venom
metalloproteinases of classes PI (21%) and PIII (6%); 10-12 serine
proteinases (14%), and 1-2 L-amino acid oxidases (6%). Other toxins,
including two cysteine-rich secretory proteins, one C-type lectin-like
molecule, one nerve growth factor, one 5'-nucleotidase, one
phosphodiesterase, one phospholipase B, and one glutaminyl cyclase molecule,
represent together less than 2.7% of the venom proteome. Third generation
antivenomics profile of the Brazilian pentabothropic antivenom showed
paraspecific immunoreactivity against all the toxin classes of B.
brazili venom, with maximal binding capacity of
132.2 mg venom/g antivenom. This figure indicates that 19% of antivenom's
F(ab')2 antibodies bind B. brazili venom
toxins. Conclusion: The proteomics outcome contribute to a deeper insight into the spectrum of
toxins present in the venom of the Brazil’s lancehead, and rationalize the
pathophysiology underlying this snake bite envenomings. The comparative
qualitative and quantitative immunorecognition profile of the Brazilian
pentabothropic antivenom toward the venom toxins of B.
brazili and B. jararaca (the reference venom
for assessing the bothropic antivenom's potency in Brazil), provides clues
about the proper use of the Brazilian antibothropic polyvalent antivenom in
the treatment of bites by the Brazil’s lancehead.
Collapse
Affiliation(s)
- Libia Sanz
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Alicia Pérez
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Sarai Quesada-Bernat
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,São Lucas University Center (UniSL), Porto Velho, RO, Brazil
| | - Leonardo A Calderón
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,Graduate Program in Biodiversity and Biotechnology, BIONORTE Network, Porto Velho, RO, Brazil.,Aparício Carvalho University Center (FIMCA), Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,São Lucas University Center (UniSL), Porto Velho, RO, Brazil.,Graduate Program in Biodiversity and Biotechnology, BIONORTE Network, Porto Velho, RO, Brazil.,National Institute of Science and Technology in Epidemiology of the Western Amazônia, (INCT-EpiAmO), Porto Velho, RO, Brazil
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Spanish National Research Council (CSIC), Valencia, Spain
| | - Cleópatra A S Caldeira
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation Rondônia, Porto Velho, RO, Brazil.,Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondônia (UNIR), Porto Velho, RO, Brazil.,Graduate Program in Biodiversity and Biotechnology, BIONORTE Network, Porto Velho, RO, Brazil
| |
Collapse
|
41
|
Tasima LJ, Serino-Silva C, Hatakeyama DM, Nishiduka ES, Tashima AK, Sant'Anna SS, Grego KF, de Morais-Zani K, Tanaka-Azevedo AM. Crotamine in Crotalus durissus: distribution according to subspecies and geographic origin, in captivity or nature. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190053. [PMID: 32362925 PMCID: PMC7187639 DOI: 10.1590/1678-9199-jvatitd-2019-0053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Crotalus durissus is considered one of the most important
species of venomous snakes in Brazil, due to the high mortality of its
snakebites. The venom of Crotalus durissus contains four
main toxins: crotoxin, convulxin, gyroxin and crotamine. Venoms can vary in
their crotamine content, being crotamine-negative or -positive. This
heterogeneity is of great importance for producing antivenom, due to their
different mechanisms of action. The possibility that antivenom produced by
Butantan Institute might have a different immunorecognition capacity between
crotamine-negative and crotamine-positive C. durissus
venoms instigated us to investigate the differences between these two venom
groups. Methods: The presence of crotamine was analyzed by SDS-PAGE, western blotting and
ELISA, whereas comparison between the two types of venoms was carried out
through HPLC, mass spectrometry analysis as well as assessment of antivenom
lethality and efficacy. Results: The results showed a variation in the presence of crotamine among the
subspecies and the geographic origin of snakes from nature, but not in
captive snakes. Regarding differences between crotamine-positive and
-negative venoms, some exclusive proteins are found in each pool and the
crotamine-negative pool presented more phospholipase A2 than
crotamine-positive pool. This variation could affect the time to death, but
the lethal and effective dose were not affected. Conclusion: These differences between venom pools indicate the importance of using both,
crotamine-positive and crotamine-negative venoms, to produce the
antivenom.
Collapse
Affiliation(s)
- Lídia J Tasima
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Caroline Serino-Silva
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Daniela M Hatakeyama
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Erika S Nishiduka
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Alexandre K Tashima
- Department of Biochemistry, Federal University of São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Sávio S Sant'Anna
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Kathleen F Grego
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Karen de Morais-Zani
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| | - Anita M Tanaka-Azevedo
- Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.,Interinstitutional Postgraduate Program in Biotechnology (PPIB - IPT, IBU and USP), University of São Paulo(USP), São Paulo, SP, Brazil
| |
Collapse
|
42
|
Almeida JR, Mendes B, Patiño RSP, Pico J, Laines J, Terán M, Mogollón NGS, Zaruma-Torres F, Caldeira CADS, da Silva SL. Assessing the stability of historical and desiccated snake venoms from a medically important Ecuadorian collection. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108702. [PMID: 31911190 DOI: 10.1016/j.cbpc.2020.108702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 02/02/2023]
Abstract
Bothrops asper and Bothrops atrox are important venomous snakes from Ecuador responsible for the most of ophidic accidents, which in the past were treated with a national polyvant antivenom. For years, the venom pools were collected and stored at room temperature in a laboratory. Taking into account the controversial ability of desiccated samples to retain their biological effects and enzymatic activities, we investigated the biochemical and toxicological properties of venoms after years of storage. The proteomic profiles of historical venoms analyzed by high-performance liquid chromatography and electrophoresis are very similar. The fresh batches of venom were more lethal than those stored for years, just as the initial and current LD50 values of these samples changed. Significant differences were showed in the myotoxic and hemorrhagic activity of some venom pools, while no significant statistical differences were found for the edema activity. The enzymatic assays revealed a variation in proteolytic activity on azocasein and phospholipase A2 activity, and low differences were reported for thrombin-like serine protease activity. The maintenance of the proteomic profile and certain toxicological activities convert this venom library in a valuable source for research purposes. Nonetheless, the significative reduction of toxicological activities, such as hemorrhagic activity not feasible using these samples for the antivenom production.
Collapse
Affiliation(s)
- José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador.
| | - Bruno Mendes
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ricardo S P Patiño
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - José Pico
- Instituto Nacional de Investigación en Salud Pública (INSPI), Guayaquil, Guayaquil, Ecuador
| | - Johanna Laines
- Instituto Nacional de Investigación en Salud Pública (INSPI), Guayaquil, Guayaquil, Ecuador
| | - María Terán
- Instituto Nacional de Investigación en Salud Pública (INSPI), Guayaquil, Guayaquil, Ecuador
| | - Noroska G S Mogollón
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena, Napo, Ecuador
| | - Fausto Zaruma-Torres
- Facultad de Ciencias Química, Universidad de Cuenca, Cuenca, Azuay, Ecuador; Centro de Innovación de la Salud - EUS/EP, Cuenca, Azuay, Ecuador
| | - Cleópatra A da S Caldeira
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO, Brazil; Programa de Pós-graduação em Biologia Experimental (PGBIOEXP), Universidade Federal de Rondônia (UNIR)
| | - Saulo L da Silva
- Facultad de Ciencias Química, Universidad de Cuenca, Cuenca, Azuay, Ecuador; Centro de Innovación de la Salud - EUS/EP, Cuenca, Azuay, Ecuador
| |
Collapse
|
43
|
Garcia Denegri ME, Bustillo S, Gay CC, Van De Velde A, Gomez G, Echeverría S, Gauna Pereira MDC, Maruñak S, Nuñez S, Bogado F, Sanchez M, Teibler GP, Fusco L, Leiva LCA. Venoms and Isolated Toxins from Snakes of Medical Impact in the Northeast Argentina: State of the Art. Potential Pharmacological Applications. Curr Top Med Chem 2019; 19:1962-1980. [PMID: 31345151 DOI: 10.2174/1568026619666190725094851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
Abstract
Among the ophidians that inhabit the Northeast of Argentina, the genus Bothrops such as B. alternatus and B. diporus species (also known as yararás) and Crotalus durisus terrificus (named cascabel), represent the most studied snake venom for more than thirty years. These two genera of venomous snakes account for the majority of poisonous snake envenomations and therefore, constitute a medical emergency in this region. This review presents a broad description of the compiled knowledge about venomous snakebite: its pathophysiological action, protein composition, isolated toxins, toxin synergism, toxin-antitoxin cross-reaction assays. Properties of some isolated toxins support a potential pharmacological application.
Collapse
Affiliation(s)
- María Emilia Garcia Denegri
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Andrea Van De Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Gabriela Gomez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvina Echeverría
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - María Del Carmen Gauna Pereira
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Silvana Maruñak
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Sandra Nuñez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Fabián Bogado
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Matías Sanchez
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Gladys Pamela Teibler
- Laboratorio de Toxicología Veterinaria dependiente de la Cátedra de Farmacología y Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| | - Laura Cristina Ana Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNECONICET), Facultad de Ciencias Exactas y Naturales y Agrimensura, Corrientes, Argentina
| |
Collapse
|
44
|
Immunogenic Properties of Recombinant Enzymes from Bothrops Ammodytoides Towards the Generation of Neutralizing Antibodies against Its Own Venom. Toxins (Basel) 2019; 11:toxins11120702. [PMID: 31810356 PMCID: PMC6949999 DOI: 10.3390/toxins11120702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
Bothropic venoms contain enzymes such as metalloproteases, serine-proteases, and phospholipases, which acting by themselves, or in synergism, are the cause of the envenomation symptoms and death. Here, two mRNA transcripts, one that codes for a metalloprotease and another for a serine-protease, were isolated from a Bothrops ammodytoides venom gland. The metalloprotease and serine-protease transcripts were cloned on a pCR®2.1-TOPO vector and consequently expressed in a recombinant way in E. coli (strains Origami and M15, respectively), using pQE30 vectors. The recombinant proteins were named rBamSP_1 and rBamMP_1, and they were formed by an N-terminal fusion protein of 16 amino acid residues, followed by the sequence of the mature proteins. After bacterial expression, each recombinant enzyme was recovered from inclusion bodies and treated with chaotropic agents. The experimental molecular masses for rBamSP_1 and rBamMP_1 agreed with their expected theoretical ones, and their secondary structure spectra obtained by circular dichroism were comparable to that of similar proteins. Additionally, equivalent mixtures of rBamSP_1, rBamMP_1 together with a previous reported recombinant phospholipase, rBamPLA2_1, were used to immunize rabbits to produce serum antibodies, which in turn recognized serine-proteases, metalloproteases and PLA2s from B. ammodytoides and other regional viper venoms. Finally, rabbit antibodies neutralized the 3LD50 of B. ammodytoides venom.
Collapse
|
45
|
Photobiomodulation reduces cell death and cytokine production in C2C12 cells exposed to Bothrops venoms. Lasers Med Sci 2019; 35:1047-1054. [PMID: 31754908 DOI: 10.1007/s10103-019-02884-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
Snakebites caused by the genus Bothrops are often associated with severe and complex local manifestations such as edema, pain, hemorrhage, and myonecrosis. Conventional treatment minimizes the systemic effects of venom; however, their local action is not neutralized. The purpose of this study was to evaluate the effect of photobiomodulation (PBM) on C2C12 muscle cells exposed to B. jararaca, B. jararacussu, and B. moojeni venoms on events involved in cell death and the release of inflammatory mediators. Cells were exposed to venoms and immediately irradiated with low-level laser (LLL) application in continuous wave at the wavelength of 660 nm, energy density of 4.4 J/cm2, power of 10 mW, area of 0.045 cm2, and time of 20 s. Cell integrity was analyzed by phase contrast microscope and cell death was performed by flow cytometry. In addition, interleukin IL1-β, IL-6, and IL-10 levels were measured in the supernatant. Our results showed that the application of PBM increases cell viability and decreases cell death by apoptosis and necrosis. Moreover, the release of pro-inflammatory interleukins was also reduced. The data reported here indicate that PBM resulted in cytoprotection on myoblast C2C12 cells after venom exposure. This protection involves the modulation of cell death mechanism and decreased pro-inflammatory cytokine release.
Collapse
|
46
|
Aguiar WDS, Galizio NDC, Serino-Silva C, Sant’Anna SS, Grego KF, Tashima AK, Nishiduka ES, de Morais-Zani K, Tanaka-Azevedo AM. Comparative compositional and functional analyses of Bothrops moojeni specimens reveal several individual variations. PLoS One 2019; 14:e0222206. [PMID: 31513632 PMCID: PMC6742229 DOI: 10.1371/journal.pone.0222206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/23/2019] [Indexed: 11/21/2022] Open
Abstract
Snake venoms are complex protein mixtures with different biological activities that can act in both their preys and human victims. Many of these proteins play a role in prey capture and in the digestive process of these animals. It is known that some snakes are resistant to the toxicity of their own venom by mechanisms not yet fully elucidated. However, it was observed in the Laboratory of Herpetology of Instituto Butantan that some Bothrops moojeni individuals injured by the same snake species showed mortalities caused by envenoming effects. This study analyzed the biochemical composition of 13 venom and plasma samples from Bothrops moojeni specimens to assess differences in their protein composition. Application of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed distinct venom protein profiles, but very homogeneous plasma profiles. Western Blotting (WB) was performed with plasma samples, which were submitted to incubation with the respective venom. Some individuals showed an immunorecognized band zone around 25 kDa, indicating interaction between the same individual plasma and venom proteins. Crossed-WB assay using non-self-plasma and venom showed that this variability is due to venom protein composition instead of plasma composition. These venoms presented higher caseinolytic, collagenolytic and coagulant activities than the venoms without these regions recognized by WB. Mass spectrometry analyses performed on two individuals revealed that these individuals present, in addition to higher protein concentrations, other exclusive proteins in their composition. When these same two samples were tested in vivo, the results also showed higher lethality in these venoms, but lower hemorrhagic activity than in the venoms without these regions recognized by WB. In conclusion, some Bothrops moojeni specimens differ in venom composition, which may have implications in envenomation. Moreover, the high individual venom variability found in this species demonstrates the importance to work with individual analyses in studies involving intraspecific venom variability and venom evolution.
Collapse
Affiliation(s)
- Weslei da Silva Aguiar
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | - Nathália da Costa Galizio
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | | | | | | | | | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brasil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brasil
| |
Collapse
|
47
|
Inhibition of snake venom induced sterile inflammation and PLA2 activity by Titanium dioxide Nanoparticles in experimental animals. Sci Rep 2019; 9:11175. [PMID: 31371738 PMCID: PMC6671979 DOI: 10.1038/s41598-019-47557-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/02/2019] [Indexed: 12/16/2022] Open
Abstract
Sterile inflammation (SI) is an essential process in response to snakebite and injury. The venom induced pathophysiological response to sterile inflammation results into many harmful and deleterious effects that ultimately leads to death. The available treatment for snakebite is antiserum which does not provide enough protection against venom-induced pathophysiological changes like haemorrhage, necrosis, nephrotoxicity and often develop hypersensitive reactions. In order to overcome these hindrances, scientists around the globe are searching for an alternative therapy to provide better treatment to the snake envenomation patients. In the present study TiO2 (Titanium dioxide)-NPs (Nanoparticles) has been assessed for antisnake venom activity and its potential to be used as an antidote. In this study, the synthesis of TiO2-NPs arrays has been demonstrated on p-type Silicon Si < 100 > substrate (∼30 ohm-cm) and the surface topography has been detected by Field-emission scanning electron microscopy (FESEM). The TiO2-NPs successfully neutralized the Daboia russelii venom (DRV) and Naja kaouthia venom (NKV)-induced lethal activity. Viper venom induced haemorrhagic, coagulant and anticoagulant activities were effectively neutralized both in in-vitro and in vivo studies. The cobra and viper venoms-induced sterile inflammatory molecules (IL-6, HMGB1, HSP70, HSP90, S100B and vWF) were effectively neutralised by the TiO2-NPs in experimental animals.
Collapse
|
48
|
Gren EC, Kitano ES, Andrade-Silva D, Iwai LK, Reis MS, Menezes MC, Serrano SM. Comparative analysis of the high molecular mass subproteomes of eight Bothrops snake venoms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:113-121. [DOI: 10.1016/j.cbd.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 11/17/2022]
|
49
|
Evidence for Snake Venom Plasticity in a Long-Term Study with Individual Captive Bothrops atrox. Toxins (Basel) 2019; 11:toxins11050294. [PMID: 31137619 PMCID: PMC6563259 DOI: 10.3390/toxins11050294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Variability in snake venom composition has been frequently reported and correlated to the adaptability of snakes to environmental conditions. Previous studies report plasticity for the venom phenotype. However, these observations are not conclusive, as the results were based on pooled venoms, which present high individual variability. Here we tested the hypothesis of plasticity by influence of confinement and single diet type in the venom composition of 13 adult specimens of Bothrops atrox snakes, maintained under captivity for more than three years. Individual variability in venom composition was observed in samples extracted just after the capture of the snakes. However, composition was conserved in venoms periodically extracted from nine specimens, which presented low variability restricted to the less abundant components. In a second group, composed of four snakes, drastic changes were observed in the venom samples extracted at different periods, mostly related to snake venom metalloproteinases (SVMPs), the core function toxins of B. atrox venom, which occurred approximately between 400 and 500 days in captivity. These data show plasticity in the venom phenotype during the lifetime of adult snakes maintained under captive conditions. Causes or functional consequences involved in the phenotype modification require further investigations.
Collapse
|
50
|
Luchini LSG, Pidde G, Squaiella-Baptistão CC, Tambourgi DV. Complement System Inhibition Modulates the Pro-Inflammatory Effects of a Snake Venom Metalloproteinase. Front Immunol 2019; 10:1137. [PMID: 31231362 PMCID: PMC6558526 DOI: 10.3389/fimmu.2019.01137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
Envenomation by Bothrops snakes causes prominent local effects, including pain, oedema, local bleeding, blistering and necrosis, and systemic manifestations, such as hemorrhage, hypotension, shock and acute renal failure. These snake venoms are able to activate the complement system and induce the generation of anaphylatoxins, whose mechanisms include the direct cleavage of complement components by snake venom metalloproteinases and serine proteinases present in the venoms. A metalloproteinase able to activate the three complement pathways and generate active anaphylatoxins, named C-SVMP, was purified from the venom of Bothrops pirajai. Considering the inflammatory nature of Bothrops venoms and the complement-activation property of C-SVMP, in the present work, we investigated the inflammatory effects of C-SVMP in a human whole blood model. The role of the complement system in the inflammatory process and its modulation by the use of compstatin were also investigated. C-SVMP was able to activate the complement system in the whole blood model, generating C3a/C3a desArg, C5a/C5a desArg and SC5b-9. This protein was able to promote an increase in the expression of CD11b, CD14, C3aR, C5aR1, TLR2, and TLR4 markers in leukocytes. Inhibition of component C3 by compstatin significantly reduced the production of anaphylatoxins and the Terminal Complement Complex (TCC) in blood plasma treated with the toxin, as well as the expression of CD11b, C3aR, and C5aR on leukocytes. C-SVMP was able to induce increased production of the cytokines IL-1β and IL-6 and the chemokines CXCL8/IL-8, CCL2/MCP-1, and CXCL9/MIG in the human whole blood model. The addition of compstatin to the reactions caused a significant reduction in the production of IL-1β, CXCL8/IL-8, and CCL2/MCP-1 in cells treated with C-SVMP. We therefore conclude that C-SVMP is able to activate the complement system, which leads to an increase in the inflammatory process. The data obtained with the use of compstatin indicate that complement inhibition may significantly control the inflammatory process initiated by Bothrops snake venom toxins.
Collapse
Affiliation(s)
| | - Giselle Pidde
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | | |
Collapse
|