1
|
Yin X, Li S, Wang J, Wang M, Yang J. Research progress of active compounds from traditional Chinese medicine in the treatment of stroke. Eur J Med Chem 2025; 291:117599. [PMID: 40188582 DOI: 10.1016/j.ejmech.2025.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025]
Abstract
Stroke is a serious cerebrovascular disease that is categorized into two types: ischemic and hemorrhagic. The pathological mechanisms of ischemic stroke are complex and diverse, encompassing processes such as neuroinflammation and apoptosis. The pathological processes of hemorrhagic stroke primarily involve the disruption of the blood-brain barrier and cerebral edema. Western medical treatment methods show certain effectiveness during the acute phase of stroke, but they are limited by a narrow therapeutic window and secondary injuries. Traditional Chinese medicine (TCM) has a long history and unique advantages in treating stroke. Studies confirm that active compounds derived from TCM exert multi-pathway, multi-target effects, significantly improving therapeutic outcomes and reducing adverse reactions. However, due to the complexity of the components in TCM, research on monomeric components still faces challenges. This article reviews the relevant research progress published in domestic and international journals over the past twenty years regarding the mechanisms of action of monomeric components of TCM in the treatment of stroke, aiming to provide insights and references for the clinical application of TCM in stroke treatment and further new drug development.
Collapse
Affiliation(s)
- Xinyi Yin
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Shutang Li
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China
| | - Junwei Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266041, China.
| |
Collapse
|
2
|
Oliveri LM, Buzaleh AM, Gerez EN. Regulation of the expression of ferrochelatase in a murine model of diabetes mellitus type I. Biochem Biophys Rep 2025; 42:101989. [PMID: 40230493 PMCID: PMC11994340 DOI: 10.1016/j.bbrep.2025.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Background Diabetes produces changes on cellular hemeprotein metabolism. The last enzyme of heme biosynthetic pathway is ferrochelatase (FECH), an enzyme that catalyzes the insertion of ferrous ion into protoporphyrin IX to produce heme. The aim of this work was to investigate whether FECH expression can be other key point in the regulation of heme biosynthesis in diabetic animals. Methods Mice were rendered diabetic with streptozotocin (STZ, 170 mg/kg body weight i.p. for 15 days). Liver FECH protein and mRNA levels were evaluated by Western blot and Northern blot respectively. Vanadate was used as a hypoglycemic agent. The levels of the transcription factor Sp1 bound to the FECH promoter were assessed by chromatin immunoprecipitation (ChIP). Results Hyperglycemia caused an increase in FECH mRNA levels but no changes in FECH protein expression. ChIP analysis revealed that the increase in FECH mRNA levels was due to enhanced Sp1 binding to the FECH promoter in diabetic animals, which was reduced by vanadate administration. Conclusions In diabetic animals, enhanced binding of Sp1 to the FECH promoter may be responsible for the increase in FECH mRNA levels. However, this increase was not reflected in the amount of FECH protein, which would confirm that FECH could be another control point in heme synthesis.
Collapse
Affiliation(s)
- Leda María Oliveri
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Argentina
| | - Ana Maria Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Esther Noemí Gerez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Argentina
- Cátedra Bioquímica General Celular y Molecular, Facultad de Ciencias Médicas. Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| |
Collapse
|
3
|
Kreiman AN, Garner SE, Carroll SC, Sutherland MC. Biochemical mapping reveals a conserved heme transport mechanism via CcmCD in System I bacterial cytochrome c biogenesis. mBio 2025; 16:e0351524. [PMID: 40167305 PMCID: PMC12077264 DOI: 10.1128/mbio.03515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Heme is a redox-active cofactor for essential processes across all domains of life. Heme's redox capabilities are responsible for its biological significance but also make it highly cytotoxic, requiring tight intracellular regulation. Thus, the mechanisms of heme trafficking are still not well understood. To address this, the bacterial cytochrome c biogenesis pathways are being developed into model systems to elucidate mechanisms of heme trafficking. These pathways function to attach heme to apocytochrome c, which requires the transport of heme from inside to outside of the cell. Here, we focus on the System I pathway (CcmABCDEFGH) which is proposed to function in two steps: CcmABCD transports heme across the membrane and attaches it to CcmE. HoloCcmE then transports heme to the holocytochrome c synthase, CcmFH, for attachment to apocytochrome c. To interrogate heme transport across the membrane, we focus on CcmCD, which can form holoCcmE independent of CcmAB, leading to the hypothesis that CcmCD is a heme transporter. A structure-function analysis via cysteine/heme crosslinking identified a heme acceptance domain and heme transport channel in CcmCD. Bioinformatic analysis and structural predictions across prokaryotic organisms determined that the heme acceptance domains are structurally variable, potentially to interact with diverse heme delivery proteins. In contrast, the CcmC transmembrane heme channel is structurally conserved, indicating a common mechanism for transmembrane heme transport. We provide direct biochemical evidence mapping the CcmCD heme channel and providing insights into general mechanisms of heme trafficking by other putative heme transporters. IMPORTANCE Heme is a biologically important cofactor for proteins involved with essential cellular functions, such as oxygen transport and energy production. Heme can also be toxic to cells and thus requires tight regulation and specific trafficking pathways. As a result, much effort has been devoted to understanding how this important, yet cytotoxic, molecule is transported. While several heme transporters/importers/exporters have been identified, the biochemical mechanisms of transport are not well understood, representing a major knowledge gap. Here, the bacterial cytochrome c biogenesis pathway, System I (CcmABCDEFGH), is used to elucidate the transmembrane transport of heme via CcmCD. We utilize a cysteine/heme crosslinking approach, which can trap endogenous heme in specific domains, to biochemically map the heme transport channel in CcmCD, demonstrating that CcmCD is a heme transporter. These results suggest a model for heme trafficking by other heme transporters in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Alicia N. Kreiman
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Sarah E. Garner
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Susan C. Carroll
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Molly C. Sutherland
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
4
|
Biernat MM, Camp OG, Moussa DN, Awonuga AO, Abu-Soud HM. The interplay between the myeloperoxidase-hypochlorous acid system, heme oxygenase, and free iron in inflammatory diseases. J Inorg Biochem 2025; 270:112927. [PMID: 40267847 DOI: 10.1016/j.jinorgbio.2025.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Accumulated unbound free iron (Fe(II or III)) is a redox engine generating reactive oxygen species (ROS) that promote oxidative stress and inflammation. Iron is implicated in diseases with free radical pathology including cardiovascular, neurodegenerative, reproductive disorders, and some types of cancer. While many studies focus on iron overload disorders, few explore the potential link between the myeloperoxidase-hypochlorous acid (MPO-HOCl) system and localized iron accumulation through heme and iron‑sulfur (FeS) cluster protein destruction. Although inducible heme oxygenase (HO-1), the rate-limiting enzyme in heme catabolism, is frequently associated with these diseases, we hypothesize that HOCl also contributes to the generation of free iron and heme degradation products. Furthermore, HO-1 and HOCl may play a dual role in free iron accumulation by regulating the activity of key iron metabolism proteins. Enzymatic and non-enzymatic modulators, as well as scavengers of HOCl, can help prevent heme destruction and reduce the accumulation of free iron. Given iron's role in disease progression and severity, identifying the primary sources, mechanisms, and mediators involved in free iron generation is crucial for developing effective pharmacological treatments. Further investigation focusing on the specific contributions of the MPO-HOCl system and free iron is necessary to explore novel strategies to mitigate its harmful effects in biological systems.
Collapse
Affiliation(s)
- Mia M Biernat
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Daniel N Moussa
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
5
|
Sánchez-León E, Bhalla K, Hu G, Lee CWJ, Lagace M, Jung WH, Kronstad JW. The HOPS and vCLAMP protein Vam6 connects polyphosphate with mitochondrial function and oxidative stress resistance in Cryptococcus neoformans. mBio 2025; 16:e0032825. [PMID: 39998208 PMCID: PMC11980578 DOI: 10.1128/mbio.00328-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Cryptococcus neoformans is considered one of the most dangerous fungal threats to human health, and the World Health Organization recently ranked it in the critical priority group for perceived public health importance. Proliferation of C. neoformans within mammalian hosts is supported by its ability to overcome nutritional limitations and endure stress conditions induced by the host immune response. Previously, we reported that the Vam6/Vps39/TRAP1-domain protein Vam6 was crucial for vacuolar morphology, iron acquisition, and virulence. However, the molecular mechanisms underlying the pleiotropic phenotypes resulting from loss of Vam6 remain poorly understood. In this study, we determined that Vam6 has roles in the HOPS complex for endomembrane trafficking to the vacuole and in the vCLAMP membrane contact site between the vacuole and mitochondria. Importantly, both of these roles regulate polyphosphate (polyP) metabolism, as demonstrated by a defect in trafficking of the VTC complex subunit Vtc2 for polyphosphate synthesis and by an influence on mitochondrial functions. In the latter case, Vam6 was required for polyP accumulation in response to electron transport chain inhibition and for overcoming oxidative stress. Overall, this work establishes connections between endomembrane trafficking, mitochondrial functions, and polyP homeostasis in C. neoformans.IMPORTANCEA detailed understanding of stress resistance by fungal pathogens of humans may provide new opportunities to improve antifungal therapy and combat life-threatening diseases. Here, we used a vam6 deletion mutant to investigate the role of the homotypic fusion and vacuole protein sorting (HOPS) complex in mitochondrial functions and polyphosphate homeostasis in Cryptococcus neoformans, an important fungal pathogen of immunocompromised people including those suffering from HIV/AIDS. Specifically, we made use of mutants defective in late endocytic trafficking steps to establish connections to oxidative stress and membrane trafficking with mitochondria. In particular, we found that mutants lacking the Vam6 protein had altered mitochondrial function, and that the mutants were perturbed for additional mitochondria and vacuole-related phenotypes (e.g., membrane composition, polyphosphate accumulation, and drug sensitivity). Overall, our study establishes connections between endomembrane trafficking components, mitochondrial functions, and polyphosphate homeostasis in an important fungal pathogen of humans.
Collapse
Affiliation(s)
- Eddy Sánchez-León
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Kabir Bhalla
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Guanggan Hu
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Christopher W. J. Lee
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Melissa Lagace
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Won Hee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Liu L, Zhang Z, Liu F, Liu H, Ye L, Liu F, Gupta N, Wang C, Hu M. In vitro culture of the parasitic stage larvae of hematophagous parasitic nematode Haemonchus contortus. Int J Parasitol 2025; 55:263-271. [PMID: 39848307 PMCID: PMC7617482 DOI: 10.1016/j.ijpara.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Current research on common parasitic nematodes is limited because their infective stages cannot be propagated in vitro. Here, we report a culture system for developing L4s of Haemonchus contortus, a blood-feeding nematode of ruminants. Our results demonstrated that a proportionate mixture of NCTC-109 to Luria-Bertini (1:2) media promoted the formation of early L4s and then into late L4s upon inclusion of 12.5% (v/v) defibrinated blood, albeit with a decline in survival. Adding antioxidants (0.3 mg/mL of L-glutathione or 200 nmol of vitamin C) improved survival of L4s, with approximately 90% developing to late L4s by 22 days. These L4s showed parallel morphological features (such as digestive and reproduction systems) compared with in vivo L4s at day 7 (following challenge infection), although with delayed development. Our work optimized the in vitro culture system for L4s while providing an important platform for in-depth molecular research on Haemonchus and other related parasitic nematodes.
Collapse
Affiliation(s)
- Lu Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Zongshan Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Fuqiang Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Hui Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Lisha Ye
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Feng Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Nishith Gupta
- Intracellular Parasite Education and Research Labs (iPEARL), Department of Biological Sciences, Birla Institute of Technology and Science, Pilani (BITS-Pilani), Hyderabad, India; Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany.
| | - Chunqun Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| | - Min Hu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070 China.
| |
Collapse
|
7
|
Poudyal N, Takemoto JY, Lin YY, Chang CWT. An Alternative to Biliverdin, Mesobiliverdin IXα and Mesobiliverdin-Enriched Microalgae: A Review on the Production and Applications of Mesobiliverdin-Related Products. Molecules 2025; 30:1379. [PMID: 40142154 PMCID: PMC11945237 DOI: 10.3390/molecules30061379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Despite attracting interest for decades due to its anti-inflammatory and antioxidant capabilities, the use of biliverdin IXα (BV) in medicine and agriculture is hampered by uncertain purity and limited availability. A significant amount of effort has been devoted to the production and application of BV, but with limited success. Mesobiliverdin IXα (MBV), a natural BV analog derived from microalgae, offers a path to overcome the limitations of BV. MBV production is scalable, and it can be obtained at high purity. MBV and BV share important structural features (e.g., bridging propionate groups) and both are substrates of biliverdin reductase A (BVRA), and thus exert the same mechanisms and pathways for anti-inflammatory action. To enable the use of MBV in industry, especially in agriculture, a cost-effective product, mesobiliverdin-enriched microalgae (MEM), was developed. In this review, we focus on recent developments and investigations of MBV and MEM, and compare their effectiveness with BV and Spirulina. This review article highlights cost-effective and scalable production of MEM, the therapeutic potential of MBV in cytoprotection and anti-inflammation, and MEM as an animal feed additive for improved gut health and amelioration of osteoporosis. More studies are ongoing to expand the potential applications of both MBV and MEM from fundamental research to industrial and agricultural practices.
Collapse
Affiliation(s)
- Naveena Poudyal
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA;
| | - Jon Y. Takemoto
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA;
| | - Yuan-Yu Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan;
| | - Cheng-Wei T. Chang
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA;
| |
Collapse
|
8
|
Sil R, Chakraborti AS. Major heme proteins hemoglobin and myoglobin with respect to their roles in oxidative stress - a brief review. Front Chem 2025; 13:1543455. [PMID: 40070406 PMCID: PMC11893434 DOI: 10.3389/fchem.2025.1543455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Oxidative stress is considered as the root-cause of different pathological conditions. Transition metals, because of their redox-active states, are capable of free radical generation contributing oxidative stress. Hemoglobin and myoglobin are two major heme proteins, involved in oxygen transport and oxygen storage, respectively. Heme prosthetic group of heme proteins is a good reservoir of iron, the most abundant transition metal in human body. Although iron is tightly bound in the heme pocket of these proteins, it is liberated under specific circumstances yielding free ferrous iron. This active iron can react with H2O2, a secondary metabolite, forming hydroxyl radical via Fenton reaction. Hydroxyl radical is the most harmful free radical among all the reactive oxygen species. It causes oxidative stress by damaging lipid membranes, proteins and nucleic acids, activating inflammatory pathways and altering membrane channels, resulting disease conditions. In this review, we have discussed how heme-irons of hemoglobin and myoglobin can promote oxidative stress under different pathophysiological conditions including metabolic syndrome, diabetes, cardiovascular, neurodegenerative and renal diseases. Understanding the association of heme proteins to oxidative stress may be important for knowing the complications as well as therapeutic management of different pathological conditions.
Collapse
Affiliation(s)
| | - Abhay Sankar Chakraborti
- Department of Biophysics, Molecular Biology and Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| |
Collapse
|
9
|
Nair R, Vu AH, Freer AK, Bhatia KS, Wang D, Savani MR, Matulis SM, Lonial S, Jaye DL, Boise LH, Seo SY, Corson TW, Nooka AK, Bhatt S, McBrayer SK, Gupta VA, Hu X, Barwick BG, Reddi AR, Shanmugam M. Heme promotes venetoclax resistance in multiple myeloma through MEK-ERK signaling and purine biosynthesis. Blood 2025; 145:732-747. [PMID: 39693611 PMCID: PMC12060166 DOI: 10.1182/blood.2024025690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
ABSTRACT We previously demonstrated that reduced intrinsic electron transport chain (ETC) activity predicts and promotes sensitivity to the B-cell lymphoma 2 (BCL-2) antagonist, venetoclax (Ven), in multiple myeloma (MM). Heme, an iron-containing prosthetic group and metabolite, is fundamental to maintaining ETC activity. Interrogation of the cyclin D1 group 2 subgroup of MM from the Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) trial (NCT01454297), which can be used as a proxy for Ven-sensitive MM (VS MM), shows reduced expression of the conserved heme biosynthesis pathway gene signature. Consistent with this, we identified that VS MM exhibits reduced heme biosynthesis and curiously elevated hemin (oxidized heme) uptake. Supplementation with hemin or protoporphyrin IX (heme lacking iron) promotes Ven resistance, whereas targeting ferrochetalase, the penultimate enzyme involved in heme biosynthesis, increases Ven sensitivity in cell lines and primary MM cells. Mechanistically, heme-mediated activation of prosurvival rapidly accelerated fibrosarcoma-rat sarcoma virus-mitogen-activated protein kinase (MEK) signaling and metabolic rewiring, increasing de novo purine synthesis, were found to contribute to heme-induced Ven resistance. Cotargeting BCL-2 and myeloid cell leukemia-1 suppresses heme-induced Ven resistance. Interrogation of the Multiple Myeloma Research Foundation CoMMpass study of patients shows increased purine and pyrimidine biosynthesis to corelate with poor progression-free survival and overall survival. Elevated heme and purine biosynthesis gene signatures were also observed in matched relapse refractory MM, underscoring the relevance of heme metabolism in therapy-refractory MM. Overall, our findings reveal, for the first time, a role for extrinsic heme, a physiologically relevant metabolite, in modulating proximity to the apoptotic threshold with translational implications for BCL-2 antagonism in MM therapy.
Collapse
Affiliation(s)
- Remya Nair
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - An H. Vu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Abigail K. Freer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Karanpreet S. Bhatia
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Dongxue Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Milan R. Savani
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX
| | - Shannon M. Matulis
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - David L. Jaye
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Timothy W. Corson
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Ajay K. Nooka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore
| | - Samuel K. McBrayer
- Children's Medical Center Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Xin Hu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
10
|
Mikhailova DM, Sudnitsyna J, Kovgan P, Naida L, Kharazova A, Mindukshev I, Gambaryan S. Analysis of Ferric Protoporphyrin IX Effects on Human Platelets: Hematin Is a More Potent Agonist than Hemin. Cells 2025; 14:255. [PMID: 39996728 PMCID: PMC11853094 DOI: 10.3390/cells14040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Hemolysis during severe diseases (malaria, hemorrhagic stroke, sickle cell disease, etc.) and blood transfusion induces the release of free hemoglobin, which degrades to highly reactive and toxic compounds-hemin and hematin. Oxidized heme derivatives induce platelet activation, aggregation, and degranulation, leading to prothrombotic and inflammatory events. In the present study, we showed that hematin is a more potent agonist of platelet activation than hemin, and using several methods, including the original laser diffraction method, flow cytometry, and confocal microscopy, we demonstrated that hematin at low doses induces platelet activation and aggregation without reducing cell viability and affecting calcium efflux. On the contrary, hematin at high concentrations triggered phosphatidylserine exposure, severe loss of platelet viability, and calcium dysregulation, which was not inhibited by cGMP/PKG and cAMP/PKA pathways. Additionally, we showed that albumin could initiate disaggregation processes in hematin-activated platelets.
Collapse
Affiliation(s)
- Diana M. Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (J.S.); (P.K.); (L.N.); (I.M.)
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia;
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (J.S.); (P.K.); (L.N.); (I.M.)
| | - Polina Kovgan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (J.S.); (P.K.); (L.N.); (I.M.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Lidia Naida
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (J.S.); (P.K.); (L.N.); (I.M.)
- Institute of Biomedical Systems and Biotechnologies, Peter the Great Saint Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| | - Alexandra Kharazova
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia;
| | - Igor Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (J.S.); (P.K.); (L.N.); (I.M.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (J.S.); (P.K.); (L.N.); (I.M.)
| |
Collapse
|
11
|
Bacchella C, De Caro S, Nicolis S, Monzani E, Dell'Acqua S. Hemin, copper and amyloid-β: A medley involved in Alzheimer's disease. An interaction that fine regulates the reactivity. J Inorg Biochem 2025; 263:112775. [PMID: 39580896 DOI: 10.1016/j.jinorgbio.2024.112775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Metal ions have been shown to play a critical role in amyloid-β (Aβ) neurotoxicity and plaque formation which are key hallmarks of Alzheimer's disease. Amyloid-β peptides can bind both copper and hemin and this interaction modulates the redox chemistry of these metals. The characterization of the binding of hemin through UV-Vis spectroscopic titration with Aβ(4-16) shows a significantly higher affinity than that with Aβ(1-16). Also, the characterization of the hemin-catalyzed oxidation through different assays (peroxidase-like activity, ascorbate oxidation, HPLC-MS analysis of peptide oxidation) displays a greater reactivity in the presence of Aβ(4-16) when compared to that of Aβ(1-16). Since the Aβ(4-16) peptide sequence contains the typical amino-terminal copper and nickel binding motif (ATCUN), this leads to investigate the potential formation of ternary hemin/copper/Aβ(4-16) adducts. The evaluation of K1 and K2 (constants that regulate the formation of five-coordinated high-spin complex and of six-coordinated low-spin complex, respectively) for mixed systems indicates that the presence of copper stabilizes the 1:1 hemin-Aβ(4-16) species, partially hindering the formation of the low-spin complex. On the other hand, the formation of the ternary hemin/copper/Aβ(4-16) complex gives rise to a less efficient catalyst, resulting in a reduction of the overall oxidative reactivity. These results suggest that the reactivity of metal ions is finely modulated by the formation of complexes with amyloid peptides and this property is also regulated differently by the various in vivo relevant isoforms.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia De Caro
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Stefania Nicolis
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
12
|
Pandey AK, Trivedi V. Heat shock protein HSPA8 impedes hemin-induced cellular-toxicity in liver. Toxicol In Vitro 2025; 102:105959. [PMID: 39486598 DOI: 10.1016/j.tiv.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Accumulation of hemin in cells, tissues, and organs is one of the major pathological conditions linked to hemolytic diseases like malaria. Pro-oxidant hemin confers high toxicity following its accumulation. We tested the cellular toxicity of hemin on HepG2 cells by exploring modulation in various cellular characteristics. Hemin reduces the viability of HepG2 cells and brings about visible morphological changes. Hemin causes perforations on the surface of HepG2 cells observed through SEM. Hemin leads to the extracellular release of liver enzymes and reduces the wound-healing potential of HepG2 cells. Hemin leads to the fragmentation of HepG2 DNA, arrests the cell cycle progression in the S-phase and induces apoptosis in these cells. Western blot analysis revealed that hemin triggers both the extrinsic and intrinsic pathways of apoptosis in HepG2 cells. We have already shown that the cytoprotective protein HSPA8 can polymerize hemin and minimize its toxicity. Similar experiments with hemin in the presence and absence of HSPA8 showed that HSPA8 reverses all the tested toxic effects of hemin on HepG2 cells. The protection from hemin toxicity in HepG2 cells appeared to be due to the extracellular polymerization of hemin by HSPA8.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
13
|
Moriishi M, Takazono T, Hashizume J, Aibara N, Kutsuna YJ, Okamoto M, Sawai T, Hoshino T, Mori Y, Fukuda Y, Awaya Y, Yamanashi H, Furusato Y, Yanagihara T, Miyamoto H, Sato K, Kodama Y, Mizukami S, Sakamoto N, Yamamoto K, Sakamoto K, Yanagihara K, Izumikawa K, Maeda T, Nakashima M, Fukushima K, Mukae H, Ohyama K. Immune complexome analysis reveals an autoimmune signature predictive of COVID-19 severity. Clin Biochem 2025; 135:110865. [PMID: 39689808 DOI: 10.1016/j.clinbiochem.2024.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The factors contributing to the development of severe coronavirus disease 2019 (COVID-19) following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain unclear. Although the presence of immune complexes (ICs), formed between antibodies and their antigens, has been linked to COVID-19 severity, their role requires further investigation, and the antigens within these ICs are yet to be characterized. METHOD Here, a C1q enzyme-liked immunosorbent assay and immune complexome analysis were used to determine IC concentrations and characterize IC antigens, respectively, in the sera of 64 unvaccinated COVID-19 patients with PCR-confirmed SARS-CoV-2 infection, enrolled at seven participating centers in 2020. For the analysis, the patients were split into the severe (n = 35) and non-severe (n = 28) groups on the basis of their COVID-19 symptoms. RESULTS We found that neither serum IC concentration nor IC antigen number was associated with COVID-19 severity. However, we identified six IC antigens, which were significantly enriched in the severe versus non-severe group. These IC antigens were all derived from human proteins, namely haptoglobin, the serum amyloid A-2 protein, the serum amyloid A-1 protein, clusterin, and lipopolysaccharide-binding protein, and complement-factor-H-related protein 3. Meanwhile, we found no association between COVID-19 severity and IC antigens derived from SARS-CoV-2 proteins. Collectively, the six IC antigens predicted COVID-19 severity with a moderate degree of accuracy (area under the receiver operating characteristic curve = 0.90, sensitivity = 94 %, specificity = 79 %). CONCLUSIONS The IC antigen signature identified in this study may have important implications for the diagnosis and treatment of severe COVID-19.
Collapse
Affiliation(s)
- Marino Moriishi
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junya Hashizume
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Jimbayashi Kutsuna
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masaki Okamoto
- Department of Respirology, NHO Kyushu Medical Center, Fukuoka, Japan; Division of Respiratory, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toyomitsu Sawai
- Department of Respiratory Medicine, Nagasaki Harbor Medical Center, Nagasaki, Japan
| | - Teppei Hoshino
- Department of Internal Medicine, Kitakyushu Municipal Yahata Hospital, Kitakyushu, Fukuoka, Japan
| | - Yusuke Mori
- Department of Internal Medicine, Kitakyushu Municipal Yahata Hospital, Kitakyushu, Fukuoka, Japan
| | - Yuichi Fukuda
- Department of Respiratory Medicine, Sasebo City General Hospital, Sasebo, Japan
| | - Yukikazu Awaya
- Division of Respiratory Medicine, Itabashi Chuo Medical Center, Itabashi-ku, Tokyo, Japan
| | - Hirotomo Yamanashi
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Toyoshi Yanagihara
- Department of Respiratory Medicine, NHO Fukuoka National Hospital, Fukuoka, Japan
| | - Hirotaka Miyamoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kayoko Sato
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan; Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shusaku Mizukami
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuko Yamamoto
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Kei Sakamoto
- Department of Microbiology and Immunology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Katsunori Yanagihara
- Division of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Maeda
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mikiro Nakashima
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoyasu Fukushima
- Department of Respiratory Medicine, Japanese Red Cross Nagasaki Genbaku Isahaya Hospital, Isahaya, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kaname Ohyama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan; Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
14
|
Murshed M, AL-Tamimi J, Mares MM, Hailan WAQ, Ibrahim KE, Al-Quraishy S. Pharmacological Effects of Biosynthesis Silver Nanoparticles Utilizing Calotropis procera Leaf Extracts on Plasmodium berghei-Infected Liver in Experiment Mice. Int J Nanomedicine 2024; 19:13717-13733. [PMID: 39726977 PMCID: PMC11669542 DOI: 10.2147/ijn.s490119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Malaria caused by Plasmodium spp. is the most hazardous disease in the world. It is regarded as a life-threatening hematological disorder caused by parasites transferred to humans by the bite of Anopheles mosquitoes. Purpose Calotropis procera leaf extract combined with biosynthesized silver nanoparticles (CPLEAgNPs) to evaluate its antiplasmodium and hepatoprotective effects against P. berghei-induced infection in experimental mice. Methods The animal groups were divided into four groups: the first non-infected group was orally administered distilled water daily 7 days. The second group received an oral dose of 50 mg/kg of CPLE AgNPs. The third group received intraperitoneal injections of 105 P. berghei. The fourth group received of 105 P. berghei with 50 mg/kg CPLE AgNPs. All mice were anesthetized with CO2 and dissected for sample collection. Results This study of C. procera leaves showed that they contain chemically active substances, as shown by the amounts of phenols, flavonoids, and tannins. The antioxidant activity of the samples was assessed using 1.1-diphenyl-2-picrylhydrazyl (DPPH) and 2.2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays. Treatment of infected mice with CPLE AgNPs for 7 days resulted in a significant decrease in parasitemia and a reduction in histopathological alterations in the liver. Furthermore, CPLE AgNPs mitigated oxidative damage caused by P. berghei infection in the liver. In addition, after receiving the medication, the liver levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase decreased. In addition, CPLE AgNPs regulated the expression of liver cytokines, including IL-1β, and I-10. Discussion Based on these findings, the study proved that CPLE AgNPs have hepatoprotective and antiplasmodial properties.
Collapse
Affiliation(s)
- Mutee Murshed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jameel AL-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammed M Mares
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Waleed A Q Hailan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Jeon YH, Oh EJ, Oh SH, Lim JH, Jung HY, Choi JY, Cho JH, Park SH, Kim YL, Kim CD. Is Hemopexin a Nephrotoxin or a Marker of Kidney Injury in Renal Ischemia-Reperfusion? Biomolecules 2024; 14:1522. [PMID: 39766229 PMCID: PMC11673696 DOI: 10.3390/biom14121522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Destabilization of heme proteins is recognized to play a role in acute kidney injury (AKI). Hemopexin (Hpx), known for its role in binding heme, mitigates free heme toxicity. Despite this, the potential adverse effects of Hpx deposition in kidney tissues and its impact on kidney function are not fully understood. Deferoxamine (DFO) chelates iron released from heme and mitigates associated kidney damage. Therefore, this study aimed to evaluate whether Hpx contributes to kidney injury in an ischemia-reperfusion injury (IRI) induced AKI model and to investigate if DFO could alleviate this damage. Mice were categorized into five groups: Sham-Vehicle, Sham-Hpx, IRI-Vehicle, IRI-Hpx, and IRI-Hpx-DFO. Decline in kidney function was observed exclusively in the IRI group, independent of Hpx injection. Serum Hpx levels remained comparable across all groups, and administration of Hpx did not alter serum Hpx levels or kidney function after 24 hours. Although increased Hpx deposition in kidneys was noted in both the IRI and Hpx groups, this accumulation did not correlate with impaired kidney function. Additionally, DFO did not exhibit a protective effect against kidney injury. In summary, Hpx does not directly induce kidney injury and cannot be considered a biomarker for kidney damage caused by IRI.
Collapse
Affiliation(s)
- You Hyun Jeon
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Eun-Joo Oh
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Se-Hyun Oh
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jeong-Hoon Lim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hee-Yeon Jung
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Ji-Young Choi
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Jang-Hee Cho
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sun-Hee Park
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
| | - Yong-Lim Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea; (Y.H.J.); (E.-J.O.); (S.-H.O.); (J.-H.L.); (H.-Y.J.); (J.-Y.C.); (J.-H.C.); (S.-H.P.); (Y.-L.K.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
16
|
Sarkar AR, Mukherjee N, Sarkar AK, Jana NR. Designing Nano-Hemin for Ferroptosis-Mediated Cell Death via Enzymatic Hemin Digestion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64628-64637. [PMID: 39552348 DOI: 10.1021/acsami.4c17763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hemin is a protoporphyrin complex of ferric ion which catalyzes H2O2 degradation and produces reactive oxygen species (ROS). This ROS generation property induces oxidative stress to hemin-exposed cells that can lead to various situations such as intracellular Fenton reaction, ferroptosis, or autophagy. Therapeutic performance of hemin is hindered due to low bioavailability of the active monomeric form with an intact ROS generation property. Here, we demonstrate a colloidal nanoparticle form of hemin (nano-hemin) with a high ROS generation property and high cell uptake property. We have shown that nano-hemin produces ROS inside a cell that upregulate heme oxygenase-1 in order to metabolize hemin. This leads to the ferroptosis-mediated cell death. Furthermore, we show that the ROS generation property of nano-hemin can be modulated to control hemin cytotoxicity for either ferroptosis or autophagy. Our findings suggest that nano-hemin can be designed with modular cytotoxicity for different therapeutic applications.
Collapse
Affiliation(s)
- Abu Raihan Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nayana Mukherjee
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Ankan Kumar Sarkar
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | - Nikhil R Jana
- School of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| |
Collapse
|
17
|
Soladogun AS, Zhang L. The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis. Antioxidants (Basel) 2024; 13:1441. [PMID: 39765770 PMCID: PMC11672823 DOI: 10.3390/antiox13121441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Heme, a complex iron-containing molecule, is traditionally recognized for its pivotal role in oxygen transport and cellular respiration. However, emerging research has illuminated its multifaceted functions in the nervous system, extending beyond its canonical roles. This review delves into the diverse roles of heme in the nervous system, highlighting its involvement in neural development, neurotransmission, and neuroprotection. We discuss the molecular mechanisms by which heme modulates neuronal activity and synaptic plasticity, emphasizing its influence on ion channels and neurotransmitter receptors. Additionally, the review explores the potential neuroprotective properties of heme, examining its role in mitigating oxidative stress, including mitochondrial oxidative stress, and its implications in neurodegenerative diseases. Furthermore, we address the pathological consequences of heme dysregulation, linking it to conditions such as Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. By providing a comprehensive overview of heme's multifunctional roles in the nervous system, this review underscores its significance as a potential therapeutic target and diagnostic biomarker for various neurological disorders.
Collapse
Affiliation(s)
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
18
|
Damoo D, Kretschmer M, Lee CWJ, Herrfurth C, Feussner I, Heimel K, Kronstad JW. Herbicides as fungicides: Targeting heme biosynthesis in the maize pathogen Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2024; 25:e70007. [PMID: 39487654 PMCID: PMC11530707 DOI: 10.1111/mpp.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024]
Abstract
Pathogens must efficiently acquire nutrients from host tissue to proliferate, and strategies to block pathogen access therefore hold promise for disease control. In this study, we investigated whether heme biosynthesis is an effective target for ablating the virulence of the phytopathogenic fungus Ustilago maydis on maize plants. We first constructed conditional heme auxotrophs of the fungus by placing the heme biosynthesis gene hem12 encoding uroporphyrinogen decarboxylase (Urod) under the control of nitrogen or carbon source-regulated promoters. These strains were heme auxotrophs under non-permissive conditions and unable to cause disease in maize seedlings, thus demonstrating the inability of the fungus to acquire sufficient heme from host tissue to support proliferation. Subsequent experiments characterized the role of endocytosis in heme uptake, the susceptibility of the fungus to heme toxicity as well as the transcriptional response to exogenous heme. The latter RNA-seq experiments identified a candidate ABC transporter with a role in the response to heme and xenobiotics. Given the importance of heme biosynthesis for U. maydis pathogenesis, we tested the ability of the well-characterized herbicide BroadStar to influence disease. This herbicide contains the active ingredient flumioxazin, an inhibitor of Hem14 in the heme biosynthesis pathway, and we found that it was an effective antifungal agent for blocking disease in maize. Thus, repurposing herbicides for which resistant plants are available may be an effective strategy to control pathogens and achieve crop protection.
Collapse
Affiliation(s)
- Djihane Damoo
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christopher W. J. Lee
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht‐von‐Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht‐von‐Haller Institute of Plant SciencesUniversity of GöttingenGöttingenGermany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
- Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
| | - Kai Heimel
- Institute of Microbiology and Genetics, Department of Microbial Cell Biology, Göttingen Center for Molecular Biosciences (GZMB)University of GöttingenGöttingenGermany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
19
|
Barbo M, Koritnik B, Leonardis L, Blagus T, Dolžan V, Ravnik-Glavač M. Genetic Variability in Oxidative Stress, Inflammatory, and Neurodevelopmental Pathways: Impact on the Susceptibility and Course of Spinal Muscular Atrophy. Cell Mol Neurobiol 2024; 44:71. [PMID: 39463208 PMCID: PMC11513727 DOI: 10.1007/s10571-024-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The spinal muscular atrophy (SMA) phenotype strongly correlates with the SMN2 gene copy number. However, the severity and progression of the disease vary widely even among affected individuals with identical copy numbers. This study aimed to investigate the impact of genetic variability in oxidative stress, inflammatory, and neurodevelopmental pathways on SMA susceptibility and clinical progression. Genotyping for 31 genetic variants across 20 genes was conducted in 54 SMA patients and 163 healthy controls. Our results revealed associations between specific polymorphisms and SMA susceptibility, disease type, age at symptom onset, and motor and respiratory function. Notably, the TNF rs1800629 and BDNF rs6265 polymorphisms demonstrated a protective effect against SMA susceptibility, whereas the IL6 rs1800795 was associated with an increased risk. The polymorphisms CARD8 rs2043211 and BDNF rs6265 were associated with SMA type, while SOD2 rs4880, CAT rs1001179, and MIR146A rs2910164 were associated with age at onset of symptoms after adjustment for clinical parameters. In addition, GPX1 rs1050450 and HMOX1 rs2071747 were associated with motor function scores and lung function scores, while MIR146A rs2910164, NOTCH rs367398 SNPs, and GSTM1 deletion were associated with motor and upper limb function scores, and BDNF rs6265 was associated with lung function scores after adjustment. These findings emphasize the potential of genetic variability in oxidative stress, inflammatory processes, and neurodevelopmental pathways to elucidate the complex course of SMA. Further exploration of these pathways offers a promising avenue for developing personalized therapeutic strategies for SMA patients.
Collapse
Affiliation(s)
- Maruša Barbo
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- , Ljubljana, Slovenia.
| |
Collapse
|
20
|
Grosjean N, Zhang L, Kumaran D, Xie M, Fahey A, Santiago K, Hu F, Regulski M, Blaby IK, Ware D, Blaby-Haas CE. Functional diversification within the heme-binding split-barrel family. J Biol Chem 2024; 300:107888. [PMID: 39395795 PMCID: PMC11602992 DOI: 10.1016/j.jbc.2024.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/29/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Due to neofunctionalization, a single fold can be identified in multiple proteins that have distinct molecular functions. Depending on the time that has passed since gene duplication and the number of mutations, the sequence similarity between functionally divergent proteins can be relatively high, eroding the value of sequence similarity as the sole tool for accurately annotating the function of uncharacterized homologs. Here, we combine bioinformatic approaches with targeted experimentation to reveal a large multifunctional family of putative enzymatic and nonenzymatic proteins involved in heme metabolism. This family (homolog of HugZ (HOZ)) is embedded in the "FMN-binding split barrel" superfamily and contains separate groups of proteins from prokaryotes, plants, and algae, which bind heme and either catalyze its degradation or function as nonenzymatic heme sensors. In prokaryotes these proteins are often involved in iron assimilation, whereas several plant and algal homologs are predicted to degrade heme in the plastid or regulate heme biosynthesis. In the plant Arabidopsis thaliana, which contains two HOZ subfamilies that can degrade heme in vitro (HOZ1 and HOZ2), disruption of AtHOZ1 (AT3G03890) or AtHOZ2A (AT1G51560) causes developmental delays, pointing to important biological roles in the plastid. In the tree Populus trichocarpa, a recent duplication event of a HOZ1 ancestor has resulted in localization of a paralog to the cytosol. Structural characterization of this cytosolic paralog and comparison to published homologous structures suggests conservation of heme-binding sites. This study unifies our understanding of the sequence-structure-function relationships within this multilineage family of heme-binding proteins and presents new molecular players in plant and bacterial heme metabolism.
Collapse
Affiliation(s)
- Nicolas Grosjean
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Desigan Kumaran
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Meng Xie
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Audrey Fahey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Kassandra Santiago
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - Fangle Hu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Ian K Blaby
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA; USDA ARS NEA Plant, Soil & Nutrition Laboratory Research Unit, Ithaca, New York, USA.
| | - Crysten E Blaby-Haas
- Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, California, USA; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| |
Collapse
|
21
|
Nakagiri T, Köhler NR, Janciauskiene S, Neubert L, Knöfel AK, Pradhan P, Ruhparwar A, Ius F, Immenschuh S. Hemopexin alleviates sterile inflammation in ischemia-reperfusion-induced lung injury. Front Immunol 2024; 15:1451577. [PMID: 39430764 PMCID: PMC11487521 DOI: 10.3389/fimmu.2024.1451577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Pulmonary ischemia-reperfusion (IR) injury (IRI) plays a significant role in various lung disorders and is a key factor in the development of primary graft dysfunction following lung transplantation. Hemopexin (Hx) is the major serum scavenger protein for heme, which is a prooxidant and pro-inflammatory compound. In the current study, we hypothesized that Hx could confer beneficial effects in sterile inflammation induced by IR-mediated lung injury. Methods To examine this hypothesis, we administered Hx in an experimental mouse model of unilateral lung IRI. Results Our results demonstrate that treatment with Hx alleviated histopathological signs of inflammation in ischemic lungs, as evidenced by a reduction in the number of infiltrating neutrophils and decreased levels of perivascular edema. In addition, thrombotic vaso-occlusion in pulmonary blood vessels of IRI lungs was reduced by Hx. Immunohistochemical analysis revealed that Hx inhibited the up-regulation of heme oxygenase-1, an enzyme highly induced by heme, in ischemic lungs. Finally, Hx administration caused a decrease in the levels of circulating B- and CD8+ T-lymphocytes in the peripheral blood of mice with pulmonary IRI. Conclusion These findings suggest that the serum heme scavenger protein Hx holds therapeutic promise in alleviating lung IRI-mediated sterile inflammation. Thus, Hx may represent a preemptive therapeutic approach in IR-related lung disorders such as primary graft dysfunction in lung transplantation.
Collapse
Affiliation(s)
- Tomoyuki Nakagiri
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Nadine R. Köhler
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ann-Kathrin Knöfel
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Pooja Pradhan
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Wu B, Xu W, Wu K, Li Y, Hu M, Feng C, Zhu C, Zheng J, Cui X, Li J, Fan D, Zhang F, Liu Y, Chen J, Liu C, Li G, Qiu Q, Qu K, Wang W, Wang K. Single-cell analysis of the amphioxus hepatic caecum and vertebrate liver reveals genetic mechanisms of vertebrate liver evolution. Nat Ecol Evol 2024; 8:1972-1990. [PMID: 39152328 DOI: 10.1038/s41559-024-02510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
The evolution of the vertebrate liver is a prime example of the evolution of complex organs, yet the driving genetic factors behind it remain unknown. Here we study the evolutionary genetics of liver by comparing the amphioxus hepatic caecum and the vertebrate liver, as well as examining the functional transition within vertebrates. Using in vivo and in vitro experiments, single-cell/nucleus RNA-seq data and gene knockout experiments, we confirm that the amphioxus hepatic caecum and vertebrate liver are homologous organs and show that the emergence of ohnologues from two rounds of whole-genome duplications greatly contributed to the functional complexity of the vertebrate liver. Two ohnologues, kdr and flt4, play an important role in the development of liver sinusoidal endothelial cells. In addition, we found that liver-related functions such as coagulation and bile production evolved in a step-by-step manner, with gene duplicates playing a crucial role. We reconstructed the genetic footprint of the transfer of haem detoxification from the liver to the spleen during vertebrate evolution. Together, these findings challenge the previous hypothesis that organ evolution is primarily driven by regulatory elements, underscoring the importance of gene duplicates in the emergence and diversification of a complex organ.
Collapse
Affiliation(s)
- Baosheng Wu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kunjin Wu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Mingliang Hu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chenguang Feng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiangmin Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xinxin Cui
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jing Li
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Deqian Fan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fenghua Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chang Liu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Kai Qu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wen Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- New Cornerstone Science Laboratory, Xi'an, China.
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
23
|
Hervas-Sotomayor F, Murat F. Gene duplication contributes to liver evolution. Nat Ecol Evol 2024; 8:1788-1789. [PMID: 39152329 DOI: 10.1038/s41559-024-02509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Affiliation(s)
| | - Florent Murat
- INRAE, Fish Physiology and Genomics Institute (LPGP), Rennes, France.
| |
Collapse
|
24
|
Li M, Guo J, Qin Y, Lao Y, Kang SG, Huang K, Tong T. Dietary eugenol ameliorates long-term high-fat diet-induced skeletal muscle atrophy: mechanistic insights from integrated multi-omics. Food Funct 2024; 15:10136-10150. [PMID: 39292180 DOI: 10.1039/d4fo03648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Eugenol (EU), the major constituent of clove oil, possesses a range of bioactivities. Here, the therapeutic potential of oral EU for mitigating skeletal muscle wasting was investigated in a long-term high-fat diet (HFD)-induced obese mice model. Male C57BL/6J mice, aged six weeks, were assigned to either a chow or a HFD for 10 weeks. Subsequently, the weight-matched HFD-fed mice were allocated into two groups, receiving either 0.2% (w/w) EU supplementation or no supplementation for 14 weeks. Our findings revealed that EU supplementation enhanced grip strength, increased hanging duration, and augmented skeletal muscle mass. RNA sequencing analysis demonstrated that EU modified the gastrocnemius muscle transcriptomic profile, and the differentially expressed genes between HFD and EU groups were mainly involved in the HIF-1 signaling pathway, TCR signaling pathway, and cGMP-PKG signaling pathway, which is well-known to be related to skeletal muscle health. Untargeted metabolomics analysis further showed that EU supplementation significantly altered the nucleotide metabolism in the GAS muscle. Analysis of 16S rRNA sequencing demonstrated that EU supplementation ameliorated the gut dysbiosis caused by HFD. The alterations in gut microbiota induced by EU were significantly correlated with indexes related to skeletal muscle atrophy. The multi-omics analysis presented the robust interaction among the skeletal muscle transcriptome, metabolome, and gut microbiome altered by EU supplementation. Our results highlight the potential of EU in skeletal muscle atrophy intervention as a functional dietary supplement.
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Yige Qin
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Yujie Lao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun 58554, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China.
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing 100083, China
- Beijing Laboratory for Food Quality and Safety, Beijing 100083, China
| |
Collapse
|
25
|
Tong D, Wu F, Chen X, Du Z, Zhou J, Zhang J, Yang Y, Du A, Ma G. The mrp-3 gene is involved in haem efflux and detoxification in a blood-feeding nematode. BMC Biol 2024; 22:199. [PMID: 39256727 PMCID: PMC11389519 DOI: 10.1186/s12915-024-02001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Haem is essential but toxic for metazoan organisms. Auxotrophic nematodes can acquire sufficient haem from the environment or their hosts in the meanwhile eliminate or detoxify excessive haem through tightly controlled machinery. In previous work, we reported a role of the unique transporter protein HRG-1 in the haem acquisition and homeostasis of parasitic nematodes. However, little is known about the haem efflux and detoxification via ABC transporters, particularly the multiple drug resistance proteins (MRPs). RESULTS Here, we further elucidate that a member of the mrp family (mrp-3) is involved in haem efflux and detoxification in a blood-feeding model gastrointestinal parasite, Haemonchus contortus. This gene is haem-responsive and dominantly expressed in the intestine and inner membrane of the hypodermis of this parasite. RNA interference of mrp-3 resulted in a disturbance of genes (e.g. hrg-1, hrg-2 and gst-1) that are known to be involved in haem homeostasis and an increased formation of haemozoin in the treated larvae and lethality in vitro, particularly when exposed to exogenous haem. Notably, the nuclear hormone receptor NHR-14 appears to be associated the regulation of mrp-3 expression for haem homeostasis and detoxification. Gene knockdown of nhr-14 and/or mrp-3 increases the sensitivity of treated larvae to exogenous haem and consequently a high death rate (> 80%). CONCLUSIONS These findings demonstrate that MRP-3 and the associated molecules are essential for haematophagous nematodes, suggesting novel intervention targets for these pathogens in humans and animals.
Collapse
Affiliation(s)
- Danni Tong
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Fei Wu
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xueqiu Chen
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhendong Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingru Zhou
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jingju Zhang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yi Yang
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Aifang Du
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Guangxu Ma
- Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
26
|
Nahid DS, Coffey KA, Bei AK, Cordy RJ. Understanding the significance of oxygen tension on the biology of Plasmodium falciparum blood stages: From the human body to the laboratory. PLoS Pathog 2024; 20:e1012514. [PMID: 39298535 DOI: 10.1371/journal.ppat.1012514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Plasmodium falciparum undergoes sequestration within deep tissues of the human body, spanning multiple organ systems with differing oxygen (O2) concentrations. The parasite is exposed to an even greater range of O2 concentrations as it transitions from the human to the mosquito host, suggesting a high level of plasticity as it navigates these different environments. In this review, we explore factors that may contribute to the parasite's response to different environmental O2 concentrations, recognizing that there are likely multiple pieces to this puzzle. We first review O2-sensing mechanisms, which exist in other apicomplexans such as Toxoplasma gondii and consider whether similar systems could exist in Plasmodium. Next, we review morphological and functional changes in P. falciparum's mitochondrion during the asexual-to-sexual stage transition and discuss how these changes overlap with the parasite's access to O2. We then delve into reactive oxygen species (ROS) as ROS production is influenced by O2 availability and oxidative stress impacts Plasmodium intraerythrocytic development. Lastly, given that the primary role of the red blood cell (RBC) is to deliver O2 throughout the body, we discuss how changes in the oxygenation status of hemoglobin, the RBC's O2-carrying protein and key nutrient for Plasmodium, could also potentially impact the parasite's growth during intraerythrocytic development. This review also highlights studies that have investigated P. falciparum biology under varying O2 concentrations and covers technical aspects related to P. falciparum cultivation in the lab, focusing on sources of technical variation that could alter the amount of dissolved O2 encountered by cells during in vitro experiments. Lastly, we discuss how culture systems can better replicate in vivo heterogeneity with respect to O2 gradients, propose ideas for further research in this area, and consider translational implications related to O2 and malaria.
Collapse
Affiliation(s)
- Dinah S Nahid
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Kevin A Coffey
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Amy K Bei
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
27
|
Li Y, Han S, Gao H. Heme homeostasis and its regulation by hemoproteins in bacteria. MLIFE 2024; 3:327-342. [PMID: 39359680 PMCID: PMC11442138 DOI: 10.1002/mlf2.12120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 10/04/2024]
Abstract
Heme is an important cofactor and a regulatory molecule involved in various physiological processes in virtually all living cellular organisms, and it can also serve as the primary iron source for many bacteria, particularly pathogens. However, excess heme is cytotoxic to cells. In order to meet physiological needs while preventing deleterious effects, bacteria have evolved sophisticated cellular mechanisms to maintain heme homeostasis. Recent advances in technologies have shaped our understanding of the molecular mechanisms that govern the biological processes crucial to heme homeostasis, including synthesis, acquisition, utilization, degradation, trafficking, and efflux, as well as their regulation. Central to these mechanisms is the regulation of the heme, by the heme, and for the heme. In this review, we present state-of-the-art findings covering the biochemical, physiological, and structural characterization of important, newly identified hemoproteins/systems involved in heme homeostasis.
Collapse
Affiliation(s)
- Yingxi Li
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Sirui Han
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| | - Haichun Gao
- Institute of Microbiology and College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
28
|
Zhang DD. Ironing out the details of ferroptosis. Nat Cell Biol 2024; 26:1386-1393. [PMID: 38429476 DOI: 10.1038/s41556-024-01361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
Ferroptosis, spurred by excess labile iron and lipid peroxidation, is implicated in various diseases. Advances have been made in comprehending the lipid-peroxidation side of ferroptosis, but the exact role of iron in driving ferroptosis remains unknown. Although iron overload is characterized in multiple disease states, the potential role of ferroptosis within them remains undefined. This overview focuses on the 'ferro' side of ferroptosis, highlighting iron dysregulation in human diseases and potential therapeutic strategies targeting iron regulation and metabolism.
Collapse
Affiliation(s)
- Donna D Zhang
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
| |
Collapse
|
29
|
Grujcic M, Milovanovic M, Nedeljkovic J, Jovanovic D, Arsenijevic D, Solovjova N, Stankovic V, Tanaskovic I, Arsenijevic A, Milovanovic J. The Possible Effects of Galectin-3 on Mechanisms of Renal and Hepatocellular Injury Induced by Intravascular Hemolysis. Int J Mol Sci 2024; 25:8129. [PMID: 39125698 PMCID: PMC11311984 DOI: 10.3390/ijms25158129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Intravascular hemolysis is a central feature of congenital and acquired hemolytic anemias, complement disorders, infectious diseases, and toxemias. Massive and/or chronic hemolysis is followed by the induction of inflammation, very often with severe damage of organs, which enhances the morbidity and mortality of hemolytic diseases. Galectin-3 (Gal-3) is a β-galactoside-binding lectin that modulates the functions of many immune cells, thus affecting inflammatory processes. Gal-3 is also one of the main regulators of fibrosis. The role of Gal-3 in the development of different kidney and liver diseases and the potential of therapeutic Gal-3 inhibition have been demonstrated. Therefore, the objective of this review is to discuss the possible effects of Gal-3 on the process of kidney and liver damage induced by intravascular hemolysis, as well as to shed light on the potential therapeutic targeting of Gal-3 in intravascular hemolysis.
Collapse
Affiliation(s)
- Mirjana Grujcic
- Institute for Transfusiology and Hemobiology of Military Medical Academy, 11000 Belgrade, Serbia;
| | - Marija Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jelena Nedeljkovic
- Department of Medical Statistics and Informatics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Danijela Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Dragana Arsenijevic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Natalija Solovjova
- Academy of Applied Studies Belgrade, The College of Health Science, Cara Dušana 254, 11080 Belgrade, Serbia;
| | - Vesna Stankovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Irena Tanaskovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Harm Reduction of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.M.); (D.A.); (V.S.); (A.A.)
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
30
|
Brunson DN, Lemos JA. Heme utilization by the enterococci. FEMS MICROBES 2024; 5:xtae019. [PMID: 39070772 PMCID: PMC11282960 DOI: 10.1093/femsmc/xtae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Heme consists of a tetrapyrrole ring ligating an iron ion and has important roles in biological systems. While well-known as the oxygen-binding molecule within hemoglobin of mammals, heme is also cofactor for several enzymes and a major iron source for bacteria within the host. The enterococci are a diverse group of Gram-positive bacteria that exist primarily within the gastrointestinal tract of animals. However, some species within this genus can transform into formidable opportunistic pathogens, largely owing to their extraordinary adaptability to hostile environments. Although enterococci cannot synthesize heme nor depend on heme to grow, several species within the genus encode proteins that utilize heme as a cofactor, which appears to increase their fitness and ability to thrive in challenging environments. This includes more efficient energy generation via aerobic respiration and protection from reactive oxygen species. Here, we review the significance of heme to enterococci, primarily the major human pathogen Enterococcus faecalis, use bioinformatics to assess the prevalence of hemoproteins throughout the genus, and highlight recent studies that underscore the central role of the heme-E. faecalis relationship in host-pathogen dynamics and interspecies bacterial interactions.
Collapse
Affiliation(s)
- Debra N Brunson
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| | - José A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, United States
| |
Collapse
|
31
|
Ping FLY, Vahsen T, Brault A, Néré R, Labbé S. The flavohemoglobin Yhb1 is a new interacting partner of the heme transporter Str3. Mol Microbiol 2024; 122:29-49. [PMID: 38778742 DOI: 10.1111/mmi.15281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Nitric oxide (˙NO) is a free radical that induces nitrosative stress, which can jeopardize cell viability. Yeasts have evolved diverse detoxification mechanisms to effectively counteract ˙NO-mediated cytotoxicity. One mechanism relies on the flavohemoglobin Yhb1, whereas a second one requires the S-nitrosoglutathione reductase Fmd2. To investigate heme-dependent activation of Yhb1 in response to ˙NO, we use hem1Δ-derivative Schizosaccharomyces pombe strains lacking the initial enzyme in heme biosynthesis, forcing cells to assimilate heme from external sources. Under these conditions, yhb1+ mRNA levels are repressed in the presence of iron through a mechanism involving the GATA-type transcriptional repressor Fep1. In contrast, when iron levels are low, the transcription of yhb1+ is derepressed and further induced in the presence of the ˙NO donor DETANONOate. Cells lacking Yhb1 or expressing inactive forms of Yhb1 fail to grow in a hemin-dependent manner when exposed to DETANONOate. Similarly, the loss of function of the heme transporter Str3 phenocopies the effects of Yhb1 disruption by causing hypersensitivity to DETANONOate under hemin-dependent culture conditions. Coimmunoprecipitation and bimolecular fluorescence complementation assays demonstrate the interaction between Yhb1 and the heme transporter Str3. Collectively, our findings unveil a novel pathway for activating Yhb1, fortifying yeast cells against nitrosative stress.
Collapse
Affiliation(s)
- Florie Lo Ying Ping
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Tobias Vahsen
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Raphaël Néré
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Qubec, Canada
| |
Collapse
|
32
|
Pradhan P, Vijayan V, Liu B, Martinez-Delgado B, Matamala N, Nikolin C, Greite R, DeLuca DS, Janciauskiene S, Motterlini R, Foresti R, Immenschuh S. Distinct metabolic responses to heme in inflammatory human and mouse macrophages - Role of nitric oxide. Redox Biol 2024; 73:103191. [PMID: 38762951 PMCID: PMC11130737 DOI: 10.1016/j.redox.2024.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024] Open
Abstract
Activation of inflammation is tightly associated with metabolic reprogramming in macrophages. The iron-containing tetrapyrrole heme can induce pro-oxidant and pro-inflammatory effects in murine macrophages, but has been associated with polarization towards an anti-inflammatory phenotype in human macrophages. In the current study, we compared the regulatory responses to heme and the prototypical Toll-like receptor (TLR)4 ligand lipopolysaccharide (LPS) in human and mouse macrophages with a particular focus on alterations of cellular bioenergetics. In human macrophages, bulk RNA-sequencing analysis indicated that heme led to an anti-inflammatory transcriptional profile, whereas LPS induced a classical pro-inflammatory gene response. Co-stimulation of heme with LPS caused opposing regulatory patterns of inflammatory activation and cellular bioenergetics in human and mouse macrophages. Specifically, in LPS-stimulated murine, but not human macrophages, heme led to a marked suppression of oxidative phosphorylation and an up-regulation of glycolysis. The species-specific alterations in cellular bioenergetics and inflammatory responses to heme were critically dependent on the availability of nitric oxide (NO) that is generated in inflammatory mouse, but not human macrophages. Accordingly, studies with an inducible nitric oxide synthase (iNOS) inhibitor in mouse, and a pharmacological NO donor in human macrophages, reveal that NO is responsible for the opposing effects of heme in these cells. Taken together, the current findings indicate that NO is critical for the immunomodulatory role of heme in macrophages.
Collapse
Affiliation(s)
- Pooja Pradhan
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Vijith Vijayan
- Department of Pediatrics, Stanford University, Stanford, USA
| | - Bin Liu
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Beatriz Martinez-Delgado
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220, Madrid, Spain
| | - Nerea Matamala
- Molecular Genetics and Genetic Diagnostic Units, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), 28220, Madrid, Spain
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Robert Greite
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - David S. DeLuca
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | | | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
Saillant V, Morey L, Lipuma D, Boëton P, Siponen M, Arnoux P, Lechardeur D. HssS activation by membrane heme defines a paradigm for two-component system signaling in Staphylococcus aureus. mBio 2024; 15:e0023024. [PMID: 38682935 PMCID: PMC11237747 DOI: 10.1128/mbio.00230-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Strict management of intracellular heme pools, which are both toxic and beneficial, is crucial for bacterial survival during infection. The human pathogen Staphylococcus aureus uses a two-component heme sensing system (HssRS), which counteracts environmental heme toxicity by triggering expression of the efflux transporter HrtBA. The HssS heme sensor is a HisKA-type histidine kinase, characterized as a membrane-bound homodimer containing an extracellular sensor and a cytoplasmic conserved catalytic domain. To elucidate HssS heme-sensing mechanism, a structural simulation of the HssS dimer based on Alphafold2 was docked with heme. In this model, a heme-binding site is present in the HssS dimer between the membrane and extracellular domains. Heme is embedded in the membrane bilayer with its two protruding porphyrin propionates interacting with two conserved Arg94 and Arg163 that are located extracellularly. Single substitutions of these arginines and two highly conserved phenylalanines, Phe25 and Phe128, in the predicted hydrophobic pocket limited the ability of HssS to induce HrtBA synthesis. Combination of the four substitutions abolished HssS activation. Wild-type (WT) HssS copurified with heme from Escherichia coli, whereas heme binding was strongly attenuated in the variants. This study gives evidence that exogenous heme interacts with HssS at the membrane/extracellular interface to initiate HssS activation and induce HrtBA-mediated heme extrusion from the membrane. This "gatekeeper" mechanism could limit intracellular diffusion of exogenous heme in S. aureus and may serve as a paradigm for how efflux transporters control detoxification of exogenous hydrophobic stressors.IMPORTANCEIn the host blood, pathogenic bacteria are exposed to the red pigment heme that concentrates in their lipid membranes, generating cytotoxicity. To overcome heme toxicity, Staphylococcus aureus expresses a membrane sensor protein, HssS. Activation of HssS by heme triggers a phosphotransfer mechanism leading to the expression of a heme efflux system, HrtBA. This detoxification system prevents intracellular accumulation of heme. Our structural and functional data reveal a heme-binding hydrophobic cavity in HssS within the transmembrane domains (TM) helices at the interface with the extracellular domain. This structural pocket is important for the function of HssS as a heme sensor. Our findings provide a new basis for the elucidation of pathogen-sensing mechanisms as a prerequisite to the discovery of inhibitors.
Collapse
Affiliation(s)
- Vincent Saillant
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France, Jouy-en-Josas, France
| | - Léo Morey
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France, Jouy-en-Josas, France
| | - Damien Lipuma
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France, Jouy-en-Josas, France
| | - Pierre Boëton
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France, Jouy-en-Josas, France
| | - Marina Siponen
- Aix Marseille Univ., CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Pascal Arnoux
- Aix Marseille Univ., CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| | - Delphine Lechardeur
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France, Jouy-en-Josas, France
| |
Collapse
|
34
|
Nabil G, Ahmed YH, Ahmed O, Milad SS, Hisham M, Rafat M, Atia M, Shokry AA. Argel's stemmoside C as a novel natural remedy for mice with alcohol-induced gastric ulcer based on its molecular mechanistic pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117970. [PMID: 38428660 DOI: 10.1016/j.jep.2024.117970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solenostemma argel is widely distributed in Africa & Asia with traditional usage in alleviating abdominal colic, aches, & cramps. This plant is rich in phytochemicals, which must be explored for its pharmacological effects. PURPOSE Peptic Ulcer Disease (PUD) is the digestion of the digestive tube. PUD not only interferes with food digestion & nutrient absorption, damages one of the largest defensive barriers against pathogenic micro-organisms, but also impedes drug absorption & bioavailability, rendering the oral route, the most convenient way, ineffective. Omeprazole, one of the indispensable cost-effective proton-pump inhibitors (PPIs) extensively prescribed to control PUD, is showing growing apprehensions toward multiple drug interactions & side effects. Hence, finding a natural alternative with Omeprazole-like activity & limited side effects is a medical concern. STUDY DESIGN Therefore, we present Stemmoside C as a new gastroprotective phytochemical agent isolated from Solenostemma argel to be tested in upgrading doses against ethanol-induced gastric ulcers in mice compared to negative, positive, & reference Omeprazole groups. METHODS We carried out in-depth pharmacological & histopathological studies to determine the possible mechanistic pathway. RESULTS Our results showed that Stemmoside C protected the stomach against ethanol-induced gastric ulcers parallel to Omeprazole. Furthermore, the mechanistic studies revealed that Stemmoside C produced its effect using an orchestrated array of different mechanisms. Stemmoside C stimulates stomach defense by increasing COX-2, PGE-2, NO, & TFF-1 healing factors, IL-10 anti-inflammatory cytokine, & Nrf-2 & HO-1 anti-oxidant pathways. It also suppresses stomach ulceration by inhibiting leucocyte recruitment, especially neutrophils, leading to subsequent inhibition of NF-κBp65, TNF-α, IL-1β, & iNOS pro-inflammatory cytokines & JAK-1/STAT-3 inflammation-induced carcinogenicity cascade in addition to MMP-9 responsible for tissue degradation. CONCLUSION These findings cast light on Stemmoside C's clinical application against gastric ulcer progression, recurrence, & tumorigenicity & concurrently with chemotherapy.
Collapse
Affiliation(s)
- Ghazal Nabil
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Yasmine H Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Omaima Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Selvia S Milad
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Hisham
- Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Rafat
- Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Atia
- Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Aya A Shokry
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
35
|
Ishikawa K, Kodama Y. Bilirubin Distribution in Plants at the Subcellular and Tissue Levels. PLANT & CELL PHYSIOLOGY 2024; 65:762-769. [PMID: 38466577 PMCID: PMC11138361 DOI: 10.1093/pcp/pcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
In heterotrophs, heme degradation produces bilirubin, a tetrapyrrole compound that has antioxidant activity. In plants, heme is degraded in plastids and is believed to be converted to phytochromobilin rather than bilirubin. Recently, we used the bilirubin-inducible fluorescent protein UnaG to reveal that plants produce bilirubin via a non-enzymatic reaction with NADPH. In the present study, we used an UnaG-based live imaging system to visualize bilirubin accumulation in Arabidopsis thaliana and Nicotiana benthamiana at the organelle and tissue levels. In chloroplasts, bilirubin preferentially accumulated in the stroma, and the stromal bilirubin level increased upon dark treatment. Investigation of intracellular bilirubin distribution in leaves and roots showed that it accumulated mostly in plastids, with low levels detected in the cytosol and other organelles, such as peroxisomes, mitochondria and the endoplasmic reticulum. A treatment that increased bilirubin production in chloroplasts decreased the bilirubin level in peroxisomes, implying that a bilirubin precursor is transported between the two organelles. At the cell and tissue levels, bilirubin showed substantial accumulation in the root elongation region but little or none in the root cap and guard cells. Intermediate bilirubin accumulation was observed in other shoot and root tissues, with lower levels in shoot tissues. Our data revealed the distribution of bilirubin in plants, which has implications for the transport and physiological function of tetrapyrroles.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| |
Collapse
|
36
|
Seo YA, Cha MJ, Park S, Lee S, Lim YJ, Son DW, Lee EJ, Kim P, Chang S. Development of a Normal Porcine Cell Line Growing in a Heme-Supplemented, Serum-Free Condition for Cultured Meat. Int J Mol Sci 2024; 25:5824. [PMID: 38892012 PMCID: PMC11172042 DOI: 10.3390/ijms25115824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
A key element for the cost-effective development of cultured meat is a cell line culturable in serum-free conditions to reduce production costs. Heme supplementation in cultured meat mimics the original meat flavor and color. This study introduced a bacterial extract generated from Corynebacterium that was selected for high-heme expression by directed evolution. A normal porcine cell line, PK15, was used to apply the bacterial heme extract as a supplement. Consistent with prior research, we observed the cytotoxicity of PK15 to the heme extract at 10 mM or higher. However, after long-term exposure, PK15 adapted to tolerate up to 40 mM of heme. An RNA-seq analysis of these heme-adapted PK15 cells (PK15H) revealed a set of altered genes, mainly involved in cell proliferation, metabolism, and inflammation. We found that cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), lactoperoxidase (LPO), and glutathione peroxidase 5 (GPX5) were upregulated in the PK15H heme dose dependently. When we reduced serum serially from 2% to serum free, we derived the PK15H subpopulation that was transiently maintained with 5-10 mM heme extract. Altogether, our study reports a porcine cell culturable in high-heme media that can be maintained in serum-free conditions and proposes a marker gene that plays a critical role in this adaptation process.
Collapse
Affiliation(s)
- Yeon Ah Seo
- Department of Physiology, University of Ulsan College of Medicine, Ulsan 05505, Republic of Korea; (Y.A.S.); (M.J.C.); (Y.J.L.); (D.W.S.); (E.J.L.)
| | - Min Jeong Cha
- Department of Physiology, University of Ulsan College of Medicine, Ulsan 05505, Republic of Korea; (Y.A.S.); (M.J.C.); (Y.J.L.); (D.W.S.); (E.J.L.)
| | - Sehyeon Park
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (S.P.); (P.K.)
| | - Seungki Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea;
| | - Ye Jin Lim
- Department of Physiology, University of Ulsan College of Medicine, Ulsan 05505, Republic of Korea; (Y.A.S.); (M.J.C.); (Y.J.L.); (D.W.S.); (E.J.L.)
| | - Dong Woo Son
- Department of Physiology, University of Ulsan College of Medicine, Ulsan 05505, Republic of Korea; (Y.A.S.); (M.J.C.); (Y.J.L.); (D.W.S.); (E.J.L.)
| | - Eun Ji Lee
- Department of Physiology, University of Ulsan College of Medicine, Ulsan 05505, Republic of Korea; (Y.A.S.); (M.J.C.); (Y.J.L.); (D.W.S.); (E.J.L.)
| | - Pil Kim
- Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon 14662, Republic of Korea; (S.P.); (P.K.)
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea;
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Ulsan 05505, Republic of Korea; (Y.A.S.); (M.J.C.); (Y.J.L.); (D.W.S.); (E.J.L.)
- Asan Medical Center, Seoul 05505, Republic of Korea
| |
Collapse
|
37
|
Vanarsa K, Zhang T, Hutcheson J, Kumar SR, Nukala S, Inthavong H, Stanley B, Wu T, Mok CC, Saxena R, Mohan C. iTRAQ-based mass spectrometry screen to identify serum biomarkers in systemic lupus erythematosus. Lupus Sci Med 2024; 11:e000673. [PMID: 38782493 PMCID: PMC11116855 DOI: 10.1136/lupus-2022-000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/15/2022] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disorder with no reliable serum biomarkers currently available other than autoantibodies. METHODS In the present study, isobaric tags for relative and absolute quantitation-based mass spectrometry was used to screen the sera of patients with SLE to uncover potential disease biomarkers. RESULTS 85 common proteins were identified, with 16 being elevated (≥1.3) and 23 being decreased (≤0.7) in SLE. Of the 16 elevated proteins, serum alpha-1-microglobulin/bikunin precursor (AMBP), zinc alpha-2 glycoprotein (AZGP) and retinol-binding protein 4 (RBP4) were validated in independent cross-sectional cohorts (Cohort I, N=52; Cohort II, N=117) using an orthogonal platform, ELISA. Serum AMBP, AZGP and RBP4 were validated to be significantly elevated in both patients with inactive SLE and patients with active SLE compared with healthy controls (HCs) (p<0.05, fold change >2.5) in Cohort I. All three proteins exhibited good discriminatory power for distinguishing active SLE and inactive SLE (area under the curve=0.82-0.96), from HCs. Serum AMBP exhibited the largest fold change in active SLE (5.96) compared with HCs and correlated with renal disease activity. The elevation in serum AMBP was validated in a second cohort of patients with SLE of different ethnic origins, correlating with serum creatinine (r=0.60, p<0.001). CONCLUSION Since serum AMBP is validated to be elevated in SLE and correlated with renal disease, the clinical utility of this novel biomarker warrants further analysis in longitudinal cohorts of patients with lupus and lupus nephritis.
Collapse
Affiliation(s)
- Kamala Vanarsa
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ting Zhang
- University of Houston, Houston, Texas, USA
- Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | | | - Sneha Ravi Kumar
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | | | - Haleigh Inthavong
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | | | - Tianfu Wu
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - C C Mok
- Medicine, Tuen Mun Hospital, Hong Kong
| | - Ramesh Saxena
- The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
38
|
Wang J, Cao Y, Shi D, Zhang Z, Li X, Chen C. Crucial Involvement of Heme Biosynthesis in Vegetative Growth, Development, Stress Response, and Fungicide Sensitivity of Fusarium graminearum. Int J Mol Sci 2024; 25:5268. [PMID: 38791308 PMCID: PMC11120706 DOI: 10.3390/ijms25105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Heme biosynthesis is a highly conserved pathway from bacteria to higher animals. Heme, which serves as a prosthetic group for various enzymes involved in multiple biochemical processes, is essential in almost all species, making heme homeostasis vital for life. However, studies on the biological functions of heme in filamentous fungi are scarce. In this study, we investigated the role of heme in Fusarium graminearum. A mutant lacking the rate-limiting enzymes in heme synthesis, coproporphyrinogen III oxidase (Cpo) or ferrochelatase (Fc), was constructed using a homologous recombination strategy. The results showed that the absence of these enzymes was lethal to F. graminearum, but the growth defect could be rescued by the addition of hemin, so we carried out further studies with the help of hemin. The results demonstrated that heme was required for the activity of FgCyp51, and its absence increased the sensitivity to tebuconazole and led to the upregulation of FgCYP51 in F. graminearum. Additionally, heme plays an indispensable role in the life cycle of F. graminearum, which is essential for vegetative growth, conidiation, external stress response (especially oxidative stress), lipid accumulation, fatty acid β-oxidation, autophagy, and virulence.
Collapse
Affiliation(s)
| | | | | | | | | | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (J.W.); (Y.C.); (D.S.); (Z.Z.); (X.L.)
| |
Collapse
|
39
|
Yuksel EA, Aydin M, Agar G, Taspinar MS. 5-Aminolevulinic acid treatment mitigates pesticide stress in bean seedlings by regulating stress-related gene expression and retrotransposon movements. PROTOPLASMA 2024; 261:581-592. [PMID: 38191719 PMCID: PMC11021237 DOI: 10.1007/s00709-023-01924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
Overdoses of pesticides lead to a decrease in the yield and quality of plants, such as beans. The unconscious use of deltamethrin, one of the synthetic insecticides, increases the amount of reactive oxygen species (ROS) by causing oxidative stress in plants. In this case, plants tolerate stress by activating the antioxidant defense mechanism and many genes. 5-Aminolevulinic acid (ALA) improves tolerance to stress by acting exogenously in low doses. There are many gene families that are effective in the regulation of this mechanism. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. In this study, the expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and stress-associated protein (SAP) genes were determined by Q-PCR in deltamethrin (0.5 ppm) and various doses (20, 40, and 80 mg/l) of ALA-treated bean seedlings. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. It was determined that deltamethrin increased the expression of SOD (1.8-fold), GPX (1.4-fold), CAT (2.7-fold), and SAP (2.5-fold) genes, while 20 and 40 mg/l ALA gradually increased the expression of these genes at levels close to control, but 80 mg/l ALA increased the expression of these genes almost to the same level as deltamethrin (2.1-fold, 1.4-fold, 2.6-fold, and 2.6-fold in SOD, GPX, CAT, and SAP genes, respectively). In addition, retrotransposon-microsatellite amplified polymorphism (REMAP) was performed to determine the polymorphism caused by retrotransposon movements. While deltamethrin treatment has caused a decrease in genomic template stability (GTS) (27%), ALA treatments have prevented this decline. At doses of 20, 40, and 80 mg/L of ALA treatments, the GTS ratios were determined to be 96.8%, 74.6%, and 58.7%, respectively. Collectively, these findings demonstrated that ALA has the utility of alleviating pesticide stress effects on beans.
Collapse
Affiliation(s)
- Esra Arslan Yuksel
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| | - Murat Aydin
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey.
| | - Guleray Agar
- Faculty of Science, Department of Biology, Ataturk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
40
|
Asmah RH, Squire DS, Adupko S, Adedia D, Kyei-Baafour E, Aidoo EK, Ayeh-Kumi PF. Host-parasite interaction in severe and uncomplicated malaria infection in ghanaian children. Eur J Clin Microbiol Infect Dis 2024; 43:915-926. [PMID: 38472520 DOI: 10.1007/s10096-024-04804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE During malarial infection, both parasites and host red blood cells (RBCs) come under severe oxidative stress due to the production of free radicals. The host system responds in protecting the RBCs against the oxidative damage caused by these free radicals by producing antioxidants. In this study, we investigated the antioxidant enzyme; superoxide dismutase (SOD) activity and cytokine interactions with parasitaemia in Ghanaian children with severe and uncomplicated malaria. METHODOLOGY One hundred and fifty participants aged 0-12 years were administered with structured questionnaires. Active case finding approach was used in participating hospitals to identify and interview cases before treatment was applied. Blood samples were taken from each participant and used to quantify malaria parasitaemia, measure haematological parameters and SOD activity. Cytokine levels were measured by commercial ELISA kits. DNA comet assay was used to evaluate the extent of parasite DNA damage due to oxidative stress. RESULTS Seventy - Nine (79) and Twenty- Six (26) participants who were positive with malaria parasites were categorized as severe (56.75 × 103 ± 57.69 parasites/µl) and uncomplicated malaria (5.87 × 103 ± 2.87 parasites/µl) respectively, showing significant difference in parasitaemia (p < 0.0001). Significant negative correlation was found between parasitaemia and SOD activity levels among severe malaria study participants (p = 0.0428). Difference in cytokine levels (IL-10) amongst the control, uncomplicated and severe malaria groups was significant (p < 0.0001). The IFN-γ/IL-10 /TNF-α/IL-10 ratio differed significantly between the malaria infected and non- malaria infected study participants. DNA comet assay revealed damage to Plasmodium parasite DNA. CONCLUSION Critical roles played by SOD activity and cytokines as anti-parasitic defense during P. falciparum malaria infection in children were established.
Collapse
Affiliation(s)
- Richard H Asmah
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Daniel Sai Squire
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana.
| | - Selorme Adupko
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Accra, Ghana
| | - David Adedia
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of University of Health and Allied Sciences, Ho, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ebenezer K Aidoo
- Department of Medical Laboratory Technology, Accra Technical University, Accra, Ghana
| | - Patrick F Ayeh-Kumi
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
41
|
Singhabahu R, Kodagoda Gamage SM, Gopalan V. Pathological significance of heme oxygenase-1 as a potential tumor promoter in heme-induced colorectal carcinogenesis. CANCER PATHOGENESIS AND THERAPY 2024; 2:65-73. [PMID: 38601482 PMCID: PMC11002664 DOI: 10.1016/j.cpt.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2024]
Abstract
The significance of the heme-metabolizing enzyme heme oxygenase-1 (HMOX1) in the pathogenesis of colorectal cancer (CRC) has not been fully explored. HMOX1 cytoprotection is imperative to limit oxidative stress. However, its roles in preventing carcinogenesis in response to high levels of heme are not thoroughly understood. This study reviews various mechanisms associated with the paradoxical role of HMOX1, which is advantageous for tumor growth, refractoriness, and survival of cancer cells amid oxidative stress in heme-induced CRC. The alternate role of HMOX1 promotes cell proliferation and metastasis through immune modulation and angiogenesis. Inhibiting HMOX1 has been found to reverse tumor promotion. Thus, HMOX1 acts as a conditional tumor promoter in CRC pathogenesis.
Collapse
Affiliation(s)
- Rachitha Singhabahu
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Sujani M. Kodagoda Gamage
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
- Faculty of Health Sciences and Medicine, Bond University, Robina 4226, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
42
|
Mikhailova DM, Skverchinskaya E, Sudnitsyna J, Butov KR, Koltsova EM, Mindukshev IV, Gambaryan S. Hematin- and Hemin-Induced Spherization and Hemolysis of Human Erythrocytes Are Independent of Extracellular Calcium Concentration. Cells 2024; 13:554. [PMID: 38534398 PMCID: PMC10969559 DOI: 10.3390/cells13060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Pathologies such as malaria, hemorrhagic stroke, sickle cell disease, and thalassemia are characterized by the release of hemoglobin degradation products from damaged RBCs. Hematin (liganded with OH-) and hemin (liganded with Cl-)-are the oxidized forms of heme with toxic properties due to their hydrophobicity and the presence of redox-active Fe3. In the present study, using the original LaSca-TM laser particle analyzer, flow cytometry, and confocal microscopy, we showed that both hematin and hemin induce dose-dependent RBC spherization and hemolysis with ghost formation. Hematin and hemin at nanomolar concentrations increased [Ca2+]i in RBC; however, spherization and hemolysis occurred in the presence and absence of calcium, indicating that both processes are independent of [Ca2+]i. Both compounds triggered acute phosphatidylserine exposure on the membrane surface, reversible after 60 min of incubation. A comparison of hematin and hemin effects on RBCs revealed that hematin is a more reactive toxic metabolite than hemin towards human RBCs. The toxic effects of heme derivatives were reduced and even reversed in the presence of albumin, indicating the presence in RBCs of the own recovery system against the toxic effects of heme derivatives.
Collapse
Affiliation(s)
- Diana M. Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
- Department of Cytology and Histology, Saint Petersburg State University, 7/9 Universitetskaya Emb., 199034 Saint Petersburg, Russia
| | - Elisaveta Skverchinskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
| | - Julia Sudnitsyna
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
| | - Kirill R. Butov
- Department of Molecular Biology and Medical Biotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia;
| | - Ekaterina M. Koltsova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia;
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya st., 109029 Moscow, Russia
| | - Igor V. Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Ave., 194223 Saint Petersburg, Russia; (D.M.M.); (E.S.); (J.S.); (I.V.M.)
| |
Collapse
|
43
|
Tevere E, Di Capua CB, Chasen NM, Etheridge RD, Cricco JA. Trypanosoma cruzi heme responsive gene (TcHRG) plays a central role in orchestrating heme uptake in epimastigotes. FEBS J 2024; 291:1186-1198. [PMID: 38087972 PMCID: PMC10939882 DOI: 10.1111/febs.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/17/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Trypanosoma cruzi, a heme auxotrophic parasite, can control intracellular heme content by modulating heme responsive gene (TcHRG) expression when a free heme source is added to an axenic culture. Herein, we explored the role of TcHRG protein in regulating the uptake of heme derived from hemoglobin in epimastigotes. We demonstrate that the endogenous TcHRG (protein and mRNA) responded similarly to bound (hemoglobin) and free (hemin) heme. Endogenous TcHRG was found in the flagellar pocket boundaries and partially overlapping with the mitochondrion. On the other hand, endocytic null parasites were able to develop and exhibited a similar heme content compared to wild-type when fed with hemoglobin, indicating that endocytosis is not the main entrance pathway for hemoglobin-derived heme in this parasite. Moreover, the overexpression of TcHRG led to an increase in heme content when hemoglobin was used as the heme source. Taken together, these results suggest that the uptake of hemoglobin-derived heme likely occurs through extracellular proteolysis of hemoglobin via the flagellar pocket, and this process is governed by TcHRG. In sum, T. cruzi epimastigotes control heme homeostasis by modulating TcHRG expression independently of the available source of heme.
Collapse
Affiliation(s)
- Evelyn Tevere
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Cecilia Beatriz Di Capua
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Nathan Michael Chasen
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, USA
| | - Ronald Drew Etheridge
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, Georgia, USA
| | - Julia Alejandra Cricco
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Área Biofísica, Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
44
|
Wiser MF. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024; 13:182. [PMID: 38535526 PMCID: PMC10974218 DOI: 10.3390/pathogens13030182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824, USA
| |
Collapse
|
45
|
Pandey AK, Trivedi V. Role Transformation of HSPA8 to Heme-peroxidase After Binding Hemin to Catalyze Heme Polymerization. Protein J 2024; 43:48-61. [PMID: 38066289 DOI: 10.1007/s10930-023-10167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 02/29/2024]
Abstract
Hemin, a byproduct of hemoglobin degradation, inflicts oxidative insult to cells. Following its accumulation, several proteins are recruited for heme detoxification with heme oxygenase playing the key role. Chaperones play a protective role primarily by preventing protein degradation and unfolding. They also are known to have miscellaneous secondary roles during similar situations. To discover a secondary role of chaperones during heme stress we studied the role of the chaperone HSPA8 in the detoxification of hemin. In-silico studies indicated that HSPA8 has a well-defined biophoric environment to bind hemin. Through optical difference spectroscopy, we found that HSPA8 binds hemin through its N-terminal domain with a Kd value of 5.9 ± 0.04 µM and transforms into a hemoprotein. The hemoprotein was tested for exhibiting peroxidase activity using guaiacol as substrate. The complex formed reacts with H2O2 and exhibits classical peroxidase activity with an ability to oxidize aromatic and halide substrates. HSPA8 is dose-dependently catalyzing heme polymerization through its N-terminal domain. The IR results reveal that the polymer formed exhibits structural similarities to β-hematin suggesting its covalent nature. The polymerization mechanism was tested through optical spectroscopy, spin-trap, and activity inhibition experiments. The results suggest that the polymerization occurs through a peroxidase-H2O2 system involving a one-electron transfer mechanism, and the formation of free radical and radical-radical interaction. It highlights a possible role of the HSPA8-hemin complex in exhibiting cytoprotective function during pathological conditions like malaria, sickle cell disease, etc.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
46
|
Pandey AK, Trivedi V. Hemin competitively inhibits HSPA8 ATPase activity mitigating its foldase function. Arch Biochem Biophys 2024; 752:109889. [PMID: 38215959 DOI: 10.1016/j.abb.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Hemolysis in red blood cells followed by hemoglobin degradation results in high hemin levels in the systemic circulation. Such a level of hemin is disastrous for cells and tissues and is considerably responsible for the pathologies of diseases like severe malaria. Hemin's hydrophobic chemical nature and structure allow it to bind several proteins leading to their functional modification. Such modifications in physiologically relevant proteins can have a high impact on various cellular processes. HSPA8 is a chaperone that has a protective role in oxidative stress by aiding protein refolding. Through ATPase activity assays we found that hemin can competitively inhibit ATP hydrolysis by the chaperone HSPA8. Hemin as such does not affect the structural integrity of the protein which is inferred from CD spectroscopy and Gel filtration but it hinders the ATP-dependent foldase function of the chaperone. HSPA8 was not able to cause the refolding of the model protein lysozyme in the presence of hemin. The loss in HSPA8 function was due to competition between hemin and ATP as the chaperone was able to regain the foldase function when the concentration of ATP was gradually increased with hemin present at the inhibitory concentration. In-silico studies to establish the competition for the specific binding site revealed that ATP was unable to replace hemin from the ATP binding pocket of HSPA8 and was forced to form a non-specific and unstable complex. In-vitro isothermal calorimetry revealed that the affinity of ATP for binding to HSPA8 was reduced 22 folds in the presence of hemin. The prevention of HSPA8's cytoprotective function by hemin can be a major factor contributing to the overall cellular damage during hemin accumulation in the case of severe malaria and other hemolytic diseases.
Collapse
Affiliation(s)
- Alok Kumar Pandey
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, 781039, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Bioscience and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
47
|
Wei X, Zhang F, Cheng D, Wang Z, Xing N, Yuan J, Zhang W, Xing F. Free heme induces neuroinflammation and cognitive impairment by microglial activation via the TLR4/MyD88/NF-κB signaling pathway. Cell Commun Signal 2024; 22:16. [PMID: 38183122 PMCID: PMC10768134 DOI: 10.1186/s12964-023-01387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Red blood cells (RBCs) transfusion is related to perioperative neurocognitive disorders. The toxic effect of free heme has been identified in many pathologies. However, the underlying mechanisms of RBCs transfusion or free heme in cognitive impairment have not been clearly explored. Therefore, this research was conducted to determine the mechanism of free heme-induced neuroinflammation and cognitive impairment. METHODS Rats were received intraperitoneal injection of hemin alone or combined with intracerebroventricular injection of Hemopexin (HPX), and MWM test was conducted to measure cognitive function. The amount of heme-HPX complexes was evaluated by flow cytometry for CD91 + cells. The microglial inflammatory response in rat brain was observed by immunofluorescence staining of Iba-1, and the inflammatory factors of TNF-α, IL-1β and IL-6 in rat brain and BV2 cells were detected by ELISA analysis. Furthermore, neuronal apoptosis in HT22 cells alone and in HT22 + BV2 coculture system was detected by flow cytometry and immunofluorescence staining. Finally, western blot was conducted to detect TLR4/MyD88/NF-κB proteins in rat brain and BV2 cells treated with hemin or combined with pathway inhibitors. Additionally, the M1 surface marker CD86 was observed in BV2 cells to further confirm neuroinflammation. RESULTS Intraperitoneal injection of hemin induced cognitive impairment, increase of CD91 + cells, up-regulation of TNF-α and IL-1β, down-regulation of IL-6, activation of microglia, and activation of the TLR4/MyD88/NF-κB signaling pathway in rat brain. Significantly, intracerebroventricular injection of HPX reduced the above effects. Hemin induced boost of TNF-α, IL-1β and IL-6 in BV2 cells, as well as apoptosis in HT22 cells. Notably, when HT22 cells were cocultured with BV2 cells, apoptosis was significantly increased. Hemin also induced activation of the TLR4/MyD88/NF-κB signaling pathway and increased the M1 surface marker CD86 in BV2 cells, and inhibiting this pathway reduced the inflammatory responses. CONCLUSIONS Free heme induces cognitive impairment, and the underlying mechanism may involve neuronal apoptosis and microglial inflammation via the TLR4/MyD88/NF-κB signaling pathway. HPX may have potential therapeutic effects. Video Abstract.
Collapse
Affiliation(s)
- Xin Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Fan Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Dan Cheng
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450052, China.
| |
Collapse
|
48
|
Zhang Y, Jiang C, Meng N. Targeting Ferroptosis: A Novel Strategy for the Treatment of Atherosclerosis. Mini Rev Med Chem 2024; 24:1262-1276. [PMID: 38284727 DOI: 10.2174/0113895575273164231130070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Since ferroptosis was reported in 2012, its application prospects in various diseases have been widely considered, initially as a treatment direction for tumors. Recent studies have shown that ferroptosis is closely related to the occurrence and development of atherosclerosis. The primary mechanism is to affect the occurrence and development of atherosclerosis through intracellular iron homeostasis, ROS and lipid peroxide production and metabolism, and a variety of intracellular signaling pathways. Inhibition of ferroptosis is effective in inhibiting the development of atherosclerosis, and it can bring a new direction for treating atherosclerosis. In this review, we discuss the mechanism of ferroptosis and focus on the relationship between ferroptosis and atherosclerosis, summarize the different types of ferroptosis inhibitors that have been widely studied, and discuss some issues worthy of attention in the treatment of atherosclerosis by targeting ferroptosis.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
49
|
Liu Y, Karlsson S. Perspectives of current understanding and therapeutics of Diamond-Blackfan anemia. Leukemia 2024; 38:1-9. [PMID: 37973818 PMCID: PMC10776401 DOI: 10.1038/s41375-023-02082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
ABSTACT Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure disorder characterized by erythroid hypoplasia. It primarily affects infants and is often caused by heterozygous allelic variations in ribosomal protein (RP) genes. Recent studies also indicated that non-RP genes like GATA1, TSR2, are associated with DBA. P53 activation, translational dysfunction, inflammation, imbalanced globin/heme synthesis, and autophagy dysregulation were shown to contribute to disrupted erythropoiesis and impaired red blood cell production. The main therapeutic option for DBA patients is corticosteroids. However, half of these patients become non-responsive to corticosteroid therapy over prolonged treatment and have to be given blood transfusions. Hematopoietic stem cell transplantation is currently the sole curative option, however, the treatment is limited by the availability of suitable donors and the potential for serious immunological complications. Recent advances in gene therapy using lentiviral vectors have shown promise in treating RPS19-deficient DBA by promoting normal hematopoiesis. With deepening insights into the molecular framework of DBA, emerging therapies like gene therapy hold promise for providing curative solutions and advancing comprehension of the underlying disease mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
50
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|