1
|
Feiler MO, Kulick ER, Sinclair K, Spiegel N, Habel S, Castello OG. Toxic metals and pediatric clinical immune dysfunction: A systematic review of the epidemiological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172303. [PMID: 38599398 DOI: 10.1016/j.scitotenv.2024.172303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Children are at high risk for exposure to toxic metals and are vulnerable to their effects. Significant research has been conducted evaluating the role of these metals on immune dysfunction, characterized by biologic and clinical outcomes. However, there are inconsistencies in these studies. The objective of the present review is to critically evaluate the existing literature on the association between toxic metals (lead, mercury, arsenic, and cadmium) and pediatric immune dysfunction. METHODS Seven databases (PubMed (NLM), Embase (Elsevier), CINAHL (Ebsco), Web of Science (Clarivate Analytics), ProQuest Public Health Database, and ProQuest Environmental Science Collection) were searched following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in February 2024. Rayaan software identified duplicates and screened by title and abstract in a blinded and independent review process. The remaining full texts were reviewed for content and summarized. Exclusions during the title, abstract, and full-text reviews included: 1) not original research, 2) not epidemiology, 3) did not include toxic metals, 4) did not examine an immune health outcome, or 5) not pediatric (>18 years). This systematic review protocol followed the PRISMA guidelines. Rayaan was used to screen records using title and abstract by two blinded and independent reviewers. This process was repeated for full-text article screening selection. RESULTS The search criteria produced 7906 search results; 2456 duplicate articles were removed across search engines. In the final review, 79 studies were included which evaluated the association between toxic metals and outcomes indicative of pediatric immune dysregulation. CONCLUSIONS The existing literature suggests an association between toxic metals and pediatric immune dysregulation. Given the imminent threat of infectious diseases demonstrated by the recent COVID-19 epidemic in addition to increases in allergic disease, understanding how ubiquitous exposure to these metals in early life can impact immune response, infection risk, and vaccine response is imperative.
Collapse
Affiliation(s)
- Marina Oktapodas Feiler
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, United States of America; Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America.
| | - Erin R Kulick
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Krystin Sinclair
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Nitzana Spiegel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Sonia Habel
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, United States of America
| | - Olivia Given Castello
- Charles Library, Temple University Libraries, Temple University, United States of America
| |
Collapse
|
2
|
Tang R, Wang L, Zhang J, Fei W, Zhang R, Liu J, Lv M, Wang M, Lv R, Nan H, Tao R, Chen Y, Chen Y, Jiang Y, Zhang H. Boosting the immunogenicity of the CoronaVac SARS-CoV-2 inactivated vaccine with Huoxiang Suling Shuanghua Decoction: a randomized, double-blind, placebo-controlled study. Front Immunol 2024; 15:1298471. [PMID: 38633263 PMCID: PMC11021573 DOI: 10.3389/fimmu.2024.1298471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction In light of the public health burden of the COVID-19 pandemic, boosting the safety and immunogenicity of COVID-19 vaccines is of great concern. Numerous Traditional Chinese medicine (TCM) preparations have shown to beneficially modulate immunity. Based on pilot experiments in mice that showed that supplementation with Huoxiang Suling Shuanghua Decoction (HSSD) significantly enhances serum anti-RBD IgG titers after inoculation with recombinant SARS-CoV-2 S-RBD protein, we conducted this randomized, double-blind, placebo-controlled clinical trial aimed to evaluate the potential immunogenicity boosting effect of oral HSSD after a third homologous immunization with Sinovac's CoronaVac SARS-CoV-2 (CVS) inactivated vaccine. Methods A total of 70 participants were randomly assigned (1:1 ratio) to receive a third dose of CVS vaccination and either oral placebo or oral HSSD for 7 days. Safety aspects were assessed by recording local and systemic adverse events, and by blood and urine biochemistry and liver and kidney function tests. Main outcomes evaluated included serum anti-RBD IgG titer, T lymphocyte subsets, serum IgG and IgM levels, complement components (C3 and C4), and serum cytokines (IL-6 and IFN-γ). In addition, metabolomics technology was used to analyze differential metabolite expression after supplementation with HSSD. Results Following a third CVS vaccination, significantly increased serum anti-RBD IgG titer, reduced serum IL-6 levels, increased serum IgG, IgM, and C3 and C4 levels, and improved cellular immunity, evidenced by reduce balance deviations in the distribution of lymphocyte subsets, was observed in the HSSD group compared with the placebo group. No serious adverse events were recorded in either group. Serum metabolomics results suggested that the mechanisms by which HSSD boosted the immunogenicity of the CVS vaccine are related to differential regulation of purine metabolism, vitamin B6 metabolism, folate biosynthesis, arginine and proline metabolism, and steroid hormone biosynthesis. Conclusion Oral HSSD boosts the immunogenicity of the CVS vaccine in young and adult individuals. This trial provides clinical reference for evaluation of TCM immunomodulators to improve the immune response to COVID-19 vaccines.
Collapse
Affiliation(s)
- Ruying Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinlian Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyu Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruilin Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haipeng Nan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxin Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Annamalai A, Karuppaiya V, Ezhumalai D, Cheruparambath P, Balakrishnan K, Venkatesan A. Nano-based techniques: A revolutionary approach to prevent covid-19 and enhancing human awareness. J Drug Deliv Sci Technol 2023; 86:104567. [PMID: 37313114 PMCID: PMC10183109 DOI: 10.1016/j.jddst.2023.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
In every century of history, there are many new diseases emerged, which are not even cured by many developed countries. Today, despite of scientific development, new deadly pandemic diseases are caused by microorganisms. Hygiene is considered to be one of the best methods of avoiding such communicable diseases, especially viral diseases. Illness caused by SARS-CoV-2 was termed COVID-19 by the WHO, the acronym derived from "coronavirus disease 2019. The globe is living in the worst epidemic era, with the highest infection and mortality rate owing to COVID-19 reaching 6.89% (data up to March 2023). In recent years, nano biotechnology has become a promising and visible field of nanotechnology. Interestingly, nanotechnology is being used to cure many ailments and it has revolutionized many aspects of our lives. Several COVID-19 diagnostic approaches based on nanomaterial have been developed. The various metal NPs, it is highly anticipated that could be viable and economical alternatives for treating drug resistant in many deadly pandemic diseases in near future. This review focuses on an overview of nanotechnology's increasing involvement in the diagnosis, prevention, and therapy of COVID-19, also this review provides readers with an awareness and knowledge of importance of hygiene.
Collapse
Affiliation(s)
- Asaikkutti Annamalai
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| | - Vimala Karuppaiya
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Dhineshkumar Ezhumalai
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | | | - Kaviarasu Balakrishnan
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | - Arul Venkatesan
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| |
Collapse
|
4
|
Ventre S, Desai G, Roberson R, Kordas K. Toxic metal exposures from infant diets: Risk prevention strategies for caregivers and health care professionals. Curr Probl Pediatr Adolesc Health Care 2022; 52:101276. [PMID: 36266220 DOI: 10.1016/j.cppeds.2022.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Concerns are growing regarding the presence of toxic elements such as arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in the ingredients and prepared foods for infants and young children. There are few clear, evidence-based, guidelines on the maximum tolerable limits of toxicants in foods and little understanding of toxicant exposure or adverse health effects attributable to dietary exposure. Caregivers are faced with the burden of making decisions about which foods to select, how often to feed them to their children, and what foods to limit. This article reviews the current literature and existing recommendations on dietary exposure to toxic elements in children under 2 years of age, and their health effects in early childhood-focusing on growth, neurodevelopment, and immune function. The article also outlines best practices for healthcare providers to address the concerns of toxic element exposure through the diet in young children. Several foods consistently appear in the literature as potential sources of toxic element exposure. Contaminated drinking and cooking water, including water used to prepare infant formula, could also be a major exposure source. In the absence of stronger evidence on effects of dietary modification, exclusive breastfeeding until six months of age, followed by a diverse diet are some strategies to reduce dietary toxic element exposure while ensuring an adequate and balanced nutrient intake. Healthcare providers can support families by sharing information and encouraging blood Pb testing, the only element for which such testing is currently recommended.
Collapse
Affiliation(s)
- Sarah Ventre
- Department of Pediatrics, University at Buffalo, USA; New York State Children's Environmental Health Center, USA.
| | - Gauri Desai
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| | | | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, USA
| |
Collapse
|
5
|
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022; 9:933274. [PMID: 35937298 PMCID: PMC9353128 DOI: 10.3389/fvets.2022.933274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.
Collapse
|
6
|
Jiang J, He S, Liu K, Yu K, Long P, Xiao Y, Liu Y, Yu Y, Wang H, Zhou L, Zhang X, He M, Guo H, Wu T, Yuan Y. Multiple plasma metals, genetic risk and serum complement C3, C4: A gene-metal interaction study. CHEMOSPHERE 2022; 291:132801. [PMID: 34752839 DOI: 10.1016/j.chemosphere.2021.132801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Exposure to metals and metalloids is widely related with human health, and could affect the function of immune system. The complement system links innate and adaptive immunity, and is critically involved in the pathogenesis of inflammatory and immune diseases. The third and fourth components of complement (C3, C4) play key roles in the complement system. However, few studies have examined the relations between multiple metals and complement levels. In this study, based on a total of 2977 participants from the Dongfeng-Tongji cohort, China, we investigated 17 plasma metals and serum C3, C4 levels, and calculated C3/C4-associated genetic risk scores (GRSs) using established single nucleotide polymorphisms. We further explored the potential gene-metal interactions on C3 and C4. After multivariable adjustment, an increment of 10-standard deviation increase in natural log-transformed exposure concentrations of plasma copper was associated with 0.549 (0.489, 0.608) (FDR <0.0001), and 1.146 (0.999, 1.294) (FDR <0.0001) higher natural log-transformed serum C3 and C4 levels, respectively. While each increment of 10-standard deviation of natural log-transformed zinc was associated with a difference of 0.083 (0.024, 0.143) (FDR = 0.049) and 0.007 (-0.138, 0.152) (FDR = 0.935) in log-transformed C3 and C4 levels, respectively. Participants with higher GRS had higher C3 and C4 levels. Furthermore, we found a significant interaction between arsenic exposure and C3-GRS in relation to C3 level (Pinteraction = 0.0096). Our results suggested that plasma arsenic would modify the association between C3 genetic predisposition and serum C3 level. We provide new insight into metals exposure on the human immune system. These findings require replication in future research.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiqi He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuai Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pinpin Long
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanqiu Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Venkatesan MM, Ballou C, Barnoy S, McNeal M, El-Khorazaty J, Frenck R, Baqar S. Antibody in Lymphocyte Supernatant (ALS) responses after oral vaccination with live Shigella sonnei vaccine candidates WRSs2 and WRSs3 and correlation with serum antibodies, ASCs, fecal IgA and shedding. PLoS One 2021; 16:e0259361. [PMID: 34793505 PMCID: PMC8601580 DOI: 10.1371/journal.pone.0259361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
The levels of antigen-specific Antibodies in Lymphocyte Supernatant (ALS) using an ELISA are being used to evaluate mucosal immune responses as an alternate to measuring the number of Antibody Secreting Cells (ASCs) using an ELISpot assay. A recently completed trial of two novel S. sonnei live oral vaccine candidates WRSs2 and WRSs3 established that both candidates were safe, well tolerated and immunogenic in a vaccine dose-dependent manner. Previously, mucosal immune responses were measured by assaying IgA- and IgG-ASC in peripheral blood mononuclear cells (PBMCs). In this report, the magnitude of the S. sonnei antigen-specific IgA- and IgG-ALS responses was measured and correlated with previously described ASCs, serum antibodies, fecal IgA and vaccine shedding. Overall, the magnitude of S. sonnei anti-Invaplex50 ALS was higher than that of LPS or IpaB, and both vaccines demonstrated a more robust IgA-ALS response than IgG; however, compared to WRSs3, the magnitude and percentage of responders were higher among WRSs2 recipients for IgA- or IgG-ALS. All WRSs2 vaccinees at the two highest doses responded for LPS and Invaplex50-specific IgA-ALS and 63-100% for WRSs3 vaccinees responded. Regardless of the vaccine candidate, vaccine dose or detecting antigen, the kinetics of ALS responses were similar peaking on days 7 to 9 and returning to baseline by day 14. The ALS responses were vaccine-specific since no responses were detected among placebo recipients at any time. A strong correlation and agreement between responders/non-responders were noted between ALS and other mucosal (ASC and fecal IgA) and systemic (serum antibody) immune responses. These data indicate that the ALS assay can be a useful tool to evaluate mucosal responses to oral vaccination, an observation noted with trials of other bacterial diarrheal pathogens. Furthermore, this data will guide the list of immunological assays to be conducted for efficacy trials in different populations. It is hoped that an antigen-specific-ALS titer may be a key mucosal correlate of protection, a feature not currently available for any Shigella vaccines candidates. https://clinicaltrials.gov/show/NCT01336699.
Collapse
Affiliation(s)
- Malabi M. Venkatesan
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | | | - Shoshana Barnoy
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Monica McNeal
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | | | - Robert Frenck
- Division of Infectious Diseases, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Dembiński Ł, Stelmaszczyk-Emmel A, Sznurkowska K, Szlagatys-Sidorkiewicz A, Radzikowski A, Banaszkiewicz A. Immunogenicity of cholera vaccination in children with inflammatory bowel disease. Hum Vaccin Immunother 2021; 17:2586-2592. [PMID: 33794737 PMCID: PMC8475559 DOI: 10.1080/21645515.2021.1884475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cholera vaccine can protect patients with inflammatory bowel disease (IBD) against both cholera and travelers' diarrhea. However, both immunosuppressive treatment and IBD can affect its vaccine immunogenicity. The aim of this study was to assess the immunogenicity and safety of the cholera vaccine in children with IBD. Children older than 6 years with diagnosed IBD were enrolled in this multicenter study. All patients were administered two doses of the oral cholera vaccine (Dukoral®). Anti-cholera toxin B subunit IgA and IgG seroconversion rates were evaluated in a group with immunosuppressive (IS) treatment and a group without IS treatment (NIS). Immunogenicity was assessed in 70 children, 79% of whom received IS treatment. Post-vaccination seroconversion was displayed by 33% of children, for IgA, and 70% of children, for IgG. No statistically significant differences were found in the immune responses between the IS and NIS groups: 35% vs. 27% (p = .90), for IgA, and 68% vs. 80.0% (p = .16), for IgG, respectively. One case of IBD exacerbation after vaccination was reported. The oral cholera vaccine is safe. The immunogenicity of the oral cholera vaccine in children with IBD was lower than previously observed in healthy ones. The treatment type does not seem to affect the vaccine immunogenicity.
Collapse
Affiliation(s)
- Łukasz Dembiński
- Department of Pediatric Gastroenterology and Nutrition, The Medical University of Warsaw, Warsaw, Poland
- CONTACT Łukasz Dembiński ; Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, Zwirki I Wigury 63A, Warsaw02-091, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Sznurkowska
- Department of Pediatrics, Gastroenterology, Allergology and Nutrition, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Szlagatys-Sidorkiewicz
- Department of Pediatrics, Gastroenterology, Allergology and Nutrition, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Radzikowski
- Department of Pediatric Gastroenterology and Nutrition, The Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Banaszkiewicz
- Department of Pediatric Gastroenterology and Nutrition, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Chakraborty M, Bhaumik M. Prenatal arsenic exposure interferes in postnatal immunocompetence despite an absence of ongoing arsenic exposure. J Immunotoxicol 2021; 17:135-143. [PMID: 32538211 DOI: 10.1080/1547691x.2020.1767238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Arsenic (As) readily crosses the placenta and exposure of the fetus may cause adverse consequences later in life, including immunomodulation. In the current study, the question was asked how the immune repertoire might respond in postnatal life when there is no further As exposure. Here, pregnant mice (Balb/c [H-2d]) were exposed to arsenic trioxide (As2O3) through their drinking water from time of conception until parturition. Their offspring, 4-week-old mice who had not been exposed again to As, were used for functional analyses of innate, humoral and cellular immunity. Compared to cells from non-As-exposed dam offspring, isolated peritoneal macro-phages (Mϕ) displayed no differences in T-cell stimulating ability. Levels of circulating IgG2a but not IgG1 were decreased in As-exposed dam offspring as compared to control offspring counterparts. Mixed-leukocyte reactions (MLR) indicated that CD4+ T-cells from the prenatal As-exposed mice were significantly less responsive to allogenic stimulation as evidenced by decreases in interferon (IFN)-γ and IL-2 production and in expression of CD44 and CD69 (but not CD25) activation markers. Interestingly, the Mϕ from the prenatal As-exposed mice were capable of stimulating normal allogenic T-cells, indicating that T-cells from these mice were refractory to allogenic signals. There was also a significant decrease in absolute numbers of splenic CD4+ and CD8+ T-cells due to prenatal As exposure (as compared to control). Lastly, the impaired immune function of the prenatal As-exposed mice was correlated with a very strong susceptibility to Escherichia coli infection. Taken together, the data from this study clearly show that in utero As exposure may continue to perpetuate a dampening effect on the immune repertoire of offspring, even into the early stages of postnatal life.
Collapse
Affiliation(s)
- Mainak Chakraborty
- Division of Immunology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Moumita Bhaumik
- Division of Immunology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
10
|
Nasrollahzadeh M, Sajjadi M, Soufi GJ, Iravani S, Varma RS. Nanomaterials and Nanotechnology-Associated Innovations against Viral Infections with a Focus on Coronaviruses. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1072. [PMID: 32486364 PMCID: PMC7352498 DOI: 10.3390/nano10061072] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Viral infections have recently emerged not only as a health threat to people but rapidly became the cause of universal fatality on a large scale. Nanomaterials comprising functionalized nanoparticles (NPs) and quantum dots and nanotechnology-associated innovative detection methods, vaccine design, and nanodrug production have shown immense promise for interfacing with pathogenic viruses and restricting their entrance into cells. These viruses have been scrutinized using rapid diagnostic detection and therapeutic interventional options against the caused infections including vaccine development for prevention and control. Coronaviruses, namely SARS-CoV, MERS-CoV, and SARS-CoV-2, have endangered human life, and the COVID-19 (caused by SARS-CoV-2) outbreak has become a perilous challenge to public health globally with huge accompanying morbidity rates. Thus, it is imperative to expedite the drug and vaccine development efforts that would help mitigate this pandemic. In this regard, smart and innovative nano-based technologies and approaches encompassing applications of green nanomedicine, bio-inspired methods, multifunctional bioengineered nanomaterials, and biomimetic drug delivery systems/carriers can help resolve the critical issues regarding detection, prevention, and treatment of viral infections. This perspective review expounds recent nanoscience advancements for the detection and treatment of viral infections with focus on coronaviruses and encompasses nano-based formulations and delivery platforms, nanovaccines, and promising methods for clinical diagnosis, especially regarding SARS-CoV-2.
Collapse
Affiliation(s)
| | - Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom 37185-359, Iran;
| | - Ghazaleh Jamalipour Soufi
- Radiology Department, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran;
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, 783 71, CZ-779 00 Olomouc, Czech Republic
| |
Collapse
|
11
|
Welch BM, Branscum A, Geldhof GJ, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Sharif O, Rahman M, Quamruzzaman Q, Christiani DC, Kile ML. Evaluating the effects between metal mixtures and serum vaccine antibody concentrations in children: a prospective birth cohort study. Environ Health 2020; 19:41. [PMID: 32276596 PMCID: PMC7146972 DOI: 10.1186/s12940-020-00592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/27/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Many populations are exposed to arsenic, lead, and manganese. These metals influence immune function. We evaluated the association between exposure to single and multiple metals, including arsenic, lead, and manganese, to humoral immunity as measured by antibody concentrations to diphtheria and tetanus toxoid among vaccinated Bangladeshi children. Additionally, we examined if this association was potentially mediated by nutritional status. METHODS Antibody concentrations to diphtheria and tetanus were measured in children's serum at age 5 (n = 502). Household drinking water was sampled to quantify arsenic (W-As) and manganese (W-Mn), whereas lead was measured in blood (B-Pb). Exposure samples were taken during pregnancy, toddlerhood, and early childhood. Multiple linear regression models (MLRs) with single or combined metal predictors were used to determine the association with antibody outcomes. MLR results were transformed to units of percent change in outcome per doubling of exposure to improve interpretability. Structural equation models (SEMs) were used to further assess exposure to metal mixtures. SEMs regressed a latent exposure variable (Metals), informed by all measured metal variables (W-As, W-Mn, and B-Pb), on a latent outcome variable (Antibody), informed by measured antibody variables (diphtheria and tetanus). Weight-for-age z-score (WFA) at age 5 was evaluated as a mediator. RESULTS Diphtheria antibody was negatively associated with W-As during pregnancy in MLR, but associations were attenuated after adjusting for W-Mn and B-Pb (- 2.9% change in diphtheria antibody per doubling in W-As, 95% confidence interval [CI]: - 7%, 1.5%). Conversely, pregnancy levels of B-Pb were positively associated with tetanus antibody, even after adjusting for W-As and W-Mn (13.3%, 95% CI: 1.7%, 26.3%). Overall, null associations were observed between W-Mn and antibody outcomes. Analysis by SEMs showed that the latent Metals mixture was significantly associated with the latent Antibody outcome (β = - 0.16, 95% CI: - 0.26, - 0.05), but the Metals variable was characterized by positive and negative loadings of W-As and B-Pb, respectively. Sex-stratified MLR and SEM analyses showed W-As and B-Pb associations were exclusive to females. Mediation by WFA was null, indicating Metals only had direct effects on Antibody. CONCLUSIONS We observed significant modulation of vaccine antibody concentrations among children with pregnancy and early life exposures to drinking water arsenic and blood lead. We found distinct differences by child sex, as only females were susceptible to metal-related modulations in antibody levels. Weight-for-age, a nutritional status proxy, did not mediate the association between the metal mixture and vaccine antibody.
Collapse
Affiliation(s)
- Barrett M. Welch
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
- Oregon Health and Sciences University, Portland, OR USA
| | - Adam Branscum
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - G. John Geldhof
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sharia M. Ahmed
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Ellen Smit
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Meghan Megowan
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| | | | - Omar Sharif
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | | | | | | | - Molly L. Kile
- College of Public Health and Human Sciences, Oregon State University, Milam Hall, Room 101, Corvallis, OR 97331 USA
| |
Collapse
|
12
|
Parvez F, Akhtar E, Khan L, Haq MA, Islam T, Ahmed D, Eunus HEMM, Hasan AKMR, Ahsan H, Graziano JH, Raqib R. Exposure to low-dose arsenic in early life alters innate immune function in children. J Immunotoxicol 2019; 16:201-209. [PMID: 31703545 PMCID: PMC7041495 DOI: 10.1080/1547691x.2019.1657993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 01/06/2023] Open
Abstract
Early-life exposure to arsenic (As) increases risks of respiratory diseases/infections in children. However, data on the ability of the innate immune system to combat bacterial infections in the respiratory tracts of As-exposed children are scarce. To evaluate whether persistent low-dose As exposure alters innate immune function among children younger than 5 years-of-age, mothers and participating children (N = 51) that were members of the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in rural Bangladesh were recruited. Household water As, past and concurrent maternal urinary As (U-As) as well as child U-As were all measured at enrollment. In addition, U-As metabolites were evaluated. Innate immune function was examined via measures of cathelicidin LL-37 in plasma, ex vivo monocyte-derived-macrophage (MDM)-mediated killing of Streptococcus pneumoniae (Spn), and serum bactericidal antibody (SBA) responses against Haemophilus influenzae type b (Hib). Cyto-/chemokines produced by isolated peripheral blood mononuclear cells (PBMC) were assayed using a Multiplex system. Multivariable linear regression analyses revealed that maternal (p < 0.01) and child (p = 0.02) U-As were positively associated with plasma LL-37 levels. Decreased MDM-mediated Spn killing (p = 0.05) and SBA responses (p = 0.02) were seen to be each associated with fractions of mono-methylarsonic acid (MMA; a U-As metabolite) in the children. In addition, U-As levels were seen to be negatively associated with PBMC formation of fractalkine and IL-7, and positively associated with that for IL-13, IL-17 and MIP-1α. These findings suggested that early-life As exposure may disrupt the innate host defense pathway in these children. It is possible that such disruptions may have health consequences later in life.
Collapse
Affiliation(s)
- Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Lamia Khan
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Md. Ahsanul Haq
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| | - Tariqul Islam
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Dilruba Ahmed
- Laboratory Sciences and Services Division, icddr,b, Dhaka-1212, Bangladesh
| | - HEM Mahbubul Eunus
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - AKM Rabiul Hasan
- Columbia University and University of Chicago Research office in Bangladesh, Dhaka-1212, Bangladesh
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, 5841 South Maryland Avenue, Chicago, IL
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Rubhana Raqib
- Infectious Diseases Division, icddr,b, Dhaka-1212, Bangladesh
| |
Collapse
|
13
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
14
|
Welch BM, Branscum A, Ahmed SM, Hystad P, Smit E, Afroz S, Megowan M, Golam M, Ibne Hasan MOS, Rahman ML, Quamruzzaman Q, Christiani DC, Kile ML. Arsenic exposure and serum antibody concentrations to diphtheria and tetanus toxoid in children at age 5: A prospective birth cohort in Bangladesh. ENVIRONMENT INTERNATIONAL 2019; 127:810-818. [PMID: 31051324 PMCID: PMC6513691 DOI: 10.1016/j.envint.2019.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/07/2019] [Accepted: 04/05/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arsenic can impair immune function. Timing of exposure can influence potential immunotoxicity of arsenic exposure. We examined the association between drinking water arsenic concentrations (W-As) measured repeatedly during different exposure windows in early life and serum concentrations of IgG antibodies against diphtheria and tetanus toxoids (diphtheria and tetanus antibody). METHODS A prospective cohort of pregnant women was recruited in Bangladesh (2008-2011). Averaged W-As levels were calculated for: pregnancy (W-Aspregnancy): ≤16 weeks gestation and <1 month; toddlerhood (W-Astoddlerhood): 12 and 20-40 months; and early childhood (W-Aschildhood): 4-5 years. Serum was collected from 502 vaccinated children at age 5 and concentrations of diphtheria and tetanus toxoid IgG (i.e. antibody) were quantified. Antibody concentrations >0.1 IU/mL were considered clinically sufficient for protection. Associations were estimated using linear and logistic regression models. RESULTS Inverse associations were observed between W-Aspregnancy and serum diphtheria antibody levels, while null associations were observed between W-As and tetanus antibody. Children within the highest versus lowest tertile of W-Aspregnancy had 91% greater odds of having clinically insufficient concentrations of diphtheria antibody (Odds ratio:1.91, 95% confidence interval (CI): 1.03, 3.56). Among females, a doubling in W-Aspregnancy was associated with 12.3% (95%CI: -20.1%, -4.5%) lower median concentrations of diphtheria antibody. Tetanus antibody was only associated with W-Aspregnancy among females (percent change in median: -9.5%, 95%CI: -17.6%, -1.3%). Among children who were stunted or underweight, a doubling in W-Aspregnancy was associated with decreased diphtheria antibody of 19.8% (95%CI: -32%, -7.5%) and 14.3% (95%CI: -26.7%, -2%), respectively. CONCLUSIONS Among vaccinated children, W-As measured during pregnancy was associated with decreased diphtheria antibody levels, but not tetanus antibody. However, W-As measured during toddlerhood and early childhood were not associated with either antibody outcome. Children's sex and malnutrition status were important effect modifiers of W-As for both diphtheria and tetanus antibody levels, highlighting the importance of these factors and the timing of the exposure when evaluating the effect of arsenic on humoral immunity.
Collapse
Affiliation(s)
- Barrett M Welch
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA; Oregon Clinical and Translational Research Institute, Oregon Health and Sciences University, USA.
| | - Adam Branscum
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Sharia M Ahmed
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Ellen Smit
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka, Bangladesh
| | - Meghan Megowan
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| | | | | | | | | | - David C Christiani
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Harvard University, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, USA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity-including the specific mechanisms in humans-is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. RECENT FINDINGS The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines.
Collapse
|
16
|
Raqib R, Ahmed S, Ahsan KB, Kippler M, Akhtar E, Roy AK, Lu Y, Arifeen SE, Wagatsuma Y, Vahter M. Humoral Immunity in Arsenic-Exposed Children in Rural Bangladesh: Total Immunoglobulins and Vaccine-Specific Antibodies. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067006. [PMID: 28657894 PMCID: PMC5743616 DOI: 10.1289/ehp318] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 10/09/2016] [Accepted: 10/24/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Early-life arsenic exposure has been associated with reduced cell-mediated immunity, but little is known about its effects on humoral immunity. OBJECTIVE We evaluated whether prenatal and childhood arsenic exposure was associated with humoral immune function in school-aged children. METHODS Children born in a prospective mother–child cohort in rural Bangladesh were immunized with measles, mumps, and rubella (MMR) vaccines at 9 years of age (n=525). Arsenic exposure was assessed in urine (U-As), from mothers during pregnancy and their children at 4.5 and 9 years of age. Total IgG (tIgG), tIgE, tIgA, and MMR-specific IgG concentrations were measured in plasma using immunoassays. RESULTS Arsenic exposure was positively associated with child tIgG and tIgE, but not tIgA. The association with tIgG was mainly apparent in boys (p for interaction=0.055), in whom each doubling of maternal U-As was related to an increase in tIgG by 28 mg/dL. The associations of U-As at 9 years with tIgG and tIgE were evident in underweight children (p for interaction <0.032). Childhood arsenic exposure tended to impair mumps-specific vaccine response, although the evaluation was complicated by high preimmunization titers. Postimmunization mumps–specific IgG titers tended to decrease with increasing U-As at 4.5 and 9 years of age [regression coefficient (β)=−0.16; 95% confidence interval (CI): −0.33, 0.01; p=0.064 and β=−0.12; 95% CI: −0.27, −0.029; p=0.113, respectively) in 25% children with the lowest preexisting mumps-specific IgG titers. CONCLUSIONS Arsenic exposure increased tIgG and tIgE in plasma, and tended to decrease mumps-specific IgG in children at 9 years of age. https://doi.org/10.1289/EHP318.
Collapse
Affiliation(s)
- Rubhana Raqib
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sultan Ahmed
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Khalid Bin Ahsan
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Evana Akhtar
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anjan Kumar Roy
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Ying Lu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Zhu C, Setty P, Boedeker EC. Development of live attenuated bacterial vaccines targeting Escherichia coli heat-labile and heat-stable enterotoxins. Vet Microbiol 2017; 202:72-78. [PMID: 28527491 DOI: 10.1016/j.vetmic.2017.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/04/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC), defined by the production of heat labile (LT) and/or heat stable (ST) toxins, are major causes of diarrhea in animals, children in developing countries and to travelers. No broadly protective ETEC vaccine is available, largely because of the difficulty in inducing immunity to the small ST molecule. To take advantage of the demonstration (Liu et al., 2011; Zhang et al., 2013, 2010) that genetically produced fusions of mutant ST with LT subunits can induce effective immunity against both toxins, we engineered a live attenuated vaccine vector strain of E. coli (ZCR533), expressing the immunogenic LT-ST fusions. To present the LT-ST fusions to the mucosal immune system, we used restriction-free cloning to incorporate them into the passenger domain of the autotransporter protein (EspP) expressed on a medium copy number plasmid. This versatile system permits expression of incorporated antigens in either surface-bound or secreted forms by the ZCR533 vector, for delivery to the mucosal inductive sites. Incorporation of the fusions into EspP plasmids was confirmed by PCR and DNA sequencing. Protein expression was confirmed by Western blot of whole cell lysates and culture supernatents using polyclonal antisera to LT. Expression of the surface-targeted fusion on the surface of ZCR533 was confirmed by immuno-fluorescent staining. These studies show that antigenic LT-ST fusions can be surface-expressed or secreted, by our attenuated E. coli ZCR533 vaccine vector via the EspP autotransporter. These constructs could serve as broadly protective vaccine candidates to protect against both LT- and ST-producing ETEC.
Collapse
Affiliation(s)
- Chengru Zhu
- School of Medicine, University of New Mexico, MSC10 5550, Albuquerque, NM 87131, USA
| | - Prashanth Setty
- New Mexico Veterans Administration Health Care System, 1501 San Pedro SE, Albuquerque, NM 87108, USA; School of Medicine, University of New Mexico, MSC10 5550, Albuquerque, NM 87131, USA
| | - Edgar C Boedeker
- New Mexico Veterans Administration Health Care System, 1501 San Pedro SE, Albuquerque, NM 87108, USA; School of Medicine, University of New Mexico, MSC10 5550, Albuquerque, NM 87131, USA.
| |
Collapse
|
18
|
Heaney CD, Kmush B, Navas-Acien A, Francesconi K, Gössler W, Schulze K, Fairweather D, Mehra S, Nelson KE, Klein SL, Li W, Ali H, Shaikh S, Merrill RD, Wu L, West KP, Christian P, Labrique AB. Arsenic exposure and hepatitis E virus infection during pregnancy. ENVIRONMENTAL RESEARCH 2015; 142:273-80. [PMID: 26186135 PMCID: PMC4609253 DOI: 10.1016/j.envres.2015.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/10/2015] [Accepted: 07/07/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Arsenic has immunomodulatory properties and may have the potential to alter susceptibility to infection in humans. OBJECTIVES We aimed to assess the relation of arsenic exposure during pregnancy with immune function and hepatitis E virus (HEV) infection, defined as seroconversion during pregnancy and postpartum. METHODS We assessed IgG seroconversion to HEV between 1st and 3rd trimester (TM) and 3 months postpartum (PP) among 1100 pregnancies in a multiple micronutrient supplementation trial in rural Bangladesh. Forty women seroconverted to HEV and were matched with 40 non-seroconverting women (controls) by age, parity and intervention. We assessed urinary inorganic arsenic plus methylated species (∑As) (µg/L) at 1st and 3rd TM and plasma cytokines (pg/mL) at 1st and 3rd TM and 3 months PP. RESULTS HEV seroconverters' urinary ∑As was elevated throughout pregnancy. Non-seroconverters' urinary ∑As was similar to HEV seroconverters at 1st TM but declined at 3rd TM. The adjusted odds ratio (95% confidence interval) of HEV seroconversion was 2.17 (1.07, 4.39) per interquartile range (IQR) increase in average-pregnancy urinary ∑As. Increased urinary ∑As was associated with increased concentrations of IL-2 during the 1st and 3rd TM and 3 months PP among HEV seroconverters but not non-seroconverters. CONCLUSIONS The relation of urinary arsenic during pregnancy with incident HEV seroconversion and with IL-2 levels among HEV-seroconverting pregnant women suggests arsenic exposure during pregnancy may enhance susceptibility to HEV infection.
Collapse
Affiliation(s)
- Christopher D Heaney
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Brittany Kmush
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kevin Francesconi
- Institute of Chemistry-Analytical Chemistry, Graz University, Austria
| | - Walter Gössler
- Institute of Chemistry-Analytical Chemistry, Graz University, Austria
| | - Kerry Schulze
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The JiVitA Maternal and Child Health and Nutrition Research Project, Gaibandha, Bangladesh
| | - DeLisa Fairweather
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sucheta Mehra
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The JiVitA Maternal and Child Health and Nutrition Research Project, Gaibandha, Bangladesh
| | - Kenrad E Nelson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wei Li
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Hasmot Ali
- The JiVitA Maternal and Child Health and Nutrition Research Project, Gaibandha, Bangladesh
| | - Saijuddin Shaikh
- The JiVitA Maternal and Child Health and Nutrition Research Project, Gaibandha, Bangladesh
| | - Rebecca D Merrill
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The JiVitA Maternal and Child Health and Nutrition Research Project, Gaibandha, Bangladesh
| | - Lee Wu
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The JiVitA Maternal and Child Health and Nutrition Research Project, Gaibandha, Bangladesh
| | - Keith P West
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The JiVitA Maternal and Child Health and Nutrition Research Project, Gaibandha, Bangladesh
| | - Parul Christian
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The JiVitA Maternal and Child Health and Nutrition Research Project, Gaibandha, Bangladesh
| | - Alain B Labrique
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The JiVitA Maternal and Child Health and Nutrition Research Project, Gaibandha, Bangladesh
| |
Collapse
|
19
|
Jackson SS, Chen WH. Evidence for CVD 103-HgR as an effective single-dose oral cholera vaccine. Future Microbiol 2015; 10:1271-81. [DOI: 10.2217/fmb.15.51] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We propose the ideal oral cholera vaccine (OCV) should be an inexpensive, single, oral dose that rapidly confers immunity for a long duration, and is well tolerated by individuals vulnerable to cholera. Vaccine trials in industrialized countries of a single oral dose of 5 × 108 colony forming units (CFU) of the live, attenuated cholera strain CVD 103-HgR have shown 88–97% serum vibriocidal antibody seroconversion rates, a correlate of protection and documented vaccine efficacy of ≥80% using volunteer challenge studies with wild-type cholera. For individuals of developing countries, a 5 × 109 CFU dose of CVD 103-HgR is necessary to elicit similar antibody responses. Presently, a reformulation of CVD 103-HgR is in late-stage clinical development for prospective US FDA licensure; making a cholera vaccine for US travelers potentially accessible in 2016. The availability of CVD 103-HgR should be a welcome addition to the currently available OCVs.
Collapse
Affiliation(s)
- Sarah S Jackson
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, 685 W. Baltimore Street, Suite 480, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Ser PH, Banu B, Jebunnesa F, Fatema K, Rosy N, Yasmin R, Furusawa H, Ali L, Ahmad SA, Watanabe C. Arsenic exposure increases maternal but not cord serum IgG in Bangladesh. Pediatr Int 2015; 57:119-25. [PMID: 24862852 DOI: 10.1111/ped.12396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/10/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Thousands of pregnant women are exposed to arsenic (As), which has been shown to lead to a higher risk of maternal and infant morbidity. We hypothesized that As-induced modifications to the humoral immune system may be partly responsible, and examined the relationship between As and immunoglobulin G (IgG). METHODS Pregnant women were recruited in As-contaminated rural areas in Bangladesh. Blood and urine samples, and questionnaire data were collected. We analyzed data from 202 pregnant women and a subset of 121 mother-infant pairs. Urinary As was measured on inductively coupled plasma-mass spectrometry and adjusted with specific gravity (U-AsSG ). Maternal (IgGmat ) and cord (IgGcord ) serum total IgG were measured using immunoturbidity assay. RESULTS The geometric mean U-AsSG (n = 202) was 69 μg/L (range, 3.1-1356 μg/L). Urinary-AsSG was significantly associated with IgGmat (n = 202; (r = 0.24; 95% confidence interval [CI]: 0.10-0.36; P < 0.001) and remained so after the inclusion of maternal-associated variables in a multiple-regression model (β = 1.26; 95%CI: 0.47-2.05; P < 0.01). U-AsSG , however, was not significantly associated with IgGcord (n = 121), while IgGmat and IgGcord were also not associated with each other. CONCLUSIONS Maternal As exposure was positively associated with IgGmat but not IgGcord . Elevated IgGmat may have implications as regards maternal morbidity and the placental transfer of specific IgGs. Further studies are required to better understand how As may affect maternal and child health by modifying the humoral immune system.
Collapse
Affiliation(s)
- Ping Han Ser
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK. Nanotechnology and vaccine development. Asian J Pharm Sci 2014. [DOI: 10.1016/j.ajps.2014.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|