1
|
Li S, Upadhyay I, Seo H, Vakamalla SSR, Madhwal A, Sack DA, Zhang W. Immunogenicity and preclinical efficacy characterization of ShecVax, a combined vaccine against Shigella and enterotoxigenic Escherichia coli. Infect Immun 2025; 93:e0000425. [PMID: 40208039 DOI: 10.1128/iai.00004-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
No licensed vaccines are available for the largely antibiotic-resistant Shigella or enterotoxigenic Escherichia coli (ETEC), the two most common bacteria causing children's diarrhea and travelers' diarrhea. Virulence heterogeneity is a key obstacle to developing vaccines against Shigella or ETEC. By applying a multiepitope fusion antigen (MEFA) vaccinology platform, we recently constructed epitope- and structure-based polyvalent proteins to induce cross-protective antibodies against heterogeneous Shigella or ETEC strains. In this study, we combined a polyvalent Shigella protein with two polyvalent ETEC proteins, examined antigen compatibility and broad immunogenicity, and evaluated the potential of developing a combined vaccine against the two groups of bacteria. Data showed that mice intramuscularly immunized with the combined vaccine candidate (ShecVax) developed antibodies to all the following target virulence factors: Shigella IpaB, IpaD, VirG, GuaB, StxA, Stx2A, and StxB, and ETEC STa, LT, CFA/I, CS1, CS2, CS3, CS4, CS5, and CS6. ShecVax-induced antibodies significantly inhibited the invasion of all Shigella species and important serotypes, prevented the adherence of all important ETEC pathotypes, and neutralized the enterotoxicity of ETEC toxins STa and LT. Moreover, ShecVax prevented mice from lethal pulmonary infection with Shigella sonnei or S. flexneri 2a, significantly reduced ETEC bacterial colonization in rabbit small intestines, and passively protected newborn pigs against ETEC toxin-mediated clinical diarrhea. These results indicated that ShecVax is broadly immunogenic and cross-protective against Shigella and ETEC, suggesting ShecVax can be a Shigella/ETEC combined vaccine against children's and travelers' diarrhea, and the MEFA platform can be generally applied for vaccine development against heterogeneous pathogens or different diseases.IMPORTANCEThere are no effective countermeasures against Shigella and enterotoxigenic E. coli (ETEC), two antibiotic-resistant groups of bacteria and the leading causes of diarrhea in children in developing countries (children's diarrhea) and international travelers (travelers' diarrhea). Vaccines are a more practical approach to protect against infectious diseases, including diarrhea caused by Shigella or ETEC. A combined vaccine cross-protective against Shigella and ETEC can save hundreds of thousands of lives and prevent hundreds of millions of diarrhea cases yearly; it can also reduce antibiotic prescription and decrease antibiotic resistance, thus significantly improving global health. In addition, we may apply the MEFA platform to develop combined vaccines against heterogeneous pathogens or different diseases to accommodate an increasingly crowded expanded program on immunization (EPI).
Collapse
MESH Headings
- Animals
- Enterotoxigenic Escherichia coli/immunology
- Shigella/immunology
- Mice
- Escherichia coli Infections/prevention & control
- Escherichia coli Infections/immunology
- Escherichia coli Infections/microbiology
- Dysentery, Bacillary/prevention & control
- Dysentery, Bacillary/immunology
- Dysentery, Bacillary/microbiology
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/blood
- Escherichia coli Vaccines/immunology
- Escherichia coli Vaccines/administration & dosage
- Shigella Vaccines/immunology
- Shigella Vaccines/administration & dosage
- Vaccines, Combined/immunology
- Vaccines, Combined/administration & dosage
- Female
- Antigens, Bacterial/immunology
- Mice, Inbred BALB C
- Immunogenicity, Vaccine
- Virulence Factors/immunology
- Rabbits
- Diarrhea/prevention & control
Collapse
Affiliation(s)
- Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology and Diagnostic Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology and Diagnostic Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Hyesuk Seo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology and Diagnostic Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Sai S R Vakamalla
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aashwina Madhwal
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David A Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology and Diagnostic Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
Duan Q, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Sialyllactose Attenuates Inflammation and Injury of Intestinal Epithelial Cells upon Enterotoxigenic Escherichia coli Infection. Int J Mol Sci 2025; 26:3860. [PMID: 40332525 PMCID: PMC12027521 DOI: 10.3390/ijms26083860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
Sialyllactose (SL), a bioactive trisaccharide abundant in porcine colostrum, demonstrates multifunctional properties including antimicrobial activity, immune regulation, and apoptosis inhibition. This research uncovers the mechanisms by which SL mitigates enterotoxigenic Escherichia coli (ETEC)-mediated damage to intestinal barrier integrity, employing IPEC-J2 porcine epithelial models. SL pre-treatment effectively blocked pathogen adhesion by competitively binding to cellular receptors, concurrently mitigating inflammation through significant suppression of TNF-α, IL-1β, and IL-6 expression (p < 0.05). Notably, SL exhibited functional parallels to the NF-κB inhibitor BAY11-7082, jointly enhancing tight junction integrity via ZO-1 protein stabilization and inhibiting pro-inflammatory signaling through coordinated suppression of IκB-α/NF-κB phosphorylation cascades. The dual-action mechanism combines molecular interception of microbial attachment with intracellular modulation of the TLR4/MyD88/NF-κB pathway, effectively resolving both pathogenic colonization and inflammatory amplification. These findings position SL as a potential therapeutic application nutraceutical for livestock, with the capacity to address post-weaning porcine enteritis through functional feed formulations that synergistically enhance intestinal barrier resilience while curbing ETEC-mediated inflammatory pathogenesis.
Collapse
Affiliation(s)
- Qiming Duan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (Q.D.)
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| |
Collapse
|
3
|
Natal ACDC, de Paula Menezes R, de Brito Röder DVD. Role of maternal milk in providing a healthy intestinal microbiome for the preterm neonate. Pediatr Res 2024:10.1038/s41390-024-03751-x. [PMID: 39663425 DOI: 10.1038/s41390-024-03751-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
The immature gastrointestinal tract of preterm neonates leads to a delayed and distinctive establishment of the gut microbiome, making them susceptible to potentially pathogenic bacteria and increasing the risk of infections. Maternal milk, recognized as the optimal source of nutrition, plays a multifaceted role in modulating the gut microbiome of premature newborns. Human milk oligosaccharides, acting as prebiotics, provide essential nourishment for key bacteria such as Bifidobacterium, contributing to the proliferation of beneficial bacterial populations. Additionally, maternal milk is rich in Immunoglobulins that stimulate immune cell responses, providing protective effects on the infant's gut mucosa. Moreover, bioactive proteins such as secretory immunoglobulin A (SIgA), lactoferrin, lysozyme, and mucins play a crucial role in defending against pathogens and regulating the immune system at the cellular level. These proteins contribute not only to infection prevention but also emphasize the impact of breast milk in fortifying the body's innate defenses. This multifaceted role of maternal milk, including essential nutrients, beneficial bacteria, and bioactive proteins, highlights the importance of promoting the mother's own milk feeding in the Neonatal Intensive Care Unit (NICU). It not only optimizes the long-term outcomes and well-being of preterm infants but also provides a holistic approach to their health and development. IMPACT: This article contributes to the current understanding of the relationship between breastfeeding and the intestinal microbiota. Fill gaps in existing literature about the subject. Provides new insights for future research.
Collapse
Affiliation(s)
- Ana Catarina de Castro Natal
- Undergraduate Nursing, Faculty of Medicine (FAMED), Federal University of Uberlandia UFU, Uberlandia, MG, Brazil.
| | | | | |
Collapse
|
4
|
Munyemana JB, Kabayiza JC, Nilsson S, Andersson ME, Lindh M. Shigella and Enterotoxigenic Escherichia coli Have Replaced Rotavirus as Main Causes of Childhood Diarrhea in Rwanda After 10 Years of Rotavirus Vaccination. J Infect Dis 2024; 230:e1176-e1180. [PMID: 39248312 PMCID: PMC11566240 DOI: 10.1093/infdis/jiae446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024] Open
Abstract
The causes of diarrhea after 10 years of rotavirus vaccination in Rwanda were investigated with real-time polymerase chain reaction in 496 children with diarrhea and 298 without. Rotavirus was detected in 11% of children with diarrhea (odds ratio, 2.48; P = .002). Comparison of population attributable fractions (PAFs) shows that Shigella (PAF, 11%) and enterotoxigenic Escherichia coli producing labile toxin (PAF, 12%) have replaced rotavirus as the main causative agents. The PAF for rotavirus had declined from 41% prevaccination to 6.5% postvaccination, indicating that rotavirus has become one among several similarly important causes of childhood diarrhea in Rwanda. A rotavirus genotype shift to G3P[8] points at the importance of continued genotype surveillance.
Collapse
Affiliation(s)
- Jean Bosco Munyemana
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, University of Rwanda
- Department of Pathology, University Teaching Hospital of Kigali
| | - Jean Claude Kabayiza
- Department of Pediatrics, School of Medicine and Pharmacy, University of Rwanda
- Department of Pediatrics, University Teaching Hospital of Kigali, Rwanda
| | - Staffan Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Maria E Andersson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden
| |
Collapse
|
5
|
Ruamsap N, Imerbsin R, Khanijou P, Gonwong S, Oransathit W, Barnoy S, Venkatesan MM, Chaudhury S, Islam D. A rhesus macaque intragastric challenge model for evaluating the safety, immunogenicity, and efficacy of live-attenuated Shigella dysenteriae 1 vaccine candidates. Front Microbiol 2024; 15:1454338. [PMID: 39309527 PMCID: PMC11413625 DOI: 10.3389/fmicb.2024.1454338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Shigellosis remains a significant global health challenge, particularly in Asia and Africa, where it is a major cause of morbidity and mortality among children. Despite the urgent need, the development of a licensed Shigella vaccine has been hindered, partly due to the lack of suitable animal models for preclinical evaluation. In this study, we used an intragastric adult rhesus macaque challenge model to evaluate the safety, immunogenicity, and efficacy of five live-attenuated Shigella dysenteriae 1 vaccine candidates, all derived from the 1617 parent strain. The vaccine strains included WRSd1, a previously tested candidate with deletions in virG(icsA), stxAB, and fnr, and four other strains-WRSd2, WRSd3, WRSd4, and WRSd5-each containing deletions in virG and stxAB, but retaining fnr. Additionally, WRSd3 and WRSd5 had further deletions in the Shigella enterotoxin gene senA and its paralog senB, with WRSd5 having an extra deletion in msbB2. Rhesus monkeys were immunized three times at two-day intervals with a target dose of 2 × 1010 CFU of the vaccine strains. Thirty days after the final immunization, all monkeys were challenged with a target dose of 2 × 109 CFU of the S. dysenteriae 1 1617 wild-type strain. Safety, immunogenicity, and efficacy were assessed through physical monitoring and the evaluation of immunologic and inflammatory markers following immunization and challenge. Initial doses of WRSd1, WRSd3, and WRSd5 led to mild adverse effects, such as vomiting and loose stools, but all five vaccine strains were well tolerated in subsequent doses. All strains elicited significant IgA and IgG antibody responses, as well as the production of antibody-secreting cells. Notably, none of the vaccinated animals exhibited shigellosis symptoms such as vomiting or loose/watery stool post-challenge, in stark contrast to the control group, where 39% and 61% of monkeys exhibited these symptoms, respectively. The aggregate clinical score used to evaluate Shigella attack rates post-challenge revealed a 72% attack rate in control animals, compared to only 13% in vaccinated animals, indicating a relative risk reduction of 81%. This study highlights the potential of this NHP model in evaluating the safety, immunogenicity, and efficacy of live-attenuated Shigella vaccine candidates, offering a valuable tool for preclinical assessment before advancing to Phase 1 or more advanced clinical trials.
Collapse
Affiliation(s)
- Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rawiwan Imerbsin
- Department of Veterinary Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Patchariya Khanijou
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Siriphan Gonwong
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wilawan Oransathit
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Shoshana Barnoy
- Department of Diarrheal Disease Research, Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Malabi M. Venkatesan
- Department of Diarrheal Disease Research, Bacterial Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sidhartha Chaudhury
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Dilara Islam
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| |
Collapse
|
6
|
Rim S, Vedøy OB, Brønstad I, McCann A, Meyer K, Steinsland H, Hanevik K. Inflammation, the kynurenines, and mucosal injury during human experimental enterotoxigenic Escherichia coli infection. Med Microbiol Immunol 2024; 213:2. [PMID: 38430452 PMCID: PMC10908629 DOI: 10.1007/s00430-024-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/29/2023] [Indexed: 03/03/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children and travelers, especially in low- and middle-income countries. ETEC is a non-invasive gut pathogen colonizing the small intestinal wall before secreting diarrhea-inducing enterotoxins. We sought to investigate the impact of ETEC infection on local and systemic host defenses by examining plasma markers of inflammation and mucosal injury as well as kynurenine pathway metabolites. Plasma samples from 21 volunteers experimentally infected with ETEC were collected before and 1, 2, 3, and 7 days after ingesting the ETEC dose, and grouped based on the level of intestinal ETEC proliferation: 14 volunteers experienced substantial proliferation (SP) and 7 had low proliferation (LP). Plasma markers of inflammation, kynurenine pathway metabolites, and related cofactors (vitamins B2 and B6) were quantified using targeted mass spectrometry, whereas ELISA was used to quantify the mucosal injury markers, regenerating islet-derived protein 3A (Reg3a), and intestinal fatty acid-binding protein 2 (iFABP). We observed increased concentrations of plasma C-reactive protein (CRP), serum amyloid A (SAA), neopterin, kynurenine/tryptophan ratio (KTR), and Reg3a in the SP group following dose ingestion. Vitamin B6 forms, pyridoxal 5'-phosphate and pyridoxal, decreased over time in the SP group. CRP, SAA, and pyridoxic acid ratio correlated with ETEC proliferation levels. The changes following experimental ETEC infection indicate that ETEC, despite causing a non-invasive infection, induces systemic inflammation and mucosal injury when proliferating substantially, even in cases without diarrhea. It is conceivable that ETEC infections, especially when repeated, contribute to negative health impacts on children in ETEC endemic areas.
Collapse
Affiliation(s)
- Sehee Rim
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Oda Barth Vedøy
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg Brønstad
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Hans Steinsland
- Department of Global Public Health and Primary Care, Faculty of Medicine, Centre for Intervention Science in Maternal and Child Health, Centre for International Health, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, National Center for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Islam D, Ruamsap N, Imerbsin R, Khanijou P, Gonwong S, Wegner MD, McVeigh A, Poly FM, Crawford JM, Swierczewski BE, Kaminski RW, Laird RM. Bioactivity and efficacy of a hyperimmune bovine colostrum product- Travelan, against shigellosis in a non-Human primate model (Macaca mulatta). PLoS One 2023; 18:e0294021. [PMID: 38091314 PMCID: PMC10718440 DOI: 10.1371/journal.pone.0294021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/16/2023] [Indexed: 12/18/2023] Open
Abstract
Infectious diarrhea is a World Health Organization public health priority area due to the lack of effective vaccines and an accelerating global antimicrobial resistance crisis. New strategies are urgently needed such as immunoprophylactic for prevention of diarrheal diseases. Hyperimmune bovine colostrum (HBC) is an established and effective prophylactic for infectious diarrhea. The commercial HBC product, Travelan® (Immuron Ltd, Australia) targets multiple strains of enterotoxigenic Escherichia coli (ETEC) is highly effective in preventing diarrhea in human clinical studies. Although Travelan® targets ETEC, preliminary studies suggested cross-reactivity with other Gram-negative enteric pathogens including Shigella and Salmonella species. For this study we selected an invasive diarrheal/dysentery-causing enteric pathogen, Shigella, to evaluate the effectiveness of Travelan®, both in vitro and in vivo. Here we demonstrate broad cross-reactivity of Travelan® with all four Shigella spp. (S. flexneri, S. sonnei, S. dysenteriae and S. boydii) and important virulence factor Shigella antigens. Naïve juvenile rhesus macaques (NJRM) were randomized, 8 dosed with Travelan® and 4 with a placebo intragastrically twice daily over 6 days. All NJRM were challenged with S. flexneri 2a strain 2457T on the 4th day of treatment and monitored for diarrheal symptoms. All placebo-treated NJRM displayed acute dysentery symptoms within 24-36 hours of challenge. Two Travelan®-treated NJRM displayed dysentery symptoms and six animals remained healthy and symptom-free post challenge; resulting in 75% efficacy of prevention of shigellosis (p = 0.014). These results strongly indicate that Travelan® is functionally cross-reactive and an effective prophylactic for shigellosis. This has positive implications for the prophylactic use of Travelan® for protection against both ETEC and Shigella spp. diarrheal infections. Future refinement and expansion of pathogens recognized by HBC including Travelan® could revolutionize current management of gastrointestinal infections and outbreaks in travelers' including military, peacekeepers, humanitarian workers and in populations living in endemic regions of the world.
Collapse
Affiliation(s)
- Dilara Islam
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Nattaya Ruamsap
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Rawiwan Imerbsin
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Patchariya Khanijou
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Siriphan Gonwong
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Matthew D. Wegner
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Annette McVeigh
- Henry M. Jackson Foundation for Military Medicine (HJF), Bethesda, Maryland, United States of America
- Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - Frédéric M. Poly
- Naval Medical Research Command (NMRC), Silver Spring, Maryland, United States of America
| | - John M. Crawford
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Brett E. Swierczewski
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Robert W. Kaminski
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
| | - Renee M. Laird
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, United States of America
| |
Collapse
|
8
|
Li S, Anvari S, Ptacek G, Upadhyay I, Kaminski RW, Sack DA, Zhang W. A broadly immunogenic polyvalent Shigella multiepitope fusion antigen protein protects against Shigella sonnei and Shigella flexneri lethal pulmonary challenges in mice. Infect Immun 2023; 91:e0031623. [PMID: 37795982 PMCID: PMC10652900 DOI: 10.1128/iai.00316-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
There are no licensed vaccines for Shigella, a leading cause of children's diarrhea and a common etiology of travelers' diarrhea. To develop a cross-protective Shigella vaccine, in this study, we constructed a polyvalent protein immunogen to present conserved immunodominant epitopes of Shigella invasion plasmid antigens B (IpaB) and D (IpaD), VirG, GuaB, and Shiga toxins on backbone protein IpaD, by applying an epitope- and structure-based multiepitope-fusion-antigen (MEFA) vaccinology platform, examined protein (Shigella MEFA) broad immunogenicity, and evaluated antibody function against Shigella invasion and Shiga toxin cytotoxicity but also protection against Shigella lethal challenge. Mice intramuscularly immunized with Shigella MEFA protein developed IgG responses to IpaB, IpaD, VirG, GuaB, and Shiga toxins 1 and 2; mouse sera significantly reduced invasion of Shigella sonnei, Shigella flexneri serotype 2a, 3a, or 6, Shigella boydii, and Shigella dysenteriae type 1 and neutralized cytotoxicity of Shiga toxins of Shigella and Shiga toxin-producing Escherichia coli in vitro. Moreover, mice intranasally immunized with Shigella MEFA protein (adjuvanted with dmLT) developed antigen-specific serum IgG, lung IgG and IgA, and fecal IgA antibodies, and survived from lethal pulmonary challenge with S. sonnei or S. flexneri serotype 2a, 3a, or 6. In contrast, the control mice died, became unresponsive, or lost 20% of body weight in 48 h. These results indicated that this Shigella MEFA protein is broadly immunogenic, induces broadly functional antibodies, and cross-protects against lethal pulmonary challenges with S. sonnei or S. flexneri serotypes, suggesting a potential application of this polyvalent MEFA protein in Shigella vaccine development.
Collapse
Affiliation(s)
- Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shaghayegh Anvari
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Galen Ptacek
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Robert W. Kaminski
- Department of Enteric Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David A. Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Upadhyay I, Parvej SMD, Shen Y, Li S, Lauder KL, Zhang C, Zhang W. Protein-based vaccine candidate MecVax broadly protects against enterotoxigenic Escherichia coli intestinal colonization in a rabbit model. Infect Immun 2023; 91:e0027223. [PMID: 37874163 PMCID: PMC10652908 DOI: 10.1128/iai.00272-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
There are no vaccines licensed against enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea and the most common cause of travelers' diarrhea. Multivalent vaccine candidate MecVax unprecedentedly targets two ETEC enterotoxins (heat-stable toxin, STa; heat-labile toxin, LT) and the seven most prevalent ETEC adhesins (colonization factor antigen, CFA/I, coli surface antigens, CS1-CS6) and has been demonstrated preclinically to protect against STa- and LT-mediated ETEC clinical diarrhea and prevent intestinal colonization from ETEC strain H10407 (CFA/I, STa, LT). However, it is unattested whether MecVax broadly protects against intestinal colonization from ETEC strains producing the other six adhesins (CS1-CS6) also targeted by this product. In this study, we immunized rabbits with MecVax and challenged them with heterogeneous ETEC strains that express CS1-CS6 adhesins to evaluate MecVax's efficacy against bacterial intestinal colonization, thus providing broad vaccine protection against ETEC infection. Data revealed that rabbits intramuscularly immunized with MecVax developed robust responses to both ETEC enterotoxins (STa, LT) and seven adhesins (CFA/I, CS1-CS6), and when challenged with ETEC isolates expressing CS1/CS3, CS2/CS3, CS4/CS6, CS5/CS6, or CS6 adhesin, the immunized rabbits prevented over two logs (>99%) of bacteria from colonization in small intestines. Additionally, compared to a CFA-toxoid fusion protein, which is another potential ETEC vaccine antigen to target two ETEC enterotoxins and the seven adhesins, MecVax exhibited better protection against ETEC intestinal colonization. These results, in conjunction with the protection data from early studies, evidenced that MecVax is broadly protective, validating MecVax's candidacy as an effective vaccine against ETEC-associated diarrhea and accelerating ETEC vaccine development.
Collapse
Affiliation(s)
- Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shafiullah M. D. Parvej
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yiyang Shen
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Siqi Li
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn L. Lauder
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chongyang Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Khalil I, Anderson JD, Bagamian KH, Baqar S, Giersing B, Hausdorff WP, Marshall C, Porter CK, Walker RI, Bourgeois AL. Vaccine value profile for enterotoxigenic Escherichia coli (ETEC). Vaccine 2023; 41 Suppl 2:S95-S113. [PMID: 37951695 DOI: 10.1016/j.vaccine.2023.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/28/2022] [Accepted: 02/05/2023] [Indexed: 11/14/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the leading bacterial causes of diarrhoea, especially among children in low-resource settings, and travellers and military personnel from high-income countries. WHO's primary strategic goal for ETEC vaccine development is to develop a safe, effective, and affordable ETEC vaccine that reduces mortality and morbidity due to moderate-to-severe diarrhoeal disease in infants and children under 5 years of age in LMICs, as well as the long-term negative health impact on infant physical and cognitive development resulting from infection with this enteric pathogen. An effective ETEC vaccine will also likely reduce the need for antibiotic treatment and help limit the further emergence of antimicrobial resistance bacterial pathogens. The lead ETEC vaccine candidate, ETVAX, has shown field efficacy in travellers and has moved into field efficacy testing in LMIC infants and children. A Phase 3 efficacy study in LMIC infants is projected to start in 2024 and plans for a Phase 3 trial in travellers are under discussion with the U.S. FDA. Licensing for both travel and LMIC indications is projected to be feasible in the next 5-8 years. Given increasing recognition of its negative impact on child health and development in LMICs and predominance as the leading etiology of travellers' diarrhoea (TD), a standalone vaccine for ETEC is more cost-effective than vaccines targeting other TD pathogens, and a viable commercial market also exists. In contrast, combination of an ETEC vaccine with other vaccines for childhood pathogens in LMICs would maximize protection in a more cost-effective manner than a series of stand-alone vaccines. This 'Vaccine Value Profile' (VVP) for ETEC is intended to provide a high-level, holistic assessment of available data to inform the potential public health, economic and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships, and multi-lateral organizations. All contributors have extensive expertise on various elements of the ETEC VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - John D Anderson
- Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA; Office of Health Affairs, West Virginia University, Morgantown, WV 26505, USA
| | - Karoun H Bagamian
- Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA; Department of Environmental and Global Health, University of Florida, Gainesville, FL 32603, USA
| | - Shahida Baqar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Birgitte Giersing
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization (WHO), Geneva, Switzerland
| | - William P Hausdorff
- PATH, Center for Vaccine Innovation and Access, 455 Massachusetts Ave NW, Washington, DC 20001 USA; Faculty of Medicine, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Caroline Marshall
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization (WHO), Geneva, Switzerland
| | - Chad K Porter
- Directorate for DoD Infectious Diseases Research, Naval Medical Research Command, Silver Spring, MD 20190, USA
| | - Richard I Walker
- PATH, Center for Vaccine Innovation and Access, 455 Massachusetts Ave NW, Washington, DC 20001 USA
| | - A Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, 455 Massachusetts Ave NW, Washington, DC 20001 USA
| |
Collapse
|
11
|
Hausdorff WP, Anderson JD, Bagamian KH, Bourgeois AL, Mills M, Sawe F, Scheele S, Talaat K, Giersing BK. Vaccine value profile for Shigella. Vaccine 2023; 41 Suppl 2:S76-S94. [PMID: 37827969 DOI: 10.1016/j.vaccine.2022.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 10/14/2023]
Abstract
Shigella is the leading bacterial cause of diarrhoea and the second leading cause of diarrhoeal mortality among all ages. It also exhibits increasing levels of antibiotic resistance. The greatest burden is among children under five in low- and middle-income countries (LMICs). As such, a priority strategic goal of the World Health Organization (WHO) is the development of a safe, effective and affordable vaccine to reduce morbidity and mortality from Shigella-attributable dysentery and diarrhea, including long term outcomes associated with chronic inflammation and growth faltering, in children under 5 years of age in LMICs. In addition, a safe and effective Shigella vaccine is of potential interest to travellers and military both to prevent acute disease and rarer, long-term sequelae. An effective Shigella vaccine is also anticipated to reduce antibiotic use and thereby help diminish further emergence of enteric pathogens resistant to antimicrobials. The most advanced vaccine candidates are multivalent, parenteral formulations in Phase 2 and Phase 3 clinical studies. They rely on O-antigen-polysaccharide protein conjugate technologies or, alternatively, outer membrane vesicles expressing penta-acylated lipopolysaccharide that has been detoxified. Other parenteral and oral formulations, many delivering a broader array of Shigella antigens, are at earlier stages of clinical development. These formulations are being assessed in alignment with the WHO Preferred Product Characteristics, which call for a 1 to 2 dose primary immunization series given during the first 12 months of life, ideally starting at 6 months of age. This 'Vaccine Value Profile' (VVP) for Shigella is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, government agencies and multi-lateral organizations. All contributors have extensive expertise on various elements of the Shigella VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- William P Hausdorff
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA; Faculty of Medicine, Université de Bruxelles, Brussels 1070, Belgium.
| | - John D Anderson
- Office of Health Affairs, West Virginia University, Morgantown, WV 26505, USA; Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA
| | - Karoun H Bagamian
- Bagamian Scientific Consulting, LLC, Gainesville, FL 32601, USA; Department of Environmental and Global Health, University of Florida, Gainesville, FL 32603, USA
| | - A Louis Bourgeois
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA
| | - Melody Mills
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Frederick Sawe
- Kenya Medical Research Institute/U.S. Army Medical Research Directorate-Africa/Kenya-Henry Jackson Foundation MRI, Kericho, Kenya
| | - Suzanne Scheele
- Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Ave NW, Washington, DC 20001, USA
| | - Kawsar Talaat
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Birgitte K Giersing
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization (WHO), Geneva, Switzerland
| |
Collapse
|
12
|
Svennerholm AM, Lundgren A. Developments in oral enterotoxigenic Escherichia coli vaccines. Curr Opin Immunol 2023; 84:102372. [PMID: 37523966 DOI: 10.1016/j.coi.2023.102372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea in children in developing countries and in travelers. WHO has affirmed ETEC as a priority vaccine target, but there is no licensed ETEC vaccine available yet. We here describe recent, promising developments of different live, inactivated, and subunit ETEC candidate vaccines expressing or containing nontoxic enterotoxin and/or colonization factor antigens with a focus on oral vaccines. Many of the ETEC candidate vaccines have been tested in clinical trials for safety and immunogenicity and some of them also for protective efficacy in field trials or in challenge studies.
Collapse
Affiliation(s)
- Ann-Mari Svennerholm
- Dept. of Microbiology and Immunology, Inst. of Biomedicine, University of Gothenburg, Sweden.
| | - Anna Lundgren
- Dept. of Microbiology and Immunology, Inst. of Biomedicine, University of Gothenburg, Sweden
| |
Collapse
|
13
|
Rim S, Sakkestad ST, Zhou F, Gullaksen SE, Skavland J, Chauhan SK, Steinsland H, Hanevik K. Dynamics of circulating lymphocytes responding to human experimental enterotoxigenic Escherichia coli infection. Eur J Immunol 2023; 53:e2250254. [PMID: 37102399 DOI: 10.1002/eji.202250254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/11/2023] [Accepted: 04/24/2023] [Indexed: 04/28/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of children's and travelers' diarrhea, with no licensed vaccine. This study aimed to explore the role of cellular immunity in protection against human ETEC infection. Nine volunteers were experimentally infected with ETEC, of which six developed diarrhea. Lymphocytes were collected from peripheral blood buffy coats, before and 3, 5, 6, 7, 10, and 28 days after dose ingestion, and 34 phenotypic and functional markers were examined by mass cytometry. Thirty-three cell populations, derived by manually merging 139 cell clusters from the X-shift unsupervised clustering algorithm, were analyzed. Initially, the diarrhea group responded with increased CD56dim CD16+ natural killer cells, dendritic cells tended to rise, and mucosal-associated invariant T cells decreased. On day 5-7, an increase in plasmablasts was paralleled by a consistent rise in CD4+ Th17-like effector memory and regulatory cell subsets. CD4+ Th17-like central memory cells peaked on day 10. All Th17-like cell populations showed increased expression of activation, gut-homing, and proliferation markers. Interestingly, in the nondiarrhea group, these same CD4+ Th17-like cell populations expanded earlier, normalizing around day 7. Earlier development of these CD4+ Th17-like cell populations in the nondiarrhea group may suggest a recall response and a potential role in controlling ETEC infections.
Collapse
Affiliation(s)
- Sehee Rim
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Sunniva T Sakkestad
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Fan Zhou
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Stein-Erik Gullaksen
- Department of Clinical Science, Centre of Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
- Hematology Section, Department of Internal Medicine, Helse Bergen, Bergen, Norway
| | - Jørn Skavland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Sudhir K Chauhan
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, Oslo, Norway
| | - Hans Steinsland
- Department of Global Public Health and Primary Care, Faculty of Medicine, Centre for Intervention Science in Maternal and Child Health (CISMAC), Centre for International Health, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Norwegian National Advisory Unit on Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Zinc Laurate Protects against Intestinal Barrier Dysfunction and Inflammation Induced by ETEC in a Mice Model. Nutrients 2022; 15:nu15010054. [PMID: 36615713 PMCID: PMC9824434 DOI: 10.3390/nu15010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection is one of the most common bacterial causes of diarrhea in children and young farm animals. Medium-chain fatty acids (MCFAs) have been widely used for their antibacterial and immune functions. However, there is limited information regarding the role of MCFAs chelated with Zn in diarrhea induced by ETEC infection. Here, zinc laurate (ZnLa) was used to evaluate its protective effect in a mice diarrhea model induced by ETEC. A total of 45 ICR-weaned female mice were randomly assigned to marginal zinc deficiency (dZn), dZn, and ETEC infection groups (dZn+ETEC); ETEC infection was co-treated with a low, middle, or high dose of ZnLa (ZnLa LOW+ETEC, ZnLa MID+ETEC, and ZnLa HIGH+ETEC), respectively, to explore the effect and its mechanism of ZnLa on diarrhea and intestinal health of mice challenged with ETEC. To further compare the antibacterial efficiency of ZnLa and ZnSO4 in mice with ETEC infection, a total of 36 ICR-weaned female mice were randomly divided into ZnLa, ZnLa+ETEC, ZnSO4, and ZnSO4 and ETEC infection groups (ZnSO4+ETEC); moreover, the growth curve of ETEC also compared ZnLa and ZnSO4 in vitro. Mice pretreated with ZnLa were effectively guarded against body weight losses and increases in diarrhea scores induced by ETEC. ZnLa pretreatment also prevented intestinal barrier damage and ion transport in mice challenged with ETEC, as evidenced by the fact that the intestinal villus height and the ratio of villus height and crypt depth, tight junction protein, and Na+ absorption were higher, whereas intestinal permeability and anion secretion were lower in mice pretreated with ZnLa. In addition, ZnLa conferred effective protection against ETEC-induced intestinal inflammatory responses, as the increases in protein and mRNAs of proinflammatory cytokines were prevented in serum and jejunum, which was likely associated with the TLR4/MYD88/NF-κB signaling pathway. The increase in ETEC shedding and virulence-related gene expression was prevented in mice with ZnLa pretreatment. Finally, the growth of ETEC and virulence-related gene expression were lower in the ZnLa group than in ZnSO4 with an equal concentration of zinc. These findings suggest that ZnLa is a promising prevention strategy to remedy ETEC infection.
Collapse
|
15
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
16
|
Seo H, Duan Q, Upadhyay I, Zhang W. Evaluation of Multivalent Enterotoxigenic Escherichia coli Vaccine Candidate MecVax Antigen Dose-Dependent Effect in a Murine Model. Appl Environ Microbiol 2022; 88:e0095922. [PMID: 35972240 PMCID: PMC9469710 DOI: 10.1128/aem.00959-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
There are no licensed vaccines against enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea and travelers' diarrhea. Recently, protein-based vaccine candidate MecVax was demonstrated to induce functional antibodies against both ETEC toxins (heat-stable toxin [STa] and heat-labile toxin [LT]) and seven ETEC adhesins (CFA/I and CS1 to CS6) and to protect against ETEC clinical diarrhea or intestinal colonization preclinically. Those studies used intraperitoneal, intramuscular, and intradermal routes, and a dose range for MecVax protein antigens, toxoid fusion 3xSTaN12S-mnLTR192G/L211A, and adhesin CFA/I/II/IV MEFA has not been investigated. Here, we further characterized MecVax broad immunogenicity, utilizing a subcutaneous route, and examined vaccine dose-dependent antibody response effects and also antibody functional activities against ETEC enterotoxicity and bacterial adherence. Data showed that mice immunized subcutaneously with MecVax developed robust IgG responses to seven ETEC adhesins (CFA/I, as well as CS1 to CS6) and two toxins (STa and LT). At a subcutaneous dose of 25, 20, or 10 μg or at an intramuscular dose of 12, 6, or 3 μg, MecVax induced similar levels IgG responses to the targeted toxins and adhesins, and these antibodies exhibited equivalent functional activities against ETEC toxin enterotoxicity and bacterial adherence. Once the intramuscular dose was decreased to 1 μg, vaccine-induced antibodies were significantly reduced and no longer neutralized STa enterotoxicity. The results indicated that MecVax administered subcutaneously is broadly immunogenic and, at an intramuscular dose of 3 μg, can induce functional antitoxin and anti-adhesin antibodies in mice, providing instructive information for future vaccine dose studies in humans and accelerating MecVax vaccine development. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) is a leading cause of children's diarrhea and the most common cause of travelers' diarrhea. ETEC infections are responsible for >200 million diarrhea clinical cases and near 100,000 deaths annually. Currently, there are no licensed vaccines for ETEC diarrhea. The protein-based vaccine candidate MecVax unprecedentedly targets two ETEC toxins (STa and LT, produced by all ETEC strains) and seven ETEC adhesins (CFA/I, as well as CS1 to CS6, associated with >60% of ETEC clinical diarrhea cases) and has been demonstrated to be broadly immunogenic and cross protective; as such, it represents a potentially effective multivalent vaccine against ETEC-associated children's and travelers' diarrhea. This study further confirmed MecVax broad immunogenicity and evaluated the vaccine antigen dose effect on the induction of antigen-specific antibody responses in mice and on antibody functional activities against ETEC toxin enterotoxicity and bacterial adherence, yielding useful information for future human volunteer studies and the development of MecVax as an effective ETEC vaccine.
Collapse
Affiliation(s)
- Hyesuk Seo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Qiangde Duan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Ipshita Upadhyay
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Weiping Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Shit P, Misra AK. Synthesis of the pentasaccharide repeating unit corresponding to the capsular polysaccharide of Escherichia coli O20:K83:H26. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Debes AK, Xiao S, Liu J, Shaffer A, Scalzo P, Guenou E, Beyala L, Pascal GA, Chebe AN, Tchio-Nighie H, Sonia NS, Ram M, Sack DA, Ateudjieu J. Characterization of Enteric Disease in Children by Use of a Low-Cost Specimen Preservation Method. J Clin Microbiol 2021; 59:e0170321. [PMID: 34524885 PMCID: PMC8601215 DOI: 10.1128/jcm.01703-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Diarrhea is a leading cause of death in children under five. Molecular methods exist for the rapid detection of enteric pathogens; however, the logistical costs of storing stool specimens limit applicability. We sought to demonstrate that dried specimens preserved using filter paper can be used to identify diarrheal diseases causing significant morbidity among children in resource-constrained countries. A substudy was nested into cholera surveillance in Cameroon. Enrollment criteria included enrollment between 1 August 2016 and 1 October 2018, age of <18 years, availability of a stool specimen, and having three or more loose stools within 24 h with the presence of dehydration and/or blood. A total of 7,227 persons were enrolled, of whom 2,746 met enrollment criteria and 337 were included in this analysis using the enteric TaqMan array card. Bacterial pathogens were compared to severity of diarrhea, age, and sex, among other variables. One hundred seven were positive for enterotoxigenic Escherichia coli, of which 40.2% (n = 43) had heat-labile enterotoxin (LT) and the heat-stable enterotoxin STh, 19.6% (n = 21) had LT and the heat-stable enterotoxin STp, and 49.5% (n = 53) had LT only. Major colonization factors (CFs) were present in 43.9% of enterotoxigenic E. coli (ETEC)-positive patients. Ninety-six were positive for Shigella, of whom 14 (14.6%) reported dysentery. Model-derived quantitative cutoffs identified 116 (34.4%) with one highly diarrhea-associated pathogen and 16 (4.7%) with two or more. Shigella and rotavirus were most strongly associated with diarrhea in children with mixed infections. Dried-filter-paper-preserved specimens eliminate the need for frozen stool specimens and will facilitate enteric surveillance and contribute to the understanding of disease burden, which is needed to guide vaccine development and introduction. This study confirms rotavirus, Shigella, and ETEC as major contributors to pediatric diarrheal disease in two regions of Cameroon.
Collapse
Affiliation(s)
- Amanda K. Debes
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Shaoming Xiao
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jie Liu
- University of Virginia, Charlottesville, Virginia, USA
| | - Allison Shaffer
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Paul Scalzo
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Landry Beyala
- Meilleur Accès aux Soins de Santé, Yaoundé, Cameroon
| | | | | | | | | | - Malathi Ram
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - David A. Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jerome Ateudjieu
- Meilleur Accès aux Soins de Santé, Yaoundé, Cameroon
- Department of Public Health, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
- Clinical Research Unit, Division of Health Operations Research, Ministry of Public Health, Yaoundé, Cameroon
| |
Collapse
|
19
|
Di Benedetto R, Alfini R, Carducci M, Aruta MG, Lanzilao L, Acquaviva A, Palmieri E, Giannelli C, Necchi F, Saul A, Micoli F. Novel Simple Conjugation Chemistries for Decoration of GMMA with Heterologous Antigens. Int J Mol Sci 2021; 22:10180. [PMID: 34638530 PMCID: PMC8508390 DOI: 10.3390/ijms221910180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; (R.D.B.); (R.A.); (M.C.); (M.G.A.); (L.L.); (A.A.); (E.P.); (C.G.); (F.N.); (A.S.)
| |
Collapse
|
20
|
Shigella-Specific Immune Profiles Induced after Parenteral Immunization or Oral Challenge with Either Shigella flexneri 2a or Shigella sonnei. mSphere 2021; 6:e0012221. [PMID: 34259559 PMCID: PMC8386581 DOI: 10.1128/msphere.00122-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella spp. are a leading cause of diarrhea-associated global morbidity and mortality. Development and widespread implementation of an efficacious vaccine remain the best option to reduce Shigella-specific morbidity. Unfortunately, the lack of a well-defined correlate of protection for shigellosis continues to hinder vaccine development efforts. Shigella controlled human infection models (CHIM) are often used in the early stages of vaccine development to provide preliminary estimates of vaccine efficacy; however, CHIMs also provide the opportunity to conduct in-depth immune response characterizations pre- and postvaccination or pre- and postinfection. In the current study, principal-component analyses were used to examine immune response data from two recent Shigella CHIMs in order to characterize immune response profiles associated with parenteral immunization, oral challenge with Shigella flexneri 2a, or oral challenge with Shigella sonnei. Although parenteral immunization induced an immune profile characterized by robust systemic antibody responses, it also included mucosal responses. Interestingly, oral challenge with S. flexneri 2a induced a distinctively different profile compared to S. sonnei, characterized by a relatively balanced systemic and mucosal response. In contrast, S. sonnei induced robust increases in mucosal antibodies with no differences in systemic responses across shigellosis outcomes postchallenge. Furthermore, S. flexneri 2a challenge induced significantly higher levels of intestinal inflammation compared to S. sonnei, suggesting that both serotypes may also differ in how they trigger induction and activation of innate immunity. These findings could have important implications for Shigella vaccine development as protective immune mechanisms may differ across Shigella serotypes. IMPORTANCE Although immune correlates of protection have yet to be defined for shigellosis, prior studies have demonstrated that Shigella infection provides protection against reinfection in a serotype-specific manner. Therefore, it is likely that subjects with moderate to severe disease post-oral challenge would be protected from a homologous rechallenge, and investigating immune responses in these subjects may help identify immune markers associated with the development of protective immunity. This is the first study to describe distinct innate and adaptive immune profiles post-oral challenge with two different Shigella serotypes. Analyses conducted here provide essential insights into the potential of different immune mechanisms required to elicit protective immunity, depending on the Shigella serotype. Such differences could have significant impacts on vaccine design and development within the Shigella field and should be further investigated across multiple Shigella serotypes.
Collapse
|
21
|
Walker R, Kaminski RW, Porter C, Choy RKM, White JA, Fleckenstein JM, Cassels F, Bourgeois L. Vaccines for Protecting Infants from Bacterial Causes of Diarrheal Disease. Microorganisms 2021; 9:1382. [PMID: 34202102 PMCID: PMC8303436 DOI: 10.3390/microorganisms9071382] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
The global diarrheal disease burden for Shigella, enterotoxigenic Escherichia coli (ETEC), and Campylobacter is estimated to be 88M, 75M, and 75M cases annually, respectively. A vaccine against this target trio of enteric pathogens could address about one-third of diarrhea cases in children. All three of these pathogens contribute to growth stunting and have demonstrated increasing resistance to antimicrobial agents. Several combinations of antigens are now recognized that could be effective for inducing protective immunity against each of the three target pathogens in a single vaccine for oral administration or parenteral injection. The vaccine combinations proposed here would result in a final product consistent with the World Health Organization's (WHO) preferred product characteristics for ETEC and Shigella vaccines, and improve the vaccine prospects for support from Gavi, the Vaccine Alliance, and widespread uptake by low- and middle-income countries' (LMIC) public health stakeholders. Broadly protective antigens will enable multi-pathogen vaccines to be efficiently developed and cost-effective. This review describes how emerging discoveries for each pathogen component of the target trio could be used to make vaccines, which could help reduce a major cause of poor health, reduced cognitive development, lost economic productivity, and poverty in many parts of the world.
Collapse
Affiliation(s)
- Richard Walker
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| | - Robert W. Kaminski
- Department of Diarrheal Disease Research, Walter Reed Institute of Research, Silver Spring, MD 20910, USA;
| | - Chad Porter
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910, USA;
| | - Robert K. M. Choy
- Center for Vaccine Innovation and Access, PATH, San Francisco, CA 94108, USA;
| | - Jessica A. White
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - James M. Fleckenstein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Medicine Service, Saint Louis VA Health Care System, St. Louis, MO 63106, USA
| | - Fred Cassels
- Center for Vaccine Innovation and Access, PATH, Seattle, WA 98121, USA; (J.A.W.); (F.C.)
| | - Louis Bourgeois
- Center for Vaccine Innovation and Access, PATH, Washington, DC 20001, USA;
| |
Collapse
|
22
|
Preclinical Characterization of Immunogenicity and Efficacy against Diarrhea from MecVax, a Multivalent Enterotoxigenic E. coli Vaccine Candidate. Infect Immun 2021; 89:e0010621. [PMID: 33875477 DOI: 10.1128/iai.00106-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There are no vaccines licensed for enterotoxigenic Escherichia coli (ETEC), a leading cause of diarrhea for children in developing countries and international travelers. Virulence heterogeneity among strains and difficulties identifying safe antigens for protective antibodies against STa, a potent but poorly immunogenic heat-stable toxin which plays a key role in ETEC diarrhea, are challenges in ETEC vaccine development. To overcome these challenges, we applied a toxoid fusion strategy and a novel epitope- and structure-based multiepitope fusion antigen (MEFA) vaccinology platform to construct two chimeric multivalent proteins, toxoid fusion 3xSTaN12S-mnLTR192G/L211A and adhesin CFA/I/II/IV MEFA, and demonstrated that the proteins induced protective antibodies against STa and heat-labile toxin (LT) produced by all ETEC strains or the seven most important ETEC adhesins (CFA/I and CS1 to CS6) expressed by the ETEC strains causing 60 to 70% of diarrheal cases and moderate to severe cases. Combining two proteins, we prepared a protein-based multivalent ETEC vaccine, MecVax. MecVax was broadly immunogenic; mice and pigs intramuscularly immunized with MecVax developed no apparent adverse effects but had robust antibody responses to the target toxins and adhesins. Importantly, MecVax-induced antibodies were broadly protective, demonstrated by significant adherence inhibition against E. coli bacteria producing any of the seven adhesins and neutralization of STa and cholera toxin (CT) enterotoxicity. Moreover, MecVax protected against watery diarrhea and provided over 70% and 90% protection against any diarrhea from an STa-positive or an LT-positive ETEC strain in a pig challenge model. These results indicated that MecVax induces broadly protective antibodies and prevents diarrhea preclinically, signifying that MecVax is potentially an effective injectable vaccine for ETEC. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC) bacteria are a top cause of children's diarrhea and travelers' diarrhea and are responsible for over 220 million diarrheal cases and more than 100,000 deaths annually. A safe and effective ETEC vaccine can significantly improve public health, particularly in developing countries. Data from this preclinical study showed that MecVax induces broadly protective antiadhesin and antitoxin antibodies, becoming the first ETEC vaccine candidate to induce protective antibodies inhibiting adherence of the seven most important ETEC adhesins and neutralizing the enterotoxicity of not only LT but also STa toxin. More importantly, MecVax is shown to protect against clinical diarrhea from STa-positive or LT-positive ETEC infection in a pig challenge model, recording protection from antibodies induced by the protein-based, injectable, subunit vaccine MecVax against ETEC diarrhea and perhaps the possibility of intramuscularly administered protein vaccines for protection against intestinal mucosal infection.
Collapse
|
23
|
Akhtar M, Nizam NN, Basher SR, Hossain L, Akter S, Bhuiyan TR, Qadri F, Lundgren A. dmLT Adjuvant Enhances Cytokine Responses to T Cell Stimuli, Whole Cell Vaccine Antigens and Lipopolysaccharide in Both Adults and Infants. Front Immunol 2021; 12:654872. [PMID: 34054818 PMCID: PMC8160295 DOI: 10.3389/fimmu.2021.654872] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Enhancement of mucosal immune responses in children and infants using novel adjuvants such as double mutant heat labile toxin (dmLT) is an important goal in the enteric vaccine field. dmLT has been shown to enhance mucosal IgA responses to the oral inactivated enterotoxigenic Escherichia coli (ETEC) vaccine ETVAX. dmLT can enhance IL-17A production from adult T cells, which may increase the production and secretion of mucosal IgA antibodies. However, the adjuvant mechanism remains to be fully elucidated and might differ between infants and adults due to age-related differences in the development of the immune system. The main objective of this study was to determine how dmLT influences antigen presenting cells and T cells from infants compared to adults, and the role of IL-1β for mediating the adjuvant activity. Peripheral blood mononuclear cells (PBMCs) from Bangladeshi infants (6-11 months) and adults (18-40 years) were stimulated with the mitogen phytohaemagglutinin (PHA), the superantigen Staphylococcal enterotoxin B (SEB), ETVAX whole cell component (WCC) or E. coli lipopolysaccharide (LPS) ± dmLT, and cytokine production was measured using ELISA and electrochemiluminescence assays. The adjuvant dmLT significantly enhanced SEB- and PHA-induced IL-17A, but not IFN-γ responses, in PBMCs from both infants and adults. Blocking experiments using an IL-1 receptor antagonist demonstrated the importance of IL-1 signaling for the adjuvant effect. dmLT, ETVAX WCC and LPS induced dose-dependent IL-1β responses of comparable magnitudes in infant and adult cells. Depletion experiments suggested that IL-1β was mainly produced by monocytes. dmLT enhanced IL-1β responses to low doses of WCC and LPS, and the adjuvant effect appeared over a wider dose-range of WCC in infants. dmLT and WCC also induced IL-6, IL-23 and IL-12p70 production in both age groups and dmLT tended to particularly enhance IL-23 responses to WCC. Our results show that dmLT can induce IL-1β as well as other cytokines, which in turn may enhance IL-17A and potentially modulate other immunological responses in both infants and adults. Thus, dmLT may have an important function in promoting immune responses to the ETVAX vaccine, as well as other whole cell- or LPS-based vaccines in infants in low- and middle-income countries.
Collapse
Affiliation(s)
- Marjahan Akhtar
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Nuder Nower Nizam
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Salima Raiyan Basher
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Lazina Hossain
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sarmin Akter
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anna Lundgren
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Clarkson KA, Talaat KR, Alaimo C, Martin P, Bourgeois AL, Dreyer A, Porter CK, Chakraborty S, Brubaker J, Elwood D, Frölich R, DeNearing B, Weerts HP, Feijoo B, Halpern J, Sack D, Riddle MS, Fonck VG, Kaminski RW. Immune response characterization in a human challenge study with a Shigella flexneri 2a bioconjugate vaccine. EBioMedicine 2021; 66:103308. [PMID: 33813141 PMCID: PMC8047506 DOI: 10.1016/j.ebiom.2021.103308] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/13/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Diarrheal diseases are a leading cause of global morbidity and mortality affecting all ages, but especially children under the age of five in resource-limited settings. Shigella is a leading contributor to diarrheal diseases caused by bacterial pathogens and is considered a significant antimicrobial resistance threat. While improvements in hygiene, and access to clean water help as control measures, vaccination remains one of the most viable options for significantly reducing morbidity and mortality. METHODS Flexyn2a is a bioconjugate vaccine manufactured using novel conjugation methodologies enzymatically linking the O-polysaccharide of S. flexneri 2a to exotoxin A of Pseudomonas aeruginosa. The protective capacity of Flexyn2a was assessed in a controlled human infection model after two intramuscular immunizations. Immune responses pre- and post-immunization and/or infection were investigated and are described here. FINDINGS Flexyn2a induced lipopolysaccharide (LPS)-specific serum IgG responses post-immunization which were associated with protection against shigellosis. Additionally, several other immune parameters, including memory B cell responses, bactericidal antibodies and serum IgA, were also elevated in vaccinees protected against shigellosis. Immunization with Flexyn2a also induced gut-homing, LPS-specific IgG and IgA secreting B cells, indicating the vaccine induced immune effectors functioning at the site of intestinal infection. INTERPRETATION Collectively, the results of these immunological investigations provide insights into protective immune mechanisms post-immunization with Flexyn2a which can be used to further guide vaccine development and may have applicability to the larger Shigella vaccine field. FUNDING Funding for this study was provided through a Wellcome Trust grant.
Collapse
Affiliation(s)
- Kristen A Clarkson
- Department of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Kawsar R Talaat
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | | | | | | | - Chad K Porter
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jessica Brubaker
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniel Elwood
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Barbara DeNearing
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Hailey P Weerts
- Department of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Brittany Feijoo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jane Halpern
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - David Sack
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Mark S Riddle
- Naval Medical Research Center, Silver Spring, MD, United States
| | | | - Robert W Kaminski
- Department of Enteric Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States.
| |
Collapse
|
25
|
Khalid A, Lin RCY, Iredell JR. A Phage Therapy Guide for Clinicians and Basic Scientists: Background and Highlighting Applications for Developing Countries. Front Microbiol 2021; 11:599906. [PMID: 33643225 PMCID: PMC7904893 DOI: 10.3389/fmicb.2020.599906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Approximately 10% of global health research is devoted to 90% of global disease burden (the so-called “10/90 Gap”) and it often neglects those diseases most prevalent in low-income countries. Antibiotic resistant bacterial infections are known to impact on healthcare, food security, and socio-economic fabric in the developing countries. With a global antibiotic resistance crisis currently reaching a critical level, the unmet needs in the developing countries are even more striking. The failure of traditional antimicrobials has led to renewed interest in century-old bacteriophage (phage) therapy in response to the urgent need to develop alternative therapies to treat infections. Phage therapy may have particular value in developing countries where relevant phages can be sourced and processed locally and efficiently, breaking specifically the economic barrier of access to expensive medicine. Hence this makes phage therapy an attractive and feasible option. In this review, we draw our respective clinical experience as well as phage therapy research and clinical trial, and discuss the ways in which phage therapy might reduce the burden of some of the most important bacterial infections in developing countries.
Collapse
Affiliation(s)
- Ali Khalid
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Ruby C Y Lin
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
26
|
Ma Y, Zhang Q, Liu W, Chen Z, Zou C, Fu L, Wang Y, Liu Y. Preventive Effect of Depolymerized Sulfated Galactans from Eucheuma serra on Enterotoxigenic Escherichia coli-Caused Diarrhea via Modulating Intestinal Flora in Mice. Mar Drugs 2021; 19:80. [PMID: 33535475 PMCID: PMC7912752 DOI: 10.3390/md19020080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
In this work, the preventive effect of depolymerized sulfated polysaccharides from Eucheuma serra (DESP) on bacterial diarrhea by regulating intestinal flora was investigated in vivo. Based on the enterotoxigenic Escherichia coli (ETEC)-infected mouse diarrhea model, DESP at doses ranging from 50 mg/kg to 200 mg/kg alleviated weight loss and decreased the diarrhea rate and diarrhea index. Serological tests showed that the levels of inflammation-related factors were effectively suppressed. Furthermore, the repaired intestinal mucosa was verified by morphology and pathological tissue section observations. Compared with the model group, the richness and diversity of the intestinal flora in the DESP group increased according to the 16S rRNA high-throughput sequencing of the gut microbiota. Specifically, Firmicutes and Actinobacteria increased, and Proteobacteria decreased after DESP administration. At the family level, DESP effectively improved the abundance of Lactobacillaceae, Bifidobacteriaceae, and Lachnospiraceae, while significantly inhibiting the growth of Enterobacteriaceae. Therefore, the antimicrobial diarrhea function of DESP may be related to the regulation of intestinal microbiota.
Collapse
Affiliation(s)
- Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Qian Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Zhaohua Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yanbo Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China;
| | - Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Y.M.); (Q.Z.); (W.L.); (Z.C.); (C.Z.); (Y.W.)
| |
Collapse
|
27
|
The Intriguing Interaction of Escherichia coli with the Host Environment and Innovative Strategies To Interfere with Colonization: a Summary of the 2019 E. coli and the Mucosal Immune System Meeting. Appl Environ Microbiol 2020; 86:AEM.02085-20. [PMID: 33008822 DOI: 10.1128/aem.02085-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The third E. coli and the Mucosal Immune System (ECMIS) meeting was held at Ghent University in Belgium from 2 to 5 June 2019. It brought together an international group of scientists interested in mechanisms of colonization, host response, and vaccine development. ECMIS distinguishes itself from related meetings on these enteropathogens by providing a greater emphasis on animal health and disease and covering a broad range of pathotypes, including enterohemorrhagic, enteropathogenic, enterotoxigenic, enteroaggregative, and extraintestinal pathogenic Escherichia coli As it is well established that the genus Shigella represents a subspecies of E. coli, these organisms along with related enteroinvasive E. coli are also included. In addition, Tannerella forsythia, a periodontal pathogen, was presented as an example of a pathogen which uses its surface glycans for mucosal interaction. This review summarizes several highlights from the 2019 meeting and major advances to our understanding of the biology of these pathogens and their impact on the host.
Collapse
|
28
|
Hlozek J, Owen S, Ravenscroft N, Kuttel MM. Molecular Modeling of the Shigella flexneri Serogroup 3 and 5 O-Antigens and Conformational Relationships for a Vaccine Containing Serotypes 2a and 3a. Vaccines (Basel) 2020; 8:vaccines8040643. [PMID: 33147882 PMCID: PMC7712985 DOI: 10.3390/vaccines8040643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The pathogenic bacterium Shigella flexneri is a leading global cause of diarrheal disease. The O-antigen is the primary vaccine target and distinguishes the 30 serotypes reported. Except for serotype 6, all S. flexneri serotypes have a common backbone repeating unit (serotype Y), with variations in substitution creating the various serotypes. A quadrivalent vaccine containing serotypes 2a and 3a (as well as 6 and Shigella sonnei) is proposed to provide broad protection against non-vaccine S. flexneri serotypes through shared epitopes and conformations. Here we model the O-antigen (O-Ag) conformations of serogroups 3 and 5: a continuation of our ongoing systematic study of the S. flexneri O-antigens that began with serogroup 2. Our simulations show that S. flexneri serogroups 2, 3, and 5 all have flexible O-Ags, with substitutions of the backbone altering the chain conformations in different ways. Our analysis suggests three general heuristics for the effects of substitution on the Shigella O-Ag conformations: (1) substitution on rhamnose C reduces the extension of the O-Ag chain; (2) substitution at O-3 of rhamnose A restricts the O-Ags to predominantly helical conformations, (3) substitution at O-3 of rhamnose B has only a slight effect on conformation. The common O-Ag conformations across serotypes identified in this work support the assumption that a quadrivalent vaccine containing serotypes 2a and 3a could provide coverage against S. flexneri serotype 3b and serogroup 5.
Collapse
Affiliation(s)
- Jason Hlozek
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; (J.H.); (N.R.)
| | - Sara Owen
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa;
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa; (J.H.); (N.R.)
| | - Michelle M. Kuttel
- Department of Computer Science, University of Cape Town, Rondebosch 7701, South Africa;
- Correspondence:
| |
Collapse
|
29
|
Abstract
Enteric viral and bacterial infections continue to be a leading cause of mortality and morbidity in young children in low-income and middle-income countries, the elderly, and immunocompromised individuals. Vaccines are considered an effective and practical preventive approach against the predominantly fecal-to-oral transmitted gastroenteritis particularly in the resource-limited countries or regions where implementation of sanitation systems and supply of safe drinking water are not quickly achievable. While vaccines are available for a few enteric pathogens including rotavirus and cholera, there are no vaccines licensed for many other enteric viral and bacterial pathogens. Challenges in enteric vaccine development include immunological heterogeneity among pathogen strains or isolates, a lack of animal challenge models to evaluate vaccine candidacy, undefined host immune correlates to protection, and a low protective efficacy among young children in endemic regions. In this article, we briefly updated the progress and challenges in vaccines and vaccine development for the leading enteric viral and bacterial pathogens including rotavirus, human calicivirus, Shigella, enterotoxigenic Escherichia coli (ETEC), cholera, nontyphoidal Salmonella, and Campylobacter, and introduced a novel epitope- and structure-based vaccinology platform known as MEFA (multiepitope fusion antigen) and the application of MEFA for developing broadly protective multivalent vaccines against heterogenous pathogens.
Collapse
Affiliation(s)
- Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| | - Qiangde Duan
- University of Yangzhou, Institute of Comparative Medicine, Yangzhou, PR China
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA,CONTACT Weiping Zhang, University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, USA
| |
Collapse
|
30
|
Micoli F, Alfini R, Di Benedetto R, Necchi F, Schiavo F, Mancini F, Carducci M, Palmieri E, Balocchi C, Gasperini G, Brunelli B, Costantino P, Adamo R, Piccioli D, Saul A. GMMA Is a Versatile Platform to Design Effective Multivalent Combination Vaccines. Vaccines (Basel) 2020; 8:E540. [PMID: 32957610 PMCID: PMC7564227 DOI: 10.3390/vaccines8030540] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 01/21/2023] Open
Abstract
Technology platforms are an important strategy to facilitate the design, development and implementation of vaccines to combat high-burden diseases that are still a threat for human populations, especially in low- and middle-income countries, and to address the increasing number and global distribution of pathogens resistant to antimicrobial drugs. Generalized Modules for Membrane Antigens (GMMA), outer membrane vesicles derived from engineered Gram-negative bacteria, represent an attractive technology to design affordable vaccines. Here, we show that GMMA, decorated with heterologous polysaccharide or protein antigens, leads to a strong and effective antigen-specific humoral immune response in mice. Importantly, GMMA promote enhanced immunogenicity compared to traditional formulations (e.g., recombinant proteins and glycoconjugate vaccines), without negative impact to the anti-GMMA immune response. Our findings support the use of GMMA as a "plug and play" technology for the development of effective combination vaccines targeting different bugs at the same time.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Fabiola Schiavo
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | | | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| | | | | | - Roberto Adamo
- GSK, 53100 Siena, Italy; (C.B.); (B.B.); (P.C.); (R.A.); (D.P.)
| | - Diego Piccioli
- GSK, 53100 Siena, Italy; (C.B.); (B.B.); (P.C.); (R.A.); (D.P.)
| | - Allan Saul
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., 53100 Siena, Italy; (R.A.); (R.D.B.); (F.N.); (F.S.); (F.M.); (M.C.); (E.P.); (G.G.); (A.S.)
| |
Collapse
|
31
|
White JA, Lal M. Technical product attributes in development of an oral enteric vaccine for infants. Vaccine 2020; 37:4800-4804. [PMID: 31358239 DOI: 10.1016/j.vaccine.2019.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
Development of an oral enteric vaccine for infants is important for Shigella and enterotoxigenic Escherichia coli (ETEC) vaccine development. At a recent workshop titled "Technical Product Attributes in Development of an Oral Enteric Vaccine for Infants," at the 2nd International Vaccines Against Shigella and ETEC Conference (VASE Conference), the preferred product attributes for development were discussed for these vaccines. The aims of this workshop were to identify gaps and gather opinions from key experts from preclinical, process development, manufacturing, regulatory, and clinical areas to fine-tune and refine key target product attributes for infant oral vaccine development. The workshop used some examples of marketed oral infant vaccines to discuss potential improvements that can be made, such as inclusion of preservatives, multidose vials, and antacid buffer presentation (liquid or lyophilized) in novel oral enteric vaccine development.
Collapse
Affiliation(s)
| | - Manjari Lal
- PATH, PO Box 900922, Seattle, WA 98109, USA.
| |
Collapse
|
32
|
Liu Y, Ma Y, Chen Z, Li D, Liu W, Huang L, Zou C, Cao MJ, Liu GM, Wang Y. Antibacterial Activity of Sulfated Galactans from Eucheuma serra and Gracilari verrucosa against Diarrheagenic Escherichia coli via the Disruption of the Cell Membrane Structure. Mar Drugs 2020; 18:E397. [PMID: 32751049 PMCID: PMC7459719 DOI: 10.3390/md18080397] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
Seaweed sulfated polysaccharides have attracted significant attention due to their antibacterial activity. This work investigated the antibacterial activity and mechanism of depolymerized sulfated galactans from Eucheuma serra (E. serra) and Gracilaria verrucosa (G. verrucosa) against enterotoxigenic Escherichia coli (ETEC) K88. The results show that removing the metal ions improves the anti-ETEC K88 activity of the galactans. The fluorescence labeling study confirmed that the sulfated galactans penetrated the cell walls and eventually reached the interior of the ETEC K88. Nucleic acid staining and intracellular protein leakage were also observed, indicating the destruction of permeability and integrity of the cell membrane. Interestingly, the two polysaccharides exhibited no effect on the proliferation of the selected Gram-positive bacteria and yeast. This indicates that the cell wall structure of the microorganisms could influence the bacteriostatic activity of the sulfated polysaccharides, as well. These results suggest that the sulfated seaweed polysaccharides might have potential application value in antibacterial diarrhea.
Collapse
Affiliation(s)
- Yixiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, Fujian, China
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen 361021, Fujian, China
| | - Yu Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Zhaohua Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Donghui Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Wenqiang Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Ling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Chao Zou
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
| | - Min-Jie Cao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Xiamen 361021, Fujian, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China; (Y.M.); (Z.C.); (D.L.); (W.L.); (L.H.); (C.Z.); (M.-J.C.); (G.-M.L.)
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, Fujian, China
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China;
| |
Collapse
|
33
|
Thibau A, Dichter AA, Vaca DJ, Linke D, Goldman A, Kempf VAJ. Immunogenicity of trimeric autotransporter adhesins and their potential as vaccine targets. Med Microbiol Immunol 2020; 209:243-263. [PMID: 31788746 PMCID: PMC7247748 DOI: 10.1007/s00430-019-00649-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
The current problem of increasing antibiotic resistance and the resurgence of numerous infections indicate the need for novel vaccination strategies more than ever. In vaccine development, the search for and the selection of adequate vaccine antigens is the first important step. In recent years, bacterial outer membrane proteins have become of major interest, as they are the main proteins interacting with the extracellular environment. Trimeric autotransporter adhesins (TAAs) are important virulence factors in many Gram-negative bacteria, are localised on the bacterial surface, and mediate the first adherence to host cells in the course of infection. One example is the Neisseria adhesin A (NadA), which is currently used as a subunit in a licensed vaccine against Neisseria meningitidis. Other TAAs that seem promising vaccine candidates are the Acinetobacter trimeric autotransporter (Ata), the Haemophilus influenzae adhesin (Hia), and TAAs of the genus Bartonella. Here, we review the suitability of various TAAs as vaccine candidates.
Collapse
Affiliation(s)
- Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Alexander A. Dichter
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Diana J. Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Adrian Goldman
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, Leeds, UK
- Molecular and Integrative Biosciences Program, University of Helsinki, Helsinki, Finland
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
34
|
Abstract
With advancements in sequencing technologies, vast amount of experimental data has accumulated. Due to rapid progress in the development of bioinformatics tools and the accumulation of data, immunoinformatics or computational immunology emerged as a special branch of bioinformatics which utilizes bioinformatics approaches for understanding and interpreting immunological data. One extensively studied aspect of applied immunology involves using available databases and tools for prediction of B- and T-cell epitopes. B and T cells comprise two arms of adaptive immunity.This chapter first reviews the methodology we used for computational identification of B- and T-cell epitopes against enterotoxigenic Escherichia coli (ETEC). Then we discuss other databases of epitopes and analysis tools for T-cell and B-cell epitope prediction and vaccine design. The predicted peptides were analyzed for conservation and population coverage. HLA distribution analysis for predicted epitopes identified efficient MHC binders. Epitopes were further tested using computational docking studies to bind in MHC-I molecule cleft. The predicted epitopes were conserved and covered more than 80% of the world population.
Collapse
MESH Headings
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Computational Biology
- Databases, Protein
- Enterotoxigenic Escherichia coli/genetics
- Enterotoxigenic Escherichia coli/immunology
- Epitope Mapping/methods
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Escherichia coli Vaccines/genetics
- Escherichia coli Vaccines/immunology
- Humans
- Models, Molecular
- Molecular Docking Simulation
Collapse
Affiliation(s)
- Jayashree Ramana
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, HP, India.
| | - Kusum Mehla
- National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
35
|
Booster vaccination with a fractional dose of an oral cholera vaccine induces comparable vaccine-specific antibody avidity as a full dose: A randomised clinical trial. Vaccine 2020; 38:655-662. [DOI: 10.1016/j.vaccine.2019.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023]
|
36
|
Proanthocyanidins and probiotics combination supplementation ameliorated intestinal injury in Enterotoxigenic Escherichia coli infected diarrhea mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
37
|
A new human challenge model for testing heat-stable toxin-based vaccine candidates for enterotoxigenic Escherichia coli diarrhea - dose optimization, clinical outcomes, and CD4+ T cell responses. PLoS Negl Trop Dis 2019; 13:e0007823. [PMID: 31665141 PMCID: PMC6844497 DOI: 10.1371/journal.pntd.0007823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/11/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a common cause of diarrheal illness in young children and travelers. There is yet no licensed broadly protective vaccine against ETEC. One promising vaccine development strategy is to target strains expressing the heat-stable toxin (ST), particularly the human ST (STh), since infections with these strains are among the leading causes of diarrhea in children in low-and-middle income countries. A human challenge model based on an STh-only ETEC strain will be useful to evaluate the protective efficacy of new ST-based vaccine candidates. To develop this model, we experimentally infected 21 healthy adult volunteers with the epidemiologically relevant STh-only ETEC strain TW10722, identified a suitable dose, assessed safety, and characterized clinical outcomes and immune responses caused by the infection. Doses of 1×1010 colony-forming units (CFU) of TW10722 gave a suitable attack risk of 67% for moderate or severe diarrhea and an overall diarrhea attack risk of 78%. Non-diarrheal symptoms were mostly mild or moderate, and there were no serious adverse events. During the first month after ingesting the challenge strain, we measured significant increases in both activated CD4+ T cells and levels of serum IgG and IgA antibodies targeting coli surface antigen 5 (CS5) and 6 (CS6), as well as the E. coli mucinase YghJ. The CS5-specific CD4+ T cell and antibody responses were still significantly elevated one year after experimental infection. In conclusion, we have developed a safe STh-only ETEC-based human challenge model which can be efficiently used in Phase 2B trials to evaluate the protective efficacy of new ST-based vaccine candidates. Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrheal illness in young children living in low- and middle-income countries and in travelers to these countries. Several ETEC vaccine candidates are currently being developed, but so far, no broadly protective vaccines have been licensed. Since most moderate and severe ETEC diarrheal episodes are caused by strains that express the heat-stable enterotoxin (ST), ST represents a promising vaccine target. Here we present a human challenge model that can be used to estimate the protective efficacy of ST-based vaccine candidates in clinical vaccine trials. The model is based on the epidemiologically relevant ST-only ETEC strain TW10722, which we show is safe to ingest by volunteers and readily induce diarrhea.
Collapse
|
38
|
Ravenscroft N, Braun M, Schneider J, Dreyer AM, Wetter M, Haeuptle MA, Kemmler S, Steffen M, Sirena D, Herwig S, Carranza P, Jones C, Pollard AJ, Wacker M, Kowarik M. Characterization and immunogenicity of a Shigella flexneri 2a O-antigen bioconjugate vaccine candidate. Glycobiology 2019; 29:669-680. [PMID: 31206156 PMCID: PMC6704370 DOI: 10.1093/glycob/cwz044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022] Open
Abstract
Shigellosis remains a major cause of diarrheal disease in developing countries and causes substantial morbidity and mortality in children. Vaccination represents a promising preventive measure to fight the burden of the disease, but despite enormous efforts, an efficacious vaccine is not available to date. The use of an innovative biosynthetic Escherichia coli glycosylation system substantially simplifies the production of a multivalent conjugate vaccine to prevent shigellosis. This bioconjugation approach has been used to produce the Shigella dysenteriae type O1 conjugate that has been successfully tested in a phase I clinical study in humans. In this report, we describe a similar approach for the production of an additional serotype required for a broadly protective shigellosis vaccine candidate. The Shigella flexneri 2a O-polysaccharide is conjugated to introduced asparagine residues of the carrier protein exotoxin A (EPA) from Pseudomonas aeruginosa by co-expression with the PglB oligosaccharyltransferase. The bioconjugate was purified, characterized using physicochemical methods and subjected to preclinical evaluation in rats. The bioconjugate elicited functional antibodies as shown by a bactericidal assay for S. flexneri 2a. This study confirms the applicability of bioconjugation for the S. flexneri 2a O-antigen, which provides an intrinsic advantage over chemical conjugates due to the simplicity of a single production step and ease of characterization of the homogenous monomeric conjugate formed. In addition, it shows that bioconjugates are able to raise functional antibodies against the polysaccharide antigen.
Collapse
Affiliation(s)
- Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Martin Braun
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Joerg Schneider
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Anita M Dreyer
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Michael Wetter
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Micha A Haeuptle
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Stefan Kemmler
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Michael Steffen
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Dominique Sirena
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Stefan Herwig
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Paula Carranza
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| | - Claire Jones
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Michael Wacker
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
- Wacker Biotech Consulting AG, Obere Hönggerstrasse 9a, 8103 Unterengstringen, Switzerland
| | - Michael Kowarik
- LimmaTech Biologics AG, Grabenstrasse 3, 8952 Schlieren, Switzerland
| |
Collapse
|
39
|
Seo H, Nandre RM, Nietfeld J, Chen Z, Duan Q, Zhang W. Antibodies induced by enterotoxigenic Escherichia coli (ETEC) adhesin major structural subunit and minor tip adhesin subunit equivalently inhibit bacteria adherence in vitro. PLoS One 2019; 14:e0216076. [PMID: 31042746 PMCID: PMC6493741 DOI: 10.1371/journal.pone.0216076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/13/2019] [Indexed: 01/15/2023] Open
Abstract
Antibodies that block the adherence of enterotoxigenic Escherichia coli (ETEC) to host intestinal epithelial cells are protective. Multiepitope-fusion-antigens (MEFAs) carrying epitopes of ETEC adhesin major subunits or tip minor subunits induced antibodies against ETEC adherence. Adherence inhibition effectiveness of antibodies induced by major subunit epitopes versus minor tip subunit epitopes, however, has not been comparatively characterized. In this study, we immunized mice with a major subunit MEFA or a tip MEFA, evaluated MEFA anti-adhesin immunogenicity, and examined induced-antibodies against bacteria in vitro adherence or in vivo colonization in mice. Mice subcutaneously immunized with major subunit MEFA CFA/I/II/IV or tip MEFA showed no adverse effects and developed strong antigen-specific antibody responses. Data showed that antibodies derived from two MEFAs were equally effective against adherence of the bacteria expressing CS1, CS2, CS3, CS4/CS6, CS5/CS6, or CS6 adhesin in vitro. Subsequently, we immunized mice with CFA/I fimbriae, major subunit CfaB, or minor tip adhesin subunit CfaE. We found that antibodies induced by CFA/I, CfaB and CfaE equally inhibited in vitro adherence of ETEC strain H10407. Furthermore, we immunized mice with CFA/I fimbriae, CfaB, or CfaE, and then challenged the mice with H10407. Data showed that although not significantly, fewer H10407 bacteria colonized the immunized mice. These results suggest that ETEC adhesin major subunit and minor tip subunit should be equally effective in inducing neutralizing anti-adhesin antibodies, and that major subunit CFA/I/II/IV MEFA or tip MEFA, perhaps combined with toxoid fusion 3xSTaN12S-mnLTR192G/L211A, can be used for development of broadly protective vaccines against ETEC diarrhea.
Collapse
Affiliation(s)
- Hyesuk Seo
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, United States of America
| | - Rahul M. Nandre
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Jerome Nietfeld
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Zhenhai Chen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Qiangde Duan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
| | - Weiping Zhang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, United States of America
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Parajuli P, Deimel LP, Verma NK. Genome Analysis of Shigella flexneri Serotype 3b Strain SFL1520 Reveals Significant Horizontal Gene Acquisitions Including a Multidrug Resistance Cassette. Genome Biol Evol 2019; 11:776-785. [PMID: 30715343 PMCID: PMC6424224 DOI: 10.1093/gbe/evz026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2019] [Indexed: 11/23/2022] Open
Abstract
Shigella flexneri is a major etiological agent of shigellosis in developing countries, primarily occurring in children under 5 years of age. We have sequenced, for the first time, the complete genome of S. flexneri serotype 3b (strain SFL1520). We used a hybrid sequencing method--both long-read MinION Flow (Oxford Nanopore Technologies) and short-read MiSeq (Illumina) sequencing to generate a high-quality reference genome. The SFL1520 chromosome was found to be ∼4.58 Mb long, with 4,729 coding sequences. Despite sharing a substantial number of genes with other publicly available S. flexneri genomes (2,803), the SFL1520 strain contains 1,926 accessory genes. The phage-related genes accounted for 8% of the SFL1520 genome, including remnants of the Sf6 bacteriophage with an intact O-acetyltransferase gene specific to serotype 3b. The SFL1520 chromosome was also found to contain a multiple-antibiotic resistance cassette conferring resistance to ampicillin, chloramphenicol, streptomycin, and tetracycline, which was potentially acquired from a plasmid via transposases. The phylogenetic analysis based on core genes showed a high level of similarity of SFL1520 with other S. flexneri serotypes; however, there were marked differences in the accessory genes of SFL1520. In particular, a large number of unique genes were identified in SFL1520 suggesting significant horizontal gene acquisition in a relatively short time period. The major virulence traits of SFL1520 (such as serotype conversion and antimicrobial resistance) were associated with horizontal gene acquisitions highlighting the role of horizontal gene transfer in S. flexneri diversity and evolution.
Collapse
Affiliation(s)
- Pawan Parajuli
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lachlan P Deimel
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Naresh K Verma
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
41
|
Establishment, Validation, and Application of a New World Primate Model of Enterotoxigenic Escherichia coli Disease for Vaccine Development. Infect Immun 2019; 87:IAI.00634-18. [PMID: 30510102 DOI: 10.1128/iai.00634-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022] Open
Abstract
The establishment of an animal model that closely approximates enterotoxigenic Escherichia coli (ETEC) disease in humans is critical for the development and evaluation of vaccines against this enteropathogen. Here, we evaluated the susceptibility of Aotus nancymaae, a New World monkey species, to ETEC infection. Animals were challenged orogastrically with 109 to 1011 CFU of the human pathogenic CFA/I+ ETEC strain H10407 and examined for evidence of diarrhea and fecal shedding of bacteria. A clear dose-range effect was obtained, with diarrheal attack rates of 40% to 80%, validated in a follow-on study demonstrating an attack rate of 80% with 1011 CFU of H10407 ETEC. To determine whether this model is an effective approach for assessing ETEC vaccine candidates, we used it to evaluate the ability of the donor strand-complemented CFA/I adhesin CfaE (dscCfaE) to protect against H10407 challenge. In a series of experiments, animals were intranasally vaccinated with dscCfaE alone, dscCfaE with either cholera toxin B-subunit (CTB) or heat-labile toxin (LTB), or phosphate-buffered saline (PBS) alone and then challenged with 1011 CFU of H10407. Control animals vaccinated with PBS had attack rates of 70 to 90% on challenge. Vaccination with dscCfaE, or dscCfaE admixed with CTB or LTB, resulted in a reduction of attack rates, with vaccine efficacies of 66.7% (P = 0.02), 77.7% (P = 0.006), and 42.9% (P = 0.370) to 83.3% (P = 0.041), respectively. In conclusion, we have shown the H10407 ETEC challenge of A. nancymaae to be an effective, reproducible model of ETEC disease, and importantly, we have demonstrated that in this model, vaccination with the prototype vaccine candidate dscCfaE is protective against CF-homologous disease.
Collapse
|
42
|
Das S, Mohakud NK, Suar M, Sahu BR. Vaccine development for enteric bacterial pathogens: Where do we stand? Pathog Dis 2019; 76:5040763. [PMID: 30052916 DOI: 10.1093/femspd/fty057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/19/2018] [Indexed: 01/06/2023] Open
Abstract
Gut infections triggered by pathogenic bacteria lead to most frequently occurring diarrhea in humans accounting for million deaths annually. Currently, only a few licensed vaccines are available against these pathogens for mostly travelers moving to diarrheal endemic areas. Besides commercialized vaccines, there are many formulations that are either under clinical or pre-clinical stages of development and despite several efforts to improve safety, immunogenicity and efficacy, none of them can confer long-term protective immunity, for which repeated booster doses are always recommended. Further in many countries, financial, social and political constraints have jeopardized vaccine development program against these pathogens that enforce us to gather knowledge on safety, tolerability, immunogenicity and protective efficacy regarding the same. In this review, we analyze safety and efficacy issues of vaccines against five major gut bacteria causing enteric infections. The article also simultaneously describes several barriers for vaccine development and further discusses possible strategies to enhance immunogenicity and efficacy.
Collapse
Affiliation(s)
- Susmita Das
- Infection Biology Lab, KIIT School of Biotechnology, Campus XI, Bhubaneswar 751024, India
| | - Nirmal K Mohakud
- Department of Pediatrics, Kalinga Institute of Medical Sciences, Patia, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- Infection Biology Lab, KIIT School of Biotechnology, Campus XI, Bhubaneswar 751024, India
| | - Bikash R Sahu
- Infection Biology Lab, KIIT School of Biotechnology, Campus XI, Bhubaneswar 751024, India
| |
Collapse
|
43
|
Liu B, Liu QM, Li GL, Sun LC, Gao YY, Zhang YF, Liu H, Cao MJ, Liu GM. The anti-diarrhea activity of red algae-originated sulphated polysaccharides on ETEC-K88 infected mice. RSC Adv 2019; 9:2360-2370. [PMID: 35520502 PMCID: PMC9059870 DOI: 10.1039/c8ra09247h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/08/2019] [Indexed: 11/21/2022] Open
Abstract
Polysaccharides from red algae Porphyra haitanensis and Gracilaria lemaneiformis possess various bioactive functions, however, their anti-diarrhea activity remains incompletely defined. In the current study, sulphated polysaccharides were extracted by high pressure treatment plus ethanol precipitation from these two algae, and named PHSP(hp) and GLSP(hp), respectively. PHSP(hp) and GLSP(hp) showed decreased viscosity and molecular weight. Meanwhile, they have a certain immunomodulatory effect on wound healing and migration of RAW264.7 cells. Moreover, they significantly increased the secretion of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). A BALB/c model infected by enterotoxigenic Escherichia coli (ETEC)-K88 was also established to evaluate the anti-diarrhea activity of PHSP(hp) and GLSP(hp). The results showed that PHSP(hp) and GLSP(hp) were able to alleviate mice diarrhea symptoms. Meanwhile, they inhibited the release of pro-inflammatory cytokines and suppressed the secretion of immunoglobulin A via reducing the population of B cells. In addition, the nitroblue tetrazolium levels of mouse serum were decreased. Taken together, PHSP(hp) and GLSP(hp) alleviated the inflammatory response of ETEC-K88-induced diarrhea through both specific and non-specific immunity. Sulphated polysaccharides from red algae may be used as functional food components for remitting diarrhea. Polysaccharides from red algae Porphyra haitanensis and Gracilaria lemaneiformis possess various bioactive functions, however, their anti-diarrhea activity remains incompletely defined.![]()
Collapse
Affiliation(s)
- Bo Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Qing-Mei Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Gui-Ling Li
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Le-Chang Sun
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Yuan-Yuan Gao
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Ya-Fen Zhang
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Hong Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Min-Jie Cao
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| | - Guang-Ming Liu
- College of Food and Biological Engineering
- Xiamen Key Laboratory of Marine Functional Food
- Fujian Provincial Engineering Technology Research Center of Marine Functional Food
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- Jimei University
| |
Collapse
|
44
|
Troeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SRM, Albertson SB, Stanaway JD, Deshpande A, Abebe Z, Alvis-Guzman N, Amare AT, Asgedom SW, Anteneh ZA, Antonio CAT, Aremu O, Asfaw ET, Atey TM, Atique S, Avokpaho EFGA, Awasthi A, Ayele HT, Barac A, Barreto ML, Bassat Q, Belay SA, Bensenor IM, Bhutta ZA, Bijani A, Bizuneh H, Castañeda-Orjuela CA, Dadi AF, Dandona L, Dandona R, Do HP, Dubey M, Dubljanin E, Edessa D, Endries AY, Eshrati B, Farag T, Feyissa GT, Foreman KJ, Forouzanfar MH, Fullman N, Gething PW, Gishu MD, Godwin WW, Gugnani HC, Gupta R, Hailu GB, Hassen HY, Hibstu DT, Ilesanmi OS, Jonas JB, Kahsay A, Kang G, Kasaeian A, Khader YS, Khalil IA, Khan EA, Khan MA, Khang YH, Kissoon N, Kochhar S, Kotloff KL, Koyanagi A, Kumar GA, Magdy Abd El Razek H, Malekzadeh R, Malta DC, Mehata S, Mendoza W, Mengistu DT, Menota BG, Mezgebe HB, Mlashu FW, Murthy S, Naik GA, Nguyen CT, Nguyen TH, Ningrum DNA, Ogbo FA, Olagunju AT, Paudel D, Platts-Mills JA, Qorbani M, Rafay A, Rai RK, Rana SM, Ranabhat CL, Rasella D, Ray SE, Reis C, Renzaho AMN, Rezai MS, Ruhago GM, Safiri S, Salomon JA, Sanabria JR, et alTroeger C, Blacker BF, Khalil IA, Rao PC, Cao S, Zimsen SRM, Albertson SB, Stanaway JD, Deshpande A, Abebe Z, Alvis-Guzman N, Amare AT, Asgedom SW, Anteneh ZA, Antonio CAT, Aremu O, Asfaw ET, Atey TM, Atique S, Avokpaho EFGA, Awasthi A, Ayele HT, Barac A, Barreto ML, Bassat Q, Belay SA, Bensenor IM, Bhutta ZA, Bijani A, Bizuneh H, Castañeda-Orjuela CA, Dadi AF, Dandona L, Dandona R, Do HP, Dubey M, Dubljanin E, Edessa D, Endries AY, Eshrati B, Farag T, Feyissa GT, Foreman KJ, Forouzanfar MH, Fullman N, Gething PW, Gishu MD, Godwin WW, Gugnani HC, Gupta R, Hailu GB, Hassen HY, Hibstu DT, Ilesanmi OS, Jonas JB, Kahsay A, Kang G, Kasaeian A, Khader YS, Khalil IA, Khan EA, Khan MA, Khang YH, Kissoon N, Kochhar S, Kotloff KL, Koyanagi A, Kumar GA, Magdy Abd El Razek H, Malekzadeh R, Malta DC, Mehata S, Mendoza W, Mengistu DT, Menota BG, Mezgebe HB, Mlashu FW, Murthy S, Naik GA, Nguyen CT, Nguyen TH, Ningrum DNA, Ogbo FA, Olagunju AT, Paudel D, Platts-Mills JA, Qorbani M, Rafay A, Rai RK, Rana SM, Ranabhat CL, Rasella D, Ray SE, Reis C, Renzaho AMN, Rezai MS, Ruhago GM, Safiri S, Salomon JA, Sanabria JR, Sartorius B, Sawhney M, Sepanlou SG, Shigematsu M, Sisay M, Somayaji R, Sreeramareddy CT, Sykes BL, Taffere GR, Topor-Madry R, Tran BX, Tuem KB, Ukwaja KN, Vollset SE, Walson JL, Weaver MR, Weldegwergs KG, Werdecker A, Workicho A, Yenesew M, Yirsaw BD, Yonemoto N, El Sayed Zaki M, Vos T, Lim SS, Naghavi M, Murray CJL, Mokdad AH, Hay SI, Reiner RC. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. THE LANCET. INFECTIOUS DISEASES 2018; 18:1211-1228. [PMID: 30243583 PMCID: PMC6202444 DOI: 10.1016/s1473-3099(18)30362-1] [Show More Authors] [Citation(s) in RCA: 868] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 provides an up-to-date analysis of the burden of diarrhoea in 195 countries. This study assesses cases, deaths, and aetiologies in 1990-2016 and assesses how the burden of diarrhoea has changed in people of all ages. METHODS We modelled diarrhoea mortality with a Bayesian hierarchical modelling platform that evaluates a wide range of covariates and model types on the basis of vital registration and verbal autopsy data. We modelled diarrhoea incidence with a compartmental meta-regression tool that enforces an association between incidence and prevalence, and relies on scientific literature, population representative surveys, and health-care data. Diarrhoea deaths and episodes were attributed to 13 pathogens by use of a counterfactual population attributable fraction approach. Diarrhoea risk factors are also based on counterfactual estimates of risk exposure and the association between the risk and diarrhoea. Each modelled estimate accounted for uncertainty. FINDINGS In 2016, diarrhoea was the eighth leading cause of death among all ages (1 655 944 deaths, 95% uncertainty interval [UI] 1 244 073-2 366 552) and the fifth leading cause of death among children younger than 5 years (446 000 deaths, 390 894-504 613). Rotavirus was the leading aetiology for diarrhoea mortality among children younger than 5 years (128 515 deaths, 105 138-155 133) and among all ages (228 047 deaths, 183 526-292 737). Childhood wasting (low weight-for-height score), unsafe water, and unsafe sanitation were the leading risk factors for diarrhoea, responsible for 80·4% (95% UI 68·2-85·0), 72·1% (34·0-91·4), and 56·4% (49·3-62·7) of diarrhoea deaths in children younger than 5 years, respectively. Prevention of wasting in 1762 children (95% UI 1521-2170) could avert one death from diarrhoea. INTERPRETATION Substantial progress has been made globally in reducing the burden of diarrhoeal diseases, driven by decreases in several primary risk factors. However, this reduction has not been equal across locations, and burden among adults older than 70 years requires attention. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
45
|
Kim MJ, Moon YH, Kim H, Rho S, Shin YK, Song M, Walker R, Czerkinsky C, Kim DW, Kim JO. Cross-Protective Shigella Whole-Cell Vaccine With a Truncated O-Polysaccharide Chain. Front Microbiol 2018; 9:2609. [PMID: 30429838 PMCID: PMC6220597 DOI: 10.3389/fmicb.2018.02609] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/12/2018] [Indexed: 11/13/2022] Open
Abstract
Shigella is a highly prevalent bacterium causing acute diarrhea and dysentery in developing countries. Shigella infections are treated with antibiotics but Shigellae are increasingly resistant to these drugs. Vaccination can be a countermeasure against emerging antibiotic-resistant shigellosis. Because of the structural variability in Shigellae O-antigen polysaccharides (Oag), cross-protective Shigella vaccines cannot be derived from single serotype-specific Oag. We created an attenuated Shigella flexneri 2a strain with one rather than multiple Oag units by disrupting the Oag polymerase gene (Δwzy), which broadened protective immunogenicity by exposing conserved surface proteins. Inactivated Δwzy mutant cells combined with Escherichia coli double mutant LT(R192G/L211A) as adjuvant, induced potent antibody responses to outer membrane protein PSSP-1, and type III secretion system proteins IpaB and IpaC. Intranasal immunization with the vaccine preparation elicited cross-protective immunity against S. flexneri 2a, S. flexneri 3a, S. flexneri 6, and Shigella sonnei in a mouse pneumonia model. Thus, S. flexneri 2a Δwzy represents a promising candidate strain for a universal Shigella vaccine.
Collapse
Affiliation(s)
- Min Jung Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea.,Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Hye Moon
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | - Heejoo Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | - Semi Rho
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Manki Song
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | | | - Cecil Czerkinsky
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea.,Institut de Pharmacologie Moléculaire & Cellulaire CNRS-INSERM-University of Nice Sophia Antipolis, Valbonne, France
| | - Dong Wook Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| | - Jae-Ouk Kim
- Clinical Research Lab, International Vaccine Institute, Seoul National University Research Park, Seoul, South Korea
| |
Collapse
|
46
|
Riddle M, Chen W, Kirkwood C, MacLennan C. Update on vaccines for enteric pathogens. Clin Microbiol Infect 2018; 24:1039-1045. [DOI: 10.1016/j.cmi.2018.06.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
|
47
|
Khalil IA, Troeger C, Blacker BF, Rao PC, Brown A, Atherly DE, Brewer TG, Engmann CM, Houpt ER, Kang G, Kotloff KL, Levine MM, Luby SP, MacLennan CA, Pan WK, Pavlinac PB, Platts-Mills JA, Qadri F, Riddle MS, Ryan ET, Shoultz DA, Steele AD, Walson JL, Sanders JW, Mokdad AH, Murray CJL, Hay SI, Reiner RC. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: the Global Burden of Disease Study 1990-2016. THE LANCET. INFECTIOUS DISEASES 2018; 18:1229-1240. [PMID: 30266330 PMCID: PMC6202441 DOI: 10.1016/s1473-3099(18)30475-4] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Background Shigella and enterotoxigenic Escherichia coli (ETEC) are bacterial pathogens that are frequently associated with diarrhoeal disease, and are a significant cause of mortality and morbidity worldwide. The Global Burden of Diseases, Injuries, and Risk Factors study 2016 (GBD 2016) is a systematic, scientific effort to quantify the morbidity and mortality due to over 300 causes of death and disability. We aimed to analyse the global burden of shigella and ETEC diarrhoea according to age, sex, geography, and year from 1990 to 2016. Methods We modelled shigella and ETEC-related mortality using a Bayesian hierarchical modelling platform that evaluates a wide range of covariates and model types on the basis of vital registration and verbal autopsy data. We used a compartmental meta-regression tool to model the incidence of shigella and ETEC, which enforces an association between incidence, prevalence, and remission on the basis of scientific literature, population representative surveys, and health-care data. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings Shigella was the second leading cause of diarrhoeal mortality in 2016 among all ages, accounting for 212 438 deaths (95% UI 136 979–326 913) and about 13·2% (9·2–17·4) of all diarrhoea deaths. Shigella was responsible for 63 713 deaths (41 191–93 611) among children younger than 5 years and was frequently associated with diarrhoea across all adult age groups, increasing in elderly people, with broad geographical distribution. ETEC was the eighth leading cause of diarrhoea mortality in 2016 among all age groups, accounting for 51 186 deaths (26 757–83 064) and about 3·2% (1·8–4·7) of diarrhoea deaths. ETEC was responsible for about 4·2% (2·2–6·8) of diarrhoea deaths in children younger than 5 years. Interpretation The health burden of bacterial diarrhoeal pathogens is difficult to estimate. Despite existing prevention and treatment options, they remain a major cause of morbidity and mortality globally. Additional emphasis by public health officials is needed on a reduction in disease due to shigella and ETEC to reduce disease burden. Funding Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
| | | | | | - Puja C Rao
- Institute for Health Metrics and Evaluation, Seattle WA, USA
| | | | | | - Thomas G Brewer
- Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA
| | - Cyril M Engmann
- Maternal, Newborn, Child Health & Nutrition, PATH, Seattle, WA, USA; Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Gagandeep Kang
- Translational Health Science and Technology Institute, Faridabad, India
| | - Karen L Kotloff
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Myron M Levine
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - Calman A MacLennan
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - William K Pan
- Institute for Health Metrics and Evaluation, Seattle WA, USA; Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Patricia B Pavlinac
- Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Center for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | - Edward T Ryan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - David A Shoultz
- Drug Development, PATH, Seattle, WA, USA; Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA; Albers School of Business & Economics, Seattle University, Seattle, WA, USA
| | - A Duncan Steele
- Enteric and Diarrheal Diseases, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Judd L Walson
- Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA; Department of Epidemiology, University of Washington School of Medicine, Seattle, WA, USA
| | - John W Sanders
- Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ali H Mokdad
- Institute for Health Metrics and Evaluation, Seattle WA, USA
| | | | - Simon I Hay
- Institute for Health Metrics and Evaluation, Seattle WA, USA; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation, Seattle WA, USA.
| |
Collapse
|
48
|
Huang J, Duan Q, Zhang W. Significance of Enterotoxigenic Escherichia coli (ETEC) Heat-Labile Toxin (LT) Enzymatic Subunit Epitopes in LT Enterotoxicity and Immunogenicity. Appl Environ Microbiol 2018; 84:e00849-18. [PMID: 29802193 PMCID: PMC6052278 DOI: 10.1128/aem.00849-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/19/2018] [Indexed: 01/28/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains producing heat-labile toxin (LT) and/or heat-stable toxin (STa) are a top cause of children's diarrhea and travelers' diarrhea. Holotoxin-structured GM1-binding LT is a strong immunogen and an effective adjuvant, and can serve a carrier or a platform for multivalent vaccine development. However, the significance of peptide domains or epitopes of LT particularly enzymatic LTA subunit in association with LT enterotoxicity and immunogenicity has not been characterized. In this study, we identified B-cell epitopes in silico from LTA subunit and examined epitopes for immunogenicity and association with LT enterotoxicity. Epitopes identified from LTA subunit were individually fused to a modified chicken ovalbumin carrier protein, and each epitope-ovalbumin fusion was used to immunize mice. Data showed all 11 LTA epitopes were immunogenic; epitope 7 (105SPHPYEQEVSA115) induced greater titers of anti-LT antibodies which neutralized LT enterotoxicity more effectively. To examine these epitopes for the significance in LT enterotoxicity, we constructed LT mutants by substituting each of 10 epitopes at the toxic A1 domain of LTA subunit with a foreign epitope and examined LT mutants for enterotoxicity and GM1-binding activity. Data showed that LT mutants exhibited no enterotoxicity but retained GM1-binding activity. The results from this study indicated that while not all immunodominant LTA epitopes were neutralizing, LT mutants with an individual epitope substituted lost enterotoxicity but retained GM1-binding activity. These results provided additional information to understand LT immunogenicity and enterotoxicity and suggested the potential application of LT platform for multivalent vaccines against ETEC diarrhea and other diseases.IMPORTANCE No vaccine is licensed for enterotoxigenic Escherichia coli (ETEC) strains, which remain a leading cause of diarrhea in children from developing countries and international travelers. GM1-binding heat-labile toxin (LT) which is a key virulence factor of ETEC diarrhea is a strong vaccine antigen and a self-adjuvant. LT can also serve a backbone or platform for MEFA (multiepitope fusion antigen), a newly developed structural vaccinology technology, to present heterogeneous epitopes (by replacing LT epitopes) and to mimic epitope antigenicity for development of broadly protective vaccines. Data from this study identified neutralizing LT epitopes and demonstrated that substitution of LT epitopes eliminated LT enterotoxicity without altering GM1-binding activity, suggesting LT is potentially a versatile MEFA platform to present heterogeneous epitopes for multivalent vaccines against ETEC and other pathogens.
Collapse
Affiliation(s)
- Jiachen Huang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Qiangde Duan
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| | - Weiping Zhang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA
| |
Collapse
|
49
|
Ratto-Kim S, Yoon IK, Paris RM, Excler JL, Kim JH, O’Connell RJ. The US Military Commitment to Vaccine Development: A Century of Successes and Challenges. Front Immunol 2018; 9:1397. [PMID: 29977239 PMCID: PMC6021486 DOI: 10.3389/fimmu.2018.01397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/05/2018] [Indexed: 12/04/2022] Open
Abstract
The US military has been a leading proponent of vaccine development since its founding. General George Washington ordered the entire American army to be variolated against smallpox after recognizing the serious threat that it posed to military operations. He did this on the recommendation from Dr. John Morgan, the physician-in-chief of the American army, who wrote a treatise on variolation in 1776. Although cases of smallpox still occurred, they were far fewer than expected, and it is believed that the vaccination program contributed to victory in the War of Independence. Effective military force requires personnel who are healthy and combat ready for worldwide deployment. Given the geography of US military operations, military personnel should also be protected against diseases that are endemic in potential areas of conflict. For this reason, and unknown to many, the US military has strongly supported vaccine research and development. Four categories of communicable infectious diseases threaten military personnel: (1) diseases that spread easily in densely populated areas (respiratory and dysenteric diseases); (2) vector-borne diseases (disease carried by mosquitoes and other insects); (3) sexually transmitted diseases (hepatitis, HIV, and gonorrhea); and (4) diseases associated with biological warfare. For each category, the US military has supported research that has provided the basis for many of the vaccines available today. Although preventive measures and the development of drugs have provided some relief from the burden of malaria, dengue, and HIV, the US military continues to fund research and development of prophylactic vaccines that will contribute to force health protection and global health. In the past few years, newly recognized infections with Zika, severe acute respiratory syndrome, Middle East respiratory syndrome viruses have pushed the US military to fund research and fast track clinical trials to quickly and effectively develop vaccines for emerging diseases. With US military personnel present in every region of the globe, one of the most cost-effective ways to maintain military effectiveness is to develop vaccines against prioritized threats to military members' health.
Collapse
Affiliation(s)
| | - In-Kyu Yoon
- International Vaccine Institute, Seoul, South Korea
| | | | | | | | | |
Collapse
|
50
|
Duan Q, Lu T, Garcia C, Yañez C, Nandre RM, Sack DA, Zhang W. Co-administered Tag-Less Toxoid Fusion 3xSTa N12S-mnLT R192G/L211A and CFA/I/II/IV MEFA (Multiepitope Fusion Antigen) Induce Neutralizing Antibodies to 7 Adhesins (CFA/I, CS1-CS6) and Both Enterotoxins (LT, STa) of Enterotoxigenic Escherichia coli (ETEC). Front Microbiol 2018; 9:1198. [PMID: 29922268 PMCID: PMC5996201 DOI: 10.3389/fmicb.2018.01198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/16/2018] [Indexed: 11/23/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) bacteria remain a leading cause of children's diarrhea and travelers' diarrhea. Vaccines that induce antibodies to block ETEC bacterial adherence and to neutralize toxin enterotoxicity can be effective against ETEC-associated diarrhea. Recent studies showed that 6xHis-tagged CFA/I/II/IV multiepitope fusion antigen (MEFA) induced broad-spectrum antibodies to inhibit adherence of the seven most important ETEC adhesins (CFA/I, CS1 to CS6) (Ruan et al., 2014a) and 6xHis-tagged toxoid fusion antigen 3xSTaN12S-mnLTR192G/L211A (previously named as 3xSTaN12S-dmLT) elicited antibodies to neutralize both heat-labile toxin (LT) and heat-stable toxin (STa) produced by ETEC strains (Ruan et al., 2014b). In this study, we constructed two new genes to express tag-less toxoid fusion 3xSTaN12S-mnLTR192G/L211A and tag-less CFA/I/II/IV MEFA and then examined immunogenicity of each tag-less protein in mouse immunization. We further combined two tag-less proteins and investigated antigen co-administration in mice. Data showed that mice immunized with tag-less 3xSTaN12S-mnLTR192G/L211A or tag-less CFA/I/II/IV MEFA developed antigen-specific IgG antibody responses, and mice co-administered with two tag-less proteins induced neutralizing antibodies against seven adhesins and both toxins. These results indicated tag-less toxoid fusion 3xSTaN12S-mnLTR192G/L211A and tag-less CFA/I/II/IV MEFA administered individually or combined induced neutralizing antitoxin and/or anti-adhesin antibodies, and suggested the potential application of two tag-less proteins for ETEC vaccine development.
Collapse
Affiliation(s)
- Qiangde Duan
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Ti Lu
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Carolina Garcia
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Coraima Yañez
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Rahul M. Nandre
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - David A. Sack
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Weiping Zhang
- Department of Diagnostic Medicine, Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| |
Collapse
|