1
|
Alfredsson M, Hansford K, Carter D, Sigurðardóttir H, Björnsdóttir ÞS, Pétursson HS, Pálsdóttir GR, Medlock JM. Detection of Borrelia burgdorferi (s.l.) in Ixodes ricinus ticks collected in Iceland. Parasit Vectors 2025; 18:176. [PMID: 40375316 DOI: 10.1186/s13071-025-06809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Ixodes ricinus is the most common tick species throughout Europe; it can transmit various pathogens that can cause diseases in humans and animals. It is the principal vector of Borrelia burgdorferi sensu lato (s.l.) and tick-borne encephalitis virus (TBEV), and there is increasing concern about I. ricinus's potential to transmit pathogens to humans and animals in Iceland. The aim of this research is to determine whether I. ricinus ticks collected in Iceland carry B. burgdorferi (s.l) and, in a limited number of samples, other pathogens to better understand the potential health risks that I. ricinus bites may pose to both humans and animals in Iceland. METHODS Birds were captured and examined for ticks at the South East Iceland Bird Observatory from 2018 to 2019. All ticks were screened for infection with B. burgdorferi (s.l.). Additionally, 133 ticks collected in Iceland prior to 2018, stored in the collection at the Natural Science Institute of Iceland, were screened for the presence of B. burgdorferi (s.l.), TBEV, Coxiella burnetii, Francisella tularensis and Rickettsia spp. Samples positive for Borrelia were sequenced by Genewiz Azenta, Germany, and BLAST (NCBI) analysis was performed on the obtained sequences. RESULTS A total of 1209 I. ricinus ticks collected in Iceland were screened for the presence of B. burgdorferi (s.l.); 133 ticks from a museum collection were additionally screened for other pathogens. Borrelia burgdorferi (s.l.) was detected in 9.9% of the tick samples (86/866). DNA sequencing from 28 positive samples revealed three genospecies. The most frequently detected was Borrelia garinii (82.1%), followed by B. valaisiana (14.3%) and B. afzelii (3.6%). TBEV, C. burnetii, F. tularensis and Rickettsia spp. were not detected in ticks from the collection. CONCLUSIONS This research confirms the presence of B. burgdorferi (s.l.) in I. ricinus ticks collected in Iceland. Even though Lyme disease is not endemic and I. ricinus ticks are not considered established, the risk of exposure remains. Further research on B. burgdorferi (s.l.) and other pathogens these ticks may carry is essential along with raising public awareness and fostering collaboration between experts to reduce the risk of tick-borne diseases in Iceland.
Collapse
Affiliation(s)
- Matthias Alfredsson
- Natural Science Institute of Iceland, Urridaholtsstraeti 6-8, 212, Gardabaer, Iceland.
| | - Kayleigh Hansford
- Medical Entomology Group, UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Daniel Carter
- Genomics of Rare and Emerging Human Pathogens Department, UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| | - Heiða Sigurðardóttir
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112, Reykjavik, Iceland
| | - Þórunn Sóley Björnsdóttir
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112, Reykjavik, Iceland
| | - Hrólfur Smári Pétursson
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112, Reykjavik, Iceland
| | - Guðný Rut Pálsdóttir
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112, Reykjavik, Iceland
| | - Jolyon M Medlock
- Medical Entomology Group, UK Health Security Agency, Porton Down, Salisbury, Wiltshire, UK
| |
Collapse
|
2
|
Bacak E, Ozsemir AC, Akyildiz G, Gungor U, Bente D, Keles AG, Beskardes V, Kar S. Bidirectional tick transport by migratory birds of the African-Western Palearctic flyway over Turkish Thrace: observation of the current situation and future projection. Parasitol Res 2023; 123:37. [PMID: 38087074 DOI: 10.1007/s00436-023-08069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023]
Abstract
This study was carried out at a vital stopover site of migrating birds in the Turkish Thrace, European part of Turkey, on the Mediterranean/Black Sea Flyway. Ticks were collected from the birds captured in the four migration periods, i.e., autumn 2020, spring 2021, autumn 2021, and spring 2022, and identified morphologically. Throughout the study, 10,651 birds from 77 species were examined, and 671 belonging to 34 species were found infested. The infestation prevalence in total birds and the mean number of ticks per infested bird were 6.3% and 3.8 (range: 1-142), respectively. A total of 2573 ticks were collected with the following species distribution and numbers: Ixodes spp. 70 larvae, I. frontalis 1829 larvae, 337 nymphs, and 30 adults, I. acuminatus 16 nymphs and 42 adults, I. ricinus 39 larvae, 141 nymphs, and one adult, Hyalomma spp. seven larvae and 60 nymphs, and Haemaphysalis sp. one larva. Prevalence, intensity, and species distribution of the ticks in birds varied depending on the month, season, year, and species-specific migration phenology of the birds. The results show that precise determination of the tick-borne risk associated with migratory birds for a particular region necessarily requires long-term and comprehensive studies and indicates that anthropogenic climate change and habitat degradation can significantly differentiate the risk by influencing the migration phenology in birds and by making new regions suitable for the establishment of different ticks.
Collapse
Affiliation(s)
- Ergun Bacak
- Vocational School of Forestry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Gurkan Akyildiz
- Department of Basic Health Sciences, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| | - Umut Gungor
- Department of Forest Engineering, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dennis Bente
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Aysen Gargili Keles
- Department of Basic Health Sciences, Health Sciences Faculty, Marmara University, Istanbul, Turkey
| | - Vedat Beskardes
- Department of Forest Entomology and Protection, Faculty of Forestry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sirri Kar
- Department of Biology, Tekirdag Namik Kemal University, 59030 Suleymanpasa, Tekirdag, Turkey.
| |
Collapse
|
3
|
Goren A, Viljugrein H, Rivrud IM, Jore S, Bakka H, Vindenes Y, Mysterud A. The emergence and shift in seasonality of Lyme borreliosis in Northern Europe. Proc Biol Sci 2023; 290:20222420. [PMID: 36809802 PMCID: PMC9943644 DOI: 10.1098/rspb.2022.2420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Climate change has had a major impact on seasonal weather patterns, resulting in marked phenological changes in a wide range of taxa. However, empirical studies of how changes in seasonality impact the emergence and seasonal dynamics of vector-borne diseases have been limited. Lyme borreliosis, a bacterial infection spread by hard-bodied ticks, is the most common vector-borne disease in the northern hemisphere and has been rapidly increasing in both incidence and geographical distribution in many regions of Europe and North America. By analysis of long-term surveillance data (1995-2019) from across Norway (latitude 57°58'-71°08' N), we demonstrate a marked change in the within-year timing of Lyme borreliosis cases accompanying an increase in the annual number of cases. The seasonal peak in cases is now six weeks earlier than 25 years ago, exceeding seasonal shifts in plant phenology and previous model predictions. The seasonal shift occurred predominantly in the first 10 years of the study period. The concurrent upsurgence in case number and shift in case timing indicate a major change in the Lyme borreliosis disease system over recent decades. This study highlights the potential for climate change to shape the seasonal dynamics of vector-borne disease systems.
Collapse
Affiliation(s)
- Asena Goren
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway.,Norwegian Veterinary Institute, PO Box 64, NO-1431 Ås, Norway
| | - Inger Maren Rivrud
- Norwegian Institute for Nature Research (NINA), Sognsveien 68, NO-0855 Oslo, Norway
| | - Solveig Jore
- Zoonotic, Food and Waterborne Infections, The Norwegian Public Health Institute, PO Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Haakon Bakka
- Norwegian Veterinary Institute, PO Box 64, NO-1431 Ås, Norway
| | - Yngvild Vindenes
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, Oslo NO-0316, Norway.,Norwegian Institute for Nature Research (NINA), PO Box 5685 Sluppen, NO-7485 Trondheim, Norway
| |
Collapse
|
4
|
Sormunen JJ, Klemola T, Vesterinen EJ. Ticks (Acari: Ixodidae) parasitizing migrating and local breeding birds in Finland. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:145-156. [PMID: 34787774 PMCID: PMC8702513 DOI: 10.1007/s10493-021-00679-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Ticks are globally renowned vectors for numerous zoonoses, and birds have been identified as important hosts for several species of hard ticks (Acari: Ixodidae) and tick-borne pathogens. Many European bird species overwinter in Africa and Western Asia, consequently migrating back to breeding grounds in Europe in the spring. During these spring migrations, birds may transport exotic tick species (and associated pathogens) to areas outside their typical distribution ranges. In Finland, very few studies have been conducted regarding ticks parasitizing migrating or local birds, and existing data are outdated, likely not reflecting the current situation. Consequently, in 2018, we asked volunteer bird ringers to collect ticks from migrating and local birds, to update current knowledge on ticks found parasitizing birds in Finland. In total 430 ticks were collected from 193 birds belonging to 32 species, caught for ringing between 2018 and 2020. Furthermore, four Ixodes uriae were collected from two roosting islets of sea birds in 2016 and 2020. Ticks collected on birds consisted of: Ixodes ricinus (n = 421), Ixodes arboricola (4), Ixodes lividus (2) and Hyalomma marginatum (3). Ixodes ricinus loads (nymphs and larvae) were highest on thrushes (Passeriformes: Turdidae) and European robins (Erithacus rubecula). The only clearly imported exotic tick species was H. marginatum. This study forms the second report of both I. uriae and I. arboricola from Finland, and possibly the northernmost observation of I. arboricola from Europe. The importation of exotic tick species by migrating birds seems a rare occurrence, as over 97% of all ticks collected from birds arriving in Finland during their spring migrations were I. ricinus, a species native to and abundant in Finland.
Collapse
Affiliation(s)
| | - Tero Klemola
- Department of Biology, University of Turku, Turku, Finland
| | - Eero J Vesterinen
- Department of Biology, University of Turku, Turku, Finland
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Migratory birds as disseminators of ticks and the tick-borne pathogens Borrelia bacteria and tick-borne encephalitis (TBE) virus: a seasonal study at Ottenby Bird Observatory in South-eastern Sweden. Parasit Vectors 2020; 13:607. [PMID: 33272317 PMCID: PMC7713317 DOI: 10.1186/s13071-020-04493-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Background Birds can act as reservoirs of tick-borne pathogens and can also disperse pathogen-containing ticks to both nearby and remote localities. The aims of this study were to estimate tick infestation patterns on migratory birds and the prevalence of different Borrelia species and tick-borne encephalitis virus (TBEV) in ticks removed from birds in south-eastern Sweden. Methods Ticks were collected from resident and migratory birds captured at the Ottenby Bird Observatory, Öland, Sweden, from March to November 2009. Ticks were molecularly identified to species, and morphologically to developmental stage, and the presence of Borrelia bacteria and TBEV was determined by quantitative real-time PCR. Results A total of 1339 ticks in the genera Haemaphysalis, Hyalomma, and Ixodes was recorded of which I. ricinus was the most abundant species. Important tick hosts were the European robin (Erithacus rubecula), Blackbird (Turdus merula), Tree pipit (Anthus trivialis), Eurasian wren (Troglodytes troglodytes), Common redstart (Phoenicurus phoenicurus), Willow warbler (Phylloscopus trochilus), and Common whitethroat (Sylvia communis). Borrelia bacteria were detected in 25% (285/1,124) of the detached ticks available for analysis. Seven Borrelia species (B. afzelii, B. burgdorferi (s.s.), B. garinii, B. lusitaniae, B. turdi, B. valaisiana, and B. miyamotoi) were identified. B. turdi was recorded for the first time in ticks in Sweden. The number of Borrelia cells per tick ranged from 2.0 × 100 to 7.0 × 105. B. miyamotoi-containing ticks contained a significantly higher median number of Borrelia cells than B. burgdorferi (s.l.)-containing ticks. B. garinii and B. miyamotoi were the most prevalent Borrelia species in tick larvae. Larvae of I. ricinus with B. garinii were removed from seven bird species, particularly S. communis and A. trivialis, which may suggest that the larvae had contracted the Borrelia bacteria from or via these birds. Also, a high percentage of tick larvae containing B. miyamotoi was removed from E. rubecula. All ticks were negative for TBEV. Conclusions The results corroborate the view that the contributions of birds to human disease are substantial, particularly as blood hosts for ticks and for their short-, medium-, and long-distance dispersal. Moreover, several ground-foraging bird species appear to be important for the maintenance and dispersal of Borrelia species. The absence of TBEV in the ticks conforms to other similar studies.![]()
Collapse
|
6
|
Hasle G, Leinaas HP, Heier L, Garcia AL, Røed KH. Mitochondrial DNA in Ixodus ricinus (Acari: Ixodidae) on birds reflects ticks' transportation routes to Lista, Norway. Ticks Tick Borne Dis 2020; 12:101553. [PMID: 33130437 DOI: 10.1016/j.ttbdis.2020.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
Ticks are important pathogen vectors, and large mammals and birds have the greatest potential for dispersing them. To study tick dispersal by migrating birds, we have analysed genetic variations in mitochondrial DNA control region from Ixodes ricinus from northward migrating blackbird, Turdus merula, and (European) robin, Erithacus rubecula, at the Lista Bird Observatory in southwestern Norway. We compared their genetic structure with that of resident tick populations from areas covering their expected last stop (i.e. Great Britain and Jutland, Denmark) before taking off for southern Norway, and the resident tick population at Lista. The statistical analysis showed that the I. ricinus found on blackbirds differed significantly from those found on robins, which is consistent with the birds' differential migration routes. I. ricinus from robins did not differ genetically from those flagged at Jutland, suggesting that the former mainly originate in continental Europe. Bayesian analysis indicated that most of the blackbirds caught early in the spring (i.e. before or on the 1st of April) carried ticks of a mixed origin from both Great Britain and continental Europe, while blackbirds caught later in the season carried an increasing amount of ticks acquired locally.
Collapse
Affiliation(s)
- Gunnar Hasle
- Reiseklinikken, St Olavs Plass 3, Oslo, 0165, Norway.
| | - Hans Petter Leinaas
- Department of Biosciences, University of Oslo, P.O.Box 1066, Blindern, Oslo, 0316, Norway.
| | - Lise Heier
- Reiseklinikken, St Olavs Plass 3, Oslo, 0165, Norway.
| | - Aïda López Garcia
- NOF-BirdLife Norway, Lista Bird Observatory, Fyrveien 6, Borhaug, 4563, Norway.
| | - Knut Håkon Røed
- School of Veterinary Science, NMBU-Norwegian University of Life Sciences, P.O. Box 369 Sentrum, Oslo, 0102, Norway.
| |
Collapse
|
7
|
Clark JJ, Gilray J, Orton RJ, Baird M, Wilkie G, Filipe ADS, Johnson N, McInnes CJ, Kohl A, Biek R. Population genomics of louping ill virus provide new insights into the evolution of tick-borne flaviviruses. PLoS Negl Trop Dis 2020; 14:e0008133. [PMID: 32925939 PMCID: PMC7515184 DOI: 10.1371/journal.pntd.0008133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/24/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022] Open
Abstract
The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors. Tick-borne pathogens represent a major emerging threat to public health and in recent years have been expanding into new areas. LIV is a neglected virus endemic to the UK and Ireland (though it has been detected in Scandinavia and Russia) which is closely related to the major human pathogen TBEV, but predominantly causes disease in sheep and grouse. The recent detection of TBEV in the UK, which has also emerged elsewhere in Europe, requires more detailed understanding of the spread and sequence diversity of LIV. This could be important for diagnosis and vaccination, but also to improve our understanding of the evolution and emergence of these tick-borne viruses. Here we describe the sequencing of 22 LIV isolates which have been sampled from several host species across the past century. We have utilised this dataset to investigate the evolutionary pressures that LIV is subjected to and have explored the evolution of LIV using phylogenetic analysis. Crucially we were unable to estimate a reliable molecular clock rate for LIV and found that this problem also extends to a larger phylogeny of TBEV sequences. This work highlights a previously unknown caveat of tick-borne flavivirus evolutionary analysis which may be important for understanding the evolution of these important pathogens.
Collapse
Affiliation(s)
- Jordan J. Clark
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Moredun Research Institute, Edinburgh, United Kingdom
- * E-mail: (JC); (RB)
| | - Janice Gilray
- Moredun Research Institute, Edinburgh, United Kingdom
| | - Richard J. Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Margaret Baird
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin Wilkie
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, United Kingdom
| | | | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine - University of Glasgow, Glasgow, United Kingdom
- * E-mail: (JC); (RB)
| |
Collapse
|
8
|
Pedersen BN, Jenkins A, Kjelland V. Tick-borne pathogens in Ixodes ricinus ticks collected from migratory birds in southern Norway. PLoS One 2020; 15:e0230579. [PMID: 32271774 PMCID: PMC7145107 DOI: 10.1371/journal.pone.0230579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023] Open
Abstract
Birds are important hosts for the first life stages of the Ixodes ricinus tick and they can transport their parasites over long distances. The aim of this study was to investigate the prevalence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Neoehrlichia mikurensis and Rickettsia helvetica in ticks collected from migratory birds in Norway. A total of 815 Ixodes ricinus ticks from 216 birds trapped at Lista Bird Observatory in southern Norway during spring and autumn migration in 2008 were analysed by real-time PCR. B. burgdorferi s. l. was the most prevalent pathogen, detected in 6.1% of the ticks. The prevalence of N. mikurensis, A. phagocytophilum and R. helvetica was 1.2%, 0.9% and 0.4% respectively. In addition, one sample (0.1%) was positive for B. miyamotoi. In total, 8.2% of the ticks were infected with at least one pathogen. Co-infection with B. burgdorferi s. l. and N. mikurensis or A. phagocytophilum was found in 6.0% of the infected ticks. Our results show that all the known major tick-borne bacterial pathogens in Norway are subject to transport by migratory birds, potentially allowing spread to new areas. Our study showed a surprisingly high number of samples with PCR inhibition (57%). These samples had been extracted using standard methodology (phenol-chloroform extraction). This illustrates the need for inhibition controls to determine true prevalence rates.
Collapse
Affiliation(s)
- Benedikte N. Pedersen
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Gullbringvegen, Norway
- * E-mail: (BNP); (AJ)
| | - Andrew Jenkins
- Department of Natural Science and Environmental Health, University of South-Eastern Norway, Gullbringvegen, Norway
- * E-mail: (BNP); (AJ)
| | - Vivian Kjelland
- Department of Natural Sciences, Faculty of Engineering and Science, University of Agder, Kristiansand, Norway
- Sørlandet Hospital Health Enterprise, Research Unit, Kristiansand, Norway
| |
Collapse
|
9
|
The Potential Role of Migratory Birds in the Rapid Spread of Ticks and Tick-Borne Pathogens in the Changing Climatic and Environmental Conditions in Europe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062117. [PMID: 32209990 PMCID: PMC7142536 DOI: 10.3390/ijerph17062117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/28/2022]
Abstract
This opinion piece highlights the role of migratory birds in the spread of ticks and their role in the circulation and dissemination of pathogens in Europe. Birds with different lifestyles, i.e., non-migrants residing in a specific area, or short-, medium-, and long-distance migrants, migrating within one or several distant geographical regions are carriers of a number of ticks and tick-borne pathogens. During seasonal migrations, birds that cover long distances over a short time and stay temporarily in different habitats can introduce tick and pathogen species in areas where they have never occurred. An increase in the geographical range of ticks as well as the global climate changes affecting the pathogens, vectors, and their hosts increase the incidence and the spread of emerging tick-borne diseases worldwide. Tick infestations of birds varied between regions depends on the rhythms of tick seasonal activity and the bird migration rhythms determined by for example, climatic and environmental factors. In areas north of latitude ca. 58°N, immature Ixodes ricinus ticks are collected from birds most frequently, whereas ticks from the Hyalomma marginatum group dominate in areas below 42°N. We concluded that the prognosis of hazards posed by tick-borne pathogens should take into account changes in the migration of birds, hosts of many epidemiologically important tick species.
Collapse
|
10
|
Norte AC, Margos G, Becker NS, Albino Ramos J, Núncio MS, Fingerle V, Araújo PM, Adamík P, Alivizatos H, Barba E, Barrientos R, Cauchard L, Csörgő T, Diakou A, Dingemanse NJ, Doligez B, Dubiec A, Eeva T, Flaisz B, Grim T, Hau M, Heylen D, Hornok S, Kazantzidis S, Kováts D, Krause F, Literak I, Mänd R, Mentesana L, Morinay J, Mutanen M, Neto JM, Nováková M, Sanz JJ, Pascoal da Silva L, Sprong H, Tirri IS, Török J, Trilar T, Tyller Z, Visser ME, Lopes de Carvalho I. Host dispersal shapes the population structure of a tick-borne bacterial pathogen. Mol Ecol 2020; 29:485-501. [PMID: 31846173 DOI: 10.1111/mec.15336] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2019] [Accepted: 12/11/2019] [Indexed: 01/25/2023]
Abstract
Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal.,Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Gabriele Margos
- German National Reference Centre for Borrelia (NRZ), Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Jaime Albino Ramos
- MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - Maria Sofia Núncio
- Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Volker Fingerle
- German National Reference Centre for Borrelia (NRZ), Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Pedro Miguel Araújo
- MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - Peter Adamík
- Department of Zoology, Palacky University, Olomouc, Czech Republic
| | | | - Emilio Barba
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Universidad de Valencia, Valencia, Spain
| | - Rafael Barrientos
- Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Laure Cauchard
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tibor Csörgő
- Ócsa Bird Ringing Station, Ócsa, Hungary.,Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Blandine Doligez
- CNRS - Department of Biometry and Evolutionary Biology (LBBE) - University Lyon 1, University of Lyon, Villeurbanne, France
| | - Anna Dubiec
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Barbara Flaisz
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Tomas Grim
- Department of Zoology, Palacky University, Olomouc, Czech Republic
| | - Michaela Hau
- Evolutionary Physiology Laboratory, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Dieter Heylen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Savas Kazantzidis
- Forest Research Institute, Hellenic Agricultural Organization "DEMETER", Thesaloniki, Greece
| | - David Kováts
- Ócsa Bird Ringing Station, Ócsa, Hungary.,Hungarian Biodiversity Research Society, Budapest, Hungary
| | | | - Ivan Literak
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Raivo Mänd
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Lucia Mentesana
- Evolutionary Physiology Laboratory, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jennifer Morinay
- CNRS - Department of Biometry and Evolutionary Biology (LBBE) - University Lyon 1, University of Lyon, Villeurbanne, France.,Department of Ecology and Evolution, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Marko Mutanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Júlio Manuel Neto
- Department of Biology, Molecular Ecology and Evolution Lab, University of Lund, Lund, Sweden
| | - Markéta Nováková
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Juan José Sanz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Luís Pascoal da Silva
- Department of Life Sciences, CFE - Centre for Functional Ecology - Science for People & the Planet, University of Coimbra, Coimbra, Portugal.,CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Porto, Portugal
| | - Hein Sprong
- National Institute of Public Health and Environment (RIVM), Laboratory for Zoonoses and Environmental Microbiology, Bilthoven, The Netherlands
| | - Ina-Sabrina Tirri
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Tomi Trilar
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - Zdeněk Tyller
- Department of Zoology, Palacky University, Olomouc, Czech Republic.,Museum of the Moravian Wallachia Region, Vsetín, Czech Republic
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Isabel Lopes de Carvalho
- Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
11
|
Massó Sagüés E, Fernández-Carrión E, Sánchez-Vizcaíno JM. Risk of Introduction of Infectious Animal Diseases for Europe Based on the Health Situation of North Africa and the Arabian Peninsula. Front Vet Sci 2019; 6:293. [PMID: 31555676 PMCID: PMC6737002 DOI: 10.3389/fvets.2019.00293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022] Open
Abstract
The current growth of the human population, the intensification of animal production, climate change or globalization favors an increase in the transmission of infectious diseases. Risk analysis is the tool that allows the identification of the factors involved in the introduction and the spread of infectious diseases. The main objective of this work is to evaluate the risk of entry of animal infectious zoonotic and non-zoonotic diseases from North Africa and the Arabian Peninsula to countries of the European Union. A probabilistic formulation has been developed to obtain the probabilities of introduction of diseases associated with each possible route of entry in the European Union. The results show that, among the infectious diseases analyzed in this study, avian influenza and Newcastle disease are the ones with a higher risk of entry in the European Union and the wild bird's migration is the route with greater impact. It is confirmed a moderate probability of entry of some vector-borne diseases, bluetongue and epizootic haemorrhagic disease, through wind flow from Morocco, Algeria and Tunisia. Due to the absence of live dromedary movement to Europe, the more likely way of entry of the Middle East respiratory syndrome is through the infected people movement from Saudi Arabia, Kuwait, Qatar and Oman. This study includes different methodologies. A model of vectors dispersion in wind currents has been established to assess the risk of introduction of vector borne diseases. It is applicable both in animal health and public health. A periodical update would be useful to obtain a periodically updated risk analysis and to allow early detection of potential hazard with an increased risk over the previous years.
Collapse
Affiliation(s)
- Elena Massó Sagüés
- Animal Health Department, VISAVET Health Surveillance Centre, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | | | | |
Collapse
|
12
|
Mysterud A, Heylen DJA, Matthysen E, Garcia AL, Jore S, Viljugrein H. Lyme neuroborreliosis and bird populations in northern Europe. Proc Biol Sci 2019; 286:20190759. [PMID: 31138073 PMCID: PMC6545076 DOI: 10.1098/rspb.2019.0759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Many vector-borne diseases are transmitted through complex pathogen-vector-host networks, which makes it challenging to identify the role of specific host groups in disease emergence. Lyme borreliosis in humans is now the most common vector-borne zoonosis in the Northern Hemisphere. The disease is caused by multiple genospecies of Borrelia burgdorferi sensu lato bacteria transmitted by ixodid (hard) ticks, and the major host groups transmit Borrelia genospecies with different pathogenicity, causing variable clinical symptoms in humans. The health impact of a given host group is a function of the number of ticks it infects as well as the pathogenicity of the genospecies it carries. Borrelia afzelii, with mainly small mammals as reservoirs, is the most common pathogen causing Lyme borreliosis, and it is often responsible for the largest proportion of infected host-seeking tick nymphs in Europe. The bird-borne Borrelia garinii, though less prevalent in nymphal ticks, is more likely to cause Lyme neuroborreliosis, but whether B. garinii causes disseminated disease more frequently has not been documented. Based on extensive data of annual disease incidence across Norway from 1995 to 2017, we show here that 69% of disseminated Lyme borreliosis cases were neuroborreliosis, which is three times higher than predicted from the infection prevalence of B. garinii in host-seeking ticks (21%). The population estimate of migratory birds, mainly of thrushes, explained part of the annual variation in cases of neuroborreliosis, with a one-year time lag. We highlight the important role of the genospecies' pathogenicity and the host associations for understanding the epidemiology of disseminated Lyme borreliosis.
Collapse
Affiliation(s)
- Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Dieter J. A. Heylen
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | | - Solveig Jore
- Department of Food, Water, Zoonotic and Vector-borne Infections, The Norwegian Public Health Institute, PO Box 4404, Nydalen, 0403 Oslo, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
- Norwegian Veterinary Institute, PO Box 750, Sentrum, 0106 Oslo, Norway
| |
Collapse
|
13
|
Wang Y, Li S, Wang Z, Zhang L, Cai Y, Liu Q. Prevalence and Identification of Borrelia burgdorferi Sensu Lato Genospecies in Ticks from Northeastern China. Vector Borne Zoonotic Dis 2019; 19:309-315. [PMID: 30907702 DOI: 10.1089/vbz.2018.2316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lyme disease is considered as one of important tick-transmitted zoonosis in northeastern China, where the causative agents, the Borrelia burgdorferi sensu lato (s.l.) complex, remain poorly characterized. The purpose of the present study was to determine the prevalence and genospecies of B. burgdorferi s.l. in ticks in northeastern China. In May, 2015, a total of 2785 unfed adult ticks were collected in the Jilin and Heilongjiang provinces of northeastern China, with the predominant tick species of Ixodes persulcatus (59.9%), followed by Haemaphysalis concinna (14.8%), Haemaphysalis longicornis (8.9%), Dermacentor nuttalli (9.4%), and Dermacentor silvarum (7.0%). Only I. persulcatus was tested positive for Borrelia spirochetes DNA by PCR, targeting the 5S-23S rRNA intergenic spacer and 16S rRNA genes, with a prevalence of 1.9%. Phylogenetic analysis based on the partial 5S-23S rRNA intergenic spacer and 16S rRNA genes showed that these positive samples were grouped into four pathogenic genospecies for humans, including Borrelia garinii (2.8%), Borrelia afzelii (0.2%), Borrelia bavariensis (0.1%), and Borrelia bissettii (0.1%). These results showed that B. garinii is the predominant genospecies and I. persulcatus is the main tick host and carrier in northeastern China. To our knowledge, B. bissettii were detected for the first time in China.
Collapse
Affiliation(s)
- Yanchun Wang
- 1 Department of Clinical Veterinary, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Shuang Li
- 1 Department of Clinical Veterinary, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Zedong Wang
- 2 Department of Animal Medicine, College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Li Zhang
- 1 Department of Clinical Veterinary, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yanan Cai
- 1 Department of Clinical Veterinary, College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Quan Liu
- 2 Department of Animal Medicine, College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| |
Collapse
|
14
|
Tokarevich NK, Panferova YA, Freylikhman OA, Blinova OV, Medvedev SG, Mironov SV, Grigoryeva LA, Tretyakov KA, Dimova T, Zaharieva MM, Nikolov B, Zehtindjiev P, Najdenski H. Coxiella burnetii in ticks and wild birds. Ticks Tick Borne Dis 2018; 10:377-385. [PMID: 30509727 DOI: 10.1016/j.ttbdis.2018.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 10/18/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
Abstract
The study objective was to get more information on C. burnetii prevalence in wild birds and ticks feeding on them, and the potentialities of the pathogen dissemination over Europe by both. MATERIALS Blood, blood sera, feces of wild birds and ticks removed from those birds or from vegetation were studied at two sites in Russia: the Curonian Spit (site KK), and the vicinity of St. Petersburg (site SPb), and at two sites in Bulgaria: the Atanasovsko Lake (site AL), and the vicinity of Sofia (site SR). METHODS C. burnetii DNA was detected in blood, feces, and ticks by PCR (polymerase chain reaction). All positive results were confirmed by Sanger's sequencing of 16SrRNA gene target fragments. The antibodies to C. burnetii in sera were detected by CFR (complement fixation reaction). RESULTS Eleven of 55 bird species captured at KK site hosted Ixodes ricinus. C. burnetii DNA was detected in three I. ricinus nymphs removed from one bird (Erithacus rubecula), and in adult ticks flagged from vegetation: 0.7% I. persulcatus (site SPb), 0.9% I. ricinus (site KK), 1.0% D. reticulatus (AL site). C. burnetii DNA was also detected in 1.4% of bird blood samples at SPb site, and in 0.5% of those at AL site. Antibodies to C. burnetii were found in 8.1% of bird sera (site SPb). C. burnetii DNA was revealed in feces of birds: 0.6% at AL site, and 13.7% at SR site. CONCLUSIONS Both molecular-genetic and immunological methods were applied to confirm the role of birds as a natural reservoir of C. burnetii. The places of wild bird stopover in Russia (Baltic region) and in Bulgaria (Atanasovsko Lake and Sofia region) proved to be natural foci of C. burnetii infection. Migratory birds are likely to act as efficient "vehicles" in dispersal of C. burnetii -infested ixodid ticks.
Collapse
Affiliation(s)
- N K Tokarevich
- Saint-Petersburg Pasteur Institute, Laboratory of Zooantroponozes, 14, ul. Mira, 197101, St. Petersburg, Russia.
| | - Yu A Panferova
- Saint-Petersburg Pasteur Institute, Laboratory of Zooantroponozes, 14, ul. Mira, 197101, St. Petersburg, Russia
| | - O A Freylikhman
- Saint-Petersburg Pasteur Institute, Laboratory of Zooantroponozes, 14, ul. Mira, 197101, St. Petersburg, Russia
| | - O V Blinova
- Saint-Petersburg Pasteur Institute, Laboratory of Zooantroponozes, 14, ul. Mira, 197101, St. Petersburg, Russia
| | - S G Medvedev
- Zoological Institute of the Russian Academy of Sciences, 1, Universitetskaja nab., 199034, St. Petersburg, Russia
| | - S V Mironov
- Zoological Institute of the Russian Academy of Sciences, 1, Universitetskaja nab., 199034, St. Petersburg, Russia
| | - L A Grigoryeva
- Zoological Institute of the Russian Academy of Sciences, 1, Universitetskaja nab., 199034, St. Petersburg, Russia
| | - K A Tretyakov
- Zoological Institute of the Russian Academy of Sciences, 1, Universitetskaja nab., 199034, St. Petersburg, Russia
| | - T Dimova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Bul. Tsarigradsko chose 73, 1113, Sofia, Bulgaria
| | - M M Zaharieva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. 26, 1113, Sofia, Bulgaria
| | - B Nikolov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria
| | - P Zehtindjiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria
| | - H Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev Str. 26, 1113, Sofia, Bulgaria
| |
Collapse
|
15
|
Margos G, Becker NS, Fingerle V, Sing A, Ramos JA, Carvalho ILD, Norte AC. Core genome phylogenetic analysis of the avian associated Borrelia turdi indicates a close relationship to Borrelia garinii. Mol Phylogenet Evol 2018; 131:93-98. [PMID: 30423440 DOI: 10.1016/j.ympev.2018.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/28/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Borrelia burgdorferi sensu lato comprises a species complex of tick-transmitted bacteria that includes the agents of human Lyme borreliosis. Borrelia turdi is a genospecies of this complex that exists in cryptic transmission cycles mainly between ornithophilic tick vectors and their avian hosts. The species has been originally discovered in avian transmission cycles in Asia but has increasingly been found in Europe. Next generation sequencing was used to sequence the genome of B. turdi isolates obtained from ticks feeding on birds in Portugal to better understand the evolution and phylogenetic relationship of this avian and ornithophilic tick-associated genospecies. Here we use draft genomes of these B. turdi isolates for comparative analysis and to determine the taxonomic position within the B. burgdorferi s.l. species complex. The main chromosomes showed a maximum similarity of 93% to other Borrelia species whilst most plasmids had lower similarities. All three isolates had nine or 10 plasmids and, interestingly, one plasmid with a novel partitioning protein; this plasmid was termed lp30. Phylogenetic analysis of multilocus sequence typing housekeeping genes and 113 single copy orthologous genes revealed that the isolates clustered according to their classification as B. turdi. In phylogenies generated from these 113 genes the isolates cluster together with other Eurasian genospecies and form a sister clade to the avian associated B. garinii and the rodent associated B. bavariensis. These findings show that Borrelia species maintained in cryptic ecological cycles need to be included to fully understand the complex ecology and evolutionary history of this bacterial species complex.
Collapse
Affiliation(s)
- Gabriele Margos
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Andreas Sing
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764 Oberschleissheim, Germany
| | - Jaime Albino Ramos
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | | | - Ana Claudia Norte
- National Institute of Health Dr. Ricardo Jorge, Infectious Department, Lisbon, Portugal; MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences and Technology, University of Coimbra, Portugal
| |
Collapse
|
16
|
Abstract
The emergence of novel arboviruses of zoonotic potential in South Africa (SA) threatens human health and animal welfare, and affects economic growth and development. These viruses cause severe infections in animals and humans, including neurological diseases, such as encephalitis, resulting in high morbidities, mortalities and economic losses. With increasing reports of Middelburg, Shuni, Sindbis, West Nile and Wesselsbron virus infections in animals and humans in SA, this article reviews and discusses known and currently emerging arboviruses in the country. These reports underscore the need for increased surveillance, vector control management, public health preparedness, focused research, community awareness programs, and the development of rapid and sensitive diagnostic approaches. Furthermore, appropriate medical personnel training and strengthening initiatives for a one-health approach are required to understand and mitigate the emerging arboviral threat to public health.
Collapse
Affiliation(s)
- Eric Mensah
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mohamed E El Zowalaty
- Virology and Microbiology Research Group, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| |
Collapse
|
17
|
Kjelland V, Paulsen KM, Rollum R, Jenkins A, Stuen S, Soleng A, Edgar KS, Lindstedt HH, Vaino K, Gibory M, Andreassen ÅK. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway. Ticks Tick Borne Dis 2018; 9:1098-1102. [PMID: 29678403 DOI: 10.1016/j.ttbdis.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
The aim of this study was to determine the occurrence of tick-borne pathogens of medical importance in questing ticks collected from five recreationally used islands along the Norwegian coastline. Furthermore, since coinfection may affect the disease severity, this study aimed to determine the extent of coinfection in individual ticks or co-localization of tick-borne pathogens. In all, 4158 questing Ixodes ricinus ticks were analyzed. For detection of tick-borne encephalitis virus (TBEV), nymphs (3690) were analyzed in pools of ten. To detect Borrelia burgdorferi sensu lato, B. miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis, 468 nymphs were analyzed individually. A total of five nymph pools was infected with TBEV, giving an overall prevalence of 0.14%. In the individually analyzed ticks, B. burgdorferi s. l. (15.6%), Candidatus N. mikurensis (11%), A. phagocytophilum (1.4%) and B. miyamotoi (0.9%) were detected. Coinfection was found in 3.3% of the ticks, and the only dual infection observed was with B. afzelii and Candidatus N. mikurensis. This association was significantly higher than what would occur by random chance.
Collapse
Affiliation(s)
- Vivian Kjelland
- University of Agder, Faculty of Engineering Science, Department of Natural Sciences, Gimlemoen 25, NO-4630 Kristiansand, Norway; Sørlandet Hospital Health Enterprise, Research Unit, P. O. Box 416, NO-4604 Kristiansand, Norway.
| | - Katrine M Paulsen
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Virology, P. O. Box 4404 Nydalen, NO-0403 Oslo, Norway; University College of Southeast Norway, Department of Natural Sciences and Environmental Health, Gullbringveien 38, NO-3800 Boe, Norway
| | - Rikke Rollum
- University of Agder, Faculty of Engineering Science, Department of Natural Sciences, Gimlemoen 25, NO-4630 Kristiansand, Norway
| | - Andrew Jenkins
- University College of Southeast Norway, Department of Natural Sciences and Environmental Health, Gullbringveien 38, NO-3800 Boe, Norway
| | - Snorre Stuen
- Norwegian University of Life Sciences, Department of Production Animal Clinical Sciences, Section of Small Ruminant Research and Herd Health, Kyrkjeveien 332/334, NO-4325 Sandnes, Norway
| | - Arnulf Soleng
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Pest Control, P. O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Kristin S Edgar
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Pest Control, P. O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Heidi H Lindstedt
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Pest Control, P. O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Kirsti Vaino
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Virology, P. O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Moustafa Gibory
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Virology, P. O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Åshild K Andreassen
- Norwegian Institute of Public Health, Division for Infection Control and Environmental Health, Department of Virology, P. O. Box 4404 Nydalen, NO-0403 Oslo, Norway; University College of Southeast Norway, Department of Natural Sciences and Environmental Health, Gullbringveien 38, NO-3800 Boe, Norway
| |
Collapse
|
18
|
Hansford KM, Pietzsch ME, Cull B, Gillingham EL, Medlock JM. Potential risk posed by the importation of ticks into the UK on animals: records from the Tick Surveillance Scheme. Vet Rec 2017; 182:107. [PMID: 29217768 DOI: 10.1136/vr.104263] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/14/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023]
Abstract
In order to monitor important tick vectors in the UK, Public Health England's Tick Surveillance Scheme (TSS) receives specimens from across the country for identification. In recent years, an increasing number of these specimens have been removed from animals with a recent history of travel outside the UK. This paper presents all data collated by the TSS on ticks entering the country on recently travelled or imported animals since surveillance commenced in 2005. Ten different tick species representing six different genera were identified, entering the UK from 15 different countries. Key themes appear to be emerging from the last 10 years of data, including canine travel from Cyprus and Spain being associated with Rhipicephalus sanguineus importation, and canine travel from France being associated with the importation of multiple tick species and canine illness. In addition, more unusual importation routes have been uncovered, such as the importation of Hyalomma lusitanicum on a dog. Some companion animal owners may not be fully aware of the risks associated with ticks, and may not seek advice from a veterinarian before travel or importing a pet. Promoting awareness of ticks and tickborne disease risk during and after travel or animal importation is needed and veterinarians play an importation role in disseminating this information to their clients.
Collapse
Affiliation(s)
- Kayleigh M Hansford
- Department of Medical Entomology & Zoonoses Ecology, Emergency Response Department - Science & Technology, Public Health England, Porton Down, UK.,NIHR Health Protection Research Unit, Environmental Change & Health, UK
| | - Maaike E Pietzsch
- Department of Medical Entomology & Zoonoses Ecology, Emergency Response Department - Science & Technology, Public Health England, Porton Down, UK
| | - Benjamin Cull
- Department of Medical Entomology & Zoonoses Ecology, Emergency Response Department - Science & Technology, Public Health England, Porton Down, UK
| | - Emma L Gillingham
- Department of Medical Entomology & Zoonoses Ecology, Emergency Response Department - Science & Technology, Public Health England, Porton Down, UK
| | - Jolyon M Medlock
- Department of Medical Entomology & Zoonoses Ecology, Emergency Response Department - Science & Technology, Public Health England, Porton Down, UK.,NIHR Health Protection Research Unit, Environmental Change & Health, UK.,NIHR Health Protection Research Unit, Emerging and Zoonotic Infections, UK
| |
Collapse
|
19
|
Kuo CC, Lin YF, Yao CT, Shih HC, Chung LH, Liao HC, Hsu YC, Wang HC. Tick-borne pathogens in ticks collected from birds in Taiwan. Parasit Vectors 2017; 10:587. [PMID: 29178908 PMCID: PMC5702202 DOI: 10.1186/s13071-017-2535-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022] Open
Abstract
Background A variety of human diseases transmitted by arthropod vectors, including ticks, are emerging around the globe. Birds are known to be hosts of ticks and can disperse exotic ticks and tick-borne pathogens. In Taiwan, previous studies have focused predominantly on mammals, leaving the role of birds in the maintenance of ticks and dissemination of tick-borne pathogens undetermined. Methods Ticks were collected opportunistically when birds were studied from 1995 to 2013. Furthermore, to improve knowledge on the prevalence and mean load of tick infestation on birds in Taiwan, ticks were thoroughly searched for when birds were mist-netted at seven sites between September 2014 and April 2016 in eastern Taiwan. Ticks were identified based on both morphological and molecular information and were screened for potential tick-borne pathogens, including the genera Anaplasma, Babesia, Borrelia, Ehrlichia and Rickettsia. Finally, a list of hard tick species collected from birds in Taiwan was compiled based on past work and the current study. Results Nineteen ticks (all larvae) were recovered from four of the 3096 unique mist-netted bird individuals, yielding a mean load of 0.006 ticks/individual and an overall prevalence of 0.13%. A total of 139 ticks from birds, comprising 48 larvae, 35 nymphs, 55 adults and one individual of unknown life stage, were collected from 1995 to 2016, and 11 species of four genera were identified, including three newly recorded species (Haemaphysalis wellingtoni, Ixodes columnae and Ixodes turdus). A total of eight tick-borne pathogens were detected, with five species (Borrelia turdi, Anaplasma sp. clone BJ01, Ehrlichia sp. BL157-9, Rickettsia helvetica and Rickettsia monacensis) not previously isolated in Taiwan. Overall, 16 tick species of five genera have been recorded feeding on birds, including nine species first discovered in this study. Conclusion Our study demonstrates the paucity of information on ticks of birds and emphasizes the need for more research on ticks of birds in Taiwan and Southeast Asia. Moreover, some newly recorded ticks and tick-borne pathogens were found only on migratory birds, demonstrating the necessity of further surveillance on these highly mobile species. Electronic supplementary material The online version of this article (10.1186/s13071-017-2535-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chi-Chien Kuo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| | - Yi-Fu Lin
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Te Yao
- Endemic Species Research Institute, Council of Agriculture, Chi-chi, Nantou, Taiwan
| | - Han-Chun Shih
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Lo-Hsuan Chung
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hsien-Chun Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yu-Cheng Hsu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan.
| | - Hsi-Chieh Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.
| |
Collapse
|
20
|
Heylen D, Krawczyk A, Lopes de Carvalho I, Núncio MS, Sprong H, Norte AC. Bridging of cryptic Borrelia cycles in European songbirds. Environ Microbiol 2017; 19:1857-1867. [PMID: 28152581 DOI: 10.1111/1462-2920.13685] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
The principal European vector for Borrelia burgdorferi s.l., the causative agents of Lyme disease, is the host-generalist tick Ixodes ricinus. Almost all terrestrial host-specialist ticks have been supposed not to contribute to the terrestrial Borrelia transmission cycles. Through an experiment with blackbirds, we show successful transmission by the widespread I. frontalis, an abundant bird-specialized tick that infests a broad range of songbirds. In the first phase of the experiment, we obtained Borrelia-infected I. frontalis (infection rate: 19%) and I. ricinus (17%) nymphs by exposing larvae to wild blackbirds that carried several genospecies (Borrelia turdi, B. valaisiana, B. burgdorferi s.s.). In the second phase, pathogen-free blackbirds were exposed to these infected nymphs. Both tick species were able to infect the birds, as indicated by the analysis of xenodiagnostic I. ricinus larvae which provided evidence for both co-feeding and systemic transmission (infection rates: 10%-60%). Ixodes frontalis was shown to transmit B. turdi spirochetes, while I. ricinus transmitted both B. turdi and B. valaisiana. Neither species transmitted B. burgdorferi s.s. European enzootic cycles of Borrelia between songbirds and their ornithophilic ticks do exist, with I. ricinus potentially acting as a bridging vector towards mammals, including man.
Collapse
Affiliation(s)
- Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Aleksandra Krawczyk
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - Isabel Lopes de Carvalho
- Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Maria Sofia Núncio
- Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - Ana Cláudia Norte
- Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Seasonal infestation of birds with immature stages of Ixodes ricinus and Ixodes arboricola. Ticks Tick Borne Dis 2017; 8:423-431. [PMID: 28169171 DOI: 10.1016/j.ttbdis.2017.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 02/01/2023]
Abstract
This study assessed the parasitization of cavity-nesting birds and ground-nesting/foraging birds with larvae and nymphs of two Ixodes species, Ixodes ricinus and Ixodes arboricola. Totals of 679 (52.3%) I. ricinus and 619 (47.7%) I. arboricola ticks were collected from 15 species of passerine birds which were caught during the nesting and non-nesting periods of 2003-2006, in the south-eastern part of the Czech Republic, the Drahanská Vrchovina Uplands. In the non-nesting period from October to March, 6.8% (101/1492) of birds were infested with ticks, mainly with I. arboricola larvae. In the non-nesting period, the average intensity of infestation by I. arboricola and I. ricinus was 8.5 and 1.5 individuals per infested bird, respectively. In the nesting period from April to June, 21.6% (50/232) of birds were infested by both tick species but mainly with I. ricinus nymphs. The average intensity of infestation by I. ricinus and I. arboricola was 13.3 and 10.8 individuals per infested bird, respectively. Altogether, 23.2% of the infested birds were parasitized by both immature life stages of one or both tick species. From an enzootic perspective, co-feeding and co-infestation of I. ricinus and I. arboricola subadults on passerine birds might happen and may be important for the dissemination of tick-borne agents.
Collapse
|
22
|
Inefficient co-feeding transmission of Borrelia afzelii in two common European songbirds. Sci Rep 2017; 7:39596. [PMID: 28054584 PMCID: PMC5214756 DOI: 10.1038/srep39596] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/25/2016] [Indexed: 12/26/2022] Open
Abstract
The spirochete bacterium Borrelia afzelii is the most common cause of Lyme borreliosis in Europe. This tick-borne pathogen can establish systemic infections in rodents but not in birds. However, several field studies have recovered larval Ixodes ricinus ticks infected with B. afzelii from songbirds suggesting successful transmission of B. afzelii. We reviewed the literature to determine which songbird species were the most frequent carriers of B. afzelii-infected I. ricinus larvae and nymphs. We tested experimentally whether B. afzelii is capable of co-feeding transmission on two common European bird species, the blackbird (Turdus merula) and the great tit (Parus major). For each bird species, four naïve individuals were infested with B. afzelii-infected I. ricinus nymphal ticks and pathogen-free larval ticks. None of the co-feeding larvae tested positive for B. afzelii in blackbirds, but a low percentage of infected larvae (3.33%) was observed in great tits. Transstadial transmission of B. afzelii DNA from the engorged nymphs to the adult ticks was observed in both bird species. However, BSK culture found that these spirochetes were not viable. Our study suggests that co-feeding transmission of B. afzelii is not efficient in these two songbird species.
Collapse
|
23
|
Palomar AM, Portillo A, Santibáñez P, Mazuelas D, Roncero L, Gutiérrez Ó, Oteo JA. Presence of Borrelia turdi and Borrelia valaisiana (Spirochaetales: Spirochaetaceae) in Ticks Removed From Birds in the North of Spain, 2009-2011. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:243-246. [PMID: 28082654 DOI: 10.1093/jme/tjw158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
The genus Borrelia includes species responsible for severe human diseases such as Lyme disease. Birds are involved in their epidemiology as dispersers of infected ticks (Ixodida: Ixodidae) and as reservoirs or amplifiers of the bacterium. Herein, the presence of Borrelia burgdorferi sensu lato (s.l.) Johnson, Schmid, Hyde, Steigerwalt & Brenner in 336 ticks collected from birds in the north of Spain from 2009 to 2011 was investigated. Nucleic acid extracts from 174 Ixodes frontalis (Panzer), 108 Haemaphysalis punctata Canestrini & Fanzango, 34 Hyalomma marginatum Koch, 17 Ixodes ricinus (L.), and 3 Ixodes spp. were screened for the presence of B. burgdorferi s.l. by PCR. Borrelia turdi was detected in 22 I. frontalis, 2 H. punctata, and 2 I. ricinus Additionally, 1 I. frontalis and 1 H. punctata were found to be infected with the human pathogen Borrelia valaisiana Moreover, 3 I. frontalis showed coinfection with both Borrelia species. This study corroborates the presence of B. turdi and B. valaisiana in ticks from birds in the north of Spain. The presence of these bacteria in larval specimens could suggest the role of birds as their reservoirs, or the occurrence of the cofeeding phenomenon. In addition, the detection of B. turdi and B. valaisiana in H. punctata and I. frontalis ticks, respectively, is reported for the first time.
Collapse
Affiliation(s)
- Ana M Palomar
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, Logroño, La Rioja, Spain (; ; ; )
| | - Aránzazu Portillo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, Logroño, La Rioja, Spain (; ; ; )
| | - Paula Santibáñez
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, Logroño, La Rioja, Spain (; ; ; )
| | - David Mazuelas
- Abies, Environment Resources Inc., Logroño, La Rioja, Spain (; )
| | - Lidia Roncero
- Abies, Environment Resources Inc., Logroño, La Rioja, Spain (; )
| | - Óscar Gutiérrez
- Aranzadi Society of Sciences, San Sebastián, Guipúzcoa, Spain
| | - José A Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, Logroño, La Rioja, Spain (; ; ; )
| |
Collapse
|
24
|
Røed KH, Kvie KS, Hasle G, Gilbert L, Leinaas HP. Phylogenetic Lineages and Postglacial Dispersal Dynamics Characterize the Genetic Structure of the Tick, Ixodes ricinus, in Northwest Europe. PLoS One 2016; 11:e0167450. [PMID: 27907193 PMCID: PMC5131986 DOI: 10.1371/journal.pone.0167450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022] Open
Abstract
Dispersal and gene flow are important mechanisms affecting the dynamics of vectors and their pathogens. Here, patterns of genetic diversity were analyzed in many North European populations of the tick, Ixodes ricinus. Population sites were selected within and between areas separated by geographical barriers in order to evaluate the importance of tick transportation by birds in producing genetic connectivity across open sea and mountain ranges. The phylogenetic analyses of the mitochondrial control region and the cytochrome b gene revealed two distinct clades with supported sub-clades, with three genetic lineages: GB and WNo associated with Great Britain and western Norway respectively, and Eu with a wider distribution across continental Europe in agreement with much lower efficiency of tick dispersal by birds than by large mammals. The results suggest different ancestry of I. ricinus colonizing Britain and the rest of northern Europe, possibly from different glacial refuges, while ticks from western Norway and continental Europe share a more recent common ancestry. Demographic history modeling suggests a period of strong increase in tick abundance coincident with progression of the European Neolithic culture, long after their post-glacial colonization of NW Europe.
Collapse
Affiliation(s)
- Knut H. Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kjersti S. Kvie
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Gunnar Hasle
- Oslo Travel Clinic, St Olavs plass 3; Oslo, Norway
| | - Lucy Gilbert
- James Hutton Institute, Macaulay Drive, Craigiebuckler, Aberdeen, United Kingdom
| | | |
Collapse
|
25
|
Norte AC, Araújo PM, da Silva LP, Tenreiro PQ, Ramos JA, Núncio MS, Zé-Zé L, de Carvalho IL. Characterization Through Multilocus Sequence Analysis of Borrelia turdi Isolates from Portugal. MICROBIAL ECOLOGY 2016; 72:831-839. [PMID: 26311126 DOI: 10.1007/s00248-015-0660-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
Borrelia turdi is a spirochete from the Borrelia burgdorferi complex, first reported in Japan, that has been increasingly detected in Europe. This genospecies is mostly associated with avian hosts and their ornithophilic ticks such as Ixodes frontalis. In this study, we isolated B. turdi from five I. frontalis feeding on Turdus merula, Turdus philomelos, Parus major and Troglodytes troglodytes, and one Ixodes ricinus feeding on a T. merula in Portugal. These isolates were genetically characterised according to their 5S-23S rRNA intergenic spacer, 16S rRNA and through typing of seven housekeeping genes (multilocus sequence typing). Multilocus sequence analyses revealed that the strains isolated in our study, although belonging to B. turdi genospecies, are not identical to the B. turdi reference strain Ya501. Instead, our strains are separated into a clear defined group, suggesting that the European samples diverged genetically from the strain originally detected in Japan. Population analysis of 5S-23S rRNA sequences can further resolve subpopulations within B. turdi, but more samples from a large geographical scale and host range would be needed to assess potential phylogeographical patterns within this genospecies.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal.
- Centre for Vector and Infectious Diseases Research, National Institute of Health, Doutor Ricardo Jorge, Águas de Moura, Portugal.
| | - Pedro Miguel Araújo
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Luís Pascoal da Silva
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paulo Quadros Tenreiro
- DCNFC-DGOV, Instituto da Conservação da Natureza e das Florestas, IP, Mata Nacional do Choupal, 3000-611, Coimbra, Portugal
| | - Jaime A Ramos
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - Maria Sofia Núncio
- Centre for Vector and Infectious Diseases Research, National Institute of Health, Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - Líbia Zé-Zé
- Centre for Vector and Infectious Diseases Research, National Institute of Health, Doutor Ricardo Jorge, Águas de Moura, Portugal
- Faculty of Sciences, BioISI-Biosystems & Integrative Sciences Institute, University of Lisbon, Campo Grande, Lisboa, Portugal
| | - Isabel Lopes de Carvalho
- Centre for Vector and Infectious Diseases Research, National Institute of Health, Doutor Ricardo Jorge, Águas de Moura, Portugal
- Emergence Response and Biopreparedness Unit, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
26
|
Qviller L, Viljugrein H, Loe LE, Meisingset EL, Mysterud A. The influence of red deer space use on the distribution of Ixodes ricinus ticks in the landscape. Parasit Vectors 2016; 9:545. [PMID: 27737695 PMCID: PMC5064927 DOI: 10.1186/s13071-016-1825-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Many wingless ectoparasites have a limited capacity for active movement and are therefore primarily dependent on hitchhiking on their hosts for transportation. The distribution of the tick Ixodes ricinus is expected to depend mainly on transportation by hosts and tick subsequent survival in areas where they drop off. In Europe, the most important hosts of adult female I. ricinus are cervids. The extensive space use of large hosts provides a much larger dispersal potential for I. ricinus than that of smaller mammalian hosts. We aim to determine the contribution of red deer (Cervus elaphus) space use on the spatial distribution of I. ricinus, after accounting for landscape factors. Methods We analysed the spatial distribution of I. ricinus with generalised mixed effects models (GLMMs) based on data from extensive field surveys of questing density in two coastal regions in Norway, from which home range data from 73 red deer with GPS collars were available. Red deer home ranges were derived using the kernel method to identify areas most frequently used by deer. We first fitted a baseline model with tick questing densities relative to landscape features that are likely to affect local climate conditions and hence, survival. We then added deer space use variables to the baseline model with only landscape variables to test whether areas more frequently used by red deer had higher questing tick densities. Results Questing I. ricinus density was predicted by several landscape features, such as elevation, distance to the fjord and topographic slope. In addition, we found that areas more heavily used within the red deer home ranges, correlated with higher questing tick densities. Increased effects of deer space use were additive to the landscape model, suggesting that correlations were more than just shared landscape preferences between deer and ticks. Conclusions Our results imply that the distribution of I. ricinus is controlled by a complex set of factors that include both local conditions related to landscape properties that affect survival and how the large host population redistributes ticks. In particular, we have provided evidence that the local distribution of large hosts, with their extensive space use, redistributes ticks at the local scale.
Collapse
Affiliation(s)
- Lars Qviller
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway
| | - Hildegunn Viljugrein
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway.,Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106, Oslo, Norway
| | - Leif Egil Loe
- Department of Ecology and Natural Resource Management, Norwegian University of Life Science, P.O. Box 5003, NO-1432, Aas, Norway
| | - Erling L Meisingset
- Department of Forestry and Forestry resources, Norwegian Institute of Bioeconomy Research, NO-6630, Tingvoll, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316, Oslo, Norway.
| |
Collapse
|
27
|
Impact of Spring Bird Migration on the Range Expansion of Ixodes scapularis Tick Population. Bull Math Biol 2015; 78:138-68. [PMID: 26688012 DOI: 10.1007/s11538-015-0133-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/27/2015] [Indexed: 01/23/2023]
Abstract
Many observational studies suggest that seasonal migratory birds play an important role in spreading Ixodes scapularis, a vector of Lyme disease, along their migratory flyways, and they are believed to be responsible for geographic range expansion of I. scapularis in Canada. However, the interplay between the dynamics of I. scapularis on land and migratory birds in the air is not well understood. In this study, we develop a periodic delay meta-population model which takes into consideration the local landscape for tick reproduction within patches and the times needed for ticks to be transported by birds between patches. Assuming that the tick population is endemic in the source region, we find that bird migration may boost an already established tick population at the subsequent region and thus increase the risk to humans, or bird migration may help ticks to establish in a region where the local landscape is not appropriate for ticks to survive in the absence of bird migration, imposing risks to public health. This theoretical study reveals that bird migration plays an important role in the geographic range expansion of I. scapularis, and therefore our findings may suggest some strategies for Lyme disease prevention and control.
Collapse
|
28
|
Sparagano O, George D, Giangaspero A, Špitalská E. Arthropods and associated arthropod-borne diseases transmitted by migrating birds. The case of ticks and tick-borne pathogens. Vet Parasitol 2015; 213:61-6. [PMID: 26343302 DOI: 10.1016/j.vetpar.2015.08.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 12/31/2022]
Abstract
Geographic spread of parasites and pathogens poses a constant risk to animal health and welfare, particularly given that climate change is expected to potentially expand appropriate ranges for many key species. The spread of deleterious organisms via trade routes and human travelling is relatively closely controlled, though represents only one possible means of parasite/pathogen distribution. The transmission via natural parasite/pathogen movement between geographic locales, is far harder to manage. Though the extent of such movement may be limited by the relative inability of many parasites and pathogens to actively migrate, passive movement over long distances may still occur via migratory hosts. This paper reviews the potential role of migrating birds in the transfer of ectoparasites and pathogens between geographic locales, focusing primarily on ticks. Bird-tick-pathogen relationships are considered, and evidence provided of long-range parasite/pathogen transfer from one location to another during bird migration events. As shown in this paper not only many different arthropod species are carried by migrating birds but consequently these pests carry many different pathogens species which can be transmitted to the migrating birds or to other animal species when those arthropods are dropping during these migrations. Data available from the literature are provided highlighting the need to understand better dissemination paths and disease epidemiology.
Collapse
Affiliation(s)
| | - David George
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Stockbridge Technology Centre, Cawood, Selby YO8 3TZ, UK
| | - Annunziata Giangaspero
- Department of Science of Agriculture, Food and Environment, University of Foggia, 71121 Foggia, Italy
| | - Eva Špitalská
- Institute of Virology SAS, Bratislava, Slovak Republic
| |
Collapse
|
29
|
Literak I, Norte AC, Núncio MS, de Carvalho IL, Ogrzewalska M, Nováková M, Martins TF, Sychra O, Resendes R, Rodrígues P. Ticks on passerines from the Archipelago of the Azores as hosts of borreliae and rickettsiae. Ticks Tick Borne Dis 2015; 6:607-10. [PMID: 26013915 DOI: 10.1016/j.ttbdis.2015.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 11/15/2022]
Abstract
We examined the presence of borreliae and rickettsiae bacteria in ticks from wild passerine birds on three islands of the Archipelago of the Azores, the westernmost region of Palearctic. A total of 266 birds belonging to eight species from seven families were examined on São Miguel, Santa Maria and Graciosa islands in 2013. Ticks collected from these birds consisted of 55 Ixodes frontalis (22 larvae, 32 nymphs, 1 adult female) and 16 Haemaphysalis punctata nymphs. Turdus merula and Erithacus rubecula were the birds most infested with both tick species. Three T. merula in Santa Maria were infested with 4 I. frontalis infected with Borrelia turdi. No rickettsiae were found in the ticks. We report for the first time the presence of I. frontalis and B. turdi on the Azores islands and we showed that the spatial distribution reaches further west than previously thought.
Collapse
Affiliation(s)
- Ivan Literak
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Ana Claudia Norte
- Department of Life Sciences, Institute of Marine Research IMAR/CMA, University of Coimbra, Coimbra, Portugal; Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, Portugal.
| | - Maria Sofia Núncio
- Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, Portugal.
| | - Isabel Lopes de Carvalho
- Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, Portugal; Emergency Response and Biopreparedness Unit, National Institute of Health Doutor Ricardo Jorge, Lisboa, Portugal.
| | - Maria Ogrzewalska
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz/IOC, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil.
| | - Markéta Nováková
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Thiago F Martins
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil.
| | - Oldrich Sychra
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Roberto Resendes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Polo dos Açores, Universidade dos Açores, Ponta Delgada, Portugal.
| | - Pedro Rodrígues
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valvidia, Chile.
| |
Collapse
|
30
|
Hai VV, Almeras L, Socolovschi C, Raoult D, Parola P, Pagès F. Monitoring human tick-borne disease risk and tick bite exposure in Europe: available tools and promising future methods. Ticks Tick Borne Dis 2014; 5:607-19. [PMID: 25178542 DOI: 10.1016/j.ttbdis.2014.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 12/30/2022]
Abstract
Ticks are the main vector for infectious disease pathogens in both humans and animals, and tick-borne diseases are currently spreading throughout Europe. Various surveillance methods have been developed to estimate the burden and risk of tick-borne diseases and host exposure to tick bites. The ultimate aims of these approaches are to determine the risk level of a tick-borne disease in a given area, determine its health priority, identify the at-risk population and propose specific countermeasures or complementary studies as needed. The purpose of this review is to present the current methods for monitoring the circulation of tick-borne diseases and to highlight the use of salivary antigens as original and recently developed serological tools that could be useful for tick bite risk assessment and could improve the current surveillance methods.
Collapse
Affiliation(s)
- Vinh Vu Hai
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France; Institut de Recherche Biomédicale des Armées (IRBA), Antenne Marseille, Unité de Parasitologie, URMITE UMR 6236, GSBdD de Marseille Aubagne, 111 Avenue de la Corse BP 40026, 13568 Marseille Cedex 02, France
| | - Lionel Almeras
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France; Institut de Recherche Biomédicale des Armées (IRBA), Antenne Marseille, Unité de Parasitologie, URMITE UMR 6236, GSBdD de Marseille Aubagne, 111 Avenue de la Corse BP 40026, 13568 Marseille Cedex 02, France
| | - Cristina Socolovschi
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Philippe Parola
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France.
| | - Frédéric Pagès
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM 63, CNRS 7278, IRD 198, Inserm 1095, WHO Collaborative Center for Rickettsioses and Other Arthropod-Borne Bacterial Diseases, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France; CIRE/ARS Océan Indien, 2 bis Avenue Georges Brassens CS 60050, 97408 Saint Denis Cedex 9, Reunion.
| |
Collapse
|
31
|
Mukherjee N, Beati L, Sellers M, Burton L, Adamson S, Robbins RG, Moore F, Karim S. Importation of exotic ticks and tick-borne spotted fever group rickettsiae into the United States by migrating songbirds. Ticks Tick Borne Dis 2014; 5:127-34. [PMID: 24252263 PMCID: PMC3946858 DOI: 10.1016/j.ttbdis.2013.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
Abstract
Birds are capable of carrying ticks and, consequently, tick-transmitted microorganisms over long distances and across geographical barriers such as oceans and deserts. Ticks are hosts for several species of spotted fever group rickettsiae (SFGR), which can be transmitted to vertebrates during blood meals. In this study, the prevalence of this group of rickettsiae was examined in ticks infesting migratory songbirds by using polymerase chain reaction (PCR). During the 2009 and 2010 spring migration season, 2064 northward-migrating passerine songbirds were examined for ticks at Johnson Bayou, Louisiana. A total of 91 ticks was removed from 35 individual songbirds for tick species identification and spotted fever group rickettsia detection. Ticks were identified as Haemaphysalis juxtakochi (n=38, 42%), Amblyomma longirostre (n=22, 24%), Amblyomma nodosum (n=17, 19%), Amblyomma calcaratum (n=11, 12%), Amblyomma maculatum (n=2, 2%), and Haemaphysalis leporispalustris (n=1, 1%) by comparing their 12S rDNA gene sequence to homologous sequences in GenBank. Most of the identified ticks were exotic species originating outside of the United States. The phylogenetic analysis of the 71 ompA gene sequences of the rickettsial strains detected in the ticks revealed the occurrence of 6 distinct rickettsial genotypes. Two genotypes (corresponding to a total of 28 samples) were included in the Candidatus Rickettsia amblyommii clade (less than 1% divergence), 2 of them (corresponding to a total of 14 samples) clustered with Rickettsia sp. "Argentina" with less than 0.2% sequence divergence, and 2 of them (corresponding to a total of 27 samples), although closely related to the R. parkeri-R. africae lineage (2.50-3.41% divergence), exhibited sufficient genetic divergence from its members to possibly constitute a new rickettsial genotype. Overall, there does not seem to be a specific relationship between exotic tick species, the rickettsiae they harbor, or the reservoir competence of the corresponding bird species.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Lorenza Beati
- Institute of Coastal Plain Sciences, Georgia Southern University, Statesboro, GA 30458, USA
| | - Michael Sellers
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Laquita Burton
- Institute of Coastal Plain Sciences, Georgia Southern University, Statesboro, GA 30458, USA
| | - Steven Adamson
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Richard G Robbins
- Armed Forces Pest Management Board, Office of the Deputy Under Secretary of Defense for Installations and Environment, Building 172, U.S. Army Garrison Forest Glen, Silver Spring, MD 20910, USA
| | - Frank Moore
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Shahid Karim
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|
32
|
Toma L, Mancini F, Di Luca M, Cecere JG, Bianchi R, Khoury C, Quarchioni E, Manzia F, Rezza G, Ciervo A. Detection of microbial agents in ticks collected from migratory birds in central Italy. Vector Borne Zoonotic Dis 2014; 14:199-205. [PMID: 24576218 DOI: 10.1089/vbz.2013.1458] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tick species characterization and molecular studies were performed within ornithological surveys conducted during 2010 and 2011 in the Lazio Region of central Italy. A total of 137 ticks were collected from 41 migratory birds belonging to 17 species (four partial migrants and 13 long-distance migrants). Most ticks were nymphs, with a predominance of Hyalomma marginatum marginatum and H. m. rufipes, and a small portion of Ixodes and Amblyomma species. All tick species analyzed were infected, and the molecular pathogen recognition revealed the presence of Rickettsia aeschlimannii, Rickettsia africae, Erlichia spp., Coxiella burnetii, Borrelia burgdorferi sensu lato group, and Babesia microti, whereas no genomic DNA of Bartonella spp. or Francisella tularensis was detected. The results of the survey show that H. marginatum ticks appear to be a vector of microbial agents that may affect human and animal health and that migratory birds may be an important carrier of these ticks. Additional studies are needed to better investigate the role of migratory birds in the epidemiology of these pathogens.
Collapse
Affiliation(s)
- Luciano Toma
- 1 Department of Infectious, Parasitic and Immuno-mediated Diseases, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Do the ticks of birds at an important migratory hotspot reflect the seasonal dynamics of Ixodes ricinus at the migration initiation site? A case study in the Danube Delta. PLoS One 2014; 9:e89378. [PMID: 24586732 PMCID: PMC3929702 DOI: 10.1371/journal.pone.0089378] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/20/2014] [Indexed: 12/30/2022] Open
Abstract
Migratory birds play important roles as distributors of ticks within and between continents. In the Old World, the most important migratory route of birds links Asia, Europe and Africa. During their migration, birds use various stopover sites, where they feed and rest and where ticks may attach or detach, creating new natural foci for vector-borne diseases. Danube Delta is one of the most important migration hotspots and so far no studies were focused on ticks of migratory birds herein. The aim of the present study was to assess the species diversity and seasonal dynamics of ticks parasitizing migratory birds in Danube Delta Biosphere Reserve. Migratory birds were trapped on Grindul Lupilor (44°41′N; 28°56′E) using mist nets during 4 migratory seasons (2 spring and 2 autumn) in 2011 and 2012. From each bird, all the ticks were collected and identified based on morphological features. Epidemiological parameters (prevalence, mean abundance, mean intensity) were calculated and all data were analysed statistically based on the season (spring and autumn), regional status of birds (migrants and breeding) and foraging behaviour (ground feeders, reed-bed feeders, foliage feeders). A total of 1434 birds (46 species) were captured. Ticks were found on 94 birds (10 species). Significantly more migratory birds hosted ticks, compared to resident birds. The 400 collected ticks belonged to four species: Ixodes ricinus (92.25%), I. arboricola (6.25%), I. redikorzevi (1.00%) and Haemaphysalis punctata (0.50%). A higher prevalence was found for I. ricinus in spring, with higher prevalence of nymphs in this season, while larvae occurred with the same prevalence in both seasons. Larval intensity was higher during spring and nymphs were more abundant during autumn. The seasonal differences in our study may be related not to the local seasonal dynamics of ticks, but on the seasonal dynamics at the site of migration initiation.
Collapse
|
34
|
Heylen D, Sprong H, van Oers K, Fonville M, Leirs H, Matthysen E. Are the specialized bird ticks, Ixodes arboricola and I. frontalis, competent vectors for Borrelia burgdorferi sensu lato? Environ Microbiol 2013; 16:1081-9. [PMID: 24237635 DOI: 10.1111/1462-2920.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/05/2013] [Indexed: 11/30/2022]
Abstract
Our study tested whether two European bird-specialized ticks, Ixodes arboricola and I. frontalis, can act as vectors in the transmission cycles of Borrelia burgdorferi s.l. The ticks have contrasting ecologies but share songbird hosts (such as the great tit, Parus major) with the generalist I. ricinus which may therefore act as a bridging vector. In the first phase of the experiment, we obtained Borrelia-infected ornithophilic nymphs by exposing larvae to great tits that had previously been exposed to I. ricinus nymphs carrying a community of genospecies (Borrelia garinii, valaisiana, afzelii, burgdorferi s.s., spielmanii). Skin samples showed that birds selectively amplified B. garinii and B. valaisiana. The spirochetes were transmitted to the ornithophilic ticks and survived moulting, leading to infection rates of 16% and 27% in nymphs of I. arboricola and I. frontalis respectively. In the second phase, pathogen-free great tits were exposed to the Borrelia-infected ornithophilic nymphs. None of these ticks were able to infect the birds, as indicated by the tissue samples. Analysis of xenodiagnostic I. ricinus larvae found no evidence for co-feeding or systemic transmission of B. burgdorferi s.l. These outcomes do not support the occurrence of enzootic cycles of Borrelia burgdorferi s.l. involving songbirds and their specialized ornithophilic ticks.
Collapse
Affiliation(s)
- Dieter Heylen
- Department of Biology, University of Antwerp, Evolutionary Ecology Group, Belgium
| | | | | | | | | | | |
Collapse
|
35
|
Prevalence of tick-borne pathogens in ticks collected from migratory birds in Latvia. Ticks Tick Borne Dis 2013; 5:75-81. [PMID: 24246709 DOI: 10.1016/j.ttbdis.2013.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 11/22/2022]
Abstract
Migratory birds act as hosts and long-distance vectors for several tick-borne infectious agents. Here, feeding Ixodes ticks were collected from migratory birds during the autumn migration period in Latvia and screened for the presence of epidemiologically important non-viral pathogens. A total of 93 DNA samples of ticks (37 larvae and 56 nymphs) removed from 41 birds (order Passeriformes, 9 species) was tested for Lyme borreliosis spirochaetes, Anaplasma phagocytophilum, Rickettsia spp., and Babesia spp. Borrelia burgdorferi DNA was detected in 18% of the tick samples, and a majority of infected ticks were from thrush (Turdus spp.) birds. Among the infected ticks, Borrelia valaisiana was detected in 41% of cases, Borrelia garinii in 35%, and mixed Bo. valaisiana and Bo. garinii infection in 24%. Anaplasma phagocytophilum DNA was detected in 2% of ticks, R. helvetica in 12%, and Babesia spp. pathogens in 4% of ticks. Among these samples, 3 Babesia species were identified: Ba. divergens, Ba. microti, and Ba. venatorum. Coinfection with different pathogens that included mixed infections with different Borrelia genospecies was found in 20% of nymphal and 3% of larval Ixodes ticks. These results suggest that migratory birds may support the circulation and spread of medically significant zoonoses in Europe.
Collapse
|
36
|
Hasle G. Transport of ixodid ticks and tick-borne pathogens by migratory birds. Front Cell Infect Microbiol 2013; 3:48. [PMID: 24058903 PMCID: PMC3767891 DOI: 10.3389/fcimb.2013.00048] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/15/2013] [Indexed: 11/13/2022] Open
Abstract
Birds, particularly passerines, can be parasitized by Ixodid ticks, which may be infected with tick-borne pathogens, like Borrelia spp., Babesia spp., Anaplasma, Rickettsia/Coxiella, and tick-borne encephalitis virus. The prevalence of ticks on birds varies over years, season, locality and different bird species. The prevalence of ticks on different species depends mainly on the degree of feeding on the ground. In Europe, the Turdus spp., especially the blackbird, Turdus merula, appears to be most important for harboring ticks. Birds can easily cross barriers, like fences, mountains, glaciers, desserts and oceans, which would stop mammals, and they can move much faster than the wingless hosts. Birds can potentially transport tick-borne pathogens by transporting infected ticks, by being infected with tick-borne pathogens and transmit the pathogens to the ticks, and possibly act as hosts for transfer of pathogens between ticks through co-feeding. Knowledge of the bird migration routes and of the spatial distribution of tick species and tick-borne pathogens is crucial for understanding the possible impact of birds as spreaders of ticks and tick-borne pathogens. Successful colonization of new tick species or introduction of new tick-borne pathogens will depend on suitable climate, vegetation and hosts. Although it has never been demonstrated that a new tick species, or a new tick pathogen, actually has been established in a new locality after being seeded there by birds, evidence strongly suggests that this could occur.
Collapse
Affiliation(s)
- Gunnar Hasle
- Department of Biology, University of Oslo, Blindern, Norway.
| |
Collapse
|
37
|
Norte AC, Lopes de Carvalho I, Núncio MS, Ramos JA, Gern L. Blackbirds Turdus merula as competent reservoirs for Borrelia turdi and Borrelia valaisiana in Portugal: evidence from a xenodiagnostic experiment. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:604-7. [PMID: 23864576 DOI: 10.1111/1758-2229.12058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/20/2013] [Indexed: 05/27/2023]
Abstract
To confirm that thrushes, such as blackbirds Turdus merula, play a role as reservoir for some Borrelia genospecies, we performed a xenodiagnostic experiment with blackbirds captured in a mixed wood located in Western Portugal where Borrelia turdi, an uncommon genospecies in Europe, was the most prevalent genospecies associated with birds. Two out of five birds harboured B. turdi infected Ixodes frontalis at the time of capture. Four out of five birds transmitted spirochaetes to Ixodes ricinus xenodiagnostic ticks: two birds transmitted Borrelia valaisiana to 25.7% and 10.5% of ticks, and two transmitted B. turdi to 6.4% and 5.4% of ticks. Our results showed that blackbirds transmit B. valaisiana and B. turdi to I. ricinus feeding larvae, acting as reservoir hosts for these genospecies in nature.
Collapse
Affiliation(s)
- Ana C Norte
- Marine and Environmental Research Center IMAR/CMA, Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401, Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
38
|
Steigedal HH, Loe LE, Grøva L, Mysterud A. The effect of sheep ( Ovis aries) presence on the abundance of ticks ( Ixodes ricinus). ACTA AGR SCAND A-AN 2013. [DOI: 10.1080/09064702.2013.823236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Geller J, Nazarova L, Katargina O, Leivits A, Järvekülg L, Golovljova I. Tick-borne pathogens in ticks feeding on migratory passerines in Western part of Estonia. Vector Borne Zoonotic Dis 2013; 13:443-8. [PMID: 23590318 DOI: 10.1089/vbz.2012.1054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During southward migration in the years 2006-2009, 178 migratory passerines of 24 bird species infested with ticks were captured at bird stations in Western Estonia. In total, 249 nymphal ticks were removed and analyzed individually for the presence of Borrelia burgdorferi sensu lato (s.l.), tick-borne encephalitis virus (TBEV), and Anaplasma phagocytophilum. The majority of ticks were collected from Acrocephalus (58%), Turdus (13%), Sylvia (8%), and Parus (6%) bird species. Tick-borne pathogens were detected in nymphs removed from Acrocephalus, Turdus, and Parus bird species. TBEV of the European subtype was detected in 1 I. ricinus nymph removed from A. palustris. B. burgdorferi s.l. DNA was found in 11 ticks (4.4%) collected from Turdus and Parus species. Bird-associated B. garinii and B. valaisiana were detected in I. ricinus nymphs removed from T. merula. Rodent-associated B. afzelii was detected in 3 I. ricinus nymphs from 2 P. major birds. One of the B. afzelii-positive nymphs was infected with a mix of 2 B. afzelii strains, whereas 1 of these strains was also detected in another nymph feeding on the same great tit. The sharing of the same B. afzelii strain by 2 nymphs indicates a possible transmission of B. afzelii by co-feeding on a bird. A. phagocytophilum DNA was detected in 1 I. ricinus nymph feeding on a T. iliacus. The results of the study confirm the possible role of migratory birds in the dispersal of ticks infected with tick-borne pathogens along the southward migration route via Estonia.
Collapse
Affiliation(s)
- Julia Geller
- National Institute for Health Development, Tallinn, Estonia
| | | | | | | | | | | |
Collapse
|
40
|
Mencke N. Future challenges for parasitology: vector control and 'One health' in Europe: the veterinary medicinal view on CVBDs such as tick borreliosis, rickettsiosis and canine leishmaniosis. Vet Parasitol 2013; 195:256-71. [PMID: 23680539 DOI: 10.1016/j.vetpar.2013.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The medical as well as the veterinary importance of parasitic arthropods or ectoparasites in general terms, is characterized by the primary or secondary impact on the health of humans and companion animals alike. The parasitic arthropods addressed here are those ectoparasites belong to the class of insects, such as fleas and sand flies, or the subclass of acarids, such as ticks. These parasitic arthropods interact intensively with their hosts by blood feeding. Fleas, sand flies and ticks hold the vector capacity to transmit pathogens such as virus, bacteria or protozoa to cats, dogs and humans. The diseases caused by these pathogens are summarized under the terms canine vector-borne diseases (CVBD), feline vector-borne diseases (FVBD) or metazoonoses. In small animal practice, it is important to understand that the transmitted pathogen may either lead to a disease with clinical signs, or more often to asymptomatic, clinically healthy, or silent infections. Blocking of the vector-host interactions, the blood feeding and subsequently the transmission of pathogens during blood feeding is a key element of CVBD control. The focus of this review is on the current knowledge of the epidemiology of parasitic vectors and three important CVBDs they transmit; rickettsiosis, tick borreliosis and canine leishmaniosis from a European perspective, and how veterinary medicine may contribute to the challenges of CVBDs and their control. Prevention of CVBDs is fundamentally based on ectoparasite control. Ectoparasite management in cats and dogs is important not only for the health and well-being of the individual companion animal but for public health in general and is therefore a perfect example of the 'One health' approach.
Collapse
Affiliation(s)
- Norbert Mencke
- Bayer Animal Health GmbH, Kaiser-Wilhelm-Allee 50, 51373 Leverkusen, Germany.
| |
Collapse
|
41
|
Movila A, Alekseev AN, Dubinina HV, Toderas I. Detection of tick-borne pathogens in ticks from migratory birds in the Baltic region of Russia. MEDICAL AND VETERINARY ENTOMOLOGY 2013; 27:113-117. [PMID: 22924442 DOI: 10.1111/j.1365-2915.2012.01037.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report the finding of tick-borne encephalitis (TBE)-virus in indigenous Ixodes ricinus (L.), 'Candidatus Neoehrlichia mikurensis' in exotic Ixodes frontalis (Panzer) and Rickettsia aeshlimannii in exotic Hyalomma marginatum Koch subadult ticks detached from 18.5% (107/577) infested migratory birds in the Baltic region of Russia. This is the first record of human pathogenic 'Candidatus N. mikurensis' in I. frontalis ticks. Moreover, seven other pathogens were identified in I. ricinus ticks. Spotted Fever Group rickettsiae were the predominant pathogen group and were detected only in nymphs. Future investigations are warranted to further characterize the role of birds in the epizootiology of tick-borne pathogens in this region.
Collapse
Affiliation(s)
- A Movila
- Laboratory of Molecular Systematics, Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia.
| | | | | | | |
Collapse
|
42
|
Kang JG, Kim HC, Choi CY, Nam HY, Chae HY, Chong ST, Klein TA, Ko S, Chae JS. Molecular detection of Anaplasma, Bartonella, and Borrelia species in ticks collected from migratory birds from Hong-do Island, Republic of Korea. Vector Borne Zoonotic Dis 2013; 13:215-25. [PMID: 23428091 DOI: 10.1089/vbz.2012.1149] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bird migration is a recurring annual and seasonal event undertaken by more than 100 species of birds in the southeast Asian and northeast Palearctic regions that pass through or remain for short periods from April to May and September to November at Hong-do Island, Republic of Korea (ROK). A total of 212 ticks (40 Haemaphysalis flava, 12 H. longicornis, 146 Ixodes turdus, 13 I. nipponensis, and 1 I. ornithophila) were collected from 65/2,161 (3.0%) migratory birds consisting of 21 species that were captured from January, 2008, through December, 2009, as part of the Migratory Birds Center, Hong-do bird banding program for studying bird migration patterns. Adult ticks were assayed individually while larvae and nymphs were pooled (1-22 and 1-6 ticks per pool, respectively) into 31 and 65 pools, respectively. Ticks were assayed for zoonotic pathogens by PCR using 16S rRNA, heat shock protein (groEL), and internal transcribed spacer (ITS) gene primers to amplify genera specific for Anapalsma, Bartonella, and Borrelia PCR amplicons. Using the 16S rRNA-based nested PCR, A. phagocytophilum (n=1) was detected in I. nipponensis collected from Zoothera sibirica and A. bovis (n=1) was detected in I. turdus collected from Emberiza chrysophrys. Borrelia turdi 16S rRNA genes (n=3) were detected in I. turdus and I. nipponensis collected from Turdus pallidus and Zoothera aurea. Borrelia spp. 16S rRNA genes (n=4) were detected in Ixodes ticks collected from Emberiza tristrami, T. pallidus, and Z. aurea. The Bartonella grahamii ITS gene (n=1) was detected by nested PCR assay in I. turdus collected from Z. aurea. These results provide insight into the potential role of migratory birds in the dispersal of ticks and associated tick-borne pathogens throughout their ranges in Asia.
Collapse
Affiliation(s)
- Jun-Gu Kang
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tomassone L, Grego E, Auricchio D, Iori A, Giannini F, Rambozzi L. Lyme borreliosis spirochetes and spotted fever group rickettsiae in ixodid ticks from Pianosa island, Tuscany Archipelago, Italy. Vector Borne Zoonotic Dis 2013; 13:84-91. [PMID: 23289398 DOI: 10.1089/vbz.2012.1046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A study on tick fauna and tick-borne pathogens was undertaken in Pianosa, an island in the Tuscany Archipelago that constitutes an important stopping and nesting point for migratory birds. Ticks were removed from feral cats and a few terrestrial birds, and host-seeking ticks were collected by dragging. A total of 89 ticks were found on animals: 57 Ixodes ventalloi Gil Collado, 1936 and 32 Ixodes acuminatus Neumann, 1901. Host-seeking ticks were 354 Hyalomma spp. larvae and 18 Hyalomma spp. adults, identified as Hyalomma marginatum C.L. Koch, 1844 (n=11) and 7 Hyalomma detritum Schulze, 1919 (n=7). A sample of adult ticks was subjected to molecular analyses to look for Rickettsia spp. and Borrelia burgdorferi sensu lato (s.l.). Sequence analysis of the 5S-23S intergenic spacer region and OspA gene of B. burgdorferi s.l.-positive samples showed the presence of Borrelia spielmanii (n=3; 3.7%, 95% confidence interval [CI] 0.08-10.4) and Borrelia valaisiana (n=13; 13.6%, 95% CI 7.0-23.0) in Ixodes ticks from cats and terrestrial birds. Ixodes spp. were also infected by Rickettsia helvetica (n=19; 23.4%, 95% CI 14.7-34.2). Finally, we detected Rickettsia aeschlimannii in 3 out of 12 host-seeking Hyalomma spp. adults tested (25%, 95% CI 5.5-57.2). Our study shows the presence of several tick-borne pathogens in Pianosa. Hyalomma spp. and Ixodes ticks other than I. ricinus seem to be involved in their epidemiological cycle, and birds could contribute to the pathogen dispersal along their migration routes. This is the first finding of B. spielmanii in Italy. We hypothesize the involvement of peridomestic rodents or hedgehogs in its maintenance in Pianosa.
Collapse
Affiliation(s)
- L Tomassone
- Dipartimento di Produzioni Animali Epidemiologia ed Ecologia, Facoltà di Medicina Veterinaria, Università degli Studi di Torino, Grugliasco, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Heylen D, Tijsse E, Fonville M, Matthysen E, Sprong H. Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol 2012; 15:663-73. [PMID: 23279105 DOI: 10.1111/1462-2920.12059] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 11/28/2022]
Abstract
We examined the Borrelia burgdorferi sensu lato circulation in a tick community consisting of three species (Ixodes ricinus, I. frontalis, I. arboricola) with contrasting ecologies, but sharing two European songbird hosts (Parus major and Cyanistes caeruleus). Parus major had the highest infestation rates, primarily due to larger numbers of I. ricinus, and probably because of their greater low-level foraging. The prevalence of Borrelia in feeding ticks did not significantly differ between the two bird species; however, P. major in particular hosted large numbers of Borrelia-infected I. frontalis and I. ricinus larvae, suggesting that the species facilitates Borrelia transmission. The low but significant numbers of Borrelia in questing I. arboricola ticks also provides the first field data to suggest that it is competent in maintaining Borrelia. Aside from Borrelia garinii, a high number of less dominant genospecies was observed, including several mammalian genospecies and the first record of Borrelia turdi for North-Western Europe. Borrelia burgdorferi sensu lato IGS genotypes were shared between I. arboricola and I. ricinus and between I. frontalis and I. ricinus, but not between I. arboricola and I. frontalis. This suggests that the Borrelia spp. transmission cycles can be maintained by bird-specific ticks, and bridged by I. ricinus to other hosts outside bird-tick cycles.
Collapse
Affiliation(s)
- Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
45
|
Dantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol 2012; 28:437-46. [DOI: 10.1016/j.pt.2012.07.003] [Citation(s) in RCA: 547] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 12/30/2022]
|
46
|
Falchi A, Dantas-Torres F, Lorusso V, Malia E, Lia RP, Otranto D. Autochthonous and migratory birds as a dispersion source for Ixodes ricinus in southern Italy. EXPERIMENTAL & APPLIED ACAROLOGY 2012; 58:167-174. [PMID: 22610454 DOI: 10.1007/s10493-012-9571-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/02/2012] [Indexed: 06/01/2023]
Abstract
The present study was carried out in a protected wooded area, which is part of the Parco Regionale Gallipoli Cognato Piccole Dolomiti Lucane, one of the most important ecological reserves in southern Italy. From April 2010 to April 2011, 212 birds, comprising 22 species from 12 families, were captured and examined for ticks. A total of 75 (35.4 %) birds were found infested by ticks, with 451 ticks being collected. All ticks were identified as Ixodes ricinus, of which 241 (53.4 %) were larvae and 210 nymphs (46.6 %). The highest intensity of infestation was found in April 2010, when 117 ticks were retrieved on 25 birds. No ticks were found on birds (n = 5) netted in December 2010. High infestation rates were recorded on blackbirds (Turdus merula) (90 %; 29 birds examined) and on mistle thrushes (Turdus viscivorus) (100 %; 2 birds examined). The highest intensity of infestation by larvae was found on wrens (5.6 larvae/bird) and by nymphs on mistle thrushes (11.5 nymphs/bird). Temperature and number of hours of light showed to influence the activity of larvae and nymphs. These data support the notion that birds may be responsible for the heterogeneous distribution of I. ricinus in Europe, thus playing a role in the epidemiology of certain tick-borne pathogens.
Collapse
Affiliation(s)
- Alessandro Falchi
- Dipartimento di Sanità Pubblica e Zootecnia, Università degli Studi di Bari, 70010 Valenzano, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Exploring gaps in our knowledge on Lyme borreliosis spirochaetes--updates on complex heterogeneity, ecology, and pathogenicity. Ticks Tick Borne Dis 2012; 4:11-25. [PMID: 23246041 DOI: 10.1016/j.ttbdis.2012.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 11/20/2022]
Abstract
The Lyme borreliosis complex is a heterogeneous group of tick-borne spirochaetes of the genus Borrelia (Spirochaetales: Spirochaetaceae) that are distributed all over the temperate zone of the northern hemisphere. Due to the usage of new methods for phylogenetic analysis, this group has expanded rapidly during the past 5 years. Along with this development, the number of Borrelia spp. regarded as pathogenic to humans also increased. Distribution areas as well as host and vector ranges of Lyme borreliosis agents turned out to be much wider than previously thought. Furthermore, there is evidence that ticks, reservoir hosts, and patients can be coinfected with multiple Borrelia spp. or other tick-borne pathogens, which indicates a need to establish new and well-defined diagnostic and therapeutic standards for Lyme borreliosis. This review gives a broad overview on the occurrence of Lyme borreliosis spirochaetes worldwide with particular emphasis on their vectors and vertebrate hosts as well as their pathogenic potential and resultant problems in diagnosis and treatment. Against the background that many issues regarding distribution, species identity, ecology, pathogenicity, and coinfections are still unsolved, the purpose of this article is to reveal directions for future research on the Lyme borreliosis complex.
Collapse
|
48
|
Norte AC, Ramos JA, Gern L, Núncio MS, Lopes de Carvalho I. Birds as reservoirs forBorrelia burgdorferis.l. in Western Europe: circulation ofB. turdiand other genospecies in bird-tick cycles in Portugal. Environ Microbiol 2012; 15:386-97. [DOI: 10.1111/j.1462-2920.2012.02834.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Estrada-Peña A, Ayllón N, de la Fuente J. Impact of climate trends on tick-borne pathogen transmission. Front Physiol 2012; 3:64. [PMID: 22470348 PMCID: PMC3313475 DOI: 10.3389/fphys.2012.00064] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/05/2012] [Indexed: 01/01/2023] Open
Abstract
Recent advances in climate research together with a better understanding of tick-pathogen interactions, the distribution of ticks and the diagnosis of tick-borne pathogens raise questions about the impact of environmental factors on tick abundance and spread and the prevalence and transmission of tick-borne pathogens. While undoubtedly climate plays a role in the changes in distribution and seasonal abundance of ticks, it is always difficult to disentangle factors impacting on the abundance of tick hosts from those exerted by human habits. All together, climate, host abundance, and social factors may explain the upsurge of epidemics transmitted by ticks to humans. Herein we focused on tick-borne pathogens that affect humans with epidemic potential. Borrelia burgdorferi s.l. (Lyme disease), Anaplasma phagocytophilum (human granulocytic anaplasmosis), and tick-borne encephalitis virus (tick-borne encephalitis) are transmitted by Ixodes spp. Crimean-Congo hemorrhagic fever virus (Crimean-Congo hemorrhagic fever) is transmitted by Hyalomma spp. In this review, we discussed how vector tick species occupy the habitat as a function of different climatic factors, and how these factors impact on tick survival and seasonality. How molecular events at the tick-pathogen interface impact on pathogen transmission is also discussed. Results from statistically and biologically derived models are compared to show that while statistical models are able to outline basic information about tick distributions, biologically derived models are necessary to evaluate pathogen transmission rates and understand the effect of climatic variables and host abundance patterns on pathogen transmission. The results of these studies could be used to build early alert systems able to identify the main factors driving the subtle changes in tick distribution and seasonality and the prevalence of tick-borne pathogens.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Parasitology, Veterinary Faculty, University of ZaragozaZaragoza, Spain
| | - Nieves Ayllón
- Instituto de Investigación en Recursos CinegéticosCSIC–UCLM–JCCM, Ciudad Real, Spain
| | - José de la Fuente
- Instituto de Investigación en Recursos CinegéticosCSIC–UCLM–JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
50
|
Jameson LJ, Morgan PJ, Medlock JM, Watola G, Vaux AGC. Importation of Hyalomma marginatum, vector of Crimean-Congo haemorrhagic fever virus, into the United Kingdom by migratory birds. Ticks Tick Borne Dis 2012; 3:95-9. [PMID: 22300969 DOI: 10.1016/j.ttbdis.2011.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Hyalomma marginatum ticks are an important vector of Crimean-Congo haemorrhagic fever virus which can result in a severe and potentially fatal disease in humans. Given the continued emergence of clinical cases in Eurasia and focalised upsurges of H. marginatum populations in Europe, it seemed prudent to assess the potential of this vector species to be introduced into the United Kingdom. Immature forms of H. marginatum are frequent ectoparasites of passerine birds many of which migrate from Africa to the UK each spring. Incoming birds were inspected for ticks during the spring migration in 2010 and 2011. A total of 68 ticks was collected from 971 birds (29 bird species), 21% (14) of the ticks were identified as H. marginatum. Oenanthe oenanthe (Northern wheatear) and Sylvia communis (Whitethroat) were found to be infested by this tick in both years and with multiple ticks. Single specimens were also removed from Acrocephalus schoenobaenus (Sedge warbler) and Phoenicurus phoenicurus (Common redstart) in 2010. This study provides the first contemporary evidence for substantial importation of this tick species into the UK.
Collapse
Affiliation(s)
- Lisa J Jameson
- Medical Entomology & Zoonoses Ecology, Microbial Risk Assessment, Emergency Response Dept., Health Protection Services, Health Protection Agency, Porton Down, Wiltshire SP4 0JG, UK.
| | | | | | | | | |
Collapse
|