1
|
Yan K, Mao L, Lan J, Xiao Z. Advancements in dengue vaccines: A historical overview and pro-spects for following next-generation candidates. J Microbiol 2025; 63:e2410018. [PMID: 40044132 DOI: 10.71150/jm.2410018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/06/2025] [Indexed: 05/13/2025]
Abstract
Dengue, caused by four serotypes of dengue viruses (DENV-1 to DENV-4), is the most prevalent and widely mosquito-borne viral disease affecting humans. Dengue virus (DENV) infection has been reported in over 100 countries, and approximately half of the world's population is now at risk. The paucity of universally licensed DENV vaccines highlights the urgent need to address this public health concern. Action and atten-tion to antibody-dependent enhancement increase the difficulty of vaccine development. With the worsen-ing dengue fever epidemic, Dengvaxia® (CYD-TDV) and Qdenga® (TAK-003) have been approved for use in specific populations in affected areas. However, these vaccines do not provide a balanced immune response to all four DENV serotypes and the vaccination cannot cover all populations. There is still a need to develop a safe, broad-spectrum, and effective vaccine to address the increasing number of dengue cases worldwide. This review provides an overview of the existing DENV vaccines, as well as potential candidates for future studies on DENV vaccine development, and discusses the challenges and possible solutions in the field.
Collapse
Affiliation(s)
- Kai Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lingjing Mao
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, P. R. China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
2
|
De Kesel W, Vanden Broecke B, Borremans B, Fourchault L, Willems E, Ceulemans A, Sabuni C, Massawe A, Makundi RH, Leirs H, Peeters M, Verheyen E, Gryseels S, Mariën J, Ariën KK. Antibodies against medically relevant arthropod-borne viruses in the ubiquitous African rodent Mastomys natalensis. PLoS Negl Trop Dis 2024; 18:e0012233. [PMID: 39231158 PMCID: PMC11404846 DOI: 10.1371/journal.pntd.0012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Over the past decades, the number of arthropod-borne virus (arbovirus) outbreaks has increased worldwide. Knowledge regarding the sylvatic cycle (i.e., non-human hosts/environment) of arboviruses is limited, particularly in Africa, and the main hosts for virus maintenance are unknown. Previous studies have shown the presence of antibodies against certain arboviruses (i.e., chikungunya-, dengue-, and Zika virus) in African non-human primates and bats. We hypothesize that small mammals, specifically rodents, may function as amplifying hosts in anthropogenic environments. The detection of RNA of most arboviruses is complicated by the viruses' short viremic period within their hosts. An alternative to determine arbovirus hosts is by detecting antibodies, which can persist several months. Therefore, we developed a high-throughput multiplex immunoassay to detect antibodies against 15 medically relevant arboviruses. We used this assay to assess approximately 1,300 blood samples of the multimammate mouse, Mastomys natalensis from Tanzania. In 24% of the samples, we detected antibodies against at least one of the tested arboviruses, with high seroprevalences of antibodies reacting against dengue virus serotype one (7.6%) and two (8.4%), and chikungunya virus (6%). Seroprevalence was higher in females and increased with age, which could be explained by inherent immunity and behavioral differences between sexes, and the increased chance of exposure to an arbovirus with age. We evaluated whether antibodies against multiple arboviruses co-occur more often than randomly and found that this may be true for some members of the Flaviviridae and Togaviridae. In conclusion, the development of an assay against a wide diversity of medically relevant arboviruses enabled the analysis of a large sample collection of one of the most abundant African small mammals. Our findings highlight that Mastomys natalensis is involved in the transmission cycle of multiple arboviruses and provide a solid foundation to better understand the role of this ubiquitous rodent in arbovirus outbreaks.
Collapse
Affiliation(s)
- Wim De Kesel
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Benny Borremans
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Wildlife Health Ecology Research Organization, San Diego, California, United States of America
| | - Léa Fourchault
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Elisabeth Willems
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ann Ceulemans
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Virus Ecology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christopher Sabuni
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Apia Massawe
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rhodes H Makundi
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | - Martine Peeters
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Erik Verheyen
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Sophie Gryseels
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Virus Ecology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Akter R, Tasneem F, Das S, Soma MA, Georgakopoulos-Soares I, Juthi RT, Sazed SA. Approaches of dengue control: vaccine strategies and future aspects. Front Immunol 2024; 15:1362780. [PMID: 38487527 PMCID: PMC10937410 DOI: 10.3389/fimmu.2024.1362780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Dengue, caused by the dengue virus (DENV), affects millions of people worldwide every year. This virus has two distinct life cycles, one in the human and another in the mosquito, and both cycles are crucial to be controlled. To control the vector of DENV, the mosquito Aedes aegypti, scientists employed many techniques, which were later proved ineffective and harmful in many ways. Consequently, the attention shifted to the development of a vaccine; researchers have targeted the E protein, a surface protein of the virus and the NS1 protein, an extracellular protein. There are several types of vaccines developed so far, such as live attenuated vaccines, recombinant subunit vaccines, inactivated virus vaccines, viral vectored vaccines, DNA vaccines, and mRNA vaccines. Along with these, scientists are exploring new strategies of developing improved version of the vaccine by employing recombinant DNA plasmid against NS1 and also aiming to prevent the infection by blocking the DENV life cycle inside the mosquitoes. Here, we discussed the aspects of research in the field of vaccines until now and identified some prospects for future vaccine developments.
Collapse
Affiliation(s)
- Runa Akter
- Department of Pharmacy, Independent University Bangladesh, Dhaka, Bangladesh
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Faria Tasneem
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Shuvo Das
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | | | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rifat Tasnim Juthi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saiful Arefeen Sazed
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
4
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
5
|
Wilken L, Stelz S, Agac A, Sutter G, Prajeeth CK, Rimmelzwaan GF. Recombinant Modified Vaccinia Virus Ankara Expressing a Glycosylation Mutant of Dengue Virus NS1 Induces Specific Antibody and T-Cell Responses in Mice. Vaccines (Basel) 2023; 11:vaccines11040714. [PMID: 37112626 PMCID: PMC10140942 DOI: 10.3390/vaccines11040714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
The four serotypes of dengue virus (DENV1-4) continue to pose a major public health threat. The first licenced dengue vaccine, which expresses the surface proteins of DENV1-4, has performed poorly in immunologically naïve individuals, sensitising them to antibody-enhanced dengue disease. DENV non-structural protein 1 (NS1) can directly induce vascular leakage, the hallmark of severe dengue disease, which is blocked by NS1-specific antibodies, making it an attractive target for vaccine development. However, the intrinsic ability of NS1 to trigger vascular leakage is a potential drawback of its use as a vaccine antigen. Here, we modified DENV2 NS1 by mutating an N-linked glycosylation site associated with NS1-induced endothelial hyperpermeability and used modified vaccinia virus Ankara (MVA) as a vector for its delivery. The resulting construct, rMVA-D2-NS1-N207Q, displayed high genetic stability and drove efficient secretion of NS1-N207Q from infected cells. Secreted NS1-N207Q was composed of dimers and lacked N-linked glycosylation at position 207. Prime-boost immunisation of C57BL/6J mice induced high levels of NS1-specific antibodies binding various conformations of NS1 and elicited NS1-specific CD4+ T-cell responses. Our findings support rMVA-D2-NS1-N207Q as a promising and potentially safer alternative to existing NS1-based vaccine candidates, warranting further pre-clinical testing in a relevant mouse model of DENV infection.
Collapse
Affiliation(s)
- Lucas Wilken
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Sonja Stelz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Ayse Agac
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig Maximilian University (LMU), 80539 Munich, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), 30559 Hannover, Germany
| |
Collapse
|
6
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
7
|
Combination of E- and NS1-Derived DNA Vaccines: The Immune Response and Protection Elicited in Mice against DENV2. Viruses 2022; 14:v14071452. [PMID: 35891431 PMCID: PMC9323404 DOI: 10.3390/v14071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
The occurrence of dengue disease has increased radically in recent decades. Previously, we constructed the pE1D2 and pcTPANS1 DNA vaccines encoding the DENV2 envelope (E) and non-structural 1 (NS1) proteins, respectively. To decrease the number of plasmids in a tetravalent candidate vaccine, we constructed a bicistronic plasmid, pNS1/E/D2, encoding these two proteins simultaneously. We evaluated the protective immunity induced in mice vaccinated with the pNS1/E/D2 candidate and compared to the responses elicited by immunization with the former vaccines isolated or in combination. We transfected BHK-21 cells with the different plasmids and detected recombinant proteins by immunofluorescence and mass spectrometry assays to confirm antigen expression. BALB/c mice were inoculated with the DNA vaccines followed by a lethal DENV2 challenge. ELISA, PRNT50, and IFN-gamma ELISPOT assays were performed for the investigation of the humoral and cellular responses. We observed the concomitant expression of NS1 and E proteins in pNS1/E/D2-transfected cells. All E-based vaccines induced anti-E and neutralizing antibodies. However, anti-NS1 antibodies were only observed after immunization with the pcTPANS1 administered alone or combined with pE1D2. In contrast, splenocytes from pNS1/E/D2- or pcTPANS1 + pE1D2-vaccinated animals responded to NS1- and E-derived synthetic peptides. All the DNA vaccines conferred protection against DENV2.
Collapse
|
8
|
Lebeau G, Lagrave A, Ogire E, Grondin L, Seriacaroupin S, Moutoussamy C, Mavingui P, Hoarau JJ, Roche M, Krejbich-Trotot P, Desprès P, Viranaicken W. Viral Toxin NS1 Implication in Dengue Pathogenesis Making It a Pivotal Target in Development of Efficient Vaccine. Vaccines (Basel) 2021; 9:vaccines9090946. [PMID: 34579183 PMCID: PMC8471935 DOI: 10.3390/vaccines9090946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
The mosquito-borne viral disease dengue is a global public health problem causing a wide spectrum of clinical manifestations ranging from mild dengue fever to severe dengue with plasma leakage and bleeding which are often fatal. To date, there are no specific medications to treat dengue and prevent the risk of hemorrhage. Dengue is caused by one of four genetically related but antigenically distinct serotypes DENV-1–DENV-4. The growing burden of the four DENV serotypes has intensified both basic and applied research to better understand dengue physiopathology. Research has shown that the secreted soluble hexameric form of DENV nonstructural protein-1 (sNS1) plays a significant role in the pathogenesis of severe dengue. Here, we provide an overview of the current knowledge about the role of sNS1 in the immunopathogenesis of dengue disease. We discuss the potential use of sNS1 in future vaccine development and its potential to improve dengue vaccine efficiency, particularly against severe dengue illness.
Collapse
|
9
|
Warner NL, Frietze KM. Development of Bacteriophage Virus-Like Particle Vaccines Displaying Conserved Epitopes of Dengue Virus Non-Structural Protein 1. Vaccines (Basel) 2021; 9:726. [PMID: 34358143 PMCID: PMC8310087 DOI: 10.3390/vaccines9070726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Dengue virus (DENV) is a major global health problem, with over half of the world's population at risk of infection. Despite over 60 years of efforts, no licensed vaccine suitable for population-based immunization against DENV is available. Here, we describe efforts to engineer epitope-based vaccines against DENV non-structural protein 1 (NS1). NS1 is present in DENV-infected cells as well as secreted into the blood of infected individuals. NS1 causes disruption of endothelial cell barriers, resulting in plasma leakage and hemorrhage. Immunizing against NS1 could elicit antibodies that block NS1 function and also target NS1-infected cells for antibody-dependent cell cytotoxicity. We identified highly conserved regions of NS1 from all four DENV serotypes. We generated synthetic peptides to these regions and chemically conjugated them to bacteriophage Qβ virus-like particles (VLPs). Mice were immunized two times with the candidate vaccines and sera were tested for the presence of antibodies that bound to the cognate peptide, recombinant NS1 from all four DENV serotypes, and DENV-2-infected cells. We found that two of the candidate vaccines elicited antibodies that bound to recombinant NS1, and one candidate vaccine elicited antibodies that bound to DENV-infected cells. These results show that an epitope-specific vaccine against conserved regions of NS1 could be a promising approach for DENV vaccines or therapeutics to bind circulating NS1 protein.
Collapse
Affiliation(s)
- Nikole L. Warner
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA;
| | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA;
- Clinical and Translational Science Center, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Wan J, Wang T, Xu J, Ouyang T, Wang Q, Zhang Y, Weng S, Li Y, Wang Y, Xin X, Wang X, Li S, Kong L. Novel Japanese encephalitis virus NS1-based vaccine: Truncated NS1 fused with E. coli heat labile enterotoxin B subunit. EBioMedicine 2021; 67:103353. [PMID: 33971403 PMCID: PMC8122160 DOI: 10.1016/j.ebiom.2021.103353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Current vaccines against Japanese encephalitis virus (JEV) of flaviviruses have some disadvantages, such as the risk of virulent reversion. Non-structural protein NS1 is conserved among flaviviruses and confers immune protection without the risk of antibody-dependent enhancement (ADE). Therefore, NS1 has become a promising vaccine candidate against flaviviruses. METHODS A NS1-based vaccine (LTB-NS1∆63) with a truncated NS1 protein (NS1∆63) fused to E. coli heat-labile enterotoxin B subunit (LTB) was expressed in E.coli and explored for its ability to induce immune responses. Safety of LTB-NS1∆63 was assessed by determining its toxicity in vitro and in vivo. Protective capability of LTB-NS1∆63 and its-induced antisera was evaluated in the mice challenged with JEV by analyzing mortality and morbidity. FINDINGS LTB-NS1∆63 induced immune responses to a similar level as LTB-NS1, but more robust than NS1∆63 alone, particularly in the context of oral immunization of mice. Oral vaccination of LTB-NS1∆63 led to a higher survival rate than that of NS1∆63 or live-attenuated JEV vaccine SA14-14-2 in the mice receiving lethal JEV challenge. LTB-NS1∆63 protein also significantly decreases the morbidity of JEV-infected mice. In addition, passive transfer of LTB-NS1∆63-induced antisera provides a protection against JEV infection in mice. INTERPRETATION NS1∆63 bears JEV NS1 antigenicity. Besides, LTB-NS1∆63 could serve as a novel protein-based mucosa vaccine targeting JEV and other flaviviruses. FUNDING This work was supported by the National Natural Science Foundation, Jiangxi Province Science and Technology Committee, Education Department of Jiangxi Province.
Collapse
Affiliation(s)
- Jiawu Wan
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jing Xu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Tao Ouyang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Qianruo Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanni Zhang
- Jiangxi Province Center for Disease Control and Prevention, Nanchang, Jiangxi, China
| | - Shiqi Weng
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yihan Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoling Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sha Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
11
|
Idris F, Ting DHR, Alonso S. An update on dengue vaccine development, challenges, and future perspectives. Expert Opin Drug Discov 2021. [DOI: 10.1080/17460441.2020.1811675
expr 880867630 + 907120263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Fakhriedzwan Idris
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Donald Heng Rong Ting
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Sharma M, Glasner DR, Watkins H, Puerta-Guardo H, Kassa Y, Egan MA, Dean H, Harris E. Magnitude and Functionality of the NS1-Specific Antibody Response Elicited by a Live-Attenuated Tetravalent Dengue Vaccine Candidate. J Infect Dis 2020; 221:867-877. [PMID: 30783676 DOI: 10.1093/infdis/jiz081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dengue virus (DENV) can cause life-threatening disease characterized by endothelial dysfunction and vascular leakage. DENV nonstructural protein 1 (NS1) induces human endothelial hyperpermeability and vascular leak in mice, and NS1 vaccination confers antibody-mediated protective immunity. We evaluated the magnitude, cross-reactivity, and functionality of NS1-specific IgG antibody responses in sera from a phase 2 clinical trial of Takeda's live-attenuated tetravalent dengue vaccine candidate (TAK-003). METHODS We developed an enzyme-linked immunosorbent assay to measure anti-DENV NS1 IgG in sera from DENV-naive or preimmune subjects pre- and postvaccination with TAK-003 and evaluated the functionality of this response using in vitro models of endothelial permeability. RESULTS TAK-003 significantly increased DENV-2 NS1-specific IgG in naive individuals, which cross-reacted with DENV-1, -3, and -4 NS1 to varying extents. NS1-induced endothelial hyperpermeability was unaffected by prevaccination serum from naive subjects but was variably inhibited by serum from preimmune subjects. After TAK-003 vaccination, all samples from naive and preimmune vaccinees completely abrogated DENV-2 NS1-induced hyperpermeability and cross-inhibited hyperpermeability induced by DENV-1, -3, and -4 NS1. Inhibition of NS1-induced hyperpermeability correlated with NS1-specific IgG concentrations. Postvaccination sera also prevented NS1-induced degradation of endothelial glycocalyx components. CONCLUSION We provide evidence for functional NS1-specific IgG responses elicited by a candidate dengue vaccine. CLINICAL TRIALS REGISTRATION NCT01511250.
Collapse
Affiliation(s)
- Mayuri Sharma
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Heather Watkins
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| | - Yoseph Kassa
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Michael A Egan
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Hansi Dean
- Discovery Research, Vaccines Business Unit, Takeda Pharmaceuticals Inc., Cambridge, Massachusetts
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley
| |
Collapse
|
13
|
Alves RPDS, Andreata-Santos R, de Freitas CL, Pereira LR, Fabris-Maeda DLN, Rodrigues-Jesus MJ, Pereira SS, Carvalho AAVB, Sales NS, Peron JPS, Amorim JH, Ferreira LCDS. Protective Immunity to Dengue Virus Induced by DNA Vaccines Encoding Nonstructural Proteins in a Lethal Challenge Immunocompetent Mouse Model. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:558984. [PMID: 35047876 PMCID: PMC8757693 DOI: 10.3389/fmedt.2020.558984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022] Open
Abstract
Dengue virus represents the main arbovirus affecting humans, but there are no effective drugs or available worldwide licensed vaccine formulations capable of conferring full protection against the infection. Experimental studies and results generated after the release of the licensed anti-DENV vaccine demonstrated that induction of high-titer neutralizing antibodies does not represent the sole protection correlate and that, indeed, T cell-based immune responses plays a relevant role in the establishment of an immune protective state. In this context, this study aimed to further demonstrate protective features of immune responses elicited in immunocompetent C57BL/6 mice immunized with three plasmids encoding DENV2 nonstructural proteins (NS1, NS3, and NS5), which were subsequently challenged with a DENV2 strain naturally capable of inducing lethal encephalitis in immunocompetent mouse strains. The animals were immunized intramuscularly with the DNA vaccine mix and complete protection was observed among vaccinated mice. Vaccine induced protection correlated with the cytokine profiles expressed by spleen cells and brain-infiltrating mononuclear cells. The results confirm the pivotal role of cellular immune responses targeting nonstructural DENV proteins and validate the experimental model based on a DENV2 strain capable of infecting and killing immunocompetent mice as a tool for the evaluation of protective immunity induced by anti-DENV vaccines.
Collapse
Affiliation(s)
- Rúbens Prince dos Santos Alves
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Robert Andreata-Santos
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Carla Longo de Freitas
- Laboratório de Interações Neuroimunes, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Lennon Ramos Pereira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Denicar Lina Nascimento Fabris-Maeda
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mônica Josiane Rodrigues-Jesus
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Santos Pereira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Natiely Silva Sales
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jaime Henrique Amorim
- Laboratório de Microbiologia, Centro das Ciências Biológicas e da Saúde, Universidade Federal Do Oeste da Bahia, Barreiras, Brazil
| | - Luís Carlos de Souza Ferreira
- Laboratório de Desenvolvimento de Vacinas, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Luís Carlos de Souza Ferreira
| |
Collapse
|
14
|
Intradermal Delivery of Dendritic Cell-Targeting Chimeric mAbs Genetically Fused to Type 2 Dengue Virus Nonstructural Protein 1. Vaccines (Basel) 2020; 8:vaccines8040565. [PMID: 33019498 PMCID: PMC7712967 DOI: 10.3390/vaccines8040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Targeting dendritic cells (DCs) by means of monoclonal antibodies (mAbs) capable of binding their surface receptors (DEC205 and DCIR2) has previously been shown to enhance the immunogenicity of genetically fused antigens. This approach has been repeatedly demonstrated to enhance the induced immune responses to passenger antigens and thus represents a promising therapeutic and/or prophylactic strategy against different infectious diseases. Additionally, under experimental conditions, chimeric αDEC205 or αDCIR2 mAbs are usually administered via an intraperitoneal (i.p.) route, which is not reproducible in clinical settings. In this study, we characterized the delivery of chimeric αDEC205 or αDCIR2 mAbs via an intradermal (i.d.) route, compared the elicited humoral immune responses, and evaluated the safety of this potential immunization strategy under preclinical conditions. As a model antigen, we used type 2 dengue virus (DENV2) nonstructural protein 1 (NS1). The results show that the administration of chimeric DC-targeting mAbs via the i.d. route induced humoral immune responses to the passenger antigen equivalent or superior to those elicited by i.p. immunization with no toxic effects to the animals. Collectively, these results clearly indicate that i.d. administration of DC-targeting chimeric mAbs presents promising approaches for the development of subunit vaccines, particularly against DENV and other flaviviruses.
Collapse
|
15
|
O'Donnell KL, Espinosa DA, Puerta-Guardo H, Biering SB, Warnes CM, Schiltz J, Nilles ML, Li J, Harris E, Bradley DS. Avian anti-NS1 IgY antibodies neutralize dengue virus infection and protect against lethal dengue virus challenge. Antiviral Res 2020; 183:104923. [PMID: 32979401 DOI: 10.1016/j.antiviral.2020.104923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023]
Abstract
Dengue is the most prevalent arboviral disease in humans and a continually increasing global public health burden. To date, there are no approved antiviral therapies against dengue virus (DENV) and the only licensed vaccine, Dengvaxia, is exclusively indicated for individuals with prior DENV infection. Endothelial hyperpermeability and vascular leak, pathogenic hallmarks of severe dengue disease, can be directly triggered by DENV non-structural protein 1 (NS1). As such, anti-NS1 antibodies can prevent NS1-triggered endothelial dysfunction in vitro and pathogenesis in vivo. Recently, goose-derived anti-DENV immunoglobulin Y (IgY) antibodies were shown to neutralize DENV and Zika virus (ZIKV) infection without adverse effects, such as antibody-dependent enhancement (ADE). In this study, we used egg yolks from DENV-immunized geese to purify IgY antibodies specific to DENV NS1 epitopes. We determined that 2 anti-NS1 IgY antibodies, NS1-1 and NS1-8, were capable of neutralizing DENV infection in vitro. In addition, these antibodies did not cross-react with the DENV Envelope (E) protein nor enhance DENV or ZIKV infection in vitro. Intriguingly, NS1-8, but not NS1-1, partially blocked NS1-induced endothelial dysfunction in vitro while neither antibody blocked binding of soluble NS1 to cells. Finally, prophylactic treatment of mice with NS1-8 conferred significant protection against lethal DENV challenge. Although further research is needed to define the mechanism of action of these antibodies, our findings highlight the potential of anti-NS1 IgY as a promising prophylactic approach against DENV infection.
Collapse
Affiliation(s)
- Kyle L O'Donnell
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Colin M Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Matthew L Nilles
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Jeffrey Li
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| | - David S Bradley
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| |
Collapse
|
16
|
Araujo SC, Pereira LR, Alves RPS, Andreata-Santos R, Kanno AI, Ferreira LCS, Gonçalves VM. Anti-Flavivirus Vaccines: Review of the Present Situation and Perspectives of Subunit Vaccines Produced in Escherichia coli. Vaccines (Basel) 2020; 8:vaccines8030492. [PMID: 32878023 PMCID: PMC7564369 DOI: 10.3390/vaccines8030492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
This article aims to review the present status of anti-flavivirus subunit vaccines, both those at the experimental stage and those already available for clinical use. Aspects regarding development of vaccines to Yellow Fever virus, (YFV), Dengue virus (DENV), West Nile virus (WNV), Zika virus (ZIKV), and Japanese encephalitis virus (JEV) are highlighted, with particular emphasis on purified recombinant proteins generated in bacterial cells. Currently licensed anti-flavivirus vaccines are based on inactivated, attenuated, or virus-vector vaccines. However, technological advances in the generation of recombinant antigens with preserved structural and immunological determinants reveal new possibilities for the development of recombinant protein-based vaccine formulations for clinical testing. Furthermore, novel proposals for multi-epitope vaccines and the discovery of new adjuvants and delivery systems that enhance and/or modulate immune responses can pave the way for the development of successful subunit vaccines. Nonetheless, advances in this field require high investments that will probably not raise interest from private pharmaceutical companies and, therefore, will require support by international philanthropic organizations and governments of the countries more severely stricken by these viruses.
Collapse
Affiliation(s)
- Sergio C. Araujo
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Lennon R. Pereira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Rubens P. S. Alves
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Robert Andreata-Santos
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
| | - Alex I. Kanno
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
| | - Luis Carlos S. Ferreira
- Laboratory of Vaccine Development, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo–SP 05508-000, Brazil; (L.R.P.); (R.P.S.A.); (R.A.-S.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| | - Viviane M. Gonçalves
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo–SP 05503-900, Brazil; (S.C.A.); (A.I.K.)
- Correspondence: (L.C.S.F.); (V.M.G.)
| |
Collapse
|
17
|
Idris F, Ting DHR, Alonso S. An update on dengue vaccine development, challenges, and future perspectives. Expert Opin Drug Discov 2020; 16:47-58. [PMID: 32838577 DOI: 10.1080/17460441.2020.1811675] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION From both a public health and economic perspective, vaccination is arguably the most effective approach to combat endemic and pandemic infectious diseases. Dengue affects more than 100 countries in the tropical and subtropical world, with 100-400 million infections every year. In the wake of the recent setback faced by Dengvaxia, the only FDA-approved dengue vaccine, safer and more effective dengue vaccines candidates are moving along the clinical pipeline. AREA COVERED This review provides an update of the latest outcomes of dengue vaccine clinical trials. In the light of recent progress made in our understanding of dengue pathogenesis and immune correlates of protection, novel vaccine strategies have emerged with promising second-generation dengue vaccine candidates. Finally, the authors discuss the dengue-specific challenges that remain to be addressed and overcome. EXPERT OPINION The authors propose to explore various adjuvants and delivery systems that may help improve the design of safe, effective, and affordable vaccines against dengue. They also challenge the concept of a 'universal' dengue vaccine as increasing evidence support that DENV strains have evolved different virulence mechanisms.
Collapse
Affiliation(s)
- Fakhriedzwan Idris
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| | - Donald Heng Rong Ting
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| | - Sylvie Alonso
- Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore , Singapore, Singapore
| |
Collapse
|
18
|
Jearanaiwitayakul T, Sunintaboon P, Chawengkittikul R, Limthongkul J, Midoeng P, Warit S, Ubol S. Nanodelivery system enhances the immunogenicity of dengue-2 nonstructural protein 1, DENV-2 NS1. Vaccine 2020; 38:6814-6825. [PMID: 32829977 DOI: 10.1016/j.vaccine.2020.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/19/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Nonstructural protein 1 (NS1) of dengue virus (DENV) is currently recognized as a dengue vaccine candidate. Unfortunately, most of non-replicating immunogens typically stimulate unsatisfactory immune responses, thus, the additional adjuvant is required. In this study, C-terminal truncated DENV-2 NS1 loaded in N,N,N, trimethyl chitosan nanoparticles (NS11-279TMC NPs) was prepared through the ionic gelation method. The immunogenicity of NS11-279TMC NPs was investigated using human ex vivo as well as the murine model. Through a human ex vivo model, it was demonstrated in this study that not only can TMC particles effectively deliver NS11-279 protein into monocyte-derived dendritic cells (MoDCs), but also potently stimulate those cells, resulting in increased expression of maturation marker (CD83), costimulating molecules (CD80, CD86 and HLA-DR) and markedly secreted various types of innate immune cytokines/chemokines. Moreover, mice administered with NS11-279TMC NPs strongly elicited both antibody and T cell responses, produced higher levels of IgG, IgG1, IgG2a and potently activated CD8+ T cells, as compared to mice administered with soluble NS11-279. Importantly, we further demonstrated that anti-NS11-279 antibody induced by this platform of NS11-279 effectively eliminated DENV-2 infected cells through antibody dependent complement-mediated cytotoxicity. Significantly, anti-DENV2 NS11-279 antibody exerted cross-antiviral activity against DENV-1 and -4 but not against DENV-3 infected cells. These findings demonstrate that TMC exerts a desirable adjuvant for enhancing delivery and antigenicity of NS1 based dengue vaccine.
Collapse
Affiliation(s)
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Salaya, Nakornpatom 73170, Thailand.
| | | | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Panuwat Midoeng
- Division of Pathology, Army Institute of Pathology, Phramongkutklao Hospital, Bangkok, Thailand.
| | - Saradee Warit
- Tuberculosis Research Laboratory, Medical Molecular Biology Research Unit, BIOTEC, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand..
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
19
|
Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design? Pathogens 2020; 9:pathogens9060470. [PMID: 32549226 PMCID: PMC7350362 DOI: 10.3390/pathogens9060470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The four serotypes of dengue virus are the most widespread causes of arboviral disease, currently placing half of the human population at risk of infection. Pre-existing immunity to one dengue virus serotype can predispose to severe disease following secondary infection with a different serotype. The phenomenon of immune enhancement has complicated vaccine development and likely explains the poor long-term safety profile of a recently licenced dengue vaccine. Therefore, alternative vaccine strategies should be considered. This review summarises studies dissecting the adaptive immune responses to dengue virus infection and (experimental) vaccination. In particular, we discuss the roles of (i) neutralising antibodies, (ii) antibodies to non-structural protein 1, and (iii) T cells in protection and pathogenesis. We also address how these findings could translate into next-generation vaccine approaches that mitigate the risk of enhanced dengue disease. Finally, we argue that the development of a safe and efficacious dengue vaccine is an attainable goal.
Collapse
|
20
|
Yadav SK, Singh M, Sarkaraisamy P. Expression and purification of catalytic domain of botulinum neurotoxin serotype ‘F’: immunological characterization and its application in detection. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1740731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shiv Kumar Yadav
- BDTE Division, Defence Research & Development Establishment, Gwalior, India
| | - Monika Singh
- BDTE Division, Defence Research & Development Establishment, Gwalior, India
| | | |
Collapse
|
21
|
Kum DB, Boudewijns R, Ma J, Mishra N, Schols D, Neyts J, Dallmeier K. A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice. Emerg Microbes Infect 2020; 9:520-533. [PMID: 32116148 PMCID: PMC7067203 DOI: 10.1080/22221751.2020.1730709] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The recent Zika virus (ZIKV) epidemic in the Americas, followed by the yellow fever virus (YFV) outbreaks in Angola and Brazil highlight the urgent need for safe and efficient vaccines against the ZIKV as well as much greater production capacity for the YFV-17D vaccine. Given that the ZIKV and the YFV are largely prevalent in the same geographical areas, vaccines that would provide dual protection against both pathogens may obviously offer a significant benefit. We have recently engineered a chimeric vaccine candidate (YF-ZIKprM/E) by swapping the sequences encoding the YFV-17D surface glycoproteins prM/E by the corresponding sequences of the ZIKV. A single vaccine dose of YF-ZIKprM/E conferred complete protection against a lethal challenge with wild-type ZIKV strains. Surprisingly, this vaccine candidate also efficiently protected against lethal YFV challenge in various mouse models. We demonstrate that CD8+ but not CD4+ T cells, nor ZIKV neutralizing antibodies are required to confer protection against YFV. The chimeric YF-ZIKprM/E vaccine may thus be considered as a dual vaccine candidate efficiently protecting mice against both the ZIKV and the YFV, and this following a single dose immunization. Our finding may be particularly important in the rational design of vaccination strategies against flaviviruses, in particular in areas where YFV and ZIKV co-circulate.
Collapse
Affiliation(s)
- Dieudonné Buh Kum
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Robbert Boudewijns
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Niraj Mishra
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Dominique Schols
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| |
Collapse
|
22
|
Abstract
Dengue virus (DENV) belongs to the family Flaviviridae, genus Flavivirus. It is a single-stranded positive-sense ribonucleic acid virus with 10,700 bases. The genus Flavivirus includes other arthropod borne viruses such as yellow fever virus, West Nile virus, Zika virus, tick-borne encephalitis virus. It infects ~50–200 million people annually, putting over 3.6 billion people living in tropical regions at risk and causing ~20,000 deaths annually. The expansion of dengue is attributed to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement, and also viral evolution. There are four antigenically different serotypes of DENV based on the differences in their viral structural and nonstructural proteins. DENV infection causes a spectrum of illness ranging from asymptomatic to dengue fever to severe dengue shock syndrome. Infection with one serotype confers lifelong immunity against that serotype, but heterologus infection leads to severe dengue hemorrhagic fever due to antibody-dependent enhancement. Diagnosis of dengue infections is based mainly on serological detection of either antigen in acute cases or antibodies in both acute and chronic infection. Viral detection and real-time PCR detection though helpful is not feasible in resource poor setup. Treatment of dengue depends on symptomatic management along with fluid resuscitation and may require platelet transfusion. Although vaccine development is in late stages of development, developing a single vaccine against four serotypes often causes serious challenges to researchers; hence, the main stay of prevention is vector control and management.
Collapse
|
23
|
Faheem M, Barbosa Lima JC, Jamal SB, Silva PA, Barbosa JARG. An insight into dengue virus proteins as potential drug/vaccine targets. Future Virol 2019. [DOI: 10.2217/fvl-2019-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dengue virus (DENV) is an arbovirus that belongs to family flaviviridae. Its genome is composed of a single stranded RNA molecule that encodes a single polyprotein. The polyprotein is processed by viral and cellular proteases to generate ten viral proteins. There are four antigenically distinct serotypes of DENV (DENV1, DENV2, DENV3 and DENV4), which are genetically related. Although protein variability is a major problem in dengue treatment, the functional and structural studies of individual proteins are equally important in treatment development. The data accumulated on dengue proteins are significant to provide detailed understanding of viral infection, replication, host-immune evasion and pathogenesis. In this review, we summarized the detailed current knowledge about DENV proteins.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, The Mall road, Rawalpindi, Punjab 46000, Pakistan
| | - Paula Andreia Silva
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| | - João Alexandre Ribeiro Gonçalves Barbosa
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia-DF 70910-900, Brazil
- Post-graduate program of Genomics Sciences & Biotechnology, Catholic University of Brasilia, Brasília-DF 70790-160, Brazil
| |
Collapse
|
24
|
Stauft CB, Song Y, Gorbatsevych O, Pantoja P, Rodriguez IV, Futcher B, Sariol CA, Wimmer E. Extensive genomic recoding by codon-pair deoptimization selective for mammals is a flexible tool to generate attenuated vaccine candidates for dengue virus 2. Virology 2019; 537:237-245. [PMID: 31539771 DOI: 10.1016/j.virol.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/27/2023]
Abstract
The four serotypes of dengue virus (DENV) are the leading etiologic agent of disease caused by arthropod-borne viruses (arboviruses) in the world, with billions at risk of DENV infection spread by infected mosquitoes. DENV causes illness ranging from dengue fever (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). DENV proliferates well in two different host systems, an invertebrate mosquito vector and vertebrate primate host, which have a distinct difference in their preference of codon pairs (CP) for translation (different "codon pair bias"). Consequently, arboviruses must delicately balance the use of codon pairs between mammals and arthropods, which presents an Achilles' heel that we have exploited by specifically shifting the codon pair preference in the E and NS3 ORFs away from mammals while keeping the CPB favorable for mosquito ORFs. Here we report that recoding of the ORFs has led to variants that were over-attenuated in rhesus macaques although induction of protective antibodies in animals vaccinated with the smallest recoded ORF (E) was observed. The flexibility of our synthetic vaccine design (by decreasing the number of unfavorable CPs in the E ORF), allowed us to construct two new vaccine candidates (EhminA and EhminB) with intermediate attenuation in cell culture and neonatal mice, a result demonstrating proof of concept. New DENV vaccine candidates are being developed based on selective attenuation by dramatic recoding, with flexibility in balancing the attenuation and immunogenicity by marrying rational design and empirical modification.
Collapse
Affiliation(s)
- Charles B Stauft
- Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| | - Yutong Song
- Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| | - Oleksandr Gorbatsevych
- Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| | - Petraleigh Pantoja
- Unit of Comparative Medicine, Virology Laboratory, Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA.
| | - Idia V Rodriguez
- Unit of Comparative Medicine, Virology Laboratory, Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA.
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| | - Carlos A Sariol
- Unit of Comparative Medicine, Virology Laboratory, Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA.
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
25
|
Reyes-Sandoval A, Ludert JE. The Dual Role of the Antibody Response Against the Flavivirus Non-structural Protein 1 (NS1) in Protection and Immuno-Pathogenesis. Front Immunol 2019; 10:1651. [PMID: 31379848 PMCID: PMC6657369 DOI: 10.3389/fimmu.2019.01651] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/03/2019] [Indexed: 12/22/2022] Open
Abstract
Dengue and Zika viruses are closely related mosquito-borne flaviviruses responsible for major public health problems in tropical and sub-tropical countries. The genomes of both, dengue and zika viruses encodes 10 genes that are translated into three structural proteins (C, prM, and E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The non-structural protein 1 (NS1) is a highly conserved glycoprotein of approximately 48–50 KDa. In infected cells, NS1 is found as a homodimer associated with intracellular membranes and replication complexes, serving as a scaffolding protein in virus replication and morphogenesis. NS1 is secreted efficiently from infected cells as a hexamer and is found in patient's sera during the acute phase of the disease. NS1 detection in sera is a valuable diagnostic marker and immunization with NS1 has been shown to protect animal models from lethal challenges with dengue and Zika viruses. Nevertheless, soluble NS1 has been associated with severe dengue and anti-NS1 antibodies have been reported to cross-react with host platelets and endothelial cells and thus presumably contribute to pathogenesis. Due to the implications of NS1 in arbovirus pathogenesis and its relevance as vaccine candidate, we discuss the dual role that anti-NS1 antibodies may play in protection and disease and the challenges that need to be overcome to develop safe and effective NS1-based vaccines against dengue and Zika.
Collapse
Affiliation(s)
- Arturo Reyes-Sandoval
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Juan E Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| |
Collapse
|
26
|
Pinto PBA, Assis ML, Vallochi AL, Pacheco AR, Lima LM, Quaresma KRL, Pereira BAS, Costa SM, Alves AMB. T Cell Responses Induced by DNA Vaccines Based on the DENV2 E and NS1 Proteins in Mice: Importance in Protection and Immunodominant Epitope Identification. Front Immunol 2019; 10:1522. [PMID: 31333657 PMCID: PMC6617960 DOI: 10.3389/fimmu.2019.01522] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/18/2019] [Indexed: 01/04/2023] Open
Abstract
The importance of the cellular immune response against DENV has been increasingly highlighted in the past few years, in particular for vaccine development. We have previously constructed two plasmids, pE1D2, and pcTPANS1, encoding the envelope (E) ectodomain (domains I, II, and III) and the non-structural 1 (NS1) protein of dengue virus serotype 2 (DENV2), respectively. In the present work, we analyzed the induction of the cellular response in mice immunized with these DNA vaccines and identified the immunogenic peptides. Vaccinated BALB/c mice became protected against a lethal challenge of DENV2. Depletion of CD4+ cells in vaccinated animals almost completely abolished protection elicited by both vaccines. In contrast, a significant number of pE1D2- and pcTPANS1-immunized mice survived virus challenge after depletion of CD8+ cells, although some animals presented morbidity. To identify immunogenic peptides recognized by T cells, we stimulated splenocytes with overlapping peptide libraries covering the E and NS1 proteins and evaluated the production of IFN-γ by ELISPOT. We detected two and three immunodominant epitopes in the E and NS1 proteins, respectively, and four additional NS1-derived peptides after virus challenge. Characterization by intracellular cytokine staining (ICS) revealed that both CD4+ and CD8+ T cells were involved in IFN-γ and TNF-α production. The IFN-γ ICS confirmed reaction of almost all E-derived peptides before challenge and identified other epitopes after infection. All NS1-derived peptides were able to elicit IFN-γ production in CD4+ cells, while only a few peptides induced expression of this cytokine in CD8+ T lymphocytes. Interestingly, we observed an increase in the frequency of either CD4+ or CD8+ T cells producing TNF-α after immunization with the pE1D2 and challenge with DENV2, while lymphocytes from pcTPANS1-vaccinated animals maintained ordinary TNF-α production after virus infection. We also assessed the recognition of E and NS1 immunogenic peptides in C57BL/6 mice due to the difference in MHC haplotype expression. Two NS1-derived epitopes featured prominently in the IFN-γ response with cells from both animal strains. Overall, our results emphasize the importance of the T cell response involved in protection against dengue induced by E and NS1 based DNA vaccines.
Collapse
Affiliation(s)
- Paolla B. A. Pinto
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Maysa L. Assis
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Adriana L. Vallochi
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Agatha R. Pacheco
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Lauro M. Lima
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Kátia R. L. Quaresma
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Bernardo A. S. Pereira
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Simone M. Costa
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ada M. B. Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Razzaqi M, Rasaee MJ, Paknejad M. A critical challenge in the development of antibody: Selecting the appropriate fragment of the target protein as an antigen based on various epitopes or similar structure. Mol Immunol 2019; 111:128-135. [PMID: 31054406 DOI: 10.1016/j.molimm.2019.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/03/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
Abstract
The main challenge in the development of antibody is to select the appropriate antigen particularly when a truncated protein is used for immunization or as vaccine antigen. In previous studies, fragment selection was mainly based on epitopes and less often on the structure. Fewer studies have paid attention to the prediction of the truncated protein 3D structure and retained its similarity in the native and truncated proteins. Here we used in silico analysis to select two fragments of Pyruvate Kinase M2 (PKM2), as a tumor marker. One fragment, M-tPKM2, had a shorter sequence with one epitope although the predicted 3D structure was similar to the native PKM2. The other fragment, R-tPKM2, had a longer sequence and thus more epitopes, but had a different structure from the native PKM2. Recombinant truncated proteins were expressed in E. coli and purified via affinity chromatography. Secondary structure elements in purified proteins were determined by Circular Dichroism, then they were utilized to develop antibodies in mice. Both antigens could elicit high immune response against themselves (OD450 = 3.326 ± 0.562 for M-tPKM2; OD450 = 3.562 ± 0.110 for R-tPKM2). However, significantly higher response against PKM2 was observed among the mice immunized with M-tPKM2 (p < 0.0001 by One way ANOVA followed by Tukey's post hoc comparison). Also, the monoclonal antibody produced against the M-tPKM2 could recognize the native PKM2 in the MCF7 cells. Our finding suggested that for the purpose of designing an antigen with the ability to produce a potent antibody against the target protein, it is better to select sequences which have a similar structure in truncated and native proteins, even at the cost of having shorter sequences and fewer epitopes.
Collapse
Affiliation(s)
- Mahboubeh Razzaqi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Maliheh Paknejad
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Lecouturier V, Bernard MC, Berry C, Carayol S, Richier E, Boudet F, Heinrichs J. Immunogenicity and protection conferred by an optimized purified inactivated Zika vaccine in mice. Vaccine 2019; 37:2679-2686. [PMID: 30967310 DOI: 10.1016/j.vaccine.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 01/30/2023]
Abstract
After decades of inconsequential infections, and sporadic outbreaks in the Asia-Pacific region between 2007 and 2013, Zika virus caused a widespread epidemic in South America in 2015 that was complicated by severe congenital infections. After the WHO declared a Public Health Emergency of International Concern in February 2016, vaccine development efforts based on different platforms were initiated. Several candidates have since been evaluated in clinical phase I studies. Of these, a Zika purified inactivated vaccine (ZPIV), adjuvanted with aluminum hydroxide, developed by the Walter Reed Army Institute of Research (WRAIR), yielded high seroconversion rates. Sanofi Pasteur further optimized the vaccine in terms of production scale, purification conditions and regulatory compliance, using its experience in flavivirus vaccine development. Here we report that the resulting optimized vaccine (ZPIV-SP) elicited robust seroneutralizing antibody responses and provided complete protection from homologous Zika virus strain challenge in immunocompetent BALB/c mice. ZPIV-SP also showed improved immunogenicity compared with the first-generation vaccine, and improved efficacy in the more permissive interferon receptor-deficient A129 mice. Finally, analysis of the IgG response directed towards nonstructural protein 1 (NS1) suggests that viral NS1 was efficiently removed during the optimized purification process of ZPIV-SP. Together, these results suggest that the optimized vaccine is well suited for further evaluation in larger animal models and late-stage clinical studies.
Collapse
Affiliation(s)
| | | | - Catherine Berry
- Research & Development, Sanofi Pasteur, Marcy l'Etoile, France
| | | | - Eric Richier
- Analytical R&D Sanofi Pasteur, Marcy l'Etoile, France
| | - Florence Boudet
- Research & Development, Sanofi Pasteur, Marcy l'Etoile, France
| | | |
Collapse
|
29
|
Stan RC, Françoso KS, Alves RPS, Ferreira LCS, Soares IS, de Camargo MM. Febrile temperatures increase in vitro antibody affinity for malarial and dengue antigens. PLoS Negl Trop Dis 2019; 13:e0007239. [PMID: 30943193 PMCID: PMC6464238 DOI: 10.1371/journal.pntd.0007239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/15/2019] [Accepted: 02/12/2019] [Indexed: 01/03/2023] Open
Abstract
Fever is a regulated increase of the body temperature resulting from both infectious and non-infectious causes. Fever is known to play a role in modulating immune responses to infection, but the potential of febrile temperatures in regulating antigen binding affinity to antibodies has not been explored. Here we investigated this process under in vitro conditions using Isothermal titration calorimetry and ELISA. We used selected malarial and dengue antigens against specific monoclonal antibodies, and observed a marked increase in the affinity of these antibody-antigen complexes at 40°C, compared to physiological (37°C) or pathophysiological temperatures (42°C). Induced thermal equilibration of the protein partners at these temperatures in vitro, prior to measurements, further increased their binding affinity. These results suggest another positive and adaptive role for fever in vivo, and highlight the favourable role of thermal priming in enhancing protein-protein affinity for samples with limited availability.
Collapse
Affiliation(s)
- Razvan C. Stan
- Department of Immunology, Institute for Biomedical Sciences, University of São Paulo, Brazil
| | - Katia S. Françoso
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - Rubens P. S. Alves
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, Brazil
| | - Luís Carlos S. Ferreira
- Department of Microbiology, Institute for Biomedical Sciences, University of São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Brazil
| | - Maristela M. de Camargo
- Department of Immunology, Institute for Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
30
|
Espinosa DA, Beatty PR, Reiner GL, Sivick KE, Hix Glickman L, Dubensky TW, Harris E. Cyclic Dinucleotide-Adjuvanted Dengue Virus Nonstructural Protein 1 Induces Protective Antibody and T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2019; 202:1153-1162. [PMID: 30642979 DOI: 10.4049/jimmunol.1801323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023]
Abstract
Endothelial dysfunction and vascular leak, pathogenic hallmarks of severe dengue disease, are directly triggered by dengue virus (DENV) nonstructural protein 1 (NS1). Previous studies have shown that immunization with NS1, as well as passive transfer of NS1-immune serum or anti-NS1 mAb, prevent NS1-mediated lethality in vivo. In this study, we evaluated the immunogenicity and protective capacity of recombinant DENV NS1 administered with cyclic dinucleotides (CDNs), potent activators of innate immune pathways and highly immunogenic adjuvants. Using both wild-type C57BL/6 mice and IFN-α/β receptor-deficient mice, we show that NS1-CDN immunizations elicit serotype-specific and cross-reactive Ab and T cell responses. Furthermore, NS1-CDN vaccinations conferred significant homotypic and heterotypic protection from DENV2-induced morbidity and mortality. In addition, we demonstrate that high anti-NS1 Ab titers are associated with protection, supporting the role of humoral responses against DENV NS1 as correlates of protection. These findings highlight the potential of CDN-based adjuvants for inducing Ab and T cell responses and validate NS1 as an important candidate for dengue vaccine development.
Collapse
Affiliation(s)
- Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | | | | | | | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720;
| |
Collapse
|
31
|
Role of NS1 antibodies in the pathogenesis of acute secondary dengue infection. Nat Commun 2018; 9:5242. [PMID: 30531923 PMCID: PMC6286345 DOI: 10.1038/s41467-018-07667-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
The role of NS1-specific antibodies in the pathogenesis of dengue virus infection is poorly understood. Here we investigate the immunoglobulin responses of patients with dengue fever (DF) and dengue hemorrhagic fever (DHF) to NS1. Antibody responses to recombinant-NS1 are assessed in serum samples throughout illness of patients with acute secondary DENV1 and DENV2 infection by ELISA. NS1 antibody titres are significantly higher in patients with DHF compared to those with DF for both serotypes, during the critical phase of illness. Furthermore, during both acute secondary DENV1 and DENV2 infection, the antibody repertoire of DF and DHF patients is directed towards distinct regions of the NS1 protein. In addition, healthy individuals, with past non-severe dengue infection have a similar antibody repertoire as those with mild acute infection (DF). Therefore, antibodies that target specific NS1 epitopes could predict disease severity and be of potential benefit in aiding vaccine and treatment design. The antibody response during infection with dengue virus is a key component involved in the pathogenesis during secondary infection. Here the authors show antibodies targeting NS1 and the epitopes targeted can be associated with disease severity during human infection.
Collapse
|
32
|
Sabetian S, Nezafat N, Dorosti H, Zarei M, Ghasemi Y. Exploring dengue proteome to design an effective epitope-based vaccine against dengue virus. J Biomol Struct Dyn 2018; 37:2546-2563. [PMID: 30035699 DOI: 10.1080/07391102.2018.1491890] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dengue, a mosquito-borne disease, is caused by four known dengue serotypes. This infection causes a range of symptoms from a mild fever to a sever homorganic fever and death. It is a serious public health problem in subtropical and tropical countries. There is no specific vaccine currently available for clinical use and study on this issue is ongoing. In this study, bioinformatics approaches were used to predict antigenic, immunogenic, non-allergenic, and conserved B and T-cell epitopes as promising targets to design an effective peptide-based vaccine against dengue virus. Molecular docking analysis indicated the deep binding of the identified epitopes in the binding groove of the most popular human MHC I allele (human leukocyte antigens [HLA] A*0201). The final vaccine construct was created by conjugating the B and T-cell identified epitopes using proper linkers and adding an appropriate adjuvant at the N-terminal. The characteristics of the new subunit vaccine demonstrated that the epitope-based vaccine was antigenic, non-toxic, stable, and soluble. Other physicochemical properties of the new designed construct including isoelectric point value, aliphatic index, and grand average of hydropathicity were biologically considerable. Molecular docking of the engineered vaccine with Toll-like receptor 2 (TLR2) model revealed the hydrophobic interaction between the adjuvant and the ligand binding regions in the hydrophobic channel of TLR2. The study results indicated the high potential capability of the new multi-epitope vaccine to induce cellular and humoral immune responses against the dengue virus. Further experimental tests are required to investigate the immune protection capacity of the new vaccine construct in animal models. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soudabeh Sabetian
- a Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Navid Nezafat
- a Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran.,b Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Hesam Dorosti
- a Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran.,b Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mahboubeh Zarei
- a Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran.,b Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Younes Ghasemi
- a Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences , Shiraz , Iran.,b Department of Pharmaceutical Biotechnology, School of Pharmacy , Shiraz University of Medical Sciences , Shiraz , Iran.,c Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies , Shiraz University of Medical Sciences , Shiraz , Iran.,d Biotechnology Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
33
|
Tripathi NK, Shrivastava A. Recent Developments in Recombinant Protein-Based Dengue Vaccines. Front Immunol 2018; 9:1919. [PMID: 30190720 PMCID: PMC6115509 DOI: 10.3389/fimmu.2018.01919] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/03/2018] [Indexed: 12/11/2022] Open
Abstract
Recombinant proteins are gaining enormous importance these days due to their wide application as biopharmaceutical products and proven safety record. Various recombinant proteins of therapeutic and prophylactic importance have been successfully produced in microbial and higher expression host systems. Since there is no specific antiviral therapy available against dengue, the prevention by vaccination is the mainstay in reducing the disease burden. Therefore, efficacious vaccines are needed to control the spread of dengue worldwide. Dengue is an emerging viral disease caused by any of dengue virus 1-4 serotypes that affects the human population around the globe. Dengue virus is a single stranded RNA virus encoding three structural proteins (capsid protein, pre-membrane protein, and envelope protein) and seven non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5). As the only licensed dengue vaccine (Dengvaxia) is unable to confer balanced protection against all the serotypes, therefore various approaches for development of dengue vaccines including tetravalent live attenuated, inactivated, plasmid DNA, virus-vectored, virus-like particles, and recombinant subunit vaccines are being explored. These candidates are at different stages of vaccine development and have their own merits and demerits. The promising subunit vaccines are mainly based on envelope or its domain and non-structural proteins of dengue virus. These proteins have been produced in different hosts and are being investigated for development of a successful dengue vaccine. Novel immunogens have been designed employing various strategies like protein engineering and fusion of antigen with various immunostimulatory motif to work as self-adjuvant. Moreover, recombinant proteins can be formulated with novel adjuvants to enhance the immunogenicity and thus conferring better protection to the vaccinees. With the advent of newer and safer host systems, these recombinant proteins can be produced in a cost effective manner at large scale for vaccine studies. In this review, we summarize recent developments in recombinant protein based dengue vaccines that could lead to a good number of efficacious vaccine candidates for future human use and ultimately alternative dengue vaccine candidates.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
34
|
Glasner DR, Puerta-Guardo H, Beatty PR, Harris E. The Good, the Bad, and the Shocking: The Multiple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis. Annu Rev Virol 2018; 5:227-253. [PMID: 30044715 DOI: 10.1146/annurev-virology-101416-041848] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dengue virus (DENV) is the most prevalent medically important mosquito-borne virus in the world. Upon DENV infection of a host cell, DENV nonstructural protein 1 (NS1) can be found intracellularly as a monomer, associated with the cell surface as a dimer, and secreted as a hexamer into the bloodstream. NS1 plays a variety of roles in the viral life cycle, particularly in RNA replication and immune evasion of the complement pathway. Over the past several years, key roles for NS1 in the pathogenesis of severe dengue disease have emerged, including direct action of the protein on the vascular endothelium and triggering release of vasoactive cytokines from immune cells, both of which result in endothelial hyperpermeability and vascular leak. Importantly, the adaptive immune response generates a robust response against NS1, and its potential contribution to dengue vaccines is also discussed.
Collapse
Affiliation(s)
- Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| |
Collapse
|
35
|
Chen HR, Lai YC, Yeh TM. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 2018; 25:58. [PMID: 30037331 PMCID: PMC6057007 DOI: 10.1186/s12929-018-0462-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/13/2018] [Indexed: 02/05/2023] Open
Abstract
Dengue virus (DENV) infection is the most common mosquito-transmitted viral infection. DENV infection can cause mild dengue fever or severe dengue hemorrhagic fever (DHF)/dengue shock syndrome (DSS). Hemorrhage and vascular leakage are two characteristic symptoms of DHF/DSS. However, due to the limited understanding of dengue pathogenesis, no satisfactory therapies to treat nor vaccine to prevent dengue infection are available, and the mortality of DHF/DSS is still high. DENV nonstructural protein 1 (NS1), which can be secreted in patients’ sera, has been used as an early diagnostic marker for dengue infection for many years. However, the roles of NS1 in dengue-induced vascular leakage were described only recently. In this article, the pathogenic roles of DENV NS1 in hemorrhage and vascular leakage are reviewed, and the possibility of using NS1 as a therapeutic target and vaccine candidate is discussed.
Collapse
Affiliation(s)
- Hong-Ru Chen
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Chung Lai
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
36
|
Morris G, Barichello T, Stubbs B, Köhler CA, Carvalho AF, Maes M. Zika Virus as an Emerging Neuropathogen: Mechanisms of Neurovirulence and Neuro-Immune Interactions. Mol Neurobiol 2018; 55:4160-4184. [PMID: 28601976 DOI: 10.1007/s12035-017-0635-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Zika virus (ZIKV) is an emerging arbovirus of the genus Flaviviridae, which causes a febrile illness and has spread from across the Pacific to the Americas in a short timeframe. Convincing evidence has implicated the ZIKV to incident cases of neonatal microcephaly and a set of neurodevelopmental abnormalities referred to as the congenital Zika virus syndrome. In addition, emerging data points to an association with the ZIKV and the development of the so-called Guillain-Barre syndrome, an acute autoimmune polyneuropathy. Accumulating knowledge suggests that neurovirulent strains of the ZIKV have evolved from less pathogenic lineages of the virus. Nevertheless, mechanisms of neurovirulence and host-pathogen neuro-immune interactions remain incompletely elucidated. This review provides a critical discussion of genetic and structural alterations in the ZIKV which could have contributed to the emergence of neurovirulent strains. In addition, a mechanistic framework of neuro-immune mechanisms related to the emergence of neuropathology after ZIKV infection is discussed. Recent advances in knowledge point to avenues for the development of a putative vaccine as well as novel therapeutic strategies. Nevertheless, there are unique unmet challenges that need to be addressed in this regard. Finally, a research agenda is proposed.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
| | - Tatiana Barichello
- Laboratory of Experimental Microbiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, Denmark Hill, London, SE5 8AZ, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Bishop Hall Lane, Chelmsford, CM1 1SQ, UK
| | - Cristiano A Köhler
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, P.O. Box 291, Geelong, VIC, 3220, Australia.
- Health Sciences Postgraduate Program, Health Sciences Center, State University of Londrina, Londrina, Parana, Brazil.
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Revitalis, Waalre, The Netherlands.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
37
|
Yang H, Yang H, Li Z, Liu L, Wang W, He T, Fan F, Sun Y, Liu J, Li Y, Zeng X. Japanese encephalitis virus/yellow fever virus chimera is safe and confers full protection against yellow fever virus in intracerebrally challenged mice. Vaccine 2018; 36:2450-2455. [PMID: 29580643 DOI: 10.1016/j.vaccine.2018.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 11/24/2022]
Abstract
Yellow fever (YF) is an acute viral haemorrhagic disease caused by the yellow fever virus (YFV), which remains a potential threat to public health. The live-attenuated YF vaccine (17D strain) is a safe and highly effective measure against YF. However, increasing adverse events have been associated with YF vaccinations in recent years; thus, safer, alternative vaccines are needed. In this study, using the Japanese encephalitis live vaccine strain SA14-14-2 as a backbone, a novel chimeric virus was constructed by replacing the pre-membrane (prM) and envelope (E) genes with their YFV 17D counterparts.The chimeric virus exhibited a reduced growth rate and a much smaller plaque morphology than did either parental virus. Furthermore, the chimera was much less neurovirulent than was YF17D and protected mice that were challenged with a lethal dose of the YF virus. These results suggest that this chimera has potential as a novel attenuated YF vaccine.
Collapse
Affiliation(s)
- Huiqiang Yang
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Huan Yang
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Zhushi Li
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Lina Liu
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Wei Wang
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Ting He
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Fengming Fan
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Yan Sun
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Jie Liu
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China
| | - Yuhua Li
- Department of Arbovirus Vaccines, National Institutes for Food and Drug Control, Beijing 100050, PR China.
| | - Xianwu Zeng
- Department of Viral Vaccines, Chengdu Institute of Biological Products Co., Ltd, China National Biotech Group, Chengdu 610023, PR China.
| |
Collapse
|
38
|
Maeda DLNF, Batista MT, Pereira LR, de Jesus Cintra M, Amorim JH, Mathias-Santos C, Pereira SA, Boscardin SB, Silva SDR, Faquim-Mauro EL, Silveira VB, Oliveira DBL, Johnston SA, Ferreira LCDS, Rodrigues JF. Adjuvant-Mediated Epitope Specificity and Enhanced Neutralizing Activity of Antibodies Targeting Dengue Virus Envelope Protein. Front Immunol 2017; 8:1175. [PMID: 28993770 PMCID: PMC5622152 DOI: 10.3389/fimmu.2017.01175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
The heat-labile toxins (LT) produced by enterotoxigenic Escherichia coli display adjuvant effects to coadministered antigens, leading to enhanced production of serum antibodies. Despite extensive knowledge of the adjuvant properties of LT derivatives, including in vitro-generated non-toxic mutant forms, little is known about the capacity of these adjuvants to modulate the epitope specificity of antibodies directed against antigens. This study characterizes the role of LT and its non-toxic B subunit (LTB) in the modulation of antibody responses to a coadministered antigen, the dengue virus (DENV) envelope glycoprotein domain III (EDIII), which binds to surface receptors and mediates virus entry into host cells. In contrast to non-adjuvanted or alum-adjuvanted formulations, antibodies induced in mice immunized with LT or LTB showed enhanced virus-neutralization effects that were not ascribed to a subclass shift or antigen affinity. Nonetheless, immunosignature analyses revealed that purified LT-adjuvanted EDIII-specific antibodies display distinct epitope-binding patterns with regard to antibodies raised in mice immunized with EDIII or the alum-adjuvanted vaccine. Notably, the analyses led to the identification of a specific EDIII epitope located in the EF to FG loop, which is involved in the entry of DENV into eukaryotic cells. The present results demonstrate that LT and LTB modulate the epitope specificity of antibodies generated after immunization with coadministered antigens that, in the case of EDIII, was associated with the induction of neutralizing antibody responses. These results open perspectives for the more rational development of vaccines with enhanced protective effects against DENV infections.
Collapse
Affiliation(s)
| | - Milene Tavares Batista
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Center for Innovation in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Lennon Ramos Pereira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mariana de Jesus Cintra
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jaime Henrique Amorim
- Center of Biological and Health Sciences, Federal University of Western Bahia, Bahia, Brazil
| | - Camila Mathias-Santos
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sara Araújo Pereira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Vanessa Barbosa Silveira
- Clinical and Molecular Virology Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Danielle Bruna Leal Oliveira
- Clinical and Molecular Virology Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Stephen Albert Johnston
- Center for Innovation in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Falcão Rodrigues
- Vaccine Development Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Antibodies against nonstructural protein 1 protect mice from dengue virus-induced mast cell activation. J Transl Med 2017; 97:602-614. [PMID: 28240747 DOI: 10.1038/labinvest.2017.10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
Dengue virus (DENV) infection causes dengue fever, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). DHF/DSS patients have been reported to have increased levels of urinary histamine, chymase, and tryptase, which are major granule-associated mediators from mast cells. Previous studies also showed that DENV-infected human mast cells induce production of proinflammatory cytokines and chemokines, suggesting a role played by mast cells in vascular perturbation as well as leukocyte recruitment. In this study, we show that DENV but not UV-inactivated DENV enhanced degranulation of mast cells and production of chemokines (MCP-1, RANTES, and IP-10) in a mouse model. We have previously shown that antibodies (Abs) against a modified DENV nonstructural protein 1 (NS1), designated DJ NS1, provide protection in mice against DENV challenge. In the present study, we investigate the effects of DJ NS1 Abs on mast cell-associated activities. We showed that administration of anti-DJ NS1 Abs into mice resulted in a reduction of mast cell degranulation and macrophage infiltration at local skin DENV infection sites. The production of DENV-induced chemokines (MCP-1, RANTES, and IP-10) and the percentages of tryptase-positive activated mast cells were also reduced by treatment with anti-DJ NS1 Abs. These results indicate that Abs against NS1 protein provide multiple therapeutic benefits, some of which involve modulating DENV-induced mast cell activation.Laboratory Investigation advance online publication, 27 February 2017; doi:10.1038/labinvest.2017.10.
Collapse
|
40
|
Jones ML, Legge FS, Lebani K, Mahler SM, Young PR, Watterson D, Treutlein HR, Zeng J. Computational Identification of Antibody Epitopes on the Dengue Virus NS1 Protein. Molecules 2017; 22:E607. [PMID: 28394300 PMCID: PMC6154621 DOI: 10.3390/molecules22040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/04/2022] Open
Abstract
We have previously described a method to predict antigenic epitopes on proteins recognized by specific antibodies. Here we have applied this method to identify epitopes on the NS1 proteins of the four Dengue virus serotypes (DENV1-4) that are bound by a small panel of monoclonal antibodies 1H7.4, 1G5.3 and Gus2. Several epitope regions were predicted for these antibodies and these were found to reflect the experimentally observed reactivities. The known binding epitopes on DENV2 for the antibodies 1H7.4 and 1G5.3 were identified, revealing the reasons for the serotype specificity of 1H7.4 and 1G5.3, and the non-selectivity of Gus2. As DENV NS1 is critical for virus replication and a key vaccine candidate, epitope prediction will be valuable in designing appropriate vaccine control strategies. The ability to predict potential epitopes by computational methods significantly reduces the amount of experimental work required to screen peptide libraries for epitope mapping.
Collapse
Affiliation(s)
- Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Fiona S Legge
- Computist Bio-Nanotech, 1 Dalmore Drive, Scoresby, VIC 3179, Australia.
| | - Kebaneilwe Lebani
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Paul R Young
- ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Herbert R Treutlein
- Computist Bio-Nanotech, 1 Dalmore Drive, Scoresby, VIC 3179, Australia.
- School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia.
| | - Jun Zeng
- Computist Bio-Nanotech, 1 Dalmore Drive, Scoresby, VIC 3179, Australia.
- School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia.
| |
Collapse
|
41
|
Hertz T, Beatty PR, MacMillen Z, Killingbeck SS, Wang C, Harris E. Antibody Epitopes Identified in Critical Regions of Dengue Virus Nonstructural 1 Protein in Mouse Vaccination and Natural Human Infections. THE JOURNAL OF IMMUNOLOGY 2017; 198:4025-4035. [PMID: 28381638 DOI: 10.4049/jimmunol.1700029] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/06/2017] [Indexed: 01/25/2023]
Abstract
Dengue is a global public health problem and is caused by four dengue virus (DENV) serotypes (DENV1-4). A major challenge in dengue vaccine development is that cross-reactive anti-DENV Abs can be protective or potentially increase disease via Ab-dependent enhancement. DENV nonstructural protein 1 (NS1) has long been considered a vaccine candidate as it avoids Ab-dependent enhancement. In this study, we evaluated survival to challenge in a lethal DENV vascular leak model in mice immunized with NS1 combined with aluminum and magnesium hydroxide, monophosphoryl lipid A + AddaVax, or Sigma adjuvant system+CpG DNA, compared with mice infected with a sublethal dose of DENV2 and mice immunized with OVA (negative control). We characterized Ab responses to DENV1, 2, and 3 NS1 using an Ag microarray tiled with 20-mer peptides overlapping by 15 aa and identified five regions of DENV NS1 with significant levels of Ab reactivity in the NS1 + monophosphoryl lipid A + AddaVax group. Additionally, we profiled the Ab responses to NS1 of humans naturally infected with DENV2 or DENV3 in serum samples from Nicaragua collected at acute, convalescent, and 12-mo timepoints. One region in the wing domain of NS1 was immunodominant in both mouse vaccination and human infection studies, and two regions were identified only in NS1-immunized mice; thus, vaccination can generate Abs to regions that are not targeted in natural infection and could provide additional protection against lethal DENV infection. Overall, we identified a small number of immunodominant regions, which were in functionally important locations on the DENV NS1 protein and are potential correlates of protection.
Collapse
Affiliation(s)
- Tomer Hertz
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Zachary MacMillen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Sarah S Killingbeck
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Chunling Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
42
|
Rastogi M, Sharma N, Singh SK. Flavivirus NS1: a multifaceted enigmatic viral protein. Virol J 2016; 13:131. [PMID: 27473856 PMCID: PMC4966872 DOI: 10.1186/s12985-016-0590-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Flaviviruses are emerging arthropod-borne viruses representing an immense global health problem. The prominent viruses of this group include dengue virus, yellow fever virus, Japanese encephalitis virus, West Nile virus tick borne encephalitis virus and Zika Virus. These are endemic in many parts of the world. They are responsible for the illness ranging from mild flu like symptoms to severe hemorrhagic, neurologic and cognitive manifestations leading to death. NS1 is a highly conserved non-structural protein among flaviviruses, which exist in diverse forms. The intracellular dimer form of NS1 plays role in genome replication, whereas, the secreted hexamer plays role in immune evasion. The secreted NS1 has been identified as a potential diagnostic marker for early detection of the infections caused by flaviviruses. In addition to the diagnostic marker, the importance of NS1 has been reported in the development of therapeutics. NS1 based subunit vaccines are at various stages of development. The structural details and diverse functions of NS1 have been discussed in detail in this review.
Collapse
Affiliation(s)
- Meghana Rastogi
- Institute of Medical Sciences (IMS), Laboratory of Human Molecular Virology & Immunology, Molecular Biology Unit, Faculty of Medicine, Banaras Hindu University, Varanasi, 221005, India
| | - Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Sunit Kumar Singh
- Institute of Medical Sciences (IMS), Laboratory of Human Molecular Virology & Immunology, Molecular Biology Unit, Faculty of Medicine, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
43
|
Hsu YL, Wang MY, Ho LJ, Lai JH. Dengue virus infection induces interferon-lambda1 to facilitate cell migration. Sci Rep 2016; 6:24530. [PMID: 27456172 PMCID: PMC4960520 DOI: 10.1038/srep24530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/31/2016] [Indexed: 01/03/2023] Open
Abstract
A marked increase in the rate of dengue virus (DENV) infection has resulted in more than 212 deaths in Taiwan since the beginning of 2015, mostly from fatal outcomes such as dengue hemorrhagic fever and dengue shock syndrome. The pathogenic mechanisms of these fatal manifestations are poorly understood. Cytokines induce an overwhelming immune reaction and thus have crucial roles. Interferon-lambda (IFN-λ), a newly identified IFN subtype, has antiviral effects, but its immunologic effects in DENV infection have not been investigated. In the present study, we show that DENV infection preferentially induced production of IFN-λ1 in human dendritic cells (DCs) and human lung epithelial cells. Virus nonstructural 1 (NS1) glycoprotein was responsible for the effect. DENV-induced production of IFN-λ1 was dependent on signaling pathways involving toll-like receptor (TLR)-3, interferon regulation factor (IRF)-3, and nuclear factor-kappaB (NF-κB). Blocking interaction between IFN-λ1 and its receptor IFN-λR1 through siRNA interference reduced DENV-induced DC migration towards the chemoattractants CCL19 and CCL21, by inhibiting CCR7 expression. Furthermore, IFN-λ1 itself induced CCR7 expression and DC migration. Our study presents the first evidence of the mechanisms and effects of IFN-λ1 induction in DENV-infected DCs and highlights the role of this cytokine in the immunopathogenesis of DENV infection.
Collapse
Affiliation(s)
- Yu-Lin Hsu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Mei-Yi Wang
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan, R.O.C
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, R.O.C
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan, R.O.C.,Graduate Institute of Clinical Research, National Defense Medical Center, Taipei, Taiwan, R.O.C
| |
Collapse
|
44
|
Liu Y, Liu J, Cheng G. Vaccines and immunization strategies for dengue prevention. Emerg Microbes Infect 2016; 5:e77. [PMID: 27436365 PMCID: PMC5141265 DOI: 10.1038/emi.2016.74] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/20/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023]
Abstract
Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future.
Collapse
Affiliation(s)
- Yang Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,School of Life Science, Tsinghua University, Beijing 100084, China
| | - Jianying Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
45
|
Alayli F, Scholle F. Dengue virus NS1 enhances viral replication and pro-inflammatory cytokine production in human dendritic cells. Virology 2016; 496:227-236. [PMID: 27348054 DOI: 10.1016/j.virol.2016.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 12/31/2022]
Abstract
Dengue virus (DV) has become the most prevalent arthropod borne virus due to globalization and climate change. It targets dendritic cells during infection and leads to production of pro-inflammatory cytokines and chemokines. Several DV non-structural proteins (NS) modulate activation of human dendritic cells. We investigated the effect of DV NS1 on human monocyte-derived dendritic cells (mo-DCs) during dengue infection. NS1 is secreted into the serum of infected individuals where it interacts with various immune mediators and cell types. We purified secreted DV1 NS1 from supernatants of 293T cells that over-express the protein. Upon incubation with mo-DCs, we observed NS1 uptake and enhancement of early DV1 replication. As a consequence, mo-DCs that were pre-exposed to NS1 produced more pro-inflammatory cytokines in response to subsequent DV infection compared to DCs exposed to heat-inactivated NS1 (HNS1). Therefore the presence of exogenous NS1 is able to modulate dengue infection in mo-DCs.
Collapse
Affiliation(s)
- Farah Alayli
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Frank Scholle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
46
|
Liu J, Liu Y, Nie K, Du S, Qiu J, Pang X, Wang P, Cheng G. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nat Microbiol 2016; 1:16087. [PMID: 27562253 PMCID: PMC5003325 DOI: 10.1038/nmicrobiol.2016.87] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/05/2016] [Indexed: 11/12/2022]
Abstract
The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments.
Collapse
Affiliation(s)
- Jianying Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
- School of Life Science, Tsinghua University, Beijing, P.R. China, 100084
| | - Kaixiao Nie
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Senyan Du
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jingjun Qiu
- Department of Health Statistics, School of Preventive Medicine, Fourth Military Medical University, Shaanxi, P.R. China, 710032
| | - Xiaojing Pang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Penghua Wang
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY, the United States, 10595
| | - Gong Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
47
|
Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 2016; 7:304ra141. [PMID: 26355030 DOI: 10.1126/scitranslmed.aaa3787] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The four dengue virus serotypes (DENV1 to DENV4) are mosquito-borne flaviviruses that cause up to ~100 million cases of dengue annually worldwide. Severe disease is thought to result from immunopathogenic processes involving serotype cross-reactive antibodies and T cells that together induce vasoactive cytokines, causing vascular leakage that leads to shock. However, no viral proteins have been directly implicated in triggering endothelial permeability, which results in vascular leakage. DENV nonstructural protein 1 (NS1) is secreted and circulates in patients' blood during acute infection; high levels of NS1 are associated with severe disease. We show that inoculation of mice with DENV NS1 alone induces both vascular leakage and production of key inflammatory cytokines. Furthermore, simultaneous administration of NS1 with a sublethal dose of DENV2 results in a lethal vascular leak syndrome. We also demonstrate that NS1 from DENV1, DENV2, DENV3, and DENV4 triggers endothelial barrier dysfunction, causing increased permeability of human endothelial cell monolayers in vitro. These pathogenic effects of physiologically relevant amounts of NS1 in vivo and in vitro were blocked by NS1-immune polyclonal mouse serum or monoclonal antibodies to NS1, and immunization of mice with NS1 from DENV1 to DENV4 protected against lethal DENV2 challenge. These findings add an important and previously overlooked component to the causes of dengue vascular leak, identify a new potential target for dengue therapeutics, and support inclusion of NS1 in dengue vaccines.
Collapse
Affiliation(s)
- P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Sarah S Killingbeck
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Kaycie Hopkins
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
48
|
Production of a Recombinant Dengue Virus 2 NS5 Protein and Potential Use as a Vaccine Antigen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:460-469. [PMID: 27030586 DOI: 10.1128/cvi.00081-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022]
Abstract
Dengue fever is caused by any of the four known dengue virus serotypes (DENV1 to DENV4) that affect millions of people worldwide, causing a significant number of deaths. There are vaccines based on chimeric viruses, but they still are not in clinical use. Anti-DENV vaccine strategies based on nonstructural proteins are promising alternatives to those based on whole virus or structural proteins. The DENV nonstructural protein 5 (NS5) is the main target of anti-DENV T cell-based immune responses in humans. In this study, we purified a soluble recombinant form of DENV2 NS5 expressed in Escherichia coli at large amounts and high purity after optimization of expression conditions and purification steps. The purified DENV2 NS5 was recognized by serum from DENV1-, DENV2-, DENV3-, or DENV4-infected patients in an epitope-conformation-dependent manner. In addition, immunization of BALB/c mice with NS5 induced high levels of NS5-specific antibodies and expansion of gamma interferon- and tumor necrosis factor alpha-producing T cells. Moreover, mice immunized with purified NS5 were partially protected from lethal challenges with the DENV2 NGC strain and with a clinical isolate (JHA1). These results indicate that the recombinant NS5 protein preserves immunological determinants of the native protein and is a promising vaccine antigen capable of inducing protective immune responses.
Collapse
|
49
|
New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 2015; 15:745-59. [DOI: 10.1038/nri3916] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Amorim JH, Bizerra R, dos Santos Alves RP, Nascimento Fabris DL, de Souza Ferreira LC. Dengue virus models based on mice as experimental hosts. Future Virol 2015. [DOI: 10.2217/fvl.15.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dengue virus (DENV) causes dengue fever, a widely distributed endemic disease transmitted by mosquitoes. The complex interaction of DENV with the human immune system has complicated the development of an effective vaccine. This may be attributed, at least in part, to the lack of a suitable animal model capable to reproduce symptoms observed in humans. Mouse models are simple but usually rely on host-adapted virus strains or immunodeficient mouse lineages. Recent evidences indicated that some natural DENV strains are capable to infect immunocompetent mice. In addition, humanized mouse lineages can more faithfully reproduce some of the symptoms observed in humans. Such experimental models are valuable tools for the study of DENV biology.
Collapse
Affiliation(s)
- Jaime Henrique Amorim
- Vaccine Development Laboratory, Department of Microbiology, ICB II, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508–000, Brazil
| | - Raíza Bizerra
- Vaccine Development Laboratory, Department of Microbiology, ICB II, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508–000, Brazil
| | - Rúbens Prince dos Santos Alves
- Vaccine Development Laboratory, Department of Microbiology, ICB II, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508–000, Brazil
| | - Denicar Lina Nascimento Fabris
- Vaccine Development Laboratory, Department of Microbiology, ICB II, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508–000, Brazil
| | - Luís Carlos de Souza Ferreira
- Vaccine Development Laboratory, Department of Microbiology, ICB II, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Cidade Universitária, São Paulo, SP, 05508–000, Brazil
| |
Collapse
|