1
|
Ahmad I, Burton R, Arshad R, Younis BB, Mirza S. Humoral immune response to 10-valent pneumococcal conjugate vaccine (PCV10) in individuals with type 2 diabetes mellitus. Vaccine 2025; 55:127029. [PMID: 40127571 DOI: 10.1016/j.vaccine.2025.127029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Pneumococcal infections pose a significant health problem in individuals with comorbid conditions such as Type 2 diabetes mellitus. Although pneumococcal vaccines are recommended in individuals with type 2 diabetes, there is a lack of data on the immunogenicity of pneumococcal vaccines in the type 2 diabetes population. This pilot study was therefore developed to determine if the humoral immune response to the 10-valent pneumococcal conjugate vaccine (PCV10) in those with and without type 2 diabetes is comparable. METHODS A total of 40 (24 with type 2 diabetes and 16 without type 2 diabetes) adults were immunized with PCV10. WHO reference ELISA and multiplexed opsonophagocytic killing assay (MOPA) were used to measure the concentration and functionality of serotype-specific IgG at baseline and 14 days, 1 month, and 8 months post-vaccination. RESULTS The geometric mean IgG concentrations and opsonic titers increased significantly in post-immunization (T1-14 days, T2-1 month, and T3-8 month) serum samples compared to baseline (T0) in individuals with and without type 2 diabetes. In both groups, the highest post-immunization IgG concentrations were measured for serotype 19F at T2. Individuals with type 2 diabetes showed significantly lower IgG concentrations and opsonic titers for serotype 19F and 9V post-immunization compared to age and sex-matched non-diabetes individuals. Serotype-specific IgG concentrations declined rapidly in those with type 2 diabetes at 8 months post-immunization. Obese diabetes individuals had lower IgG concentrations compared to non-Obese individuals with type 2 diabetes. CONCLUSION Individuals with type 2 diabetes demonstrated a significant protective humoral immune response to the 10-valent pneumococcal conjugate vaccine (PCV10); however, the response was comparatively less robust and declined faster in those with type 2 diabetes compared to age and sex-matched non-diabetes controls.
Collapse
Affiliation(s)
- Izaz Ahmad
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Robert Burton
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rozina Arshad
- Sakina Institute of Diabetes and Endocrine Research, Shalamar Medical and Dental College, Lahore, Pakistan
| | - Bilal Bin Younis
- Sakina Institute of Diabetes and Endocrine Research, Shalamar Medical and Dental College, Lahore, Pakistan
| | - Shaper Mirza
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
2
|
Soltani S, Arabi A, Mann K, Hess A, Martinson HA, Kullberg M. C3-Liposome Delivery of MUC1 Peptide and TLR Agonists Enhances Adaptive Immunity and Results in Sex-Based Tumor Growth Differences. Pharmaceutics 2025; 17:468. [PMID: 40284463 PMCID: PMC12030583 DOI: 10.3390/pharmaceutics17040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Mucin-1 (MUC1) is a glycoprotein that is hypoglycosylated and overexpressed in most adenocarcinomas, making it a promising target for cancer vaccines. Our group previously demonstrated that C3 (OPSS)-liposomes enhance antigen uptake by antigen-presenting cells (APCs) via the complement C3 pathway and, when combined with toll-like receptor (TLR) agonists, reduce tumor growth in murine cancer models. Methods: In the present study, we evaluate the immunogenicity of MUC1 peptide vaccines encapsulated in C3-liposomes, with and without TLR agonists, using MUC1-tolerant transgenic mice challenged with Lewis lung carcinoma (LLC.MUC1) cells. To assess vaccine effectiveness, tumor volumes were measured, and flow cytometry and ELISA and ELISPOT assays were used to assess the immune response. Results: Both male and female C57BL/6 transgenic mice vaccinated with MUC1 C3-liposomes developed significantly smaller tumors than those vaccinated with free MUC1 peptide or PBS. Notably, a sex-dependent response emerged in mice vaccinated with MUC1 C3-liposomes with TLR agonists (TLR4, TLR7/8, and TLR9); male mice exhibited greater tumor suppression than females. Flow cytometry analysis revealed that female mice had significantly higher levels of CD11b+, LY6C+, and LY6G+ MDSC cells, suggesting a potential mechanism for the sex difference. Additionally, MUC1 C3-liposome vaccination elicited robust adaptive immune responses, including significantly higher levels of IFN-γ-producing T cells and MUC1-specific IgG antibodies compared to non-encapsulated MUC1 or TLR adjuvant-only formulations. Conclusions: These findings underscore the potential of C3-liposome-based antigen vaccines to enhance anti-tumor immunity and highlight the impact of sex differences in vaccine efficacy.
Collapse
Affiliation(s)
- Shahab Soltani
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA; (S.S.); (A.H.); (H.A.M.)
- Henry Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ameneh Arabi
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA; (S.S.); (A.H.); (H.A.M.)
| | - Kristine Mann
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA;
| | - Austin Hess
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA; (S.S.); (A.H.); (H.A.M.)
| | - Holly A. Martinson
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA; (S.S.); (A.H.); (H.A.M.)
| | - Max Kullberg
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA; (S.S.); (A.H.); (H.A.M.)
| |
Collapse
|
3
|
Chiam M, Mani K, Wang X, Wang M, Trifiletti DM, Parent LJ, Spratt DE, Tchelebi L, Zaorsky NG. Death From Infection Among Patients Living With Cancer. Am J Clin Oncol 2025:00000421-990000000-00273. [PMID: 40178912 DOI: 10.1097/coc.0000000000001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
OBJECTIVES Early identification of patients living with cancer at higher risk of death from an infection is critical in infection mortality prevention. We characterize patients living with cancer at the highest risk of dying from an infection. METHODS 7,529,481 US cancer survivors (1992 to 2015) were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Standardized mortality ratios (SMRs) and 95% CIs were calculated. Fine-gray survival analysis was performed to calculate hazard ratios by adjusting for the effects of competing risks (eg, deaths due to causes other than infection). RESULTS Among 7,529,481 patients living with cancer (1992 to 2015), 101,167 (1.3%) died of infection. The rate of infection-specific mortality was 27.19/10,000 person-years, with an SMR of 3.29 (95% CI: 3.26-3.32, P<0.001). Patients who were older, male, black, and unmarried were at a greater risk of fatal infection. Overall, the risk of infection-specific mortality for patients living with cancer is greatest 1 year after diagnosis compared with the general population (SMR: 8.68, 95% CI: 8.53-8.84; P<0.0001), and this risk decreases with follow-up time (SMR at >10 y after diagnosis: 2.93, 95% CI: 2.87-3.00; P<0.0001). Among patients with Hodgkin Lymphoma, Non-Hodgkin Lymphoma, and Kaposi Sarcoma, 9.2%, 11.5%, and 82.2% of all deaths within the first year after cancer diagnosis occurred due to acute infectious disease. In contrast, for patients with liver cancer, the relative percentage of infection-specific mortality increases with follow-up time from 3.5% at <1 year after cancer diagnosis and 10.4% at 10+ years of follow-up. CONCLUSION The results of this study characterize infection mortality in patients living with cancer, which can guide more targeted research and interventions in this population.
Collapse
Affiliation(s)
- Mckenzee Chiam
- Department of Radiation Oncology, Penn State Cancer Institute
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL
| | - Kyle Mani
- Albert Einstein College of Medicine, The Bronx
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
| | - Xi Wang
- Microsoft Corporation, Redmond, WA
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University
| | | | - Leslie J Parent
- Departments of Medicine and Microbiology and Immunology, Division of Infectious Diseases and Epidemiology, Penn State College of Medicine, Hershey, PA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
| | | | - Nicholas G Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
| |
Collapse
|
4
|
Alghamdi A, Hussain SD, Wani K, Sabico S, Alnaami AM, Amer OE, Al‐Daghri NM. Altered Circulating Cytokine Profile Among mRNA-Vaccinated Young Adults: A Year-Long Follow-Up Study. Immun Inflamm Dis 2025; 13:e70194. [PMID: 40202571 PMCID: PMC11980434 DOI: 10.1002/iid3.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVES This longitudinal study aimed to assess the impact of COVID-19 vaccination on cytokine profile. METHODS A total of 84 Saudi subjects (57.1% females) with mean age of 27.2 ± 12.3 participated in this longitudinal study. Anthropometric data and fasting blood samples were obtained at baseline and after final vaccination, with an average follow-up duration of 14.1 ± 3.6 months for adolescents and 13.3 ± 3.0 months for adults, calculated from the first dose of vaccination. Assessment of cytokine profiles was done using commercially available assays. RESULTS After follow-up, a significant increase in weight and body mass index was observed overall (p = 0.003 and p = 0.002, respectively). Postvaccination, significant increases were observed in several cytokines, including basic fibroblast growth factor 2 (p < 0.001), interferon gamma (IFNγ) (p = 0.005), interleukin-1 beta (IL1β) (p < 0.001), IL4 (p < 0.001), IL6 (p = 0.003), IL7 (p = 0.001), IL17E (p < 0.001), monocyte chemoattractant protein-1 (MCP1) (p = 0.03), MCP3 (p = 0.001), tumor necrosis factor alpha (TNFα) (p < 0.001), and VEGFA (p < 0.001). A significant reduction was observed only in macrophage colony-stimulating factor (p < 0.001). When adjusted for age, epidermal growth factor (EGF), IL4, IL6, MCP3, TNFα, and vascular endothelial growth factor (VEGFA) remained statistically significant. Gender-based analysis revealed that men experienced greater increases in IL6 (p = 0.008), IL4 (p = 0.04), and TNFα (p = 0.015) compared to women. Age-based analysis showed that older participants had more pronounced increases in EGF (p = 0.011), IL6 (p = 0.029), MCP1 (p = 0.042), and TNFα (p = 0.017), while younger participants had a greater increase in VEGFA (p = 0.025). CONCLUSIONS The findings of this study indicated that COVID-19 vaccination resulted in an increase in cytokine levels, which signifies the persistence of the humoral immune response to messenger RNA (mRNA) vaccines. This effect may be attributed to the persistent production of spike protein and highly inflammatory nature of mRNA-lipid nanoparticle. Additionally, the results suggested differences in cytokine levels based on gender and age. Notably, the cytokine profile remains favorably altered in young adults who received mRNA vaccinations, even after 1 year.
Collapse
Affiliation(s)
- Amani Alghamdi
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Syed Danish Hussain
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Kaiser Wani
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Shaun Sabico
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Abdullah M. Alnaami
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Osama Emam Amer
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Nasser M. Al‐Daghri
- Biochemistry DepartmentCollege of ScienceKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
5
|
Conforti F, Pala L, Di Mitri D, Catania C, Cocorocchio E, Laszlo D, Ceresoli G, Locatelli M, Facella F, De Pas T, Rambaldi B, Rambaldi A, Viale G, Bagnardi V, Giaccone G, Mantovani A. Sex hormones, the anticancer immune response, and therapeutic opportunities. Cancer Cell 2025; 43:343-360. [PMID: 40068594 DOI: 10.1016/j.ccell.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/11/2025] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Sex-based differences have been observed in the incidence and prognosis of various cancers, as well as in the response to immune check point inhibitors (ICIs). These disparities are partially attributed to sex-based differences in the molecular characteristics of the anticancer immune response, which are largely influenced by sex hormones. Here, we provide a comprehensive overview on how sex hormones affect innate and adaptive immunity and contribute to shaping the features of tumor immune microenvironment and response to anticancer immunotherapy. We also discuss the promising potential and challenges of combining sex hormone manipulation with anticancer immunotherapy as new therapeutic strategy. We surmise that a sex-based perspective should be part of precision medicine approaches, and sex hormones manipulation provides opportunities for innovative immune therapeutic approaches.
Collapse
Affiliation(s)
- Fabio Conforti
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy; Humanitas University, Milan, Italy.
| | - Laura Pala
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy; Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Diletta Di Mitri
- Humanitas University, Milan, Italy; Tumor Microenviroment Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Catania
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | | | - Daniele Laszlo
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | | | - Marzia Locatelli
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Flaminia Facella
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Tommaso De Pas
- Division of Medical Oncology, Humanitas Gavazzeni, Bergamo, Italy
| | - Benedetta Rambaldi
- Department of Oncology and Hematology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Viale
- Department of Pathology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | | | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Italy; William Harvey Research Institute, Queen Mary University, London, UK
| |
Collapse
|
6
|
Oyebanji OA, Yin A, Sundheimer N, Ragavapuram V, Shea P, Cao Y, Chan PA, Nanda A, Tyagi R, Raza S, Mujahid N, Abul Y, Balazs AB, Bosch J, King CL, Klein SL, Gravenstein S, Canaday DH, Wilson BM. COVID-19 booster doses reduce sex disparities in antibody responses among nursing home residents. Aging Clin Exp Res 2025; 37:73. [PMID: 40055264 PMCID: PMC11889018 DOI: 10.1007/s40520-025-02990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/20/2025] [Indexed: 03/12/2025]
Abstract
BACKGROUND Data suggest that antibody responses following COVID-19 vaccines are a correlate of protection. Some studies, including the clinical trials of COVID-19 mRNA vaccines, did not stratify and evaluate whether antibody responses to COVID-19 vaccines differed between the sexes or with aging. This gap in research is particularly relevant for older populations such as nursing home residents (NHR). We hypothesized that sex differences in vaccine-induced antibody responses may intersect with age and be diminished among older adults residing in nursing homes. METHODS We analyzed serum samples from 638 NHRs collected serially after the primary two-dose series and three subsequent booster doses of mRNA SARS-CoV-2 vaccinations. We analyzed anti-Spike IgG and neutralizing antibody titers to the Wuhan and Omicron BA.4/5 variant strains. Mixed-effects models predicting log-transformed titers were estimated to compare responses across vaccine doses, focusing on sex-differential responses. For detected post-dose sex differences, additional sample times were analyzed to assess the duration of the difference. RESULTS Following the primary series, female NHRs with a prior history of SARS-CoV-2 infection had significantly higher Wuhan anti-Spike antibodies and neutralizing antibody titers than male NHRs with differences persisting up to nine months post-vaccination. Subsequent monovalent booster doses and a bivalent booster dose eliminated this disparity. We did not detect any differential response to the Omicron BA.4/5 variant. CONCLUSIONS The blunting of sex differences in antibody response observed following the primary series by the 1st booster dose underscores the importance of booster vaccination in this population.
Collapse
Affiliation(s)
- Oladayo A Oyebanji
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Anna Yin
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicholas Sundheimer
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Vaishnavi Ragavapuram
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Patrick Shea
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Philip A Chan
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Aman Nanda
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rohit Tyagi
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sakeena Raza
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Nadia Mujahid
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yasin Abul
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, RI, USA
- Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, RI, USA
| | | | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Sabra L Klein
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stefan Gravenstein
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, RI, USA
- Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, RI, USA
| | - David H Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| | - Brigid M Wilson
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Geriatric Research Education and Clinical Center (GRECC), VA Northeast Ohio Healthcare System, Cleveland, OH, USA
| |
Collapse
|
7
|
Inizan C, Courtot A, Sturmach C, Griffon AF, Biron A, Bruel T, Enouf V, Demaneuf T, Munier S, Schwartz O, Gourinat AC, Médevielle G, Jouan M, van der Werf S, Madec Y, Albert-Dunais V, Dupont-Rouzeyrol M. Levels and functionality of Pacific Islanders' hybrid humoral immune response to BNT162b2 vaccination and delta/omicron infection: A cohort study in New Caledonia. PLoS Med 2024; 21:e1004397. [PMID: 39325828 PMCID: PMC11466435 DOI: 10.1371/journal.pmed.1004397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Pacific Islanders are underrepresented in vaccine efficacy trials. Few studies describe their immune response to COVID-19 vaccination. Yet, this characterization is crucial to re-enforce vaccination strategies adapted to Pacific Islanders singularities. METHODS AND FINDINGS We evaluated the humoral immune response of 585 adults, self-declaring as Melanesians, Europeans, Polynesians, or belonging to other communities, to the Pfizer BNT162b2 vaccine. Anti-spike and anti-nucleoprotein IgG levels, and their capacity to neutralize SARS-CoV-2 variants and to mediate antibody-dependent cellular cytotoxicity (ADCC) were assessed across communities at 1 and 3 months post-second dose or 1 and 6 months post-third dose. All sera tested contained anti-spike antibodies and 61.3% contained anti-nucleoprotein antibodies, evidencing mostly a hybrid immunity resulting from vaccination and SARS-CoV-2 infection. At 1-month post-immunization, the 4 ethnic communities exhibited no significant differences in their anti-spike IgG levels (p value = 0.17, in an univariate linear regression model), in their capacity to mediate omicron neutralization (p value = 0.59 and 0.60, in an univariate logistic regression model at 1-month after the second and third dose, respectively) and in their capacity to mediate ADCC (p value = 0.069 in a multivariate linear regression model), regardless of the infection status. Anti-spike IgG levels and functionalities of the hybrid humoral immune response remained equivalent across the 4 ethnic communities during follow-up and at 6 months post-third dose. CONCLUSIONS Our study evidenced Pacific Islander's robust humoral immune response to Pfizer BNT162b2 vaccine, which is pivotal to re-enforce vaccination deployment in a population at risk for severe COVID-19. TRIAL REGISTRATION This trial has been register in ClinicalTrials.gov (ID: NCT05135585).
Collapse
Affiliation(s)
- Catherine Inizan
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Adrien Courtot
- Provincial Office for Health and Social Action of the South Province (Direction Provinciale de l’Action Sanitaire et Sociale en Province Sud), Nouméa, New Caledonia
| | - Chloé Sturmach
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Anne-Fleur Griffon
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Antoine Biron
- New Caledonia Territorial Hospital, Dumbéa-sur-Mer, New Caledonia
| | - Timothée Bruel
- Antiviral Activities of Antibodies Group, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | - Vincent Enouf
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Thibaut Demaneuf
- Social and Sanitary Agency of New Caledonia (Agence Sanitaire et Sociale de Nouvelle-Calédonie), Nouméa, New Caledonia
| | - Sandie Munier
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
- Vaccine Research Institute, Créteil, France
| | | | - Georges Médevielle
- Provincial Office for Health and Social Action of the South Province (Direction Provinciale de l’Action Sanitaire et Sociale en Province Sud), Nouméa, New Caledonia
| | - Marc Jouan
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| | - Sylvie van der Werf
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris, France
- Molecular Genetics of RNA Viruses Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Yoann Madec
- Epidemiology of Emerging Diseases, Institut Pasteur, Université de Paris, Paris, France
| | | | - Myrielle Dupont-Rouzeyrol
- Dengue and Arboviroses – Research and Expertise Unit - Institut Pasteur in New Caledonia - Pasteur Network, Dumbéa-sur-Mer, New Caledonia
| |
Collapse
|
8
|
Petersen SK, Hansen CR, Ellebaek E, Schmidt H, Haslund CA, Ruhlmann CH, Bastholt L. Does patient sex affect the treatment outcome of immune checkpoint inhibitors? A Danish, observational melanoma study. Eur J Cancer 2024; 205:114099. [PMID: 38754294 DOI: 10.1016/j.ejca.2024.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
AIM The objective of this study was to evaluate whether patient biological sex influences treatment outcomes in patients with metastatic melanoma (MM) undergoing first-line immune checkpoint inhibitor (ICI) therapy. METHODS The Danish Metastatic Melanoma Database (DAMMED) was employed to identify patients who underwent first-line ICI therapy for MM in Denmark from 2013 to 2021. Excluding adjuvant treatment, uveal and mucosal histological subtypes, the study conducted univariable and multivariable analyses to evaluate the influence of patient sex in survival analyses. Further, landmark survival of this real-world national cohort was described for progression free survival (PFS), overall survival (OS) and melanoma-specific survival (MSS). RESULTS The analysis encompassed a cohort of 1378 patients with MM. Compared to male sex, females had significantly improved OS (p = 0.003) when tested in univariable testing. Multivariable analyses, controlling for age, performance status, lactate dehydrogenase level, BRAF status, M-stage, and number of metastatic sites revealed significant favourable outcomes associated with female sex irrespective of the considered survival metrics (pPFS = 0.014, pOS = 0.002, and pMSS = 0.03). The observed five-year OS rates of the entire cohort were 47% and 38%, while melanoma-specific survival were 50% and 45% for female and male, respectively. CONCLUSION In this nationwide cohort of patients with MM undergoing first-line ICI treatment females exhibited superior treatment outcomes compared to males. Sex was identified as an independent predictive variable for treatment outcomes, irrespective of the chosen outcome measures considered. Our analyses are not able to conclude whether the differences in outcome is attributable to differences in biology or to treatment strategy.
Collapse
Affiliation(s)
- Soeren Kjaer Petersen
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern, Denmark.
| | - Christian Rønn Hansen
- Department of Clinical Research, University of Southern, Denmark; Laboratory of Radiation Physics, Odense University Hospital, Odense, Denmark
| | - Eva Ellebaek
- National Centre for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Christina H Ruhlmann
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern, Denmark
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
9
|
Abdeen S, Abed Alah M, Al-Zaidan M, Mohamed Ibrahim MI, Abdulmajeed J, Al-Nuaimi AA, Al-Kuwari MG. Short-term side effects of BNT162b2 vaccine in primary care settings in Qatar: a retrospective study. Front Public Health 2024; 12:1384327. [PMID: 38660363 PMCID: PMC11039914 DOI: 10.3389/fpubh.2024.1384327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
Background Despite the established effectiveness of the BNT162b2 Vaccine, the novel technology demands careful safety monitoring. While global studies have explored its safety, local data remains limited and exhibits some variability. This study investigated short-term side effects among BNT162b2 vaccinated individuals in Qatar. Methods A retrospective analysis was conducted using data extracted from the electronic health records of individuals aged 18 or older across 8 primary health centers who received either the first or second dose of the BNT162b2 vaccine during the period from December 23, 2020, to April 24, 2021. The proportions of individuals experiencing short-term side effects after each dose were calculated. Logistic regression and log binomial regression analyses were used to explore associations with the side effects. Results Among 7,764 participants, 5,489 received the first dose and 2,275 the second, with similar demographics between the groups. After the first dose, 5.5% reported at least one local side effect, compared to 3.9% after the second, with a 1.4 times higher incidence after the first dose (RR 1.4, 95% CI 1.14-1.75) compared to the second. Systemic side effects after the second dose were 2.6 times more common than after the first (RR 2.6, 95% CI 2.15-3.14). Gender, nationality, history of prior COVID-19 infection, and obesity were significantly associated with side effects after the first dose, while age, gender, and nationality, were significant factors after the second dose. Conclusion The rates of side effects following the BNT162b2 vaccine in Qatar were relatively low, with age, gender, nationality, previous infection, and obesity identified as significant predictors. These results emphasize the need for tailored vaccination strategies and contributes valuable insights for evidence-based decision-making in ongoing and future vaccination campaigns.
Collapse
Affiliation(s)
- Sami Abdeen
- Community Medicine Department, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Muna Abed Alah
- Community Medicine Department, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Manal Al-Zaidan
- Department of Pharmacy and Therapeutics Supply, Primary Health Care Corporation, Doha, Qatar
| | | | - Jazeel Abdulmajeed
- Strategy and Health Intelligence Department, Primary Health Care Corporation, Doha, Qatar
| | - Asma Ali Al-Nuaimi
- Strategy and Health Intelligence Department, Primary Health Care Corporation, Doha, Qatar
| | - Mohamed Ghaith Al-Kuwari
- Strategy and Health Intelligence Department, Primary Health Care Corporation, Doha, Qatar
- Collège of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Liu S, Lagos J, Shumlak NM, Largent AD, Lewis ST, Holder U, Du SW, Liu Y, Hou B, Acharya M, Jackson SW. NADPH oxidase exerts a B cell-intrinsic contribution to lupus risk by modulating endosomal TLR signals. J Exp Med 2024; 221:e20230774. [PMID: 38442270 PMCID: PMC10913815 DOI: 10.1084/jem.20230774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/11/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
Genome-wide association studies in systemic lupus erythematosus (SLE) have linked loss-of-function mutations in phagocytic NADPH oxidase complex (NOX2) genes, including NCF1 and NCF2, to disease pathogenesis. The prevailing model holds that reduced NOX2 activity promotes SLE via defective efferocytosis, the immunologically silent clearance of apoptotic cells. Here, we describe a parallel B cell-intrinsic mechanism contributing to breaks in tolerance. In keeping with an important role for B cell Toll-like receptor (TLR) pathways in lupus pathogenesis, NOX2-deficient B cells exhibit enhanced signaling downstream of endosomal TLRs, increased humoral responses to nucleic acid-containing antigens, and the propensity toward humoral autoimmunity. Mechanistically, TLR-dependent NOX2 activation promotes LC3-mediated maturation of TLR-containing endosomes, resulting in signal termination. CRISPR-mediated disruption of NCF1 confirmed a direct role for NOX2 in regulating endosomal TLR signaling in primary human B cells. Together, these data highlight a new B cell-specific mechanism contributing to autoimmune risk in NCF1 and NCF2 variant carriers.
Collapse
Affiliation(s)
- Shuozhi Liu
- Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | | | | | - Ursula Holder
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Samuel W. Du
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Yifan Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mridu Acharya
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Shaun W. Jackson
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
11
|
Boerner KE, Keogh E, Inkster AM, Nahman-Averbuch H, Oberlander TF. A developmental framework for understanding the influence of sex and gender on health: Pediatric pain as an exemplar. Neurosci Biobehav Rev 2024; 158:105546. [PMID: 38272336 DOI: 10.1016/j.neubiorev.2024.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
Sex differences are a robust finding in many areas of adult health, including cardiovascular disease, psychiatric disorders, and chronic pain. However, many sex differences are not consistently observed until after the onset of puberty. This has led to the hypothesis that hormones are primary contributors to sex differences in health outcomes, largely ignoring the relative contributions of early developmental influences, emerging psychosocial factors, gender, and the interaction between these variables. In this paper, we argue that a comprehensive understanding of sex and gender contributions to health outcomes should start as early as conception and take an iterative biopsychosocial-developmental perspective that considers intersecting social positions. We present a conceptual framework, informed by a review of the literature in basic, clinical, and social science that captures how critical developmental stages for both sex and gender can affect children's health and longer-term outcomes. The literature on pediatric chronic pain is used as a worked example of how the framework can be applied to understanding different chronic conditions.
Collapse
Affiliation(s)
- Katelynn E Boerner
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Edmund Keogh
- Department of Psychology & Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Amy M Inkster
- Department of Medical Genetics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim F Oberlander
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
12
|
Dunstan IK, McLeod R, Radford-Smith DE, Xiong W, Pate T, Probert F, Anthony DC. Unique pathways downstream of TLR-4 and TLR-7 activation: sex-dependent behavioural, cytokine, and metabolic consequences. Front Cell Neurosci 2024; 18:1345441. [PMID: 38414751 PMCID: PMC10896997 DOI: 10.3389/fncel.2024.1345441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Post-infection syndromes are characterised by fatigue, muscle pain, anhedonia, and cognitive impairment; mechanistic studies exploring these syndromes have focussed on pathways downstream of Toll-like receptor (TLR) 4 activation. Here, we investigated the mechanistic interplay between behaviour, metabolism, and inflammation downstream of TLR-7 activation compared to TLR-4 activation in male and female CD1 mice. Methods Animals received either a TLR-4 (LPS; 0.83 mg/kg) or TLR-7 (R848, 5 mg/kg) agonist, or saline, and behaviour was analysed in an Open Field (OF) at 24 h (n = 20/group). Plasma, liver, and prefrontal cortex (PFC) were collected for gene expression analysis at 24 h and 1H-NMR metabolomics. Results TLR-4 and TLR-7 activation decreased distance travelled and rearing in the OF, but activation of each receptor induced distinct cytokine responses and metabolome profiles. LPS increased IL-1β expression and CXCL1 in the PFC, but TLR7 activation did not and strongly induced PFC CXCL10 expression. Thus, TLR7 induced sickness behaviour is independent of IL-1β expression. In both cases, the behavioural response to TLR activation was sexually dimorphic: females were more resilient. However, dissociation was observed between the resilient female mice behaviour and the levels of gene cytokine expression, which was, in general, higher in the female mice. However, the metabolic shifts induced by immune activation were better correlated with the sex-dependent behavioural dimorphisms; increased levels of antioxidant potential in the female brain are intrinsic male/female metabolome differences. A common feature of both TLR4 and TLR7 activation was an increase in N-acetyl aspartate (NAA) in the PFC, which is likely be an allostatic response to the challenges as sickness behaviour is inversely correlated with NAA levels. Discussion The results highlight how the cytokine profile induced by one PAMP cannot be extrapolated to another, but they do reveal how the manipulation of the conserved metabolome response might afford a more generic approach to the treatment of post-infection syndromes.
Collapse
Affiliation(s)
- Isobel K. Dunstan
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Mathematical, Physical and Life Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Ross McLeod
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Mathematical, Physical and Life Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Daniel E. Radford-Smith
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Wenzheng Xiong
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Mathematical, Physical and Life Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Trinity Pate
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Fay Probert
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Chemistry, Mathematical, Physical and Life Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Daniel C. Anthony
- Medical Sciences Division, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Wan Shuaib WMA, Badaruddin IA, Mansor M, Salleh SA, Hassan MR, Lindong S, Samad SN, Othman H. SARS-CoV-2 S-RBD IgG & Neutralizing antibodies among different categories of health care workers post third dose BNT162b2 mRNA COVID-19 vaccine. Hum Vaccin Immunother 2023; 19:2266931. [PMID: 37828861 PMCID: PMC10578183 DOI: 10.1080/21645515.2023.2266931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Neutralizing antibodies (NTAb) play a significant role in preventing and protecting against SARS-CoV-2 virus infection. Identifying NTAb is undoubtedly imperative in understanding the immunity toward COVID-19 better. However, it is interesting to note that the production of NTAb varies among individuals, especially among healthcare workers (HCWs), as they are exposed to the virus daily. Hence, we would like to investigate factors affecting the production of S-RBD IgG and NTAb among different categories of HCWs, particularly after receiving the third dose of the BNT162b2 mRNA COVID-19 Vaccine. A total of 361 HCWs from our hospital were prospectively enrolled and had their S-RBD IgG and NTAb titers measured. They were studied in relation to the degree of exposure to COVID-19, breakthrough infections, gender, age, race, household income, housing type, household number, and education levels. HCWs with the highest risk of exposure to COVID-19, breakthrough infections, and male gender displayed the highest median titers of both S-RBD IgG and NTAb, and the differences were statistically significant (p < .05). Age, race, household income, housing type, household number, and education levels were revealed to be insignificant. We concluded that the degree of exposure to COVID-19, breakthrough infections, and male gender are significant factors in NTAb production among HCWs.
Collapse
Affiliation(s)
- Wan Muhammad Azfar Wan Shuaib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Izzatul Aliaa Badaruddin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Munirah Mansor
- Department of Laboratory Diagnostic Services (JPMD), Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Sharifah Azura Salleh
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Mohd Rohaizat Hassan
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Steward Lindong
- Department of Laboratory Diagnostic Services (JPMD), Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Shahril Nizam Samad
- Department of Laboratory Diagnostic Services (JPMD), Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| | - Hanita Othman
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, UKMMC, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Sánchez-Milá Z, Abuín-Porras V, Romero-Morales C, Almazán-Polo J, Velázquez Saornil J. Effectiveness of a respiratory rehabilitation program including an inspiration training device versus traditional respiratory rehabilitation: a randomized controlled trial. PeerJ 2023; 11:e16360. [PMID: 38111659 PMCID: PMC10726745 DOI: 10.7717/peerj.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/05/2023] [Indexed: 12/20/2023] Open
Abstract
Background In the context of COVID-19, respiratory training is vital for the care and recuperation of individuals. Both exercise-based and instrumental respiratory training have been employed as interventions to enhance respiratory function, providing relief from symptoms in those impacted by the virus. The aim of this study was to evaluate the efficacy of two different respiratory rehabilitation programs. Methods A total of 200 participants affected with COVID-19 respiratory sequels were recruited, with a block randomization regarding sex to ensure equal and appropriate applicability of the results. An experimental controlled and randomized study was conducted, with participants engaging in a 31 days respiratory rehabilitation program, (a) experimental group, inspiratory training device combined with aerobic exercise and (b) traditional respiratory exercises combined with aerobic exercise. Results Both groups improved in cardiorespiratory parameters, with a decrease in systolic and diastolic pressure, dyspnea and lower limbs fatigue, and increased oxygen saturation, 6 min walking distance, diaphragmatic thickness, forced vital capacity, forced expiratory volume during the first second, peak expiratory flow rate, forced inspiratory vital capacity and maximal inspiratory pressure. Comparison between groups showed statistically significant differences in all variables except for oxygen saturation, 6 min walking distance and diaphragmatic thickness. The results of this study support the use of specific inspiration training devices for respiratory rehabilitation in COVID-19 sequels.
Collapse
|
15
|
Arabi A, Aria (Soltani) S, Maniaci B, Mann K, Martinson H, Kullberg M. Enhancing T Cell and Antibody Response in Mucin-1 Transgenic Mice through Co-Delivery of Tumor-Associated Mucin-1 Antigen and TLR Agonists in C3-Liposomes. Pharmaceutics 2023; 15:2774. [PMID: 38140114 PMCID: PMC10747059 DOI: 10.3390/pharmaceutics15122774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Mucin-1 (MUC1) is a highly relevant antigen for cancer vaccination due to its overexpression and hypo-glycosylation in a high percentage of carcinomas. To enhance the immune response to MUC1, our group has developed C3-liposomes that encapsulate the MUC1 antigen along with immunostimulatory compounds for direct delivery to antigen-presenting cells (APCs). C3-liposomes bind complement C3, which interacts with C3-receptors on APCs, resulting in liposomal uptake and the delivery of tumor antigens to APCs in a manner that mimics pathogenic uptake. In this study, MUC1 and Toll-like receptor (TLR) agonists were encapsulated in C3-liposomes to provoke an immune response in transgenic mice tolerant to MUC1. The immune response to the C3-bound MUC1 liposomal vaccine was assessed by ELISA, ELISpot, and flow cytometry. Co-administering TLR 7/8 agonists with MUC1 encapsulated in C3-liposomes resulted in a significant antibody response compared to non-encapsulated MUC1. This antibody response was significantly higher in females than in males. The co-encapsulation of three TLR agonists with MUC1 in C3-liposomes significantly increased antibody responses and eliminated sex-based differences. Furthermore, this immunization strategy resulted in a significantly increased T cell-response compared to other treatment groups. In conclusion, the co-delivery of MUC1 and TLR agonists via C3-liposomes greatly enhances the immune response to MUC1, highlighting its potential for antigen-specific cancer immunotherapy.
Collapse
Affiliation(s)
- Ameneh Arabi
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence, Anchorage, AK 99508, USA; (A.A.); (S.A.); (B.M.); (H.M.)
- Johns Hopkins Medicine, Johns Hopkins University, 1551 Jefferson St., Baltimore, MD 21287, USA
| | - Shahab Aria (Soltani)
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence, Anchorage, AK 99508, USA; (A.A.); (S.A.); (B.M.); (H.M.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| | - Brandon Maniaci
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence, Anchorage, AK 99508, USA; (A.A.); (S.A.); (B.M.); (H.M.)
- Department of Immunology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Kristine Mann
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA;
| | - Holly Martinson
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence, Anchorage, AK 99508, USA; (A.A.); (S.A.); (B.M.); (H.M.)
| | - Max Kullberg
- WWAMI School of Medical Education, University of Alaska Anchorage, 3211 Providence, Anchorage, AK 99508, USA; (A.A.); (S.A.); (B.M.); (H.M.)
| |
Collapse
|
16
|
Taks EJ, Moorlag SJ, Föhse K, Simonetti E, van der Gaast-de Jongh CE, van Werkhoven CH, Bonten MJ, Oever JT, de Jonge MI, van de Wijgert JH, Netea MG. The impact of Bacillus Calmette-Guérin vaccination on antibody response after COVID-19 vaccination. iScience 2023; 26:108062. [PMID: 37860692 PMCID: PMC10583058 DOI: 10.1016/j.isci.2023.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Earlier studies showed that BCG vaccination improves antibody responses of subsequent vaccinations. Similarly, in older volunteers we found an increased IgG receptor-binding domain (RBD) concentration after SARS-CoV-2 infection if they were recently vaccinated with BCG. This study aims to assess the effect of BCG on the serum antibody concentrations induced by COVID-19 vaccination in a population of adults older than 60 years. Serum was collected from 1,555 participants of the BCG-CORONA-ELDERLY trial a year after BCG or placebo, and we analyzed the anti-SARS-CoV-2 antibody concentrations using a fluorescent-microsphere-based multiplex immunoassay. Individuals who received the full primary COVID-19 vaccination series before serum collection and did not test positive for SARS-CoV-2 between inclusion and serum collection were included in analyses (n = 945). We found that BCG vaccination before first COVID-19 vaccine (median 347 days [IQR 329-359]) did not significantly impact the IgG RBD concentration after COVID-19 vaccination in an older European population.
Collapse
Affiliation(s)
- Esther J.M. Taks
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J.C.F.M. Moorlag
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Konstantin Föhse
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elles Simonetti
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christa E. van der Gaast-de Jongh
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis H. van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc J.M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap ten Oever
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marien I. de Jonge
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| |
Collapse
|
17
|
Mori M, Yokoyama A, Shichida A, Sasuga K, Maekawa T, Moriyama T. Impact of sex and age on vaccine-related side effects and their progression after booster mRNA COVID-19 vaccine. Sci Rep 2023; 13:19328. [PMID: 37935801 PMCID: PMC10630308 DOI: 10.1038/s41598-023-46823-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/06/2023] [Indexed: 11/09/2023] Open
Abstract
In mRNA COVID-19 vaccination, side effects after the first and second dose have been well reported. However, studies about side effects after booster vaccine are sparse. 272 healthcare workers who received the third mRNA COVID-19 vaccine were recruited, and impact of sex, age, and symptoms on the side effect progression was statistically analyzed. Females and younger adults had a higher frequencies of general fatigue, headache, joint pain, chills and axillary pain compared to males and elderly adults, respectively. In longitudinal analysis, prolonged time to recovery from side effects was found among females and younger adults. Finally, between the third and second dose vaccinations, 52% of subjects had a longer duration of side effects following the third vaccine compared to the second, and joint pain was the culprit symptom related to the prolonged duration of side effects. Following the second vaccine dose, 25% of subjects had a longer duration of side effects and asthma and ear fullness, which exacerbated the underlying allergic condition, and COVID arm symptom were the culprit symptoms. These highlight the impact of sex, age, and culprit symptoms on the progress of side effects following the booster mRNA COVID-19 vaccine.
Collapse
Affiliation(s)
- Masahiko Mori
- Department of Internal Medicine, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan.
| | - Aiko Yokoyama
- Regional medical cooperation office, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
| | - Ayami Shichida
- Medical Administration Division, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
| | - Kimiko Sasuga
- Department of Medical Information, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
| | - Takafumi Maekawa
- Department of Surgery, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
- Department of Surgery, Fukuoka Central Hospital, Fukuoka, Fukuoka, 810-0022, Japan
| | - Tadayoshi Moriyama
- Department of Neurosurgery, Sasebo Memorial Hospital, Sasebo, Nagasaki, 858-0922, Japan
| |
Collapse
|
18
|
Lagacé F, D’Aguanno K, Prosty C, Laverde-Saad A, Cattelan L, Ouchene L, Oliel S, Genest G, Doiron P, Richer V, Jfri A, O’Brien E, Lefrançois P, Powell M, Moreau L, Litvinov IV, Muntyanu A, Netchiporouk E. The Role of Sex and Gender in Dermatology - From Pathogenesis to Clinical Implications. J Cutan Med Surg 2023; 27:NP1-NP36. [PMID: 37401812 PMCID: PMC10486181 DOI: 10.1177/12034754231177582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/29/2023] [Accepted: 04/09/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Sex and gender have increasingly been recognized as significant risk factors for many diseases, including dermatological conditions. Historically, sex and gender have often been grouped together as a single risk factor in the scientific literature. However, both may have a distinct impact on disease incidence, prevalence, clinical presentation, severity, therapeutic response, and associated psychological distress. OBJECTIVES AND PROJECT DESCRIPTION The mechanisms that underlie differences in skin diseases between males, females, men, and women remain largely unknown. The specific objectives of this review paper are:To highlight the biological differences between males and females (sex), as well as the sociocultural differences between men and women (gender) and how they impact the integumentary system.To perform a literature review to identify important sex- and gender-related epidemiological and clinical differences for various skin conditions belonging to a range of disease categories and to discuss possible biological and sociocultural factors that could explain the observed differences.To discuss dermatological skin conditions and gender-affirming treatments within the transgender community, a population of individuals who have a gender identity which is different than the gender identity they were assigned at birth. FUTURE IMPACT With the rising number of individuals that identify as non-binary or transgender within our increasingly diverse communities, it is imperative to recognize gender identity, gender, and sex as distinct entities. By doing so, clinicians will be able to better risk-stratify their patients and select treatments that are most aligned with their values. To our knowledge, very few studies have separated sex and gender as two distinct risk factors within the dermatology literature. Our article also has the potential to help guide future prevention strategies that are patient-tailored rather than using a universal approach.
Collapse
Affiliation(s)
- François Lagacé
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Connor Prosty
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Alexandra Laverde-Saad
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Leila Cattelan
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Lydia Ouchene
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Sarah Oliel
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Genevieve Genest
- Division of Allergy and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Philip Doiron
- Division of Dermatology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Richer
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC, Canada
| | - Abdulhadi Jfri
- Department of Dermatology, Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elizabeth O’Brien
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Philippe Lefrançois
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Mathieu Powell
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Linda Moreau
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Ivan V. Litvinov
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Anastasiya Muntyanu
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Elena Netchiporouk
- Division of Dermatology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
19
|
Nakai M, Yokoyama D, Sato T, Sato R, Kojima C, Shimosawa T. Variation in antibody titers determined by Abbott and Roche Elecsys SARS-CoV-2 assays in vaccinated healthcare workers. Heliyon 2023; 9:e16547. [PMID: 37235203 PMCID: PMC10201891 DOI: 10.1016/j.heliyon.2023.e16547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2-specific antibody measurement is important for evaluating COVID-19 vaccine efficacy. We quantified and compared anti-spike (S) antibodies using different commercial immunoassays. We tested serum samples from 70 SARS-CoV-2-naive health care workers 2 weeks after vaccination with a single dose of BNT162b2, 2 and 4 weeks, and 3 months after the second dose of BNT162b2. The following quantitative assays were used: Roche Elecsys Anti-SARS-CoV-2 S (Roche-S), Abbott SARS-CoV-2 IgG II Quant [Abbott-IgG(S)], and Abbott SARS-CoV-2 IgM (Abbott-IgM). All samples tested positive for Roche-S and Abbott-IgG antibodies after the second dose, with 83.6% Abbott-IgM positive rate. Roche-S and Abbott-IgG(S) correlated significantly in all samples (r = 0.920, p < 0.0001), and the Roche-S and Abbott-IgG(S) assay showed a strong correlation with each other at each time point after vaccination. Roche-S and Abbott-IgG(S) antibody titers were correlated with age; their rate of decline was age-dependent in males but not in females. Abbott-IgG(S) antibody titers decreased from 2 weeks after the second dose. Roche-S antibody titers peaked 2 weeks after the second dose in 76.2% of the participants; the titers recovered 3 months post-vaccination after declining at week 4 in 40.7% of the participants. The concordance between Roche-S and Abbott-IgG(S) antibody titers over time was 47.5%. Most participants presented significantly high Roche-S and Abbott-IgG(S) antibody titers after immunization. Some measurements were inconsistent with titer changes between these assays, possibly because of differences in the immunoglobulin-specificity of the kits.
Collapse
Affiliation(s)
- Miku Nakai
- Department of Clinical Laboratory, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Daisuke Yokoyama
- Department of Clinical Laboratory, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Tomoaki Sato
- Department of Clinical Laboratory, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Ryohei Sato
- Department of Clinical Laboratory, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Chiari Kojima
- Department of Clinical Laboratory, International University of Health and Welfare Mita Hospital, Tokyo, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, International University of Health and Welfare Narita Hospital, Chiba, Japan
| |
Collapse
|
20
|
Erden F, Karagoz H. Human papillomavirus and vaccination. J Am Acad Dermatol 2023; 88:e175. [PMID: 32387667 DOI: 10.1016/j.jaad.2020.04.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Fatma Erden
- Department of Dermatology and Venereology, Ankara City Hospital, Yıldırım Beyazıt University, Turkey.
| | - Hatice Karagoz
- Internal Medicine Department, Acıbadem Kayseri Hospital, Turkey
| |
Collapse
|
21
|
Lott N, Gebhard CE, Bengs S, Haider A, Kuster GM, Regitz-Zagrosek V, Gebhard C. Sex hormones in SARS-CoV-2 susceptibility: key players or confounders? Nat Rev Endocrinol 2023; 19:217-231. [PMID: 36494595 PMCID: PMC9734735 DOI: 10.1038/s41574-022-00780-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a clear sex disparity in clinical outcomes. Hence, the interaction between sex hormones, virus entry receptors and immune responses has attracted major interest as a target for the prevention and treatment of SARS-CoV-2 infections. This Review summarizes the current understanding of the roles of androgens, oestrogens and progesterone in the regulation of virus entry receptors and disease progression of coronavirus disease 2019 (COVID-19) as well as their therapeutic value. Although many experimental and clinical studies have analysed potential mechanisms by which female sex hormones might provide protection against SARS-CoV-2 infectivity, there is currently no clear evidence for a sex-specific expression of virus entry receptors. In addition, reports describing an influence of oestrogen, progesterone and androgens on the course of COVID-19 vary widely. Current data also do not support the administration of oestradiol in COVID-19. The conflicting evidence and lack of consensus results from a paucity of mechanistic studies and clinical trials reporting sex-disaggregated data. Further, the influence of variables beyond biological factors (sex), such as sociocultural factors (gender), on COVID-19 manifestations has not been investigated. Future research will have to fill this knowledge gap as the influence of sex and gender on COVID-19 will be essential to understanding and managing the long-term consequences of this pandemic.
Collapse
Affiliation(s)
- Nicola Lott
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Gabriela M Kuster
- Department of Cardiology and Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Department of Cardiology, Inselspital Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
22
|
Yang J, Yuan X, Hao Y, Shi X, Yang X, Yan W, Chen L, Zhang D, Shen C, Li D, Zhu Z, Liu X, Zheng H, Zhang K. Proteins in pregnant swine serum promote the African swine fever virus replication: an iTRAQ-based quantitative proteomic analysis. Virol J 2023; 20:54. [PMID: 36978180 PMCID: PMC10043535 DOI: 10.1186/s12985-023-02004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
African swine fever (ASF) is a severe infectious disease caused by the African swine fever virus (ASFV), seriously endangering the global pig industry. ASFV possesses a large genome, strong mutation ability, and complex immune escape mechanisms. Since the first case of ASF was reported in China in August 2018, it has had a significant impact on social economy and food safety. In the present study, pregnant swine serum (PSS) was found to promote viral replication; differentially expressed proteins (DEPs) in PSS were screened and identified using the isobaric tags for relative and absolute quantitation technology and compared with those in non-pregnant swine serum (NPSS). The DEPs were analyzed using Gene Ontology functional annotation, Kyoto Protocol Encyclopedia of Genes and Genome pathway enrichment, and protein-protein interaction networks. In addition, the DEPs were validated via western blot and RT-qPCR experiments. And the 342 of DEPs were identified in bone marrow-derived macrophages cultured with PSS compared with the NPSS. The 256 were upregulated and 86 of DEPs were downregulated. The primary biological functions of these DEPs involved signaling pathways that regulate cellular immune responses, growth cycles, and metabolism-related pathways. An overexpression experiment showed that the PCNA could promote ASFV replication whereas MASP1 and BST2 could inhibit it. These results further indicated that some protein molecules in PSS were involved in the regulation of ASFV replication. In the present study, the role of PSS in ASFV replication was analyzed using proteomics, and the study will be provided a basis for future detailed research on the pathogenic mechanism and host interactions of ASFV as well as new insights for the development of small-molecule compounds to inhibit ASFV.
Collapse
Affiliation(s)
- Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xingguo Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yu Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xijuan Shi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xing Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Wenqian Yan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Lingling Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Dajun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Chaochao Shen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zixiang Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Xiangtao Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| | - Keshan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
23
|
Giha HA, Abdulwahab RA, Abbas J, Shinwari Z, Alaiya A. Sex-Biased Expression of Genes Allocated in the Autosomal Chromosomes: Blood LC-MS/MS Protein Profiling in Healthy Subjects. Genet Res (Camb) 2023; 2023:8822205. [PMID: 36941947 PMCID: PMC10024626 DOI: 10.1155/2023/8822205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Sex and gender have a large impact in human health and disease prediction. According to genomic/genetics, men differ from women by a limited number of genes in Y chromosome, while the phenotypes of the 2 sexes differ markedly. METHODS In this study, serum samples from six healthy Bahraini men and women were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Bioinformatics databases and tools were used for protein/peptide (PPs) identification and gene localization. The PPs that differed significantly (p < 0.05, ANOVA) in abundance with a fold change (FC) of ≥1.5 were identified. RESULTS Revealed 20 PPs, 11 were upregulated in women with very high FC (up to 8 folds), and 9 were upregulated in men but with much lower FC. The PPs are encoded by genes located in autosomal chromosomes, indicative of sex-biased gene expression. The only PP related to sex, the sex hormone-binding globulin, was upregulated in women. The remaining PPs were involved in immunity, lipid metabolism, gene expression, connective tissue, and others, with some overlap in function. CONCLUSIONS The upregulated PPs in men or women are mostly reflecting the functon or risk/protection provided by the PPs to the specific sex, e.g., Apo-B100 of LDLC. Finally, the basis of sex-biased gene expression and sex phenotypic differences needs further investigation.
Collapse
Affiliation(s)
- Hayder A. Giha
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Bahrain
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan
| | - Rabab A. Abdulwahab
- Integrated Sciences Department, College of Health and Sport Sciences, University of Bahrain, Manama 32038, Bahrain
- Al Jawhara Centre for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama 26671, Bahrain
| | - Jaafar Abbas
- Arad Health Center, Muharraq, Bahrain and Gulf Medical and Diabetes Center, Manama, Bahrain
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ayodele Alaiya
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
24
|
Fernandes MDCR, Vasconcelos GS, de Melo ACL, Matsui TC, Caetano LF, de Carvalho Araújo FM, Fonseca MHG. Influence of age, gender, previous SARS-CoV-2 infection, and pre-existing diseases in antibody response after COVID-19 vaccination: A review. Mol Immunol 2023; 156:148-155. [PMID: 36921489 PMCID: PMC9998295 DOI: 10.1016/j.molimm.2023.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Vaccines induce specific long-term immunological memory against pathogens, preventing the worsening of diseases. The COVID-19 health emergency has caused more than 6 million deaths and started a race for vaccine development. Antibody response to COVID-19 vaccines has been investigated primarily in healthcare workers. The heterogeneity of immune responses and the behavior of this response in particular groups were still very little explored. In this review, we discuss whether antibody responses after vaccination are influenced by age, gender, previous SARS-CoV-2 infection, or pre-existing diseases.
Collapse
|
25
|
Fairweather D, Beetler DJ, Musigk N, Heidecker B, Lyle MA, Cooper LT, Bruno KA. Sex and gender differences in myocarditis and dilated cardiomyopathy: An update. Front Cardiovasc Med 2023; 10:1129348. [PMID: 36937911 PMCID: PMC10017519 DOI: 10.3389/fcvm.2023.1129348] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
In the past decade there has been a growing interest in understanding sex and gender differences in myocarditis and dilated cardiomyopathy (DCM), and the purpose of this review is to provide an update on this topic including epidemiology, pathogenesis and clinical presentation, diagnosis and management. Recently, many clinical studies have been conducted examining sex differences in myocarditis. Studies consistently report that myocarditis occurs more often in men than women with a sex ratio ranging from 1:2-4 female to male. Studies reveal that DCM also has a sex ratio of around 1:3 women to men and this is also true for familial/genetic forms of DCM. Animal models have demonstrated that DCM develops after myocarditis in susceptible mouse strains and evidence exists for this progress clinically as well. A consistent finding is that myocarditis occurs primarily in men under 50 years of age, but in women after age 50 or post-menopause. In contrast, DCM typically occurs after age 50, although the age that post-myocarditis DCM occurs has not been investigated. In a small study, more men with myocarditis presented with symptoms of chest pain while women presented with dyspnea. Men with myocarditis have been found to have higher levels of heart failure biomarkers soluble ST2, creatine kinase, myoglobin and T helper 17-associated cytokines while women develop a better regulatory immune response. Studies of the pathogenesis of disease have found that Toll-like receptor (TLR)2 and TLR4 signaling pathways play a central role in increasing inflammation during myocarditis and in promoting remodeling and fibrosis that leads to DCM, and all of these pathways are elevated in males. Management of myocarditis follows heart failure guidelines and there are currently no disease-specific therapies. Research on standard heart failure medications reveal important sex differences. Overall, many advances in our understanding of the effect of biologic sex on myocarditis and DCM have occurred over the past decade, but many gaps in our understanding remain. A better understanding of sex and gender effects are needed to develop disease-targeted and individualized medicine approaches in the future.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Nicolas Musigk
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melissa A. Lyle
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
26
|
Ong MJY, Khoo CS, Lee YX, Poongkuntran V, Tang CK, Choong YJ, Hod R, Tan HJ. Safety and adverse events following COVID-19 vaccination among people with epilepsy: A cross-sectional study. Epilepsia Open 2023; 8:60-76. [PMID: 36214033 PMCID: PMC9874900 DOI: 10.1002/epi4.12658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/05/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVE Epilepsy is a non-communicable disease costing a massive burden globally. It is known that there is increased prevalence of morbidity and mortality following COVID-19 infection among people with epilepsy (PWE). However, there is limited information about the adverse events following COVID-19 immunization among PWE. Hence, this study aimed to assess the safety and adverse events following immunization (AEFI) of various COVID-19 vaccines among PWE from our centre, focusing on neurological AEFI. METHODS This cross-sectional study recruited 120 adult PWE from the Neurology Clinic of the Universiti Kebangsaan Malaysia Medical Centre (UKMMC). Consent-taking was conducted via synchronous or asynchronous approaches, followed by a phone call interview session. The interview collected socio-demographic information, epilepsy-related variables, and vaccination-related variables. Univariate analysis and multiple logistic regression analysis were done to confirm factors associated with the AEFI of COVID-19 vaccination. RESULTS Among all types of COVID-19 vaccines, most of the PWE received the Cominarty® COVID-19 vaccination (52.5%). Overall, local AEFI was the quickest to develop, with an average onset within a day. PWE with normal body mass index (BMI) had a higher risk of developing both local and systemic AEFI compared to those underweight and obese PWE (OR: 15.09, 95% CI 1.70-134.28, P = 0.02). SIGNIFICANCE COVID-19 vaccines are safe for PWE. AEFI among PWE are similar to those of the general population following COVID-19 vaccination. Therefore, clinicians should encourage PWE to take COVID-19 vaccines.
Collapse
Affiliation(s)
- Marjorie Jia Yi Ong
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.,Department of Community Health, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ching Soong Khoo
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Yi Xuan Lee
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Vaanee Poongkuntran
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chia Khoi Tang
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Yu Joe Choong
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Rozita Hod
- Department of Community Health, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hui Jan Tan
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Martin BE, Taylor EB, Attipoe EM, Wu W, Stec DE, Showmaker KC, Garrett MR. Sex and molecular differences in cardiovascular parameters at peak influenza disease in mice. Physiol Genomics 2023; 55:79-89. [PMID: 36645670 PMCID: PMC9925171 DOI: 10.1152/physiolgenomics.00146.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
There is a growing interest in the detection of subtle changes in cardiovascular physiology in response to viral infection to develop better disease surveillance strategies. This is not only important for earlier diagnosis and better prognosis of symptomatic carriers but also useful to diagnose asymptomatic carriers of the virus. Previous studies provide strong evidence of an association between inflammatory biomarker levels and both blood pressure (BP) and heart rate (HR) during infection. The identification of novel biomarkers during an inflammatory event could significantly improve predictions for cardiovascular events. Thus, we evaluated changes in cardiovascular physiology induced in A/Puerto Rico/8/34 (PR8) influenza infections in female and male C57BL/6J mice and compared them with the traditional method of influenza disease detection using body weight (BW). Using radiotelemetry, changes in BP, HR, and activity were studied. Change in BW of infected females was significantly decreased from 5 to 13 days postinfection (dpi), yet alterations in normal physiology including loss of diurnal rhythm and reduced activity was observed starting at about 3 dpi for HR and 4 dpi for activity and BP; continuing until about 13 dpi. In contrast, males had significantly decreased BW 8 to 12 dpi and demonstrated altered physiological measurements for a shorter period compared with females with a reduction starting at 5 dpi for activity, 6 dpi for BP, and 7 dpi for HR until about 12 dpi, 10 dpi, and 9 dpi, respectively. Finally, females and males exhibited different patterns of inflammatory maker expression in lungs at peak disease by analyzing bulk RNA-sequencing data for lungs and Bio-plex cytokine assay for blood collected from influenza-infected and naïve C57BL/6J female and male mice at 7 dpi. In total, this study provides insight into cardiovascular changes and molecular markers to distinguish sex differences in peak disease caused by influenza virus infection.NEW & NOTEWORTHY This study performed longitudinal cardiovascular measurements of influenza viral infection and identified sex difference in both physiological and molecular markers at peak disease.
Collapse
Affiliation(s)
- Brigitte E Martin
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Erin B Taylor
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Esinam M Attipoe
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjie Wu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - David E Stec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
- Division of Genetics, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
28
|
St Clair LA, Chaulagain S, Klein SL, Benn CS, Flanagan KL. Sex-Differential and Non-specific Effects of Vaccines Over the Life Course. Curr Top Microbiol Immunol 2023; 441:225-251. [PMID: 37695431 PMCID: PMC10917449 DOI: 10.1007/978-3-031-35139-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Biological sex and age have profound effects on immune responses throughout the lifespan and impact vaccine acceptance, responses, and outcomes. Mounting evidence from epidemiological, clinical, and animal model studies show that males and females respond differentially to vaccination throughout the lifespan. Within age groups, females tend to produce greater vaccine-induced immune responses than males, with sex differences apparent across all age groups, but are most pronounced among reproductive aged individuals. Females report more adverse effects following vaccination than males. Females, especially among children under 5 years of age, also experience more non-specific effects of vaccination. Despite these known sex- and age-specific differences in vaccine-induced immune responses and outcomes, sex and age are often ignored in vaccine research. Herein, we review the known sex differences in the immunogenicity, effectiveness, reactogenicity, and non-specific effects of vaccination over the lifespan. Ways in which these data can be leveraged to improve vaccine research are described.
Collapse
Affiliation(s)
- Laura A St Clair
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabal Chaulagain
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Christine Stabell Benn
- Institute of Clinical Research and Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Katie L Flanagan
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia.
| |
Collapse
|
29
|
Quach HQ, Chen J, Monroe JM, Ratishvili T, Warner ND, Grill DE, Haralambieva IH, Ovsyannikova IG, Poland GA, Kennedy RB. The Influence of Sex, Body Mass Index, and Age on Cellular and Humoral Immune Responses Against Measles After a Third Dose of Measles-Mumps-Rubella Vaccine. J Infect Dis 2022; 227:141-150. [PMID: 35994504 DOI: 10.1093/infdis/jiac351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND A third dose of measles-mumps-rubella vaccine (MMR3) is recommended in mumps outbreak scenarios, but the immune response and the need for widespread use of MMR3 remain uncertain. Herein, we characterized measles-specific immune responses to MMR3 in a cohort of 232 healthy subjects. METHODS Serum and peripheral blood mononuclear cells (PBMCs) were sampled at day 0 and day 28 after MMR3. Measles-specific binding and neutralizing antibodies were quantified in sera by enzyme-linked immunosorbent assay and a microneutralization assay, respectively. PBMCs were stimulated with inactivated measles virus, and the release of cytokines/chemokines was assessed by a multiplex assay. Demographic variables of subjects were examined for potential correlations with immune outcomes. RESULTS Of the study participants, 95.69% and 100% were seropositive at day 0 and day 28, respectively. Antibody avidity significantly increased from 38.08% at day 0 to 42.8% at day 28 (P = .00026). Neutralizing antibodies were significantly enhanced, from 928.7 at day 0 to 1289.64 mIU/mL at day 28 (P = .0001). Meanwhile, cytokine/chemokine responses remained largely unchanged. Body mass index was significantly correlated with the levels of inflammatory cytokines/chemokines. CONCLUSIONS Measles-specific humoral immune responses, but not cellular responses, were enhanced after MMR3 receipt, extending current understanding of immune responses to MMR3 and supporting MMR3 administration to seronegative or high-risk individuals.
Collapse
Affiliation(s)
- Huy Quang Quach
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathon M Monroe
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamar Ratishvili
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathaniel D Warner
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Diane E Grill
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Iana H Haralambieva
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
30
|
Wilson LAB, Zajitschek SRK, Lagisz M, Mason J, Haselimashhadi H, Nakagawa S. Sex differences in allometry for phenotypic traits in mice indicate that females are not scaled males. Nat Commun 2022; 13:7502. [PMID: 36509767 PMCID: PMC9744842 DOI: 10.1038/s41467-022-35266-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Sex differences in the lifetime risk and expression of disease are well-known. Preclinical research targeted at improving treatment, increasing health span, and reducing the financial burden of health care, has mostly been conducted on male animals and cells. The extent to which sex differences in phenotypic traits are explained by sex differences in body weight remains unclear. We quantify sex differences in the allometric relationship between trait value and body weight for 363 phenotypic traits in male and female mice, recorded in >2 million measurements from the International Mouse Phenotyping Consortium. We find sex differences in allometric parameters (slope, intercept, residual SD) are common (73% traits). Body weight differences do not explain all sex differences in trait values but scaling by weight may be useful for some traits. Our results show sex differences in phenotypic traits are trait-specific, promoting case-specific approaches to drug dosage scaled by body weight in mice.
Collapse
Affiliation(s)
- Laura A B Wilson
- Evolution & Ecology Research Centre, UNSW Data Science Hub, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
- School of Archaeology and Anthropology, The Australian National University, Canberra, ACT, 2600, Australia.
| | - Susanne R K Zajitschek
- Evolution & Ecology Research Centre, UNSW Data Science Hub, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, UNSW Data Science Hub, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jeremy Mason
- Melio Healthcare Ltd., City Tower, 40 Basinghall Street, London, EC2V 5DE, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Hamed Haselimashhadi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, UNSW Data Science Hub, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
31
|
Tavazzi E, Della Porta G, Robustelli Della Cuna FS, Gervasio L, Guerra E, Tejada Condemayta MA, Filosa A, Montomoli C, Bergamaschi R. Quantitative and qualitative features of acute phase-adverse events following SARS-CoV-2 vaccination in a large sample of people with multiple sclerosis. Mult Scler Relat Disord 2022; 68:104120. [PMID: 35988330 PMCID: PMC9376979 DOI: 10.1016/j.msard.2022.104120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Few data are available on adverse events (AE) associated to vaccines in persons with multiple sclerosis (pwMS). AIMS to study the incidence of acute phase AE (AP-AE) related to SARS-CoV-2 mRNA vaccines in pwMS compared to a control group, and to analyze the association between AP-AE and disease modifying treatments (DMT). METHODS This was a cross-sectional study on 438 PwMS and 481 age- and sex-matched subjects not affected by dysimmune diseases that underwent two doses of SARS-CoV-2 mRNA BNT162b2 vaccine (Pfizer/BioNtech). RESULTS Two hundred and twenty five (51.4%) pwMS complained of ≥1 AP-AE after the first dose, 269 (61.4%) after the second dose. A logistic regression analysis revealed that only pwMS on Fingolimod and Ocrelizumab did not show a higher risk of developing AP-AE. The likelihood to present with ≥1 AP-AE, after correcting for age and sex, was significantly higher in pwMS than controls. CONCLUSIONS This study reports qualitative and quantitative features of AP-AE associated with the first and second doses of SARS-CoV-2 vaccine in a large sample of pwMS. The only risk factor identified for developing AP-AE is female gender. AntiCD-20 monoclonal antibodies and S1P inhibitors are associated with a lower risk of AP-AE occurrence.
Collapse
Affiliation(s)
- E Tavazzi
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Via Mondino 2, Pavia 27100, Italy.
| | - G Della Porta
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Via Mondino 2, Pavia 27100, Italy
| | - F S Robustelli Della Cuna
- Department of Drug Sciences, University of Pavia, Pavia, Italy; Pharmacy Service, IRCCS Mondino Foundation, Pavia, Italy
| | - L Gervasio
- Pharmacy Service, IRCCS Mondino Foundation, Pavia, Italy
| | - E Guerra
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - M A Tejada Condemayta
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Via Mondino 2, Pavia 27100, Italy
| | - A Filosa
- Department of Public Health, Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - C Montomoli
- Department of Public Health, Experimental and Forensic Medicine, Unit of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - R Bergamaschi
- Multiple Sclerosis Centre, IRCCS Mondino Foundation, Via Mondino 2, Pavia 27100, Italy
| |
Collapse
|
32
|
Yang FF, Yu SJ, Du WN, Wang HM, Yao XX, Xue DD, Yu Y. Global morbidity and mortality of lower respiratory infections: A population -based study. Respir Med 2022; 205:107042. [PMID: 36462288 DOI: 10.1016/j.rmed.2022.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study provides a comprehensive, comparative and updated estimates of temporal patterns of lower respiratory infections (LRIs) globally over the past three decades. METHODS The data on morbidity and mortality of patients with LRIs at the global, regional and national levels were retrieved from the Global Burden of Disease (GBD) 2019 study. RESULTS Globally, the incident cases of LRIs increased from 414,342,866 [95% uncertainty interval (UI):383,529,625 to 449, 086,938]in 1990 to 488,902,504(95% UI: 457,572,987 to 522,635,542)in 2019 with the age standardized incidence rate (ASIR) decreased from 8,276/100,000 persons (95% UI: 7,727 to 8,892) to 6,295/100,000 persons (95% UI: 5,887 to 6,737) between 1990 and 2019. Number of LRIs deaths were 2,493,200 (95% UI: 2,268,184 to 2,736,184) in 2019, a decrease of 24.9% (95% UI: -34.4 to -15.4) in the past 30 years. Meanwhile, the age-standardized death rate (ASDR) declined also from 67/100,000 persons (95% UI: 61 to 73) in 1990 to 34/100,000 persons (95% UI: 31 to 38) in 2019. Moreover, the numbers and age-standardized rates per 100,000 persons of morbidity and mortality varied widely by age, sex, Socio-Demographic Index (SDI) quintiles, and geographical locations in 2019. CONCLUSION LRIs remain a major public health concern . Some differences in age, sex, SDI quintiles, and geographical locations contribute to LRIs-related global health policy development and health system resource optimization.
Collapse
Affiliation(s)
- Fei-Fei Yang
- Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shuai-Jun Yu
- Intensive Care Unit, Huantai Traditional Chinese Medicine Hospital, Zibo, China
| | - Wei-Na Du
- Intensive Care Unit, People Hospital of Huantai County, Zibo, China
| | - Hui-Min Wang
- Department of Neurology, Shanxi Cardiovascular Hospital, Taiyuan, China
| | - Xiao-Xi Yao
- Department of Pelvic Floor Rehabilitation, TaiYuan Maternal and Child Health Hospital, Taiyuan, China
| | - Dong-Dong Xue
- Intensive Care Unit, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yong Yu
- Intensive Care Unit, Zibo Central Hospital, Zibo, China.
| |
Collapse
|
33
|
Effects of Different Corticosteroid Doses in Elderly Unvaccinated Patients with Severe to Critical COVID-19. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111924. [PMID: 36431059 PMCID: PMC9697502 DOI: 10.3390/life12111924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
SARS-CoV-2 infection can induce a broad range of clinical symptoms, and the most severe cases are characterized by an uncontrolled inflammatory response with the overproduction of proinflammatory cytokines. Elevated levels of C-reactive protein, interleukin-1B, and interleukin-6 have become key signatures of severe COVID-19. For this reason, the use of 6 mg of dexamethasone has become a standard of care, although this regime may not be optimal. Even though various glucocorticoid doses have been proposed, it is still unclear which dose should be used to prevent adverse effects while at the same time reducing the inflammatory response. Here, we compared two different doses of corticosteroids in 52 elderly hospitalized patients with severe to critical COVID-19 to assess efficacy and safety. We showed that in patients receiving a higher dose of prednisone, the time to negative swab was significantly longer. Furthermore, although neither dose was correlated with the risk of death, patients receiving the high dose were more likely to have adverse events such as hyperglycemia, leukocytosis, an increase in systemic blood pressure, and others. Finally, the BMI, WBC number, and NLR value were directly related to death. In conclusion, although the optimal glucocorticoid dose is still undefined, our retrospective study supports the absence of beneficial effects in the utilization of higher doses of corticosteroids in elderly patients with severe to critical COVID-19.
Collapse
|
34
|
Wesołowska A. Sex—the most underappreciated variable in research: insights from helminth-infected hosts. Vet Res 2022; 53:94. [PMID: 36397174 PMCID: PMC9672581 DOI: 10.1186/s13567-022-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The sex of a host affects the intensity, prevalence, and severity of helminth infection. In many cases, one sex has been found to be more susceptible than the other, with the prevalence and intensity of helminth infections being generally higher among male than female hosts; however, many exceptions exist. This observed sex bias in parasitism results primarily from ecological, behavioural, and physiological differences between males and females. Complex interactions between these influences modulate the risk of infection. Indeed, an interplay among sex hormones, sex chromosomes, the microbiome and the immune system significantly contributes to the generation of sex bias among helminth-infected hosts. However, sex hormones not only can modulate the course of infection but also can be exploited by the parasites, and helminths appear to have developed molecules and pathways for this purpose. Furthermore, host sex may influence the efficacy of anti-helminth vaccines; however, although little data exist regarding this sex-dependent efficacy, host sex is known to influence the response to vaccines. Despite its importance, host sex is frequently overlooked in parasitological studies. This review focuses on the key contributors to sex bias in the case of helminth infection. The precise nature of the mechanisms/factors determining these sex-specific differences generally remains largely unknown, and this represents an obstacle in the development of control methods. There is an urgent need to identify any protective elements that could be targeted in future therapies to provide optimal disease management with regard to host sex. Hence, more research is needed into the impact of host sex on immunity and protection.
Collapse
|
35
|
Rahmani A, Montecucco A, Kusznir Vitturi B, Debarbieri N, Dini G, Durando P. Long-Term Effectiveness of Hepatitis B Vaccination in the Protection of Healthcare Students in Highly Developed Countries: A Systematic Review and Meta-Analysis. Vaccines (Basel) 2022; 10:1841. [PMID: 36366350 PMCID: PMC9695994 DOI: 10.3390/vaccines10111841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 09/05/2023] Open
Abstract
Hepatitis B virus represents an important global health problem. In highly developed countries, mass vaccination campaigns of newborns in recent decades have drastically reduced the proportion of carriers. However, workers exposed to blood and body fluids, including healthcare students, can be at risk of exposure. In order to assess the proportion of susceptible individuals in the specific population of healthcare students in highly developed countries, a systematic review and meta-analysis was performed to summarize the evidence on the persistence of humoral immune protection induced by the primary cycle of hepatitis B vaccination, as well as the proportion of true non-responders. Forty-six studies were included in the final analysis (52,749 participants). Overall, the seroprotection prevalence at the pre-exposure assessment was equal to 73.8% (95% CI 69.1-78.0); the prevalence of anamnestic response following the administration of a challenge dose was 90.9% (95% CI 87.7-93.3), demonstrating a high proportion of persistence of vaccination-induced immunity. Among those without evidence of anamnestic response, 5.0% (95% CI 2.1-11.5) were non-responders following the completion of a secondary immunization cycle. These findings demonstrate that the majority of healthcare students vaccinated with the complete HBV primary cycle maintain an effective humoral immunity against this pathogen for over two decades.
Collapse
Affiliation(s)
- Alborz Rahmani
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Alfredo Montecucco
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Nicoletta Debarbieri
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Guglielmo Dini
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paolo Durando
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
- Occupational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
36
|
Association between RNAm-Based COVID-19 Vaccines and Permanency of Menstrual Cycle Alterations in Spanish Women: A Cross-Sectional Study. BIOLOGY 2022; 11:biology11111579. [PMID: 36358280 PMCID: PMC9687584 DOI: 10.3390/biology11111579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Introduction: The purpose of this study was to delve more deeply into the medium and long-term relation between mRNA-based vaccines and changes in menstrual pain, cycle length, and amount of bleeding in Spanish women. Material and Methods: A total of 746 women (63% between 18−30 and 37% between 31−45 years old) participated in the study. A numerical rating scale was used for recording pain intensity, a pictorial chart for menstrual bleeding, and data from menstrual cycle duration, type of vaccine, number of doses and time from vaccination. Results: Sixty-five per cent of the women perceived changes in their menstrual cycle after receiving the vaccines, irrespective of type of vaccine or number of doses; all p values were >0.05. Most of them (n = 316 out of 484) reported more than one alteration in their menstrual cycle. Almost half of the participants had been vaccinated over 5 months (45%), 3−4 months (15%) 2−3 months (26%), and one month or less (13%) before. The percentage of women that reported alterations remained strongly constant across time, p > 0.05, ranging from 64 to 65%. Conclusions: Reported alterations in Spanish women after COVID vaccination remained more than 5 months after the last dose.
Collapse
|
37
|
KC N, Church LWP, Riyahi P, Chakravarty S, Seder RA, Epstein JE, Lyke KE, Mordmüller B, Kremsner PG, Sissoko MS, Healy S, Duffy PE, Jongo SA, Nchama VUNN, Abdulla S, Mpina M, Sirima SB, Laurens MB, Steinhardt LC, Oneko M, Li M, Murshedkar T, Billingsley PF, Sim BKL, Richie TL, Hoffman SL. Increased levels of anti-PfCSP antibodies in post-pubertal females versus males immunized with PfSPZ Vaccine does not translate into increased protective efficacy. Front Immunol 2022; 13:1006716. [PMID: 36389797 PMCID: PMC9641621 DOI: 10.3389/fimmu.2022.1006716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background While prior research has shown differences in the risk of malaria infection and sickness between males and females, little is known about sex differences in vaccine-induced immunity to malaria. Identifying such differences could elucidate important aspects of malaria biology and facilitate development of improved approaches to malaria vaccination. Methods Using a standardized enzyme-linked immunosorbent assay, IgG antibodies to the major surface protein on Plasmodium falciparum (Pf) sporozoites (SPZ), the Pf circumsporozoite protein (PfCSP), were measured before and two weeks after administration of a PfSPZ-based malaria vaccine (PfSPZ Vaccine) to 5-month to 61-year-olds in 11 clinical trials in Germany, the US and five countries in Africa, to determine if there were differences in vaccine elicited antibody response between males and females and if these differences were associated with differential protection against naturally transmitted Pf malaria (Africa) or controlled human malaria infection (Germany, the US and Africa). Results Females ≥ 11 years of age made significantly higher levels of antibodies to PfCSP than did males in most trials, while there was no indication of such differences in infants or children. Although adult females had higher levels of antibodies, there was no evidence of improved protection compared to males. In 2 of the 7 trials with sufficient data, protected males had significantly higher levels of antibodies than unprotected males, and in 3 other trials protected females had higher levels of antibodies than did unprotected females. Conclusion Immunization with PfSPZ Vaccine induced higher levels of antibodies in post-pubertal females but showed equivalent protection in males and females. We conclude that the increased antibody levels in post-pubertal females did not contribute substantially to improved protection. We hypothesize that while antibodies to PfCSP (and PfSPZ) may potentially contribute directly to protection, they primarily correlate with other, potentially protective immune mechanisms, such as antibody dependent and antibody independent cellular responses in the liver.
Collapse
Affiliation(s)
- Natasha KC
- Sanaria Inc., Rockville, MD, United States
| | | | | | | | - Robert A. Seder
- Vaccine Research Center, National Institute of Heath, Bethesda, MD, United States
| | - Judith E. Epstein
- Naval Medical Research Center (NMRC), Silver Spring, MD, United States
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research, Tübingen, Germany
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen and German Center for Infection Research, Tübingen, Germany
- Centre de Recherches Medicales de Lambaréné, Lambaréné, Gabon
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center (MRTC), Mali National Institute of Allergy and Infectious Diseases International Centers for Excellence in Research, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Sara Healy
- Laboratory of Malaria Immunology and Parasitology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health (LMIV/NIAID/NIH), Rockville, MD, United States
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Parasitology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health (LMIV/NIAID/NIH), Rockville, MD, United States
| | - Said A. Jongo
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
| | | | - Salim Abdulla
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Maxmillian Mpina
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania
- Swiss Tropical Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sodiomon B. Sirima
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Laura C. Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - MingLin Li
- Sanaria Inc., Rockville, MD, United States
| | | | | | | | | | - Stephen L. Hoffman
- Sanaria Inc., Rockville, MD, United States
- *Correspondence: Stephen L. Hoffman,
| |
Collapse
|
38
|
Adverse Reactions after the Third Dose of the BNT162b2 mRNA COVID-19 Vaccine among Medical School Residents in a Regional Reference University Hospital in Italy. Vaccines (Basel) 2022; 10:vaccines10111779. [DOI: 10.3390/vaccines10111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
The recent emergence of new variants of concern (VOCs) of SARS-CoV-2 and the uncertain duration of protection provided by the primary immunization cycle have highlighted the need for COVID-19 booster vaccinations. However, only a few studies have assessed the safety and reactogenicity profile of mRNA booster doses. Therefore, we conducted an online survey with the aim of assessing the adverse reaction profile in the 7 days following a third dose of the BNT162b2 vaccine in a population of resident physicians who had already been investigated after the primary vaccination. Among the 512 resident physicians (female = 53.2%, mean age = 29.8 years) invited to participate in the survey, 222 completed the survey (56.5% female, mean age of 29.9 years), with an average time from second to third dose of 8.6 months. The most common adverse reactions were local pain (88.3%), fatigue (58.1%), muscle/joint pain (44.1%), and headache (38.3%), all subsiding in 48–72 h. While the local reaction rate was similar to that following the first two doses, the systemic reactions were considerably less common and milder compared to the second vaccination. Nonetheless, over one third (36.1%) of participants reported interference with their normal activities. These results complement our previous findings and could aid occupational and public health professionals in the counselling of vaccinees.
Collapse
|
39
|
Corica B, Tartaglia F, D'Amico T, Romiti GF, Cangemi R. Sex and gender differences in community-acquired pneumonia. Intern Emerg Med 2022; 17:1575-1588. [PMID: 35852675 PMCID: PMC9294783 DOI: 10.1007/s11739-022-02999-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
Abstract
Awareness of the influence of sex ands gender on the natural history of several diseases is increasing. Community-acquired pneumonia (CAP) is the most common acute respiratory disease, and it is associated with both morbidity and mortality across all age groups. Although a role for sex- and gender-based differences in the development and associated complications of CAP has been postulated, there is currently high uncertainty on the actual contribution of these factors in the epidemiology and clinical course of CAP. More evidence has been produced on the topic during the last decades, and sex- and gender-based differences have also been extensively studied in COVID-19 patients since the beginning of the SARS-CoV-2 pandemic. This review aims to provide an extensive outlook of the role of sex and gender in the epidemiology, pathogenesis, treatment, and outcomes of patients with CAP, and on the future research scenarios, with also a specific focus on COVID-19.
Collapse
Affiliation(s)
- Bernadette Corica
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, 00162, Rome, Italy
| | - Francesco Tartaglia
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, 00162, Rome, Italy
| | - Tania D'Amico
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, 00162, Rome, Italy
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, 00162, Rome, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza-University of Rome, Viale del Policlinico 155, 00162, Rome, Italy.
| |
Collapse
|
40
|
Schafer JM, Xiao T, Kwon H, Collier K, Chang Y, Abdel-Hafiz H, Bolyard C, Chung D, Yang Y, Sundi D, Ma Q, Theodorescu D, Li X, Li Z. Sex-biased adaptive immune regulation in cancer development and therapy. iScience 2022; 25:104717. [PMID: 35880048 PMCID: PMC9307950 DOI: 10.1016/j.isci.2022.104717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cancer research field is finally starting to unravel the mystery behind why males have a higher incidence and mortality rate than females for nearly all cancer types of the non-reproductive systems. Here, we explain how sex - specifically sex chromosomes and sex hormones - drives differential adaptive immunity across immune-related disease states including cancer, and why males are consequently more predisposed to tumor development. We highlight emerging data on the roles of cell-intrinsic androgen receptors in driving CD8+ T cell dysfunction or exhaustion in the tumor microenvironment and summarize ongoing clinical efforts to determine the impact of androgen blockade on cancer immunotherapy. Finally, we outline a framework for future research in cancer biology and immuno-oncology, underscoring the importance of a holistic research approach to understanding the mechanisms of sex dimorphisms in cancer, so sex will be considered as an imperative factor for guiding treatment decisions in the future.
Collapse
Affiliation(s)
- Johanna M. Schafer
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Hyunwoo Kwon
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Katharine Collier
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Hany Abdel-Hafiz
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Debasish Sundi
- Department of Urology, the Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue Li
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| |
Collapse
|
41
|
Diem L, Hammer H, Hoepner R, Pistor M, Remlinger J, Salmen A. Sex and gender differences in autoimmune demyelinating CNS disorders: Multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD) and myelin-oligodendrocyte-glycoprotein antibody associated disorder (MOGAD). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:129-178. [PMID: 36038203 DOI: 10.1016/bs.irn.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple sclerosis (MS), Neuromyelitis optica spectrum disorder (NMOSD) and Myelin-Oligodendrocyte-Glycoprotein antibody associated disorder (MOGAD) are demyelinating disorders of the central nervous system (CNS) of autoimmune origin. Here, we summarize general considerations on sex-specific differences in the immunopathogenesis and hormonal influences as well as key clinical and epidemiological elements. Gender-specific issues are widely neglected starting with the lacking separation of sex as a biological variable and gender comprising the sociocultural components. As for other autoimmune diseases, female preponderance is common in MS and NMOSD. However, sex distribution in MOGAD seems equal. As in MS, immunotherapy in NMOSD and MOGAD is crucial to prevent further disease activity. Therefore, we assessed data on sex differences of the currently licensed disease-modifying treatments for efficacy and safety. This topic seems widely neglected with only fragmented information resulting from post-hoc analyses of clinical trials or real-world post-marketing studies afflicted with lacking power and/or inherent sources of bias. In summary, biological hypotheses of sex differences including genetic factors, the constitution of the immune system and hormonal influences are based upon human and preclinical data, especially for the paradigmatic disease of MS whereas specific data for NMOSD and MOGAD are widely lacking. Epidemiological and clinical differences between men and women are well described for MS and to some extent for NMOSD, yet, with remaining contradictory findings. MOGAD needs further detailed investigation. Sex-specific analyses of safety and efficacy of long-term immunotherapies need to be addressed in future studies designed and powered to answer the pressing questions and to optimize and individualize treatment.
Collapse
Affiliation(s)
- Lara Diem
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Helly Hammer
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Max Pistor
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland
| | - Jana Remlinger
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland; Department of Biomedical Research and Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Freiburgstrasse, Bern, Switzerland.
| |
Collapse
|
42
|
Peckham H, Webb K, Rosser EC, Butler G, Ciurtin C. Gender-Diverse Inclusion in Immunological Research: Benefits to Science and Health. Front Med (Lausanne) 2022; 9:909789. [PMID: 35911383 PMCID: PMC9329564 DOI: 10.3389/fmed.2022.909789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023] Open
Abstract
The differences between male and female immune systems are an under-researched field, ripe for discovery. This is evidenced by the stark sex biases seen in autoimmunity and infectious disease. Both the sex hormones (oestrogen and testosterone), as well as the sex chromosomes have been demonstrated to impact immune responses, in multiple ways. Historical shortcomings in reporting basic and clinical scientific findings in a sex-disaggregated manner have led not only to limited discovery of disease aetiology, but to potential inaccuracies in the estimation of the effects of diseases or interventions on females and gender-diverse groups. Here we propose not only that research subjects should include both cis-gender men and cis-gender women, but also transgender and gender-diverse people alongside them. The known interaction between the hormonal milieu and the sex chromosomes is inseparable in cis-gender human research, without the confounders of puberty and age. By inclusion of those pursuing hormonal affirmation of their gender identity- the individual and interactive investigation of hormones and chromosomes is permitted. Not only does this allow for a fine-tuned dissection of these individual effects, but it allows for discovery that is both pertinent and relevant to a far wider portion of the population. There is an unmet need for detailed treatment follow-up of the transgender community- little is known of the potential benefits and risks of hormonal supplementation on the immune system, nor indeed on many other health and disease outcomes. Our research team has pioneered the inclusion of gender-diverse persons in our basic research in adolescent autoimmune rheumatic diseases. We review here the many avenues that remain unexplored, and suggest ways in which other groups and teams can broaden their horizons and invest in a future for medicine that is both fruitful and inclusive.
Collapse
Affiliation(s)
- Hannah Peckham
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London, United Kingdom
- Division of Medicine, Centre for Rheumatology Research, University College London (UCL), London, United Kingdom
| | - Kate Webb
- Department of Paediatric Rheumatology, School of Child and Adolescent Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Cape Town, South Africa
- Crick African Network, The Francis Crick Institute, London, United Kingdom
| | - Elizabeth C. Rosser
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London, United Kingdom
- Division of Medicine, Centre for Rheumatology Research, University College London (UCL), London, United Kingdom
| | - Gary Butler
- Department of Paediatric and Adolescent Endocrinology, University College London Hospital (UCLH) and Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Gender Identity Development Service (GIDS), Tavistock and Portman NHS Foundation Trust, London, United Kingdom
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis at University College London (UCL), University College London Hospital (UCLH), Great Ormond Street Hospital (GOSH), London, United Kingdom
- Division of Medicine, Centre for Rheumatology Research, University College London (UCL), London, United Kingdom
| |
Collapse
|
43
|
Minakshi R, Rahman S, Ayaggari A, Dutta D, Shankar A. Understanding the Trauma of Menstrual Irregularity After COVID Vaccination: A Bird's-Eye View of Female Immunology. Front Immunol 2022; 13:906091. [PMID: 35769462 PMCID: PMC9234113 DOI: 10.3389/fimmu.2022.906091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
The intricacies in various signaling routes involved in the menstrual cycle can be impacted by internal as well as external stimuli, and the role of stress, be it physical, psychological, or social, in disturbing the process could be debilitating for a woman. The global endeavor of vaccination rose to protect individuals from the severity of COVID-19, but a conjunction of a short-lived menace of menstrual disturbance in the female population came out as an unsettling side effect. An understanding of the immunological panorama in the female reproductive tract (FRT) becomes important to fathom this issue. The close-knit microenvironment in the FRT shows active microbiota in the lower FRT, but the latest findings are ascertaining the presence of low-biomass microbiota in the upper FRT as well. Concerted signaling, wherein inflammation becomes an underlying phenomenon, results when a stressor elicits molecules of the inflammatory cascade. Learning lessons from the gut microbiota, we need to address the exploration of how FRT microbiota would impose inflammation by manipulating the immune response to vaccines. Since there is a prominent sex bias in the immune response to infectious diseases in women and men, the role of sex hormones and cortisol becomes important. The treatment regimen may be considered differently in women who also consider their ovarian cycle phases. Women exert robust immune response to antigenic encounters via cell-mediated and humoral arms. The inclusion of women in vaccine trials has been marginalized over the years, which resulted in unwanted high dosage administration of vaccines in women.
Collapse
Affiliation(s)
- Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Safikur Rahman
- Munshi Singh College, Bhim Rao (BR) Ambedkar Bihar University, Muzaffarpur, India
| | - Archana Ayaggari
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Durgashree Dutta
- Department of Biochemistry, Jan Nayak Chaudhary Devilal Dental College, Sirsa, India
| | - Abhishek Shankar
- Department of Radiation Oncology, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
44
|
Moran JA, Turner SR, Marsden MD. Contribution of Sex Differences to HIV Immunology, Pathogenesis, and Cure Approaches. Front Immunol 2022; 13:905773. [PMID: 35693831 PMCID: PMC9174895 DOI: 10.3389/fimmu.2022.905773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/21/2022] [Indexed: 11/14/2022] Open
Abstract
Approximately 38 million people were living with human immunodeficiency virus (HIV) in 2020 and 53% of those infected were female. A variety of virological and immunological sex-associated differences (sexual dimorphism) in HIV infection have been recognized in males versus females. Social, behavioral, and societal influences play an important role in how the HIV pandemic has affected men and women differently. However, biological factors including anatomical, physiologic, hormonal, and genetic differences in sex chromosomes can each contribute to the distinct characteristics of HIV infection observed in males versus females. One striking example of this is the tendency for women to have lower HIV plasma viral loads than their male counterparts early in infection, though both progress to AIDS at similar rates. Sex differences in acquisition of HIV, innate and adaptive anti-HIV immune responses, efficacy/suitability of specific antiretroviral drugs, and viral pathogenesis have all been identified. Sex differences also have the potential to affect viral persistence, latency, and cure approaches. In this brief review, we summarize the major biological male/female sex differences in HIV infection and their importance to viral acquisition, pathogenesis, treatment, and cure efforts.
Collapse
Affiliation(s)
- Jose A. Moran
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
| | - Shireen R. Turner
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, United States
- Department of Medicine (Division of Infectious Diseases), School of Medicine, University of California, Irvine, CA, United States
| |
Collapse
|
45
|
Bshesh K, Khan W, Vattoth AL, Janjua E, Nauman A, Almasri M, Mohamed Ali A, Ramadorai V, Mushannen B, AlSubaie M, Mohammed I, Hammoud M, Paul P, Alkaabi H, Haji A, Laws S, Zakaria D. Lymphadenopathy post-COVID-19 vaccination with increased FDG uptake may be falsely attributed to oncological disorders: A systematic review. J Med Virol 2022; 94:1833-1845. [PMID: 35060149 PMCID: PMC9015520 DOI: 10.1002/jmv.27599] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has caused a global pandemic that continues to cause numerous deaths to date. Four vaccines have been approved by the Food and Drug Administration as of July 2021 to prevent the transmission of COVID-19: Pfizer, Moderna, AstraZeneca, and Janssen. These vaccines have shown great efficacy and safety profile. One side effect that has been widely reported is post-COVID-19 vaccination lymphadenopathy. Due to the mimicry of the lymphadenopathy for metastases in some oncologic patients, there have been reports of patients who underwent biopsies that showed pathologic confirmation of benign reactive lymphadenopathy secondary to the COVID-19 vaccine. Therefore, understanding the incidence of lymphadenopathy post-COVID-19 vaccinations will help guide radiologists and oncologists in their management of patients, both present oncologic patients, and patients with concerns over their newly presenting lymphadenopathy. A systematic literature search was performed using several databases to identify relevant studies that reported lymphadenopathy post-COVID-19 vaccination. Our results revealed that several cases have been detected in patients undergoing follow-up fluorodeoxyglucose (FDG)-positron emission tomography-computerized tomography scans where lymph nodes ipsilateral to the vaccine injection site show increased uptake of FDG. Thus, knowledge of the incidence of lymphadenopathy may help avoid unnecessary biopsies, interventions, and changes in management for patients, especially oncologic patients who are at risk for malignancies.
Collapse
Affiliation(s)
- Khalifa Bshesh
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Wafa Khan
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Ahamed Lazim Vattoth
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Emmad Janjua
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Areej Nauman
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Muna Almasri
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Ateeque Mohamed Ali
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Vinutha Ramadorai
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Beshr Mushannen
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Mai AlSubaie
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Ibrahim Mohammed
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Mais Hammoud
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Pradipta Paul
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Haya Alkaabi
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Aliyaa Haji
- Division of Medical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Sa'ad Laws
- Distributed eLibrary, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| | - Dalia Zakaria
- Division of Premedical Education, Weill Cornell Medicine‐QatarQatar Foundation, Education CityDohaQatar
| |
Collapse
|
46
|
Kang M, Umbleja T, Ellsworth G, Aberg J, Wilkin T. Effects of Sex, Existing Antibodies, and HIV-1-Related and Other Baseline Factors on Antibody Responses to Quadrivalent HPV Vaccine in Persons With HIV. J Acquir Immune Defic Syndr 2022; 89:414-422. [PMID: 34907980 PMCID: PMC8881300 DOI: 10.1097/qai.0000000000002891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND We compared antibody (Ab) responses to a quadrivalent (types 6, 11, 16, and 18) human papillomavirus (HPV) vaccine between men and women with HIV-1. METHODS A retrospective analysis of participant-level data from published clinical trials of HPV vaccine administered at study entry and at weeks 8 and 24 was conducted separately for baseline Ab undetectable and baseline Ab detectable using Ab titers and titer changes from baseline, respectively, at week 28 and year 1.5. Generalized estimating equations accounted for multiple HPV types and were adjusted for multiple baseline factors, including existing HPV antibodies before vaccination from natural exposure. RESULTS We evaluated 575 participants with CD4+ count >200 cells/mm3, 323 men and 252 women: median ages 46 and 38 years, respectively. Week 28 and year 1.5 Ab titers were similar between men and women regardless of the baseline Ab detection in multivariate models. HIV-1 RNA ≥400 copies/mm3 was associated with a lower week 28 Ab response; in baseline Ab detectable, the baseline HPV Ab titer level, HPV DNA detection, and lower CD4+/CD8+ ratio were also associated with a lower response. CD4+/CD8+ ratio was a stronger predictor in the year 1.5 Ab analysis than in the week 28 analysis. Ab responses among baseline Ab detectable were only somewhat higher than those among baseline Ab undetectable (eg, type 16 week 28 median 3.46 vs 3.20 log10 mMU/mL) despite the existing baseline titer (median 1.74). CONCLUSIONS We did not find any sex differences of serologic response to HPV vaccine. Ab titer gain was lower in those with preexisting antibodies due to previous natural infection.
Collapse
Affiliation(s)
- Minhee Kang
- Center for Biostatistics in AIDS Research in the Department
of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Triin Umbleja
- Center for Biostatistics in AIDS Research in the Department
of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Grant Ellsworth
- Division of Infectious Diseases, Weill Cornell Medicine,
New York, NY
| | - Judith Aberg
- Division of Infectious Diseases, Icahn School of Medicine
at Mount Sinai, New York, NY
| | - Timothy Wilkin
- Division of Infectious Diseases, Weill Cornell Medicine,
New York, NY
| |
Collapse
|
47
|
Brockman MA, Mwimanzi F, Lapointe HR, Sang Y, Agafitei O, Cheung PK, Ennis S, Ng K, Basra S, Lim LY, Yaseen F, Young L, Umviligihozo G, Omondi FH, Kalikawe R, Burns L, Brumme CJ, Leung V, Montaner JSG, Holmes D, DeMarco ML, Simons J, Pantophlet R, Niikura M, Romney MG, Brumme ZL. Reduced Magnitude and Durability of Humoral Immune Responses to COVID-19 mRNA Vaccines Among Older Adults. J Infect Dis 2022; 225:1129-1140. [PMID: 34888688 PMCID: PMC8689804 DOI: 10.1093/infdis/jiab592] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The magnitude and durability of immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines remain incompletely characterized in the elderly. METHODS Anti-spike receptor-binding domain (RBD) antibodies, angiotensin-converting enzyme 2 (ACE2) competition, and virus neutralizing activities were assessed in plasma from 151 health care workers and older adults (range, 24-98 years of age) 1 month following the first vaccine dose, and 1 and 3 months following the second dose. RESULTS Older adults exhibited significantly weaker responses than younger health care workers for all humoral measures evaluated and at all time points tested, except for ACE2 competition activity after 1 vaccine dose. Moreover, older age remained independently associated with weaker responses even after correction for sociodemographic factors, chronic health condition burden, and vaccine-related variables. By 3 months after the second dose, all humoral responses had declined significantly in all participants, and remained significantly lower among older adults, who also displayed reduced binding antibodies and ACE2 competition activity towards the Delta variant. CONCLUSIONS Humoral responses to COVID-19 mRNA vaccines are significantly weaker in older adults, and antibody-mediated activities in plasma decline universally over time. Older adults may thus remain at elevated risk of infection despite vaccination.
Collapse
Affiliation(s)
- Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Francis Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Hope R Lapointe
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Yurou Sang
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Olga Agafitei
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Peter K Cheung
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Siobhan Ennis
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Kurtis Ng
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Simran Basra
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, Canada
| | - Li Yi Lim
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Fatima Yaseen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Landon Young
- Division of Medical Microbiology and Virology, St Paul’s Hospital, Vancouver, Canada
| | | | - F Harrison Omondi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Rebecca Kalikawe
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Laura Burns
- Division of Medical Microbiology and Virology, St Paul’s Hospital, Vancouver, Canada
| | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Victor Leung
- Division of Medical Microbiology and Virology, St Paul’s Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Julio S G Montaner
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Daniel Holmes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada
| | - Janet Simons
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada
| | - Ralph Pantophlet
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Masahiro Niikura
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Marc G Romney
- Division of Medical Microbiology and Virology, St Paul’s Hospital, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| |
Collapse
|
48
|
Fisher JL, Jones EF, Flanary VL, Williams AS, Ramsey EJ, Lasseigne BN. Considerations and challenges for sex-aware drug repurposing. Biol Sex Differ 2022; 13:13. [PMID: 35337371 PMCID: PMC8949654 DOI: 10.1186/s13293-022-00420-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/06/2022] [Indexed: 01/09/2023] Open
Abstract
Sex differences are essential factors in disease etiology and manifestation in many diseases such as cardiovascular disease, cancer, and neurodegeneration [33]. The biological influence of sex differences (including genomic, epigenetic, hormonal, immunological, and metabolic differences between males and females) and the lack of biomedical studies considering sex differences in their study design has led to several policies. For example, the National Institute of Health's (NIH) sex as a biological variable (SABV) and Sex and Gender Equity in Research (SAGER) policies to motivate researchers to consider sex differences [204]. However, drug repurposing, a promising alternative to traditional drug discovery by identifying novel uses for FDA-approved drugs, lacks sex-aware methods that can improve the identification of drugs that have sex-specific responses [7, 11, 14, 33]. Sex-aware drug repurposing methods either select drug candidates that are more efficacious in one sex or deprioritize drug candidates based on if they are predicted to cause a sex-bias adverse event (SBAE), unintended therapeutic effects that are more likely to occur in one sex. Computational drug repurposing methods are encouraging approaches to develop for sex-aware drug repurposing because they can prioritize sex-specific drug candidates or SBAEs at lower cost and time than traditional drug discovery. Sex-aware methods currently exist for clinical, genomic, and transcriptomic information [1, 7, 155]. They have not expanded to other data types, such as DNA variation, which has been beneficial in other drug repurposing methods that do not consider sex [114]. Additionally, some sex-aware methods suffer from poorer performance because a disproportionate number of male and female samples are available to train computational methods [7]. However, there is development potential for several different categories (i.e., data mining, ligand binding predictions, molecular associations, and networks). Low-dimensional representations of molecular association and network approaches are also especially promising candidates for future sex-aware drug repurposing methodologies because they reduce the multiple hypothesis testing burden and capture sex-specific variation better than the other methods [151, 159]. Here we review how sex influences drug response, the current state of drug repurposing including with respect to sex-bias drug response, and how model organism study design choices influence drug repurposing validation.
Collapse
Affiliation(s)
- Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Emma F. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Elizabeth J. Ramsey
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
49
|
Adapen C, Réot L, Nunez N, Cannou C, Marlin R, Lemaître J, d’Agata L, Gilson E, Ginoux E, Le Grand R, Nugeyre MT, Menu E. Local Innate Markers and Vaginal Microbiota Composition Are Influenced by Hormonal Cycle Phases. Front Immunol 2022; 13:841723. [PMID: 35401577 PMCID: PMC8990777 DOI: 10.3389/fimmu.2022.841723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background The female reproductive tract (FRT) mucosa is the first line of defense against sexually transmitted infection (STI). FRT environmental factors, including immune-cell composition and the vaginal microbiota, interact with each other to modulate susceptibility to STIs. Moreover, the menstrual cycle induces important modifications within the FRT mucosa. Cynomolgus macaques are used as a model for the pathogenesis and prophylaxis of STIs. In addition, their menstrual cycle and FRT morphology are similar to women. The cynomolgus macaque vaginal microbiota is highly diverse and similar to dysbiotic vaginal microbiota observed in women. However, the impact of the menstrual cycle on immune markers and the vaginal microbiota in female cynomolgus macaques is unknown. We conducted a longitudinal study covering three menstrual cycles in cynomolgus macaques. The evolution of the composition of the vaginal microbiota and inflammation (cytokine/chemokine profile and neutrophil phenotype) in the FRT and blood was determined throughout the menstrual cycle. Results Cervicovaginal cytokine/chemokine concentrations were affected by the menstrual cycle, with a peak of production during menstruation. We observed three main cervicovaginal neutrophil subpopulations: CD11bhigh CD101+ CD10+ CD32a+, CD11bhigh CD101+ CD10- CD32a+, and CD11blow CD101low CD10- CD32a-, of which the proportion varied during the menstrual cycle. During menstruation, there was an increase in the CD11bhigh CD101+ CD10+ CD32a+ subset of neutrophils, which expressed higher levels of CD62L. Various bacterial taxa in the vaginal microbiota showed differential abundance depending on the phase of the menstrual cycle. Compilation of the factors that vary according to hormonal phase showed the clustering of samples collected during menstruation, characterized by a high concentration of cytokines and an elevated abundance of the CD11bhigh CD101+ CD10+ CD32a+ CD62L+ neutrophil subpopulation. Conclusions We show a significant impact of menstruation on the local environment (cytokine production, neutrophil phenotype, and vaginal microbiota composition) in female cynomolgus macaques. Menstruation triggers increased production of cytokines, shift of the vaginal microbiota composition and the recruitment of mature/activated neutrophils from the blood to the FRT. These results support the need to monitor the menstrual cycle and a longitudinal sampling schedule for further studies in female animals and/or women focusing on the mucosal FRT environment.
Collapse
Affiliation(s)
- Cindy Adapen
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | - Louis Réot
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | | | - Claude Cannou
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| | - Romain Marlin
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | - Julien Lemaître
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | | | | | | | - Roger Le Grand
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
| | - Marie-Thérèse Nugeyre
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases [IMVA-HB/Infectious Disease Models and Innovative Therapies (IDMIT)], Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
50
|
Li Z, Xiang T, Liang B, Deng H, Wang H, Feng X, Quan X, Wang X, Li S, Lu S, Yang X, Wang B, Zelinskyy G, Trilling M, Sutter K, Lu M, Dittmer U, Yang D, Zheng X, Liu J. Characterization of SARS-CoV-2-Specific Humoral and Cellular Immune Responses Induced by Inactivated COVID-19 Vaccines in a Real-World Setting. Front Immunol 2022; 12:802858. [PMID: 35003131 PMCID: PMC8727357 DOI: 10.3389/fimmu.2021.802858] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023] Open
Abstract
While the immunogenicity of inactivated vaccines against coronavirus disease 2019 (COVID-19) has been characterized in several well-conducted clinical trials, real-world evidence concerning immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) raised by such vaccines is currently missing. Here, we comprehensively characterized various parameters of SARS-CoV-2-specific cellular and humoral immune responses induced by inactivated COVID-19 vaccines in 126 individuals under real-world conditions. After two doses of vaccination, S-receptor binding domain IgG (S-RBD IgG) and neutralizing antibody (NAb) were detected in 87.06% (74/85) and 78.82% (67/85) of individuals, respectively. Female participants developed higher concentrations of S-RBD IgG and NAb compared to male vaccinees. Interestingly, a longer dosing interval between the first and second vaccination resulted in a better long-term SARS-CoV-2 S-RBD IgG response. The frequencies of CD4+ T cells that produce effector cytokines (IFN-γ, IL-2, and TNF-α) in response to stimulation with peptide pools corresponding to the SARS-CoV-2 spike (S), nucleocapsid (N) or membrane (M) protein were significantly higher in individuals received two doses of vaccine than those received one dose of vaccine and unvaccinated individuals. S, N, or M-specific CD4+ and CD8+ T cell responses were detectable in 95.83% (69/72) and 54.16% (39/72) of double-vaccinated individuals, respectively. The longitudinal analysis demonstrated that CD4+ T cell responses recognizing S, N, and M waned quickly after a single vaccine dose, but were boosted and became more sustained following a second dose. Overall, we provide a comprehensive characterization of immune responses induced by inactivated COVID-19 vaccines in real-world settings, suggesting that both humoral and cellular SARS-CoV-2-specific immunity are elicited in the majority of individuals after two doses of inactivated COVID-19 vaccines.
Collapse
Affiliation(s)
- Ziwei Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Tiandan Xiang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Boyun Liang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Deng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xuemei Feng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xufeng Quan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Sumeng Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Sihong Lu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Gennadiy Zelinskyy
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China.,Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Mirko Trilling
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China.,Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China.,Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China.,Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China.,Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|