1
|
Capella-Pujol J, de Gast M, Radić L, Zon I, Chumbe A, Koekkoek S, Olijhoek W, Schinkel J, van Gils MJ, Sanders RW, Sliepen K. Signatures of V H1-69-derived hepatitis C virus neutralizing antibody precursors defined by binding to envelope glycoproteins. Nat Commun 2023; 14:4036. [PMID: 37419906 PMCID: PMC10328973 DOI: 10.1038/s41467-023-39690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
An effective preventive vaccine for hepatitis C virus (HCV) remains a major unmet need. Antigenic region 3 (AR3) on the E1E2 envelope glycoprotein complex overlaps with the CD81 receptor binding site and represents an important epitope for broadly neutralizing antibodies (bNAbs) and is therefore important for HCV vaccine design. Most AR3 bNAbs utilize the VH1-69 gene and share structural features that define the AR3C-class of HCV bNAbs. In this work, we identify recombinant HCV glycoproteins based on a permuted E2E1 trimer design that bind to the inferred VH1-69 germline precursors of AR3C-class bNAbs. When presented on nanoparticles, these recombinant E2E1 glycoproteins efficiently activate B cells expressing inferred germline AR3C-class bNAb precursors as B cell receptors. Furthermore, we identify critical signatures in three AR3C-class bNAbs that represent two subclasses of AR3C-class bNAbs that will allow refined protein design. These results provide a framework for germline-targeting vaccine design strategies against HCV.
Collapse
Affiliation(s)
- Joan Capella-Pujol
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Marlon de Gast
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Laura Radić
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Wouter Olijhoek
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands.
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, 10065, USA.
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, 1105, AZ, Amsterdam, Netherlands.
| |
Collapse
|
2
|
Tang L, Cegang F, Zhao H, Wang B, Jia S, Chen H, Cai H. Up-regulation of Core 1 Beta 1, 3-Galactosyltransferase Suppresses Osteosarcoma Growth with Induction of IFN-γ Secretion and Proliferation of CD8 + T Cells. Curr Cancer Drug Targets 2023; 23:265-277. [PMID: 36221889 DOI: 10.2174/1568009622666221010105701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
AIM Abnormal glycosylation often occurs in tumor cells. T-synthase (core 1 beta 1,3- galactosyltransferase, C1GALT1, or T-synthase) is a key enzyme involved in O-glycosylation. Although T-synthase is known to be important in human tumors, the effects of T-synthase and T-antigen on human tumor responses remain poorly defined. METHODS In this study, a T-synthase-specific short hairpin RNA (shRNA) or T-synthase-specific eukaryotic expression vector(pcDNA3.1(+)) was transfected into murine Osteosarcoma LM8 cells to assess the effects of T-synthase on T cells and cytokines. RESULTS The up-regulation of T-synthase promoted the proliferation of osteosarcoma cells in vitro, but it promoted the proliferation of tumor initially up to 2-3 weeks but showed significant growth inhibitory effect after 3 weeks post-implantation in vivo. Osteosarcoma cells with high T-synthase expression in vitro promoted the proliferation and inhibited the apoptosis of CD8+ T cells. Further, T-synthase upregulation promoted CD8+ T-cell proliferation and the increased production of CD4+ T cell-derived IFN-γ cytokines to induce the increased tumor lethality of CTLs. CONCLUSION Our data suggest that high T-synthase expression inhibits tumor growth by improving the body's anti-tumor immunity. Therefore, using this characteristic to prepare tumor cell vaccines with high immunogenicity provides a new idea for clinical immunotherapy of osteosarcoma.
Collapse
Affiliation(s)
- Lei Tang
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China.,Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fu Cegang
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China.,Department of Orthopedics, Haikou Orthopedic and Diabetes Hospital, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan Province, China
| | - Hongwei Zhao
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| | - Bofei Wang
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| | - Siyu Jia
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| | - Haidan Chen
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China.,Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huili Cai
- Department of Hematology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| |
Collapse
|
3
|
Shayeghpour A, Kianfar R, Hosseini P, Ajorloo M, Aghajanian S, Hedayat Yaghoobi M, Hashempour T, Mozhgani SH. Hepatitis C virus DNA vaccines: a systematic review. Virol J 2021; 18:248. [PMID: 34903252 PMCID: PMC8667529 DOI: 10.1186/s12985-021-01716-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Vaccination against HCV is an effective measure in reduction of virus-related public health burden and mortality. However, no prophylactic vaccine is available as of yet. DNA-based immunization is a promising modality to generate cellular and humoral immune responses. The objective of this study is to provide a systematic review of HCV DNA vaccines and investigate and discuss the strategies employed to optimize their efficacies. METHODS MEDLINE (PubMed), Web of Science, Scopus, ScienceDirect, and databases in persian language including the Regional Information Centre for Science & Technology (RICeST), the Scientific Information Database and the Iranian Research Institute for Information Science and Technology (IranDoc) were examined to identify studies pertaining to HCV nucleic acid vaccine development from 2000 to 2020. RESULTS Twenty-seven articles were included. Studies related to HCV RNA vaccines were yet to be published. A variety of strategies were identified with the potential to optimize HCV DNA vaccines such as incorporating multiple viral proteins and molecular tags such as HBsAg and Immunoglobulin Fc, multi-epitope expression, co-expression plasmid utilization, recombinant subunit immunogens, heterologous prime-boosting, incorporating NS3 mutants in DNA vaccines, utilization of adjuvants, employment of less explored methods such as Gene Electro Transfer, construction of multi- CTL epitopes, utilizing co/post translational modifications and polycistronic genes, among others. The effectiveness of the aforementioned strategies in boosting immune response and improving vaccine potency was assessed. CONCLUSIONS The recent progress on HCV vaccine development was examined in this systematic review to identify candidates with most promising prophylactic and therapeutic potential.
Collapse
Affiliation(s)
- Ali Shayeghpour
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Roya Kianfar
- Department of Medical Virology, Tarbiat Modares University, Tehran, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ajorloo
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sepehr Aghajanian
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mojtaba Hedayat Yaghoobi
- Department of Infectious Disease, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Tayebeh Hashempour
- Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Schön K, Lepenies B, Goyette-Desjardins G. Impact of Protein Glycosylation on the Design of Viral Vaccines. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 175:319-354. [PMID: 32935143 DOI: 10.1007/10_2020_132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycans play crucial roles in various biological processes such as cell proliferation, cell-cell interactions, and immune responses. Since viruses co-opt cellular biosynthetic pathways, viral glycosylation mainly depends on the host cell glycosylation machinery. Consequently, several viruses exploit the cellular glycosylation pathway to their advantage. It was shown that viral glycosylation is strongly dependent on the host system selected for virus propagation and/or protein expression. Therefore, the use of different expression systems results in various glycoforms of viral glycoproteins that may differ in functional properties. These differences clearly illustrate that the choice of the expression system can be important, as the resulting glycosylation may influence immunological properties. In this review, we will first detail protein N- and O-glycosylation pathways and the resulting glycosylation patterns; we will then discuss different aspects of viral glycosylation in pathogenesis and in vaccine development; and finally, we will elaborate on how to harness viral glycosylation in order to optimize the design of viral vaccines. To this end, we will highlight specific examples to demonstrate how glycoengineering approaches and exploitation of different expression systems could pave the way towards better self-adjuvanted glycan-based viral vaccines.
Collapse
Affiliation(s)
- Kathleen Schön
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Bernd Lepenies
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| | - Guillaume Goyette-Desjardins
- Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hanover, Germany.
| |
Collapse
|
5
|
The Ablation of Envelope Protein Glycosylation Enhances the Neurovirulence of ZIKV and Cell Apoptosis in Newborn Mice. J Immunol Res 2021; 2021:5317662. [PMID: 34327243 PMCID: PMC8302398 DOI: 10.1155/2021/5317662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) has attracted the wide global attention due to its causal link to microcephaly. In this study, two amino acid (aa) mutation (E143K and R3394K) were identified at the fourth generation (named ZKC2P4) during the serial passage of ZIKV-Asian lineage ZKC2/2016 strain in the newborn mouse brain, while another seven aa deletions in envelope (E) protein were detected in ZKC2P6. ZKC2P6 is a novel nonglycosylated E protein Asian ZIKV we first identified and provides the first direct supporting evidence that glycosylation motif could be lost during the passage in neonatal mice. To study the impact of E protein glycosylation ablation, we compared the pathogenicity of ZKC2P6 with that of ZKC2P4. The results showed that the loss of E protein glycosylation accelerated the disease progression, as evidenced by an earlier weight loss and death, a thinner cerebral cortex, and more serious tissue lesions and inflammation/necrosis. Furthermore, ZKC2P6 exhibited a greater ability to replicate and caused severer cell apoptosis than that of ZKC2P4. Therefore, the ablation of E glycosylation generally enhances the neurovirulence of ZIKV and cell apoptosis in newborn mice.
Collapse
|
6
|
Liu Y, Shen T, Zhou J, Chen L, Shi S, Wang X, Zhang M, Wang C, Liao C. Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microb Pathog 2021; 158:105095. [PMID: 34280501 DOI: 10.1016/j.micpath.2021.105095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Short peptide antigens covering conserved T or B cell epitopes have been investigated in influenza vaccines. Bursal pentapeptide V (BPP-V) and bursal peptide IV (BP-IV) are small molecular peptides that were isolated and identified from the bursa of Fabricius (BF) and induce a strong immune response at both the humoural and cellular levels. To explore the molecular adjuvant potential of BPP-V and BP-IV with an epitope vaccine, an epitope peptide (HA284-298, GNCVVQCQTERGGLN) rich in T and B cell epitopes for the H9N2 avian influenza virus (AIV) haemagglutinin (HA) protein was selected. BPP-V and BP-IV were coupled with the epitope peptide sequence to form BPP-V and BP-IV-epitope vaccines, respectively. The immunoefficacy of BPP-V and BP-IV-epitope peptide vaccines was evaluated. The results showed that the epitope peptide had weak immunogenicity. The BPP-V-epitope peptide vaccine promoted only the secretion of anti-HA IgG and IgG1 antibodies. The BP-IV-epitope peptide vaccine not only promoted the production of anti-HA IgG and IgG1 antibodies but also significantly induced the production of the IgG2a antibody. The BP-IV-epitope peptide vaccine significantly promoted the production of interleukin (IL-4) and interferon-γ (IFN-γ) (the BPP-V epitope peptide vaccine promoted only the production of IL-4), enhanced the cytotoxic T lymphocyte (CTL) response, and increased the proportion of CD3+ T lymphocytes. Moreover, the BP-IV-epitope peptide vaccine promoted a cell-mediated immune response similar to that of the AIV vaccine group. Furthermore, BPP-V and BP-IV-epitope peptide vaccines could also accelerate the clearance of pulmonary virus and reduce pathological damage after the challenge with H9N2 AIV. This study demonstrates the potential of BP-IV as an effective adjuvant for the epitope peptide vaccine for the H9N2 AIV.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
7
|
Where to Next? Research Directions after the First Hepatitis C Vaccine Efficacy Trial. Viruses 2021; 13:v13071351. [PMID: 34372558 PMCID: PMC8310243 DOI: 10.3390/v13071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Thirty years after its discovery, the hepatitis C virus (HCV) remains a leading cause of liver disease worldwide. Given that many countries continue to experience high rates of transmission despite the availability of potent antiviral therapies, an effective vaccine is seen as critical for the elimination of HCV. The recent failure of the first vaccine efficacy trial for the prevention of chronic HCV confirmed suspicions that this virus will be a challenging vaccine target. Here, we examine the published data from this first efficacy trial along with the earlier clinical and pre-clinical studies of the vaccine candidate and then discuss three key research directions expected to be important in ongoing and future HCV vaccine development. These include the following: 1. design of novel immunogens that generate immune responses to genetically diverse HCV genotypes and subtypes, 2. strategies to elicit broadly neutralizing antibodies against envelope glycoproteins in addition to cytotoxic and helper T cell responses, and 3. consideration of the unique immunological status of individuals most at risk for HCV infection, including those who inject drugs, in vaccine platform development and early immunogenicity trials.
Collapse
|
8
|
LeBlanc EV, Kim Y, Capicciotti CJ, Colpitts CC. Hepatitis C Virus Glycan-Dependent Interactions and the Potential for Novel Preventative Strategies. Pathogens 2021; 10:pathogens10060685. [PMID: 34205894 PMCID: PMC8230238 DOI: 10.3390/pathogens10060685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infections continue to be a major contributor to liver disease worldwide. HCV treatment has become highly effective, yet there are still no vaccines or prophylactic strategies available to prevent infection and allow effective management of the global HCV burden. Glycan-dependent interactions are crucial to many aspects of the highly complex HCV entry process, and also modulate immune evasion. This review provides an overview of the roles of viral and cellular glycans in HCV infection and highlights glycan-focused advances in the development of entry inhibitors and vaccines to effectively prevent HCV infection.
Collapse
Affiliation(s)
- Emmanuelle V. LeBlanc
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Youjin Kim
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada
- Department of Surgery, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (E.V.L.); (Y.K.); (C.J.C.)
- Correspondence:
| |
Collapse
|
9
|
Zhang XL, Qu H. The Role of Glycosylation in Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:219-237. [PMID: 34495538 DOI: 10.1007/978-3-030-70115-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycosylation plays an important role in infectious diseases. Many important interactions between pathogens and hosts involve their carbohydrate structures (glycans). Glycan interactions can mediate adhesion, recognition, invasion, and immune evasion of pathogens. To date, changes in many protein N/O-linked glycosylation have been identified as biomarkers for the development of infectious diseases and cancers. In this review, we will discuss the principal findings and the roles of glycosylation of both pathogens and host cells in the context of human important infectious diseases. Understanding the role and mechanism of glycan-lectin interaction between pathogens and hosts may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication or functional cure of pathogens infection.
Collapse
Affiliation(s)
- Xiao-Lian Zhang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Haoran Qu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
10
|
Hepatitis C virus vaccine design: focus on the humoral immune response. J Biomed Sci 2020; 27:78. [PMID: 32631318 PMCID: PMC7338099 DOI: 10.1186/s12929-020-00669-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of safe and highly effective direct-acting antivirals, hepatitis C virus (HCV) infection remains a significant health problem. In 2016, the World Health Organization set out to reduce the rate of new HCV infections by 90% by 2030. Still, global control of the virus does not seem to be achievable in the absence of an effective vaccine. Current approaches to the development of a vaccine against HCV include the production of recombinant proteins, synthetic peptides, DNA vaccines, virus-like particles, and viral vectors expressing various antigens. In this review, we focus on the development of vaccines targeting the humoral immune response against HCV based on the cumulative evidence supporting the important role of neutralizing antibodies in protection against HCV infection. The main targets of HCV-specific neutralizing antibodies are the glycoproteins E1 and E2. Recent advances in the knowledge of HCV glycoprotein structure and their epitopes, as well as the possibility of getting detailed information on the human antibody repertoire generated by the infection, will allow rational structure-based antigen design to target specific germline antibodies. Although obtaining a vaccine capable of inducing sterilizing immunity will be a difficult task, a vaccine that prevents chronic hepatitis C infections, a more realistic goal in the short term, would have a considerable health impact.
Collapse
|
11
|
Moustafa RI, Dubuisson J, Lavie M. Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virol 2019. [DOI: 10.2217/fvl-2018-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HCV envelope glycoproteins, E1 and E2, are multifunctional proteins. Until recently, E2 glycoprotein was thought to be the fusion protein and was the focus of investigations. However, the recently obtained partial structures of E2 and E1 rather support a role for E1 alone or in association with E2 in HCV fusion. Moreover, they suggest that HCV harbors a new fusion mechanism, distinct from that of other members of the Flaviviridae family. In this context, E1 aroused a renewed interest. Recent functional characterizations of E1 revealed a more important role than previously thought in entry and assembly. Thus, E1 is involved in the viral genome encapsidation step and influences the association of the virus with lipoprotein components. Moreover, E1 modulates HCV–receptor interaction and participates in a late entry step potentially fusion. In this review, we outline our current knowledge on E1 functions in HCV assembly and entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- Department of Microbial Biotechnology, Genetic Engineering & Biotechnology Division, National Research Center, Dokki, Cairo, Egypt
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Muriel Lavie
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
12
|
Zhang C, Zhou J, Liu Z, Liu Y, Cai K, Shen T, Liao C, Wang C. Comparison of immunoadjuvant activities of four bursal peptides combined with H9N2 avian influenza virus vaccine. J Vet Sci 2019; 19:817-826. [PMID: 30173497 PMCID: PMC6265577 DOI: 10.4142/jvs.2018.19.6.817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
The bursa of Fabricius (BF) is a central humoral immune organ unique to birds. Four bursal peptides (BP-I, BP-II, BP-III, and BP-IV) have been isolated and identified from the BF. In this study, the immunoadjuvant activities of BPs I to IV were examined in mice immunized with H9N2 avian influenza virus (AIV) vaccine. The results suggested that BP-I effectively enhanced cell-mediated immune responses, increased the secretion of Th1 (interferon gamma)- and Th2 (interleukin-4)-type cytokines, and induced an improved cytotoxic T-lymphocyte (CTL) response to the H9N2 virus. BP-II mainly elevated specific antibody production, especially neutralizing antibodies, and increased Th1- and Th2-type cytokine secretion. BP-III had no significant effect on antibody production or cell-mediated immune responses compared to those in the control group. A strong immune response at both the humoral and cellular levels was induced by BP-IV. Furthermore, a virus challenge experiment followed by H&E staining revealed that BP-I and BP-II promoted removal of the virus and conferred protection in mouse lungs. BP-IV significantly reduced viral titers and histopathological changes and contributed to protection against H9N2 AIV challenge in mouse lungs. This study further elucidated the immunoadjuvant activities of BPs I to IV, providing a novel insight into immunoadjuvants for use in vaccine design.
Collapse
Affiliation(s)
- Cong Zhang
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiangfei Zhou
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhixin Liu
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yongqing Liu
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Kairui Cai
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Tengfei Shen
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengshui Liao
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen Wang
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
13
|
Leemans A, Boeren M, Van der Gucht W, Pintelon I, Roose K, Schepens B, Saelens X, Bailey D, Martinet W, Caljon G, Maes L, Cos P, Delputte P. Removal of the N-Glycosylation Sequon at Position N116 Located in p27 of the Respiratory Syncytial Virus Fusion Protein Elicits Enhanced Antibody Responses after DNA Immunization. Viruses 2018; 10:E426. [PMID: 30110893 PMCID: PMC6115940 DOI: 10.3390/v10080426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022] Open
Abstract
Prevention of severe lower respiratory tract infections in infants caused by the human respiratory syncytial virus (hRSV) remains a major public health priority. Currently, the major focus of vaccine development relies on the RSV fusion (F) protein since it is the main target protein for neutralizing antibodies induced by natural infection. The protein conserves 5 N-glycosylation sites, two of which are located in the F2 subunit (N27 and N70), one in the F1 subunit (N500) and two in the p27 peptide (N116 and N126). To study the influence of the loss of one or more N-glycosylation sites on RSV F immunogenicity, BALB/c mice were immunized with plasmids encoding RSV F glycomutants. In comparison with F WT DNA immunized mice, higher neutralizing titres were observed following immunization with F N116Q. Moreover, RSV A2-K-line19F challenge of mice that had been immunized with mutant F N116Q DNA was associated with lower RSV RNA levels compared with those in challenged WT F DNA immunized animals. Since p27 is assumed to be post-translationally released after cleavage and thus not present on the mature RSV F protein, it remains to be elucidated how deletion of this glycan can contribute to enhanced antibody responses and protection upon challenge. These findings provide new insights to improve the immunogenicity of RSV F in potential vaccine candidates.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Female
- Glycosylation
- Humans
- Hydrolysis
- Immunization
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Mutation
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/immunology
- Protein Engineering
- Protein Subunits/administration & dosage
- Protein Subunits/genetics
- Protein Subunits/immunology
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/drug effects
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Fusion Proteins/administration & dosage
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Viral Load/drug effects
Collapse
Affiliation(s)
- Annelies Leemans
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Winke Van der Gucht
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Kenny Roose
- Medical Biotechnology Centre, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Bert Schepens
- Medical Biotechnology Centre, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Xavier Saelens
- Medical Biotechnology Centre, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, B-2610 Antwerp, Belgium.
| |
Collapse
|
14
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
15
|
Lavie M, Hanoulle X, Dubuisson J. Glycan Shielding and Modulation of Hepatitis C Virus Neutralizing Antibodies. Front Immunol 2018; 9:910. [PMID: 29755477 PMCID: PMC5934428 DOI: 10.3389/fimmu.2018.00910] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) envelope glycoprotein heterodimer, E1E2, plays an essential role in virus entry and assembly. Furthermore, due to their exposure at the surface of the virion, these proteins are the major targets of anti-HCV neutralizing antibodies. Their ectodomain are heavily glycosylated with up to 5 sites on E1 and up to 11 sites on E2 modified by N-linked glycans. Thus, one-third of the molecular mass of E1E2 heterodimer corresponds to glycans. Despite the high sequence variability of E1 and E2, N-glycosylation sites of these proteins are generally conserved among the seven major HCV genotypes. N-glycans have been shown to be involved in E1E2 folding and modulate different functions of the envelope glycoproteins. Indeed, site-directed mutagenesis studies have shown that specific glycans are needed for virion assembly and infectivity. They can notably affect envelope protein entry functions by modulating their affinity for HCV receptors and their fusion activity. Importantly, glycans have also been shown to play a key role in immune evasion by masking antigenic sites targeted by neutralizing antibodies. It is well known that the high mutational rate of HCV polymerase facilitates the appearance of neutralization resistant mutants, and occurrence of mutations leading to glycan shifting is one of the mechanisms used by this virus to escape host humoral immune response. As a consequence of the importance of the glycan shield for HCV immune evasion, the deletion of N-glycans also leads to an increase in E1E2 immunogenicity and can induce a more potent antibody response against HCV.
Collapse
Affiliation(s)
- Muriel Lavie
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jean Dubuisson
- University of Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, Lille, France
| |
Collapse
|
16
|
Yang Y, Zhou Y, Hu J, Luo F, Xie Y, Shen Y, Bian W, Yin Z, Li H, Zhang X. Ficolin-A/2, acting as a new regulator of macrophage polarization, mediates the inflammatory response in experimental mouse colitis. Immunology 2017; 151:433-450. [PMID: 28380665 PMCID: PMC5506452 DOI: 10.1111/imm.12741] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/28/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Human ficolin-2 (FCN-2) and mouse ficolin-A (FCN-A, a ficolin-2-like molecule in mouse) are activators of the lectin complement pathway, present in normal plasma and usually associated with infectious diseases, but little is known about the role of FCN-A/2 in inflammatory bowel disease (IBD). In our present study, we found that patients with IBD exhibited much higher serum FCN-2 levels than healthy controls. In the dextran sulphate sodium-induced acute colitis mouse model, FCN-A knockout mice showed much milder disease symptoms with less histological damage, lower expression levels of pro-inflammatory cytokines [interleukin-6 (IL-6), IL-1β and tumour necrosis factor-α (TNF-α)], chemokines (CXCL1/2/10 and CCL4) and higher levels of the anti-inflammatory cytokine IL-10 compared with wild-type mice. We demonstrated that FCN-A/2 exacerbated the inflammatory pathogenesis of IBD by stimulating M1 polarization through the TLR4/MyD88/MAPK/NF-κB signalling pathway in macrophages. Hence, our data suggest that FCN-A/2 may be used as a novel therapeutic target for IBD.
Collapse
Affiliation(s)
- Yi‐Fei Yang
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Yi‐Dan Zhou
- Department of MicrobiologySchool of Molecular and Cellular BiologyUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - Jia‐Chen Hu
- Department of Gastroenterology/HepatologyZhongnan HospitalWuhan University School of MedicineWuhanChina
| | - Feng‐Ling Luo
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Yan Xie
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Yan‐Ying Shen
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Wen‐Xiu Bian
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Zhi‐Nan Yin
- Biomedical Translational Research InstituteJinan UniversityGuangzhouGuangdongChina
| | - Hong‐Liang Li
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| | - Xiao‐Lian Zhang
- State Key Laboratory of Virology and Medical Research InstituteHubei Province Key Laboratory of Allergy and Immunology and Department of ImmunologyWuhan University School of Basic Medical SciencesWuhanChina
| |
Collapse
|
17
|
Ren Y, Min YQ, Liu M, Chi L, Zhao P, Zhang XL. N-glycosylation-mutated HCV envelope glycoprotein complex enhances antigen-presenting activity and cellular and neutralizing antibody responses. Biochim Biophys Acta Gen Subj 2016; 1860:1764-75. [DOI: 10.1016/j.bbagen.2015.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 02/08/2023]
|
18
|
Hudspeth EM, Wang Q, Seid CA, Hammond M, Wei J, Liu Z, Zhan B, Pollet J, Heffernan MJ, McAtee CP, Engler DA, Matsunami RK, Strych U, Asojo OA, Hotez PJ, Bottazzi ME. Expression and purification of an engineered, yeast-expressed Leishmania donovani nucleoside hydrolase with immunogenic properties. Hum Vaccin Immunother 2016; 12:1707-20. [PMID: 26839079 PMCID: PMC4964838 DOI: 10.1080/21645515.2016.1139254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/18/2015] [Accepted: 01/02/2016] [Indexed: 10/25/2022] Open
Abstract
Leishmania donovani is the major cause of visceral leishmaniasis (kala-azar), now recognized as the parasitic disease with the highest level of mortality second only to malaria. No human vaccine is currently available. A 36 kDa L. donovani nucleoside hydrolase (LdNH36) surface protein has been previously identified as a potential vaccine candidate antigen. Here we present data on the expression of LdNH36 in Pichia pastoris and its purification at the 20 L scale to establish suitability for future pilot scale manufacturing. To improve efficiency of process development and ensure reproducibility, 4 N-linked glycosylation sites shown to contribute to heterogeneous high-mannose glycosylation were mutated to glutamine residues. The mutant LdNH36 (LdNH36-dg2) was expressed and purified to homogeneity. Size exclusion chromatography and light scattering demonstrated that LdNH36-dg2 existed as a tetramer in solution, similar to the wild-type recombinant L. major nucleoside hydrolase. The amino acid mutations do not affect the tetrameric interface as confirmed by theoretical modeling, and the mutated amino acids are located outside the major immunogenic domain. Immunogenic properties of the LdNH36-dg2 recombinant protein were evaluated in BALB/c mice using formulations that included a synthetic CpG oligodeoxynucleotide, together with a microparticle delivery platform (poly(lactic-co-glycolic acid)). Mice exhibited high levels of IgG1, IgG2a, and IgG2b antibodies that were reactive to both LdNH36-dg2 and LdNH36 wild-type. While the point mutations did affect the hydrolase activity of the enzyme, the IgG antibodies elicited by LdNH36-dg2 were shown to inhibit the hydrolase activity of the wild-type LdNH36. The results indicate that LdNH36-dg2 as expressed in and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing in support of future first-in-humans phase 1 clinical trials.
Collapse
Affiliation(s)
- Elissa M. Hudspeth
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Qian Wang
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Christopher A. Seid
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Molly Hammond
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Junfei Wei
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Zhuyun Liu
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Bin Zhan
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Jeroen Pollet
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Michael J. Heffernan
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - C. Patrick McAtee
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - David A. Engler
- Proteomics Programmatic Core Laboratory, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Risë K. Matsunami
- Proteomics Programmatic Core Laboratory, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Ulrich Strych
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Oluwatoyin A. Asojo
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
| | - Peter J. Hotez
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
- James A. Baker III Institute for Public Policy, Rice University, Houston, TX, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics (Section of Tropical Medicine), National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Houston, TX, USA
- Department of Biology, Baylor University, Waco, TX, USA
| |
Collapse
|
19
|
Wang M, Zou X, Tian D, Hu S, Jiang L. Role of Dendritic Cell-Specific ICAM-3-Grabbing Nonintegrin on Dendritic Cells in the Recognition of Hepatitis B Virus. Viral Immunol 2016; 28:331-8. [PMID: 26133046 DOI: 10.1089/vim.2014.0128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is an essential process for virus infection, such as HIV and hepatitis C, and plays a role in immune escape. However, the role of DC-SIGN in hepatitis B virus (HBV) infection is still unknown. The aim of this study was to investigate the role of DC-SIGN in mediating the maturation and activation of dendritic cells (DCs) when infected by HBV. Highly mannosylated HBV particles were obtained by treating HBV-producing HepG2.2.15 cells with the a-mannosidase I-inhibitor kifunensine. Highly mannosylated HBV or wild type HBV was added to infect the DCs of the DC-SIGN gene-silencing group and normal group, respectively. Then, the expression of CDla, CD80, CD83, CD86 and HLA-DR on DCs was detected by flow cytometry, the capacity of stimulating lymphocyte proliferation was tested by MTT assay, the level of IL-12p70 that was released by DCs was measured by enzyme-linked immunosorbent assay, and the expression of the proteins NF-κBp65 and p38 was detected by western blot. Both wild type and highly mannosylated HBV could promote DCs maturation and activation. However, the highly mannosylated HBV could promote DCs immune activation more strongly. The difference in the effect on DCs between the two types of HBV could be eliminated by DC-SIGN gene silencing. DC-SIGN can promote the maturation and activation of DCs when recognized HBV, but wild type HBV can escape recognition by DC-SIGN to a certain extent with the help of demannosylated modification, leading to defective DCs function and chronic HBV infection.
Collapse
Affiliation(s)
- Minxin Wang
- 1 Department of Infectious Disease, Huazhong University of Science and Technology , Wuhan, China
| | - Xiaojing Zou
- 2 Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Deying Tian
- 1 Department of Infectious Disease, Huazhong University of Science and Technology , Wuhan, China
| | - Song Hu
- 1 Department of Infectious Disease, Huazhong University of Science and Technology , Wuhan, China
| | - Libin Jiang
- 1 Department of Infectious Disease, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
20
|
Loving CL, Osorio FA, Murtaugh MP, Zuckermann FA. Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. Vet Immunol Immunopathol 2015. [PMID: 26209116 PMCID: PMC7112826 DOI: 10.1016/j.vetimm.2015.07.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many highly effective vaccines have been produced against viruses whose virulent infection elicits strong and durable protective immunity. In these cases, characterization of immune effector mechanisms and identification of protective epitopes/immunogens has been informative for the development of successful vaccine programs. Diseases in which the immune system does not rapidly clear the acute infection and/or convalescent immunity does not provide highly effective protection against secondary challenge pose a major hurdle for clinicians and scientists. Porcine reproductive and respiratory syndrome virus (PRRSV) falls primarily into this category, though not entirely. PRRSV causes a prolonged infection, though the host eventually clears the virus. Neutralizing antibodies can provide passive protection when present prior to challenge, though infection can be controlled in the absence of detectable neutralizing antibodies. In addition, primed pigs (through natural exposure or vaccination with a modified-live vaccine) show some protection against secondary challenge. While peripheral PRRSV-specific T cell responses have been examined, their direct contribution to antibody-mediated immunity and viral clearance have not been fully elucidated. The innate immune response following PRRSV infection, particularly the antiviral type I interferon response, is meager, but when provided exogenously, IFN-α enhances PRRSV immunity and viral control. Overall, the quality of immunity induced by natural PRRSV infection is not ideal for informing vaccine development programs. The epitopes necessary for protection may be identified through natural exposure or modified-live vaccines and subsequently applied to vaccine delivery platforms to accelerate induction of protective immunity following vaccination. Collectively, further work to identify protective B and T cell epitopes and mechanisms by which PRRSV eludes innate immunity will enhance our ability to develop more effective methods to control and eliminate PRRS disease.
Collapse
Affiliation(s)
- Crystal L Loving
- USDA-ARS-National Animal Disease Center, Ames, IA, United States.
| | - Fernando A Osorio
- Nebraska Center for Virology and School of Veterinary & Biomedical Sciences, University of Nebraska-Lincoln, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Federico A Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, IL, United States
| |
Collapse
|
21
|
Wang C, Li X, Wu T, Li D, Niu M, Wang Y, Zhang C, Cheng X, Chen P. Bursin-like peptide (BLP) enhances H9N2 influenza vaccine induced humoral and cell mediated immune responses. Cell Immunol 2014; 292:57-64. [DOI: 10.1016/j.cellimm.2014.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/16/2014] [Accepted: 09/20/2014] [Indexed: 11/16/2022]
|
22
|
Kant Upadhyay R. Biomarkers in Japanese encephalitis: a review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:591290. [PMID: 24455705 PMCID: PMC3878288 DOI: 10.1155/2013/591290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| |
Collapse
|
23
|
Kant Upadhyay R. Japanese Encephalitis Virus Generated Neurovirulence, Antigenicity, and Host Immune Responses. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/830396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In response to a JE virus attack, infected body cells start secretion of different cytokines and activate innate immune response. Virus starts neuronal invasion by entering into nerve cells and inflecting the central nervous system. It avoids exposure of body’s natural immunity and generates neurotrophic effects. Virus causes acute susceptibility to CNS and establishes encephalitis syndrome that results in very high fatality in children. In survivors, JEV inhibits the growth and proliferation of NCPs and imposes permanent neuronal disorders like cognitive, motor, and behavioral impairments. However, body cells start TCR mediated interactions, to recognize viral antigens with class I MHC complex on specific target cells, and operate mass killing of virus infected cells by increased CTL activity. Thus, both cell mediated and antibody interactions plays a central role in protection against JEV. In the present review article virus generated neurovirulence, antigenicity, and host immune responses are described in detail. More emphasis is given on diagnosis, clinical care, and active immunization with well-designed potential antiflavivirus vaccines. Further, for achieving an elite success against JEV, global eradication strategies are to be needed for making vaccination program more responsible and effective in endemic areas.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, D D U Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
24
|
Hepatitis C vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Chen HD, Zhou X, Yu G, Zhao YL, Ren Y, Zhou YD, Li Q, Zhang XL. Knockdown of core 1 beta 1, 3-galactosyltransferase prolongs skin allograft survival with induction of galectin-1 secretion and suppression of CD8+ T cells: T synthase knockdown effects on galectin-1 and CD8+ T cells. J Clin Immunol 2012; 32:820-36. [PMID: 22392045 DOI: 10.1007/s10875-012-9653-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/10/2012] [Indexed: 10/28/2022]
Abstract
Core 1 beta 1,3-galactosyltransferase also known as T-antigen-synthase or T-synthase is a key enzyme for the synthesis of the common core 1 O-glycan structure (T-antigen). Although T-synthase is known to be important in human immune-related diseases, the effects of T-synthase and T-antigen on host immune responses remain poorly defined. In this study, a T-synthase-specific short hairpin RNA (shRNA) was transfected into murine colon carcinoma CT26 cells or mouse muscle tissues via intramuscular electroporation to assess the effects of T-synthase on T cells and cytokines. T-synthase knockdown significantly induced galectin-1 secretion both in vivo and in vitro and strongly enhanced Th2 cytokine (IL-10 and IL-4) production in vivo. Further, the increased production of galectin-1 induced by T-synthase knockdown promoted CD8(+) T-cell apoptosis, which, when combined with the increased production of CD4(+) T cell-derived Th2 cytokines prolonged the survival of skin allografts in mice. Our data suggest core 1 beta 1,3-galactosyltransferase-shRNA could serve not only as a useful tool in organ transplantation but also as a powerful tool for investigating O-glycans and glycoprotein synthesis and function.
Collapse
Affiliation(s)
- Hai-Dan Chen
- Department of Immunology and State Key Laboratory of Virology, Wuhan University School of Medicine, Wuhan, 430071, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Helle F, Duverlie G, Dubuisson J. The hepatitis C virus glycan shield and evasion of the humoral immune response. Viruses 2011; 3:1909-32. [PMID: 22069522 PMCID: PMC3205388 DOI: 10.3390/v3101909] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/28/2011] [Accepted: 10/01/2011] [Indexed: 12/14/2022] Open
Abstract
Despite the induction of effective immune responses, 80% of hepatitis C virus (HCV)-infected individuals progress from acute to chronic hepatitis. In contrast to the cellular immune response, the role of the humoral immune response in HCV clearance is still subject to debate. Indeed, HCV escapes neutralizing antibodies in chronically infected patients and reinfection has been described in human and chimpanzee. Studies of antibody-mediated HCV neutralization have long been hampered by the lack of cell-culture-derived virus and the absence of a small animal model. However, the development of surrogate models and recent progress in HCV propagation in vitro now enable robust neutralization assays to be performed. These advances are beginning to shed some light on the mechanisms of HCV neutralization. This review summarizes the current state of knowledge of the viral targets of anti-HCV-neutralizing antibodies and the mechanisms that enable HCV to evade the humoral immune response. The recent description of the HCV glycan shield that reduces the immunogenicity of envelope proteins and masks conserved neutralizing epitopes at their surface constitutes the major focus of this review.
Collapse
Affiliation(s)
- François Helle
- Laboratory of Virology, EA4294, Jules Verne University of Picardie, Amiens 80000, France; E-Mail:
| | - Gilles Duverlie
- Laboratory of Virology, EA4294, Jules Verne University of Picardie, Amiens 80000, France; E-Mail:
- Virology Department, Amiens University Hospital Center, South Hospital, Amiens 80000, France
| | - Jean Dubuisson
- Inserm U1019, CNRS UMR8204, Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Université Lille Nord de France, Lille 59021, France; E-Mail:
| |
Collapse
|
27
|
Universal peptide vaccines - optimal peptide vaccine design based on viral sequence conservation. Vaccine 2011; 29:8745-53. [PMID: 21875632 DOI: 10.1016/j.vaccine.2011.07.132] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/06/2023]
Abstract
Rapidly mutating viruses such as the hepatitis C virus (HCV), the human immunodeficiency virus (HIV), or influenza viruses (Flu) call for highly effective universal peptide vaccines, i.e. vaccines that do not only yield broad population coverage but also broad coverage of various viral strains. The efficacy of such vaccines is determined by multiple properties of the epitopes they comprise. Beyond the specific properties of each epitope, properties of the corresponding source antigens are of great importance. If a response is mounted against viral proteins with a low copy number within the cell or against proteins expressed very late, this response may fail to induce lysis of the infected cells before budding can take place. We here propose a novel methodology to optimize the epitope composition and assembly in order to induce maximum protection. In order for a peptide vaccine to yield the best possible universal protection, several conditions should be met: (a) an optimal choice of target antigens, (b) an optimal choice of highly conserved epitopes, (c) maximum coverage of the target population, and (d) the proper ordering of the epitopes in the final vaccine to ensure favorable cleavage. We propose a mathematical formalism for epitope selection and ordering that balances the constraints imposed by these different conditions. Focusing on HCV, HIV, and Flu, we show that not all of the conditions can be satisfied for all viruses. Depending on the virus, different constraints are harder to fulfill: for Flu, the conservation constraint is violated first, while for HIV, it is difficult to focus the response at the optimal target antigens. The proposed methodology can be applied to any virus to assess the feasibility of optimally combining the above-mentioned constraints.
Collapse
|
28
|
Torresi J, Johnson D, Wedemeyer H. Progress in the development of preventive and therapeutic vaccines for hepatitis C virus. J Hepatol 2011; 54:1273-85. [PMID: 21236312 DOI: 10.1016/j.jhep.2010.09.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood borne disease estimated to chronically infect 3% of the worlds' population causing significant morbidity and mortality. Current medical therapy is curative in approximately 50% of patients. While recent treatment advances of genotype 1 infection using directly acting antiviral agents (DAAs) are encouraging, there is still a need to develop vaccine strategies capable of preventing infection. Moreover, vaccines may also be used in future in combination with DAAs enabling interferon-free treatment regimens. Viral and host specific factors contribute to viral evasion and present important impediments to vaccine development. Both, innate and adaptive immune responses are of major importance for the control of HCV infection. However, HCV has evolved ways of evading the host's immune response in order to establish persistent infection. For example, HCV inhibits intracellular interferon signalling pathways, impairs the activation of dendritic cells, CD8(+) and CD4(+) T cell responses, induces a state of T-cell exhaustion and selects escape variants with mutations CD8(+) T cell epitopes. An effective vaccine will need to produce strong and broadly cross-reactive CD4(+), CD8(+) T cell and neutralising antibody (NAb) responses to be successful in preventing or clearing HCV. Vaccines in clinical trials now include recombinant proteins, synthetic peptides, virosome based vaccines, tarmogens, modified vaccinia Ankara based vaccines, and DNA based vaccines. Several preclinical vaccine strategies are also under development and include recombinant adenoviral vaccines, virus like particles, and synthetic peptide vaccines. This paper will review the vaccines strategies employed, their success to date and future directions of vaccine design.
Collapse
Affiliation(s)
- Joseph Torresi
- Austin Centre for Infection Research, Department of Infectious Diseases Austin Hospital, Heidelberg, Victoria 3084, Australia.
| | | | | |
Collapse
|
29
|
Zhang Y, Chen P, Cao R, Gu J. Mutation of putative N-linked glycosylation sites in Japanese encephalitis virus premembrane and envelope proteins enhances humoral immunity in BALB/C mice after DNA vaccination. Virol J 2011; 8:138. [PMID: 21439032 PMCID: PMC3088903 DOI: 10.1186/1743-422x-8-138] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 03/25/2011] [Indexed: 11/10/2022] Open
Abstract
Swine are an important host of Japanese encephalitis virus (JEV). The two membrane glycoproteins of JEV, prM and E, each contain a potential N-linked glycosylation site, at positions N15 and N154, respectively. We constructed plasmids that contain the genes encoding wild-type prME (contain the signal of the prM, the prM, and the E coding regions) and three mutant prME proteins, in which the putative N-linked glycosylation sites are mutated individually or in combination, by site-directed mutagenesis. The recombinant plasmids were used as DNA vaccines in mice. Our results indicate that immunizing mice with DNA vaccines that contain the N154A mutation results in elevated levels of interleukin-4 secretion, induces the IgG1 antibody isotype, generates greater titers of anti-JEV antibodies, and shows complete protection against JEV challenge. We conclude that mutation of the putative N-glycosylation site N154 in the E protein of JEV significantly enhances the induced humoral immune response and suggest that this mutant should be further investigated as a potential DNA vaccine against JEV.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | |
Collapse
|
30
|
Immune evasion of porcine reproductive and respiratory syndrome virus through glycan shielding involves both glycoprotein 5 as well as glycoprotein 3. J Virol 2011; 85:5555-64. [PMID: 21411530 DOI: 10.1128/jvi.00189-11] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Passive administration of porcine reproductive and respiratory syndrome virus (PRRSV) neutralizing antibodies (NAbs) can effectively protect pigs against PRRSV infection. However, after PRRSV infection, pigs typically develop a weak and deferred NAb response. One major reason for such a meager NAb response is the phenomenon of glycan shielding involving GP5, a major glycoprotein carrying one major neutralizing epitope. We describe here a type II PRRSV field isolate (PRRSV-01) that is highly susceptible to neutralization and induces an atypically rapid, robust NAb response in vivo. Sequence analysis shows that PRRSV-01 lacks two N-glycosylation sites, normally present in wild-type (wt) PRRSV strains, in two of its envelope glycoproteins, one in GP3 (position 131) and the other in GP5 (position 51). To determine the influence of these missing N-glycosylation sites on the distinct neutralization phenotype of PRRSV-01, a chimeric virus (FL01) was generated by replacing the structural genes of type II PRRSV strain FL12 cDNA infectious clone with those from PRRSV-01. N-glycosylation sites were reintroduced into GP3 and GP5 of FL01, separately or in combination, by site-directed mutagenesis. Reintroduction of the N-glycosylation site in either GP3 or GP5 allowed recovery of in vivo and in vitro glycan shielding capacity, with an additive effect when these sites were reintroduced into both glycoproteins simultaneously. Although the loss of these glycosylation sites has seemingly occurred naturally (presumably by passage through cell cultures), PRRSV-01 virus quickly regains these glycosylation sites through replication in vivo, suggesting that a strong selective pressure is exerted at these sites. Collectively, our data demonstrate the involvement of an N-glycan moiety located in GP3 in glycan shield interference.
Collapse
|
31
|
Immune response of cytotoxic T lymphocytes and possibility of vaccine development for hepatitis C virus infection. J Biomed Biotechnol 2010; 2010:263810. [PMID: 20508848 PMCID: PMC2874944 DOI: 10.1155/2010/263810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/25/2010] [Accepted: 03/15/2010] [Indexed: 01/12/2023] Open
Abstract
Immune responses of cytotoxic T lymphocytes (CTLs) are implicated in viral eradication and the pathogenesis of hepatitis C. Weak CTL response against hepatitis C virus (HCV) may lead to a persistent infection. HCV infection impairs the function of HCV-specific CTLs; HCV proteins are thought to actively suppress host immune responses, including CTLs. Induction of a strong HCV-specific CTL response in HCV-infected patients can facilitate complete HCV clearance. Thus, the development of a vaccine that can induce potent CTL response against HCV is strongly expected. We investigated HCV-specific CTL responses by enzyme-linked immuno-spot assay and/or synthetic peptides and identified over 40 novel CTL epitopes in the HCV protein. Our findings may contribute to the development of the HCV vaccine. In this paper, we describe the CTL responses in HCV infection and the attempts at vaccine development based on recent scientific articles.
Collapse
|
32
|
Esteves PJ, Abrantes J, Carneiro M, Müller A, Thompson G, van der Loo W. Detection of positive selection in the major capsid protein VP60 of the rabbit haemorrhagic disease virus (RHDV). Virus Res 2008; 137:253-6. [PMID: 18761043 DOI: 10.1016/j.virusres.2008.07.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/23/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
Mutations were analysed in the major capsid protein VP60 of the rabbit haemorrhagic disease virus (RHDV), a calicivirus responsible for high mortality rates in both wild and domestic European rabbits (Oryctolagus cuniculus). Likelihood of positive selection was estimated using the PAML software applied to 43 non-identical complete sequences of the major capsid protein. Three codons showed signs of positive selection (with posterior probabilities over 95%), one of them is located in the region containing the major antigenic determinants (region E). The presence of positively selected codons (PSCs) in other regions may suggest the existence of other antigenic regions on the major capsid protein that stimulate protective immune responses. At all the 3 PSCs, variation contributes to putative N-glycosylation sites of the protein. An N-glycosylation site is deleted in the non-pathogenic strain RCV. Some of the substitutions at PSCs may alter the polarity and the charge of the protein with possible implications in the protein structure and host interaction. The detection of PSCs should allow a better understanding of the interaction between RHDV and the rabbit immune system.
Collapse
Affiliation(s)
- P J Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal.
| | | | | | | | | | | |
Collapse
|
33
|
Zeisel MB, Cosset FL, Baumert TF. Host neutralizing responses and pathogenesis of hepatitis C virus infection. Hepatology 2008; 48:299-307. [PMID: 18508291 DOI: 10.1002/hep.22307] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Shan M, Klasse PJ, Banerjee K, Dey AK, Iyer SPN, Dionisio R, Charles D, Campbell-Gardener L, Olson WC, Sanders RW, Moore JP. HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells. PLoS Pathog 2008; 3:e169. [PMID: 17983270 PMCID: PMC2048530 DOI: 10.1371/journal.ppat.0030169] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/24/2007] [Indexed: 12/11/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is a vaccine immunogen that can signal via several cell surface receptors. To investigate whether receptor biology could influence immune responses to gp120, we studied its interaction with human, monocyte-derived dendritic cells (MDDCs) in vitro. Gp120 from the HIV-1 strain JR-FL induced IL-10 expression in MDDCs from 62% of donors, via a mannose C-type lectin receptor(s) (MCLR). Gp120 from the strain LAI was also an IL-10 inducer, but gp120 from the strain KNH1144 was not. The mannose-binding protein cyanovirin-N, the 2G12 mAb to a mannose-dependent gp120 epitope, and MCLR-specific mAbs inhibited IL-10 expression, as did enzymatic removal of gp120 mannose moieties, whereas inhibitors of signaling via CD4, CCR5, or CXCR4 were ineffective. Gp120-stimulated IL-10 production correlated with DC-SIGN expression on the cells, and involved the ERK signaling pathway. Gp120-treated MDDCs also responded poorly to maturation stimuli by up-regulating activation markers inefficiently and stimulating allogeneic T cell proliferation only weakly. These adverse reactions to gp120 were MCLR-dependent but independent of IL-10 production. Since such mechanisms might suppress immune responses to Env-containing vaccines, demannosylation may be a way to improve the immunogenicity of gp120 or gp140 proteins. Dendritic cells (DCs) initiate immune responses to pathogens or vaccine antigens. The HIV-1 gp120 envelope glycoprotein is an antigen that is a focus of vaccine design strategies. We have studied how gp120 proteins interact with DCs in cell culture. Certain gp120s stimulate DCs from some, but not all, human donors to produce IL-10, a cytokine that is generally immunosuppressive. In addition, whether or not the DCs produce IL-10, their ability to mature properly when activated is impaired by gp120—the gp120-treated DCs have a reduced ability to stimulate T cell growth when the two cell types are cultured together. These various effects of gp120 are caused by its binding to cell surface receptors of the mannose C-type lectin receptor family, including (but probably not exclusively) one called DC-SIGN. Gp120 binds to these receptors via mannose residues that are present on some of the glycan structures that overlay much of its protein surface. Removing the mannoses by digesting gp120 with a suitable enzyme prevents IL-10 induction and impairment of DC maturation, as does the use of inhibitors of the binding of gp120 to DC-SIGN and similar receptors. This work could help with the design of better HIV-1 vaccines.
Collapse
Affiliation(s)
- Meimei Shan
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Kaustuv Banerjee
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Antu K Dey
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Sai Prasad N Iyer
- Progenics Pharmaceuticals Incorporated, Tarrytown, New York, United States of America
| | - Robert Dionisio
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Dustin Charles
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lila Campbell-Gardener
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - William C Olson
- Progenics Pharmaceuticals Incorporated, Tarrytown, New York, United States of America
| | - Rogier W Sanders
- Laboratory of Experimental Virology, Department Medical Microbiology, Center of Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|