1
|
Gates CJ, Brazel EB, Kennedy EV, Brown JS, Ercoli G, Davies J, Hirst TR, Paton JC, Alsharifi M. A gamma-irradiated pneumococcal vaccine elicits superior immunogenicity in comparison to heat or chemically inactivated whole-cell vaccines. Vaccine 2025; 54:126982. [PMID: 40048932 DOI: 10.1016/j.vaccine.2025.126982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/10/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025]
Abstract
Streptococcus pneumoniae is one of the world's foremost bacterial pathogens, with extensive serotype diversity that impacted the efficacy of current vaccines. Our group have previously reported the generation of a whole cell serotype-independent gamma-irradiated pneumococcal vaccine (Gamma-PN). The present study sought to compare the effect of gamma-irradiation, heat, ethanol, or formalin inactivation on the antigenic structure and immunogenicity of whole-cell pneumococcal vaccines. Our data demonstrate that Gamma-PN exhibited comparable cellular morphology to live bacteria, in contrast to damage and aggregation observed for other approaches. Vaccination of mice with Gamma-PN or heat-inactivated PN (Heat-PN) induced high levels of pneumococcal-specific IgG, but with significantly different profiles of IgG subclasses. In addition, while immune sera from Heat-PN vaccinated mice had strong PspA-specific responses, sera from Gamma-PN vaccinated animals showed enhanced recognition of a wider array of pneumococcal proteins. Overall, in contrast to other methods of inactivation, the gamma-irradiated pneumococcal vaccine retained cellular structure and elicited immunity against a broad array of pneumococcal proteins, positioning this vaccine well to stimulate robust immunity to pneumococcal disease.
Collapse
Affiliation(s)
- Chloe J Gates
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, SA, Australia
| | - Erin B Brazel
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, SA, Australia; GPN Vaccines Ltd, Yarralumla, ACT, Australia
| | | | - Jeremy S Brown
- UCL Respiratory, University College London, London, United Kingdom
| | - Giuseppe Ercoli
- UCL Respiratory, University College London, London, United Kingdom
| | - Justin Davies
- Irradiations Group, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, Australia
| | | | - James C Paton
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, SA, Australia; GPN Vaccines Ltd, Yarralumla, ACT, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, SA, Australia; GPN Vaccines Ltd, Yarralumla, ACT, Australia.
| |
Collapse
|
2
|
Schulze K, Weber U, Schuy C, Durante M, Guzmán CA. Influenza Virus Inactivated by Heavy Ion Beam Irradiation Stimulates Antigen-Specific Immune Responses. Pharmaceutics 2024; 16:465. [PMID: 38675126 PMCID: PMC11054185 DOI: 10.3390/pharmaceutics16040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation can affect surface-exposed antigen, thereby reducing vaccine efficacy. Gamma rays have been used in the past to inactivate viruses. We recently proposed that high-energy heavy ions may be more suitable as an inactivation method because they increase the damage ratio between the viral nucleic acid and surface proteins. Here, we demonstrate that irradiation of the influenza virus using heavy ion beams constitutes a suitable method to develop effective vaccines, since immunization of mice by the intranasal route with the inactivated virus resulted in the stimulation of strong antigen-specific humoral and cellular immune responses.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| | - Ulrich Weber
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Fachbereich Mathematik, Naturwissenschaften und Informatik, Technische Hochschule Mittelhessen, 35390 Gießen, Germany
| | - Christoph Schuy
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Department of Physics “Ettore Pancini”, University Federico II, 80138 Naples, Italy
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| |
Collapse
|
3
|
Schuh AJ, Amman BR, Guito JC, Graziano JC, Sealy TK, Towner JS. Tick salivary gland components dampen Kasokero virus infection and shedding in its vertebrate reservoir, the Egyptian rousette bat (Rousettus aegyptiacus). Parasit Vectors 2023; 16:249. [PMID: 37488618 PMCID: PMC10367358 DOI: 10.1186/s13071-023-05853-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The human-pathogenic Kasokero virus (KASV) circulates in an enzootic transmission cycle between Egyptian rousette bats (ERBs; Rousettus aegyptiacus) and their argasid tick ectoparasites, Ornithodoros (Reticulinasus) faini. Although tick salivary gland components have been shown to potentiate virus infection in vertebrate non-reservoirs (i.e. incidental hosts or small animal models of disease), there is a lack of information on the effect of tick salivary gland components on viral infection and shedding in vertebrate reservoirs. METHODS To determine the impact of tick salivary gland components on KASV infection and shedding in ERBs, KASV loads were quantified in blood, oral swab, rectal swab, and urine specimens collected daily through 18 days post inoculation from groups of ERBs intradermally inoculated with KASV or KASV + O. (R.) faini tick salivary gland extract (SGE). RESULTS Bats inoculated with KASV + tick SGE had significantly lower peak and cumulative KASV viremias and rectal shedding loads compared to bats inoculated with KASV only. CONCLUSIONS We report for the first time to our knowledge that tick salivary gland components dampen arbovirus infection and shedding in a vertebrate reservoir. This study advances our understanding of biological factors underlying arbovirus maintenance in nature.
Collapse
Affiliation(s)
- Amy J Schuh
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, USA.
- United States Public Health Service Commissioned Corps, Rockville, MD, USA.
| | - Brian R Amman
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jonathan C Guito
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - James C Graziano
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tara K Sealy
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jonathan S Towner
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, United States Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
4
|
A Nonadjuvanted Whole-Inactivated Pneumococcal Vaccine Induces Multiserotype Opsonophagocytic Responses Mediated by Noncapsule-Specific Antibodies. mBio 2022; 13:e0236722. [PMID: 36125268 PMCID: PMC9600166 DOI: 10.1128/mbio.02367-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Streptococcus pneumoniae (Spn) remains a major cause of global mortality, with extensive antigenic diversity between capsular serotypes that poses an ongoing challenge for vaccine development. Widespread use of pneumococcal conjugate vaccines (PCVs) targeting Spn capsules has greatly reduced infections by vaccine-included serotypes but has led to increased infections by nonincluded serotypes. To date, high cost of PCVs has also limited their usefulness in low-income regions where disease burdens are highest. To overcome these limitations, serotype-independent vaccines are being actively researched. We have developed a whole-cell gamma-irradiated Spn vaccine (termed Gamma-PN) providing serotype-independent protection. We demonstrate that Gamma-PN immunization of mice or rabbits via the clinically relevant intramuscular route induces protein-specific antibodies able to bind numerous nonvaccine encapsulated serotypes, which mediate opsonophagocytic killing and protection against lethal challenges. Gamma-PN induced comparable or superior opsonophagocytic killing assay (OPKA) responses in rabbits to the licensed Prevnar 13 vaccine (PCV13) for vaccine-included serotypes, and a superior response to nonincluded serotypes, including emergent 22F and 35B. Additionally, despite a lower observed reactogenicity, administration of Gamma-PN without adjuvant resulted in higher OPKA responses and improved protection compared to adjuvanted Gamma-PN. To our knowledge, this has not been demonstrated previously for a whole-inactivated Spn vaccine. Eliminating the requirement for adjuvant comes with numerous benefits for clinical applications of this vaccine and poses interesting questions for the inclusion of adjuvant in similar vaccines in development.
Collapse
|
5
|
Bortolami A, Mazzetto E, Kangethe RT, Wijewardana V, Barbato M, Porfiri L, Maniero S, Mazzacan E, Budai J, Marciano S, Panzarin V, Terregino C, Bonfante F, Cattoli G. Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes. Front Vet Sci 2022; 9:916108. [PMID: 35898545 PMCID: PMC9309530 DOI: 10.3389/fvets.2022.916108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
H9N2 viruses have become, over the last 20 years, one of the most diffused poultry pathogens and have reached a level of endemicity in several countries. Attempts to control the spread and reduce the circulation of H9N2 have relied mainly on vaccination in endemic countries. However, the high level of adaptation to poultry, testified by low minimum infectious doses, replication to high titers, and high transmissibility, has severely hampered the results of vaccination campaigns. Commercially available vaccines have demonstrated high efficacy in protecting against clinical disease, but variable results have also been observed in reducing the level of replication and viral shedding in domestic poultry species. Antigenic drift and increased chances of zoonotic infections are the results of incomplete protection offered by the currently available vaccines, of which the vast majority are based on formalin-inactivated whole virus antigens. In our work, we evaluated experimental vaccines based on an H9N2 virus, inactivated by irradiation treatment, in reducing viral shedding upon different challenge doses and compared their efficacy with formalin-inactivated vaccines. Moreover, we evaluated mucosal delivery of inactivated antigens as an alternative route to subcutaneous and intramuscular vaccination. The results showed complete protection and prevention of replication in subcutaneously vaccinated Specific Pathogen Free White Leghorn chickens at low-to-intermediate challenge doses but a limited reduction of shedding at a high challenge dose. Mucosally vaccinated chickens showed a more variable response to experimental infection at all tested challenge doses and the main effect of vaccination attained the reduction of infected birds in the early phase of infection. Concerning mucosal vaccination, the irradiated vaccine was the only one affording complete protection from infection at the lowest challenge dose. Vaccine formulations based on H9N2 inactivated by irradiation demonstrated a potential for better performances than vaccines based on the formalin-inactivated antigen in terms of reduction of shedding and prevention of infection.
Collapse
Affiliation(s)
- Alessio Bortolami
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Eva Mazzetto
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Richard Thiga Kangethe
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Mario Barbato
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
- Department of Animal Science Food and Nutrition–DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luca Porfiri
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Silvia Maniero
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Elisa Mazzacan
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Jane Budai
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sabrina Marciano
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Valentina Panzarin
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Calogero Terregino
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Francesco Bonfante
- Department of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Department of Nuclear Sciences and Applications, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| |
Collapse
|
6
|
Rafiepour P, Sina S, Mortazavi SMJ. Inactivation of SARS-CoV-2 by charged particles for Future Vaccine Production Applications: A Monte Carlo study. Radiat Phys Chem Oxf Engl 1993 2022; 198:110265. [PMID: 35663798 PMCID: PMC9142867 DOI: 10.1016/j.radphyschem.2022.110265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/25/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
Abstract
The world is still suffering from the SARS-CoV-2 pandemic, and the number of infected people is still growing in many countries in 2022. Although great strides have been made to produce effective vaccines, efforts in this field should be accelerated, particularly due to the emergence of new variants. Using inactivated viruses is a conventional method of vaccine production. High levels of ionizing radiation can effectively inactivate viruses. Recently, studies on SARS-CoV-2 irradiation using low-LET radiations (e.g., gamma rays) have been performed. However, there are insufficient studies on the impact of charged particles on the inactivation of this virus. In this study, a realistic structure of SARS-CoV-2 is simulated by using Geant4 Monte Carlo toolkit, and the effect of electrons, protons, alphas, C-12, and Fe-56 ions on the inactivation of SARS-CoV-2 is investigated. The simulation results indicated that densely ionizing (high-LET) particles have the advantage of minimum number of damaged spike proteins per single RNA break. The RNA breaks induced by hydroxyl radicals produced in the surrounding water medium were significant only for electron beam radiation. Hence, indirect RNA breaks induced by densely ionizing particles is negligible. From a simulation standpoint, alpha particles (with energies up to 30 MeV) as well as C-12 ions (with energies up to 80 MeV/n), and Fe-56 ions (with any energy) can be introduced as particles of choice for effective SARS-CoV-2 inactivation.
Collapse
Affiliation(s)
- Payman Rafiepour
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Sedigheh Sina
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.,Radiation Research Center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Seyed Mohammad Javad Mortazavi
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Motamedi‐sedeh F, Saboorizadeh A, Khalili I, Sharbatdaran M, Wijewardana V, Arbabi A. Carboxymethyl chitosan bounded iron oxide nanoparticles and gamma-irradiated avian influenza subtype H9N2 vaccine to development of immunity on mouse and chicken. Vet Med Sci 2022; 8:626-634. [PMID: 34878724 PMCID: PMC8959295 DOI: 10.1002/vms3.680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Avian influenza virus (AIV) subtype H9N2 is a low pathogenic avian influenza virus (LPAIV). OBJECTIVE This study aims to evaluate the humoral and cellular immunity in vaccinated mice and broiler chicken by irradiated AIV antigen plus carboxymethyl chitosan bounded iron oxide nanoparticles (CMC-IO NPs) as an adjuvant. METHODS AIV subtype H9N2 with 108.5 EID50 /ml and haemagglutinin antigen assay about 10 log2 was irradiated by 30 kGy gamma radiation dose. Then, the gamma-irradiated AIV was used as an inactivated vaccine and conjugated with CMC-IO NPs to improve immune responses on mice. IO NPs must be applied in all activated tests using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), and then functionalized by CMC as IO-CMC. Fourier transform infrared (FTIR) spectra on functionalized IO-CMC showed a peak of 638 cm-1 which is a band between metal and O (Fe-O). RESULTS Based on the comparison between the two X-ray diffraction (XRD) patterns on Fe2 O3 -NPs and IO-CMC, the characteristics of IO-NPs did not change after carboxymethylation. A CHN Analyzer was applied to measure the molecular weight of IO-CMC that was calculated as 1045 g. IO-CMC, irradiated AIV-IO-CMC and formalin AIV-IO-CMC were injected into 42 BALB/c mice in six groups. The fourth group was the negative control, and the fifth and sixth groups were inoculated by irradiated AIV-ISA70 and formalin AIV-ISA70 vaccines. An increase in haemagglutination inhibition (HI) antibody titration was observed in the irradiated AIV-IO-CMC and formalin AIV-IO-CMC groups (p < 0.05). In addition, increases in the lymphoproliferative activity of re-stimulated splenic lymphocytes, interfron-γ (IFN-γ) and interleukin-2 (IL-2) concentration in the irradiated AIV-IO-CMC group demonstrated the activation of Type 1 helper cells. The concentration of IL-4 was without any significant increases in non-group. CONCLUSIONS Accordingly, Th2 activation represented no increase. Finally, the finding showed that AIV-IO-CMC was effective on enhancing immunogenicity as irradiated AIV antigen administered with a clinically acceptable adjuvant (i.e. IO-CMC).
Collapse
Affiliation(s)
- Farahnaz Motamedi‐sedeh
- Department of Veterinary and Animal ScienceNuclear Agriculture Research SchoolNuclear Science and Technology Research InstituteKarajIran
| | - Atefeh Saboorizadeh
- Department of MicrobiologyScience FacultyIslamic Azad UniversityKaraj BranchKarajIran
| | - Iraj Khalili
- Razi Vaccine and Serum Research InstituteAgricultural Research, Education and Extension OrganizationKarajIran
| | - Massomeh Sharbatdaran
- Physics and accelerator Research SchoolNuclear Science and Technology Research InstituteTehranIran
| | - Viskam Wijewardana
- Department of Nuclear Sciences and ApplicationsAnimal Production and Health Section, International Atomic Energy Agency (IAEA), Vienna International Centre (VIC)ViennaAustria
| | - Arash Arbabi
- Faulty of Medical Science, Tehran University of Medical ScienceTehranIran
| |
Collapse
|
8
|
Bhatia SS, Pillai SD. Ionizing Radiation Technologies for Vaccine Development - A Mini Review. Front Immunol 2022; 13:845514. [PMID: 35222438 PMCID: PMC8873931 DOI: 10.3389/fimmu.2022.845514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
Given the current pandemic the world is struggling with, there is an urgent need to continually improve vaccine technologies. Ionizing radiation technology has a long history in the development of vaccines, dating back to the mid-20th century. Ionizing radiation technology is a highly versatile technology that has a variety of commercial applications around the world. This brief review summarizes the core technology, the overall effects of ionizing radiation on bacterial cells and reviews vaccine development efforts using ionizing technologies, namely gamma radiation, electron beam, and X-rays.
Collapse
Affiliation(s)
- Sohini S. Bhatia
- National Center for Electron Beam Research, an International Atomic Energy Agency (IAEA) Collaborating Center for Electron Beam Technology, Texas A&M University, College Station, TX, United States
| | - Suresh D. Pillai
- National Center for Electron Beam Research, an International Atomic Energy Agency (IAEA) Collaborating Center for Electron Beam Technology, Texas A&M University, College Station, TX, United States
- Department of Food Science and Technology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Singleton EV, Gates CJ, David SC, Hirst TR, Davies JB, Alsharifi M. Enhanced Immunogenicity of a Whole-Inactivated Influenza A Virus Vaccine Using Optimised Irradiation Conditions. Front Immunol 2021; 12:761632. [PMID: 34899711 PMCID: PMC8652198 DOI: 10.3389/fimmu.2021.761632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus presents a constant pandemic threat due to the mutagenic nature of the virus and the inadequacy of current vaccines to protect against emerging strains. We have developed a whole-inactivated influenza vaccine using γ-irradiation (γ-Flu) that can protect against both vaccine-included strains as well as emerging pandemic strains. γ-irradiation is a widely used inactivation method and several γ-irradiated vaccines are currently in clinical or pre-clinical testing. To enhance vaccine efficacy, irradiation conditions should be carefully considered, particularly irradiation temperature. Specifically, while more damage to virus structure is expected when using higher irradiation temperatures, reduced radiation doses will be required to achieve sterility. In this study, we compared immunogenicity of γ-Flu irradiated at room temperature, chilled on ice or frozen on dry ice using different doses of γ-irradiation to meet internationally accepted sterility assurance levels. We found that, when irradiating at sterilising doses, the structural integrity and vaccine efficacy were well maintained in all preparations regardless of irradiation temperature. In fact, using a higher temperature and lower radiation dose appeared to induce higher neutralising antibody responses and more effective cytotoxic T cell responses. This outcome is expected to simplify irradiation protocols for manufacturing of highly effective irradiated vaccines.
Collapse
Affiliation(s)
- Eve Victoria Singleton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Chloe Jayne Gates
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Shannon Christa David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Timothy Raymond Hirst
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| | - Justin Bryan Davies
- Irradiations Group, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Yarralumla, ACT, Australia
| |
Collapse
|
10
|
Sabbaghi A, Malek M, Abdolahi S, Miri SM, Alizadeh L, Samadi M, Mohebbi SR, Ghaemi A. A formulated poly (I:C)/CCL21 as an effective mucosal adjuvant for gamma-irradiated influenza vaccine. Virol J 2021; 18:201. [PMID: 34627297 PMCID: PMC8501930 DOI: 10.1186/s12985-021-01672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Several studies on gamma-irradiated influenza A virus (γ-Flu) have revealed its superior efficacy for inducing homologous and heterologous virus-specific immunity. However, many inactivated vaccines, notably in nasal delivery, require adjuvants to increase the quality and magnitude of vaccine responses. METHODS To illustrate the impacts of co-administration of the gamma-irradiated H1N1 vaccine with poly (I:C) and recombinant murine CCL21, either alone or in combination with each other, as adjuvants on the vaccine potency, mice were inoculated intranasally 3 times at one-week interval with γ-Flu alone or with any of the three adjuvant combinations and then challenged with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus. Virus-specific humoral, mucosal, and cell-mediated immunity, as well as cytokine profiles in the spleen (IFN-γ, IL-12, and IL-4), and in the lung homogenates (IL-6 and IL-10) were measured by ELISA. The proliferative response of restimulated splenocytes was also determined by MTT assay. RESULTS The findings showed that the co-delivery of the γ-Flu vaccine and CCL21 or Poly (I:C) significantly increased the vaccine immunogenicity compared to the non-adjuvanted vaccine, associated with more potent protection following challenge infection. However, the mice given a combination of CCL21 with poly (I:C) had strong antibody- and cell-mediated immunity, which were considerably higher than responses of mice receiving the γ-Flu vaccine with each adjuvant separately. This combination also reduced inflammatory mediator levels (notably IL-10) in lung homogenate samples. CONCLUSIONS The results indicate that adjuvantation with the CCL21 and poly (I:C) can successfully induce vigorous vaccine-mediated protection, suggesting a robust propensity for CCL21 plus poly (I:C) as a potent mucosal adjuvant.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Masoud Malek
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Seyed Mohammad Miri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Leila Alizadeh
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mehdi Samadi
- Department of Medical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran.
| |
Collapse
|
11
|
Ji HJ, Byun EB, Chen F, Ahn KB, Jung HK, Han SH, Lim JH, Won Y, Moon JY, Hur J, Seo HS. Radiation-Inactivated S. gallinarum Vaccine Provides a High Protective Immune Response by Activating Both Humoral and Cellular Immunity. Front Immunol 2021; 12:717556. [PMID: 34484221 PMCID: PMC8415480 DOI: 10.3389/fimmu.2021.717556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum (SG) is a common pathogen in chickens, and causes an acute systemic disease that leads to high mortality. The live attenuated vaccine 9R is able to successfully protect chickens older than six weeks by activating a robust cell-mediated immune response, but its safety and efficacy in young chickens remains controversial. An inactivated SG vaccine is being used as an alternative, but because of its low cellular immune response, it cannot be used as a replacement for live attenuated 9R vaccine. In this study, we employed gamma irradiation instead of formalin as an inactivation method to increase the efficacy of the inactivated SG vaccine. Humoral, cellular, and protective immune responses were compared in both mouse and chicken models. The radiation-inactivated SG vaccine (r-SG) induced production of significantly higher levels of IgG2b and IgG3 antibodies than the formalin-inactivated vaccine (f-SG), and provided a homogeneous functional antibody response against group D, but not group B Salmonella. Moreover, we found that r-SG vaccination could provide a higher protective immune response than f-SG by inducing higher Th17 activation. These results indicate that r-SG can provide a protective immune response similar to the live attenuated 9R vaccine by activating a higher humoral immunity and a lower, but still protective, cellular immune response. Therefore, we expect that the radiation inactivation method might substitute for the 9R vaccine with little or no side effects in chickens younger than six weeks.
Collapse
Affiliation(s)
- Hyun Jung Ji
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Eui-Baek Byun
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Fengjia Chen
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ki Bum Ahn
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Ho Kyoung Jung
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and DRI, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, South Korea.,Ewha Education & Research Center for Infection, Ewha Womans University Medical Center, Seoul, South Korea
| | - Yongkwan Won
- Research and Development Center, HONGCHEON CTCVAC Co., Ltd., Hongcheon, South Korea
| | - Ja Young Moon
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Jin Hur
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Korea Atomic Energy Research Institute, Jeongeup, South Korea.,Department of Radiation Science, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
12
|
Sartori GP, da Costa A, Macarini FLDS, Mariano DOC, Pimenta DC, Spencer PJ, Nali LHDS, Galisteo AJ. Characterization and evaluation of the enzymatic activity of tetanus toxin submitted to cobalt-60 gamma radiation. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200140. [PMID: 33995513 PMCID: PMC8092855 DOI: 10.1590/1678-9199-jvatitd-2020-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Tetanus toxin blocks the release of the inhibitory neurotransmitters in the central nervous system and causes tetanus and its main form of prevention is through vaccination. The vaccine is produced by inactivation of tetanus toxin with formaldehyde, which may cause side effects. An alternative way is the use of ionizing radiation for inactivation of the toxin and also to improve the potential immunogenic response and to reduce the post-vaccination side effects. Therefore, the aim of this study was to characterize the tetanus toxin structure after different doses of ionizing radiation of 60Co. METHODS Irradiated and native tetanus toxin was characterized by SDS PAGE in reducing and non-reducing conditions and MALD-TOF. Enzymatic activity was measured by FRET substrate. Also, antigenic properties were assessed by ELISA and Western Blot data. RESULTS Characterization analysis revealed gradual modification on the tetanus toxin structure according to doses increase. Also, fragmentation and possible aggregations of the protein fragments were observed in higher doses. In the analysis of peptide preservation by enzymatic digestion and mass spectrometry, there was a slight modification in the identification up to the dose of 4 kGy. At subsequent doses, peptide identification was minimal. The analysis of the enzymatic activity by fluorescence showed 35 % attenuation in the activity even at higher doses. In the antigenic evaluation, anti-tetanus toxin antibodies were detected against the irradiated toxins at the different doses, with a gradual decrease as the dose increased, but remaining at satisfactory levels. CONCLUSION Ionizing radiation promoted structural changes in the tetanus toxin such as fragmentation and/or aggregation and attenuation of enzymatic activity as the dose increased, but antigenic recognition of the toxin remained at good levels indicating its possible use as an immunogen. However, studies of enzymatic activity of tetanus toxin irradiated with doses above 8 kGy should be further analyzed.
Collapse
Affiliation(s)
- Giselle Pacifico Sartori
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | - Andréa da Costa
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
| | | | | | | | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute
(IPEN/CNEN/SP), São Paulo, SP, Brazil
| | | | - Andrés Jimenez Galisteo
- Laboratory of Protozoology, Institute of Tropical Medicine,
University of São Paulo (IMT/FMUSP), São Paulo, SP, Brazil
- LIM49, Hospital das Clínicas HCFMUSP, School of Medicine, University
of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Mollaei Alamuti M, Ravanshad M, Motamedi-Sedeh F, Nabizadeh A, Ahmadi E, Hossieni SM. Immune Response of Gamma-Irradiated Inactivated Bivalent Polio Vaccine Prepared plus Trehalose as a Protein Stabilizer in a Mouse Model. Intervirology 2021; 64:140-146. [PMID: 33853059 DOI: 10.1159/000515392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Poliovirus causes paralysis by infecting the nervous system. Currently, 2 types of polio vaccine are given in many countries in polio eradication program including inactivated polio vaccine (IPV) and oral polio vaccine (OPV). Because of OPV-related paralysis, OPV should be replaced by IPV. METHODS The aim of this study was to prepare the gamma-irradiated IPV and determine its effectiveness compared with the commercial vaccine (OPV) in the mouse model. The virus titration of OPV was determined and then inactivated by the appropriate dose of gamma radiation into an irradiated vaccine formula. The vaccine was inoculated in BALB/c mice in 2 different formulations of intramuscular injection with 2-week intervals. The level of anti-polio-neutralizing antibody and polio-specific splenocyte proliferation assay were evaluated by collecting the blood samples and spleens of the vaccinated groups with conventional vaccine and irradiated vaccine. RESULTS There was a significant increase in the neutralizing antibody titration between all of the vaccinated groups and negative control group (A) (p < 0.05). And it shows that the IPV by gamma irradiation has the highest antibody titration. Also, the increasing of stimulation index value in the B* group, F group, and G group was the most against other groups. Furthermore, the neutralizing anti-serum titer and splenic lymphocyte proliferation assay show humoral and cellular immunity were significantly increased in the irradiated vaccine group as compared with conventional group. CONCLUSION According to the results, gamma-irradiated IPV could induce humoral and cellular immunity in vaccinated mouse groups, so the irradiated poliovirus could be recommended as a good candidate vaccine to prevent the transport of poliovirus to the central nervous system and thus protect against paralysis.
Collapse
Affiliation(s)
- Maryam Mollaei Alamuti
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farahnaz Motamedi-Sedeh
- Nuclear Science and Technology Research Institute (NSTRI), Nuclear Agriculture Research School, Tehran, Iran
| | - Arezoo Nabizadeh
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elham Ahmadi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
14
|
Francis Z, Incerti S, Zein SA, Lampe N, Guzman CA, Durante M. Monte Carlo Simulation of SARS-CoV-2 Radiation-Induced Inactivation for Vaccine Development. Radiat Res 2021; 195:221-229. [PMID: 33411888 DOI: 10.1667/rade-20-00241.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/16/2020] [Indexed: 11/03/2022]
Abstract
Immunization with an inactivated virus is one of the strategies currently being tested towards developing a SARS-CoV-2 vaccine. One of the methods used to inactivate viruses is exposure to high doses of ionizing radiation to damage their nucleic acids. While gamma (γ) rays effectively induce lesions in the RNA, envelope proteins are also highly damaged in the process. This in turn may alter their antigenic properties, affecting their capacity to induce an adaptive immune response able to confer effective protection. Here, we modeled the effect of sparsely and densely ionizing radiation on SARS-CoV-2 using the Monte Carlo toolkit Geant4-DNA. With a realistic 3D target virus model, we calculated the expected number of lesions in the spike and membrane proteins, as well as in the viral RNA. Our findings showed that γ rays produced significant spike protein damage, but densely ionizing charged particles induced less membrane damage for the same level of RNA lesions, because a single ion traversal through the nuclear envelope was sufficient to inactivate the virus. We propose that accelerated charged particles produce inactivated viruses with little structural damage to envelope proteins, thereby representing a new and effective tool for developing vaccines against SARS-CoV-2 and other enveloped viruses.
Collapse
Affiliation(s)
- Ziad Francis
- Saint Joseph University, U.R. Mathématiques et Modélisation, Beirut, Lebanon
| | - Sebastien Incerti
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, France
| | - Sara A Zein
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, France
| | - Nathanael Lampe
- Université de Bordeaux, CNRS/IN2P3, UMR5797, Centre d'Études Nucléaires de Bordeaux Gradignan, France
| | - Carlos A Guzman
- Helmholtz Zentrum für Infektionsforschung (HZI), Department of Vaccinology and Applied Microbiology, Braunschweig, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Darmstadt, Germany.,Technische Universität Darmstadt, Institute of Condensed Matter Physics, Darmstadt, Germany
| |
Collapse
|
15
|
Sir Karakus G, Tastan C, Dilek Kancagi D, Yurtsever B, Tumentemur G, Demir S, Turan RD, Abanuz S, Cakirsoy D, Seyis U, Ozer S, Elibol O, Elek M, Ertop G, Arbak S, Acikel Elmas M, Hemsinlioglu C, Kocagoz AS, Hatirnaz Ng O, Akyoney S, Sahin I, Ozbek U, Telci D, Sahin F, Yalcin K, Ratip S, Ovali E. Preclinical efficacy and safety analysis of gamma-irradiated inactivated SARS-CoV-2 vaccine candidates. Sci Rep 2021; 11:5804. [PMID: 33707532 PMCID: PMC7970959 DOI: 10.1038/s41598-021-83930-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
COVID-19 outbreak caused by SARS-CoV-2 created an unprecedented health crisis since there is no vaccine for this novel virus. Therefore, SARS-CoV-2 vaccines have become crucial for reducing morbidity and mortality. In this study, in vitro and in vivo safety and efficacy analyzes of lyophilized vaccine candidates inactivated by gamma-irradiation were performed. The candidate vaccines in this study were OZG-3861 version 1 (V1), an inactivated SARS-CoV-2 virus vaccine, and SK-01 version 1 (V1), a GM-CSF adjuvant added vaccine. The candidate vaccines were applied intradermally to BALB/c mice to assess toxicity and immunogenicity. Preliminary results in vaccinated mice are reported in this study. Especially, the vaccine models containing GM-CSF caused significant antibody production with neutralization capacity in absence of the antibody-dependent enhancement feature, when considered in terms of T and B cell responses. Another important finding was that the presence of adjuvant was more important in T cell in comparison with B cell response. Vaccinated mice showed T cell response upon restimulation with whole inactivated SARS-CoV-2 or peptide pool. This study shows that the vaccines are effective and leads us to start the challenge test to investigate the gamma-irradiated inactivated vaccine candidates for infective SARS-CoV-2 virus in humanized ACE2 + mice.
Collapse
Affiliation(s)
| | - Cihan Tastan
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Molecular Biology and Genetics Department, Uskudar University, Istanbul, Turkey
| | | | - Bulut Yurtsever
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - Gamze Tumentemur
- Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sevda Demir
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Raife Dilek Turan
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Selen Abanuz
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Medical Biochemistry Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Didem Cakirsoy
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Medical Biotechnology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Utku Seyis
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
| | - Samed Ozer
- Animal Application and Research Center, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Omer Elibol
- Acibadem Altunizade Hospital, Istanbul, Turkey
| | - Muhammer Elek
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Gurcan Ertop
- Vocational School of Health Services, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Serap Arbak
- Histology and Embryology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Merve Acikel Elmas
- Histology and Embryology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | - Ozden Hatirnaz Ng
- Medical Biology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sezer Akyoney
- Medical Biology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Biostatistics and Bioinformatics Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ilayda Sahin
- Medical Biotechnology Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Medical Genetics Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ugur Ozbek
- Medical Genetics Department, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Dilek Telci
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Sahin
- Genetic and Bioengineering Department, Yeditepe University, Istanbul, Turkey
| | - Koray Yalcin
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey
- Medical Park Goztepe Hospital, Pediatric Bone Marrow Transplantation Unit, Istanbul, Turkey
| | - Siret Ratip
- Hematology Department, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ercument Ovali
- Acibadem Labcell Cellular Therapy Laboratory, Istanbul, Turkey.
| |
Collapse
|
16
|
Alginate-chitosan microcapsules improve vaccine potential of gamma-irradiated Listeria monocytogenes against listeriosis in murine model. Int J Biol Macromol 2021; 176:567-577. [PMID: 33581203 DOI: 10.1016/j.ijbiomac.2021.02.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/27/2022]
Abstract
Listeria monocytogenes is a cause of infectious food-borne disease in humans, characterized by neurological manifestations, abortion, and neonatal septicemia. It is intracellular bacterium, which limits the development of protective inactivated vacines. Adjuvants capable of stimulating cellular immune response are important tools for developing novel vaccines against intracellular bacteria. The aim of this study was to evaluate the vaccine potential of L. monocytogenes inactivated by gamma irradiation (KLM-γ) encapsulated in alginate microcapsules associated or not with chitosan against listeriosis in the murine model. At the fourth day after challenge there was a reduction in bacterial recovery in mice vaccinated with KLM-γ encapsulated with alginate or alginate-chitosan, with lower bacterial loads in the spleen (10 fold) and liver (100 fold) when compared to non-vaccinated mice. In vitro stimulation of splenocytes from mice vaccinated with alginate-chitosan-encapsulated KLM-γ resulted in lymphocyte proliferation, increase of proportion of memory CD4+ and CD8+ T cell and production of IL-10 and IFN-γ. Interestingly, the group vaccinated with alginate-chitosan-encapsulated KLM-γ had increased survival to lethal infection with lower L. monocytogenes-induced hepatic inflammation and necrosis. Therefore, KLM-γ encapsulation with alginate-chitosan proved to have potential for development of novel and safe inactivated vaccine formulations against listeriosis.
Collapse
|
17
|
Protective cellular and mucosal immune responses following nasal administration of a whole gamma-irradiated influenza A (subtype H1N1) vaccine adjuvanted with interleukin-28B in a mouse model. Arch Virol 2021; 166:545-557. [PMID: 33409549 PMCID: PMC7787640 DOI: 10.1007/s00705-020-04900-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
The use of gamma-irradiated influenza A virus (γ-Flu), retains most of the viral structural antigens, represent a promising option for vaccine development. However, despite the high effectiveness of γ-Flu vaccines, the need to incorporate an adjuvant to improve vaccine-mediated protection seems inevitable. Here, we examined the protective efficacy of an intranasal gamma-irradiated HIN1 vaccine co-administered with a plasmid encoding mouse interleukin-28B (mIL-28B) as a novel adjuvant in BALB/c mice. Animals were immunized intranasally three times at one-week intervals with γ-Flu, alone or in combination with the mIL-28B adjuvant, followed by viral challenge with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus. Virus-specific antibody, cellular and mucosal responses, and the balance of cytokines in the spleen IFN-γ, IL-12, and IL-4) and in lung homogenates (IL-6 and IL-10) were measured by ELISA. The lymphoproliferative activity of restimulated spleen cells was also determined by MTT assay. Furthermore, virus production in the lungs of infected mice was estimated using the Madin-Darby canine kidney (MDCK)/hemagglutination assay (HA). Our data showed that intranasal immunization with adjuvanted γ-Flu vaccine efficiently promoted humoral, cellular, and mucosal immune responses and efficiently decreased lung virus titers, all of which are associated with protection against challenge. This combination also reduced IL-6 and IL-10 levels in lung homogenates. The results suggest that IL-28B can enhance the ability of the vaccine to elicit virus-specific immune responses and could potentially be used as an effective adjuvant.
Collapse
|
18
|
Zhang L, Zhao SQ, Zhang J, Sun Y, Xie YL, Liu YB, Ma CC, Jiang BG, Liao XY, Li WF, Cheng XJ, Wang ZL. Proteomic Analysis of Vesicle-Producing Pseudomonas aeruginosa PAO1 Exposed to X-Ray Irradiation. Front Microbiol 2020; 11:558233. [PMID: 33384665 PMCID: PMC7770229 DOI: 10.3389/fmicb.2020.558233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
Ionizing irradiation kills pathogens by destroying nucleic acids without protein structure destruction. However, how pathogens respond to irradiation stress has not yet been fully elucidated. Here, we observed that Pseudomonas aeruginosa PAO1 could release nucleic acids into the extracellular environment under X-ray irradiation. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray irradiation was observed to induce outer membrane vesicle (OMV) formation in P. aeruginosa PAO1. The size distribution of the OMVs of the irradiated PAO1 was similar to that of the OMVs of the non-irradiated PAO1 according to nanoparticle tracking analysis (NTA). The pyocin-related proteins are involved in OMV production in P. aeruginosa PAO1 under X-ray irradiation conditions, and that this is regulated by the key SOS gene recA. The OMV production was significantly impaired in the irradiated PAO1 Δlys mutant, suggesting that Lys endolysin is associated with OMV production in P. aeruginosa PAO1 upon irradiation stress. Meanwhile, no significant difference in OMV production was observed between PAO1 lacking the pqsR, lasR, or rhlR genes and the parent strain, demonstrating that the irradiation-induced OMV biosynthesis of P. aeruginosa was independent of the Pseudomonas quinolone signal (PQS).
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shi-Qiao Zhao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jie Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Sun
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Liu Xie
- Department of Otolaryngology, The Seventh People's Hospital of Chengdu, Chengdu, China
| | - Yan-Bin Liu
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cui-Cui Ma
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo-Guang Jiang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Yuan Liao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Fang Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Jun Cheng
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Ling Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Singleton EV, David SC, Davies JB, Hirst TR, Paton JC, Beard MR, Hemmatzadeh F, Alsharifi M. Sterility of gamma-irradiated pathogens: a new mathematical formula to calculate sterilizing doses. JOURNAL OF RADIATION RESEARCH 2020; 61:886-894. [PMID: 32930781 PMCID: PMC7674690 DOI: 10.1093/jrr/rraa076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Indexed: 06/11/2023]
Abstract
In recent years there has been increasing advocacy for highly immunogenic gamma-irradiated vaccines, several of which are currently in clinical or pre-clinical trials. Importantly, various methods of mathematical modelling and sterility testing are employed to ensure sterility. However, these methods are designed for materials with a low bioburden, such as food and pharmaceuticals. Consequently, current methods may not be reliable or applicable to estimate the irradiation dose required to sterilize microbiological preparations for vaccine purposes, where bioburden is deliberately high. In this study we investigated the applicability of current methods to calculate the sterilizing doses for different microbes. We generated inactivation curves that demonstrate single-hit and multiple-hit kinetics under different irradiation temperatures for high-titre preparations of pathogens with different genomic structures. Our data demonstrate that inactivation of viruses such as Influenza A virus, Zika virus, Semliki Forest virus and Newcastle Disease virus show single-hit kinetics following exposure to gamma-irradiation. In contrast, rotavirus inactivation shows multiple-hit kinetics and the sterilizing dose could not be calculated using current mathematical methods. Similarly, Streptococcus pneumoniae demonstrates multiple-hit kinetics. These variations in killing curves reveal an important gap in current mathematical formulae to determine sterility assurance levels. Here we propose a simple method to calculate the irradiation dose required for a single log10 reduction in bioburden (D10) value and sterilizing doses, incorporating both single- and multiple-hit kinetics, and taking into account the possible existence of a resistance shoulder for some pathogens following exposure to gamma-irradiation.
Collapse
Affiliation(s)
- Eve V Singleton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
- GPN Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- GPN Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Mohammed Alsharifi
- Corresponding author. Research Centre for Infectious Diseases, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
20
|
Blackwood CB, Sen-Kilic E, Boehm DT, Hall JM, Varney ME, Wong TY, Bradford SD, Bevere JR, Witt WT, Damron FH, Barbier M. Innate and Adaptive Immune Responses against Bordetella pertussis and Pseudomonas aeruginosa in a Murine Model of Mucosal Vaccination against Respiratory Infection. Vaccines (Basel) 2020; 8:vaccines8040647. [PMID: 33153066 PMCID: PMC7712645 DOI: 10.3390/vaccines8040647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Whole cell vaccines are frequently the first generation of vaccines tested for pathogens and can inform the design of subsequent acellular or subunit vaccines. For respiratory pathogens, administration of vaccines at the mucosal surface can facilitate the generation of a localized mucosal immune response. Here, we examined the innate and vaccine-induced immune responses to infection by two respiratory pathogens: Bordetella pertussis and Pseudomonas aeruginosa. In a model of intranasal administration of whole cell vaccines (WCVs) with the adjuvant curdlan, we examined local and systemic immune responses following infection. These studies showed that intranasal vaccination with a WCV led to a reduction of the bacterial burden in the airways of animals infected with the respective pathogen. However, there were unique changes in the cytokines produced, cells recruited, and inflammation at the site of infection. Both mucosal vaccinations induced antibodies that bind the target pathogen, but linear regression and principal component analysis revealed that protection from these pathogens is not solely related to antibody titer. Protection from P. aeruginosa correlated to a reduction in lung weight, blood lymphocytes and neutrophils, and the cytokines IL-6, TNF-α, KC/GRO, and IL-10, and promotion of serum IgG antibodies and the cytokine IFN-γ in the lung. Protection from B. pertussis infection correlated strongly with increased anti-B-pertussis serum IgG antibodies. These findings reveal valuable correlates of protection for mucosal vaccination that can be used for further development of both B. pertussis and P. aeruginosa vaccines.
Collapse
|
21
|
Chen F, Seong Seo H, Ji HJ, Yang E, Choi JA, Yang JS, Song M, Han SH, Lim S, Lim JH, Ahn KB. Characterization of humoral and cellular immune features of gamma-irradiated influenza vaccine. Hum Vaccin Immunother 2020; 17:485-496. [PMID: 32643515 DOI: 10.1080/21645515.2020.1780091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The most widely used influenza vaccines are prepared by chemical inactivation. However, chemical, especially formalin, treatment-induced modifications of the antigenic structure of the virus are frequently associated with adverse effects including low efficacy of protection, unexpected immune responses, or exacerbation of disease. Gamma-irradiation was suggested as an alternative influenza virus inactivation method due to its great features of completely inactivating virus while not damaging the structures of protein antigens, and cross-protective ability against heterologous strains. However, immunological features of gamma radiation-inactivated influenza vaccine have not been fully understood. In this study, we aimed to investigate the humoral and cellular immune responses of gamma radiation-inactivated influenza vaccine. The gamma irradiation-inactivated influenza vaccine (RADVAXFluA) showed complete viral inactivation but retained normal viral structure with functional activities of viral protein antigens. Intranasal immunization of RADVAXFluA provided better protection against influenza virus infection than formalin-inactivated influenza virus (FIV) in mice. RADVAXFluA greatly enhanced the production of virus-specific serum IgG and alveolar mucosal IgA, which effectively neutralized HA (hemagglutinin) and NA (neuraminidase) activities, and blocked viral binding to the cells, respectively. Further analysis of IgG subclasses showed RADVAXFluA-immunized sera had higher levels of IgG1 and IgG2a than those of FIV-immunized sera. In addition, analysis of cellular immunity found RADVAXFluA induced strong dendritic cells (DC) activation resulting in higher DC-mediated activation of CD8+ T cells than FIV. The results support improved immunogenicity by RADVAXFluA.
Collapse
Affiliation(s)
- Fengjia Chen
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
| | - Ho Seong Seo
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Hyun Jung Ji
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Eunji Yang
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Jung Ah Choi
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Jae Seung Yang
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Manki Song
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute , Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University , Seoul, Republic of Korea
| | - Sangyong Lim
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine , Seoul, Republic of Korea.,Ewha Education & Research Center for Infection, Ewha Womans University Medical Center , Seoul, Republic of Korea
| | - Ki Bum Ahn
- Radiation Research Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea
| |
Collapse
|
22
|
Grant-Klein RJ, Antonello J, Nichols R, Dubey S, Simon J. Effect of Gamma Irradiation on the Antibody Response Measured in Human Serum from Subjects Vaccinated with Recombinant Vesicular Stomatitis Virus-Zaire Ebola Virus Envelope Glycoprotein Vaccine. Am J Trop Med Hyg 2020; 101:207-213. [PMID: 31162004 PMCID: PMC6609194 DOI: 10.4269/ajtmh.19-0076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
rVSVΔG-ZEBOV-GP vaccine is a live recombinant (r) vesicular stomatitis virus (VSV), where the VSV G protein is replaced with the Zaire Ebola virus (ZEBOV) glycoprotein (GP). For vaccine immunogenicity testing, clinical trial sera collected during an active ZEBOV outbreak underwent gamma irradiation (GI) before testing in biosafety level 2 laboratories to inactivate possible wild-type ZEBOV. Before irradiating pivotal trial samples, two independent studies evaluated the impact of GI (50 kGy) on binding ZEBOV-GP (ELISA) antibodies against rVSVΔG-ZEBOV-GP, using sera from a North American phase 1 study. Gamma irradiation was associated with slightly higher antibody concentrations in pre-vaccination samples and slightly lower concentrations postvaccination. Results indicate that GI is a viable method for treating samples from regions where filoviruses are endemic, with minor effects on antibody titers. The impact of GI on immunogenicity analyses should be considered when interpreting data from irradiated specimens.
Collapse
|
23
|
Sabbaghi A, Miri SM, Keshavarz M, Zargar M, Ghaemi A. Inactivation methods for whole influenza vaccine production. Rev Med Virol 2019; 29:e2074. [PMID: 31334909 DOI: 10.1002/rmv.2074] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
Despite tremendous efforts toward vaccination, influenza remains an ongoing global threat. The induction of strain-specific neutralizing antibody responses is a common phenomenon during vaccination with the current inactivated influenza vaccines, so the protective effect of these vaccines is mostly strain-specific. There is an essential need for the development of next-generation vaccines, with a broad range of immunogenicity against antigenically drifted or shifted influenza viruses. Here, we evaluate the potential of whole inactivated vaccines, based on chemical and physical methods, as well as new approaches to generate cross-protective immune responses. We also consider the mechanisms by which some of these vaccines may induce CD8+ T-cells cross-reactivity with different strains of influenza. In this review, we have focused on conventional and novel methods for production of whole inactivated influenza vaccine. As well as chemical modification, using formaldehyde or β-propiolactone and physical manipulation by ultraviolet radiation or gamma-irradiation, novel approaches, including visible ultrashort pulsed laser, and low-energy electron irradiation are discussed. These two latter methods are considered to be attractive approaches to design more sophisticated vaccines, due to their ability to maintain most of the viral antigenic properties during inactivation and potential to produce cross-protective immunity. However, further studies are needed to validate them before they can replace traditional methods for vaccine manufacturing.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.,Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
24
|
David SC, Norton T, Tyllis T, Wilson JJ, Singleton EV, Laan Z, Davies J, Hirst TR, Comerford I, McColl SR, Paton JC, Alsharifi M. Direct interaction of whole-inactivated influenza A and pneumococcal vaccines enhances influenza-specific immunity. Nat Microbiol 2019; 4:1316-1327. [PMID: 31110357 DOI: 10.1038/s41564-019-0443-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/02/2019] [Indexed: 12/21/2022]
Abstract
The upper respiratory tract is continuously exposed to a vast array of potentially pathogenic viruses and bacteria. Influenza A virus (IAV) has particular synergism with the commensal bacterium Streptococcus pneumoniae in this niche, and co-infection exacerbates pathogenicity and causes significant mortality. However, it is not known whether this synergism is associated with a direct interaction between the two pathogens. We have previously reported that co-administration of a whole-inactivated IAV vaccine (γ-Flu) with a whole-inactivated pneumococcal vaccine (γ-PN) enhances pneumococcal-specific responses. In this study, we show that mucosal co-administration of γ-Flu and γ-PN similarly augments IAV-specific immunity, particularly tissue-resident memory cell responses in the lung. In addition, our in vitro analysis revealed that S. pneumoniae directly interacts with both γ-Flu and with live IAV, facilitating increased uptake by macrophages as well as increased infection of epithelial cells by IAV. These observations provide an additional explanation for the synergistic pathogenicity of IAV and S. pneumoniae, as well as heralding the prospect of exploiting the phenomenon to develop better vaccine strategies for both pathogens.
Collapse
Affiliation(s)
- Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Todd Norton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Timona Tyllis
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jasmine J Wilson
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Eve V Singleton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Zoe Laan
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Sydney, New South Wales, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Gamma Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia.,GPN Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia
| | - Iain Comerford
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R McColl
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,GPN Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia. .,Gamma Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia. .,GPN Vaccines Pty Ltd, Yarralumla, Australian Capital Territory, Australia.
| |
Collapse
|
25
|
Shahrudin S, Chen C, David SC, Singleton EV, Davies J, Kirkwood CD, Hirst TR, Beard M, Alsharifi M. Gamma-irradiated rotavirus: A possible whole virus inactivated vaccine. PLoS One 2018; 13:e0198182. [PMID: 29879130 PMCID: PMC5991763 DOI: 10.1371/journal.pone.0198182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Rotavirus (RV) causes significant morbidity and mortality in developing countries, where children and infants are highly susceptible to severe disease symptoms. While live attenuated vaccines are available, reduced vaccine efficacy in developing countries illustrates the need for highly immunogenic alternative vaccines. Here, we studied the possible inactivation of RV using gamma(γ)-irradiation, and assessed the sterility and immunogenicity of γ-irradiated RV (γ-RV) as a novel vaccine candidate. Interestingly, the inactivation curve of RV did not show a log-linear regression following exposure to increased doses of γ-rays, and consequently the radiation dose required to achieve the internationally accepted Sterility Assurance Level could not be calculated. Nonetheless, we performed sterility testing based on serial passages of γ-RV, and our data clearly illustrate the lack of infectivity of γ-RV preparations irradiated with 50 kGy. In addition, we tested the immunogenicity of 50 kGy γ-RV in mice and our data illustrate the induction of strong RV-specific neutralising antibody responses following administration of γ-RV without using adjuvant. Therefore, whilst γ-RV may not constitute a replacement for current RV vaccines, this study represents a proof-of-concept that γ-irradiation can be applied to inactivate RV for vaccine purposes. Further investigation will be required to address whether γ-irradiation can be applied to improve safety and efficacy of existing live attenuated vaccines.
Collapse
Affiliation(s)
- Shabihah Shahrudin
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Cheng Chen
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Shannon C. David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Eve V. Singleton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Carl D. Kirkwood
- Enteric Virus Group, Murdoch Childrens Research Institute, Parkville, VIC, Australia
| | - Timothy R. Hirst
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, Australia
| | - Michael Beard
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, Australia
- * E-mail:
| |
Collapse
|
26
|
Astill J, Alkie T, Yitbarek A, Taha-Abdelaziz K, Bavananthasivam J, Nagy É, Petrik JJ, Sharif S. Examination of the effects of virus inactivation methods on the induction of antibody- and cell-mediated immune responses against whole inactivated H9N2 avian influenza virus vaccines in chickens. Vaccine 2018; 36:3908-3916. [PMID: 29853199 DOI: 10.1016/j.vaccine.2018.05.093] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022]
Abstract
Several types of avian influenza virus (AIV) vaccines exist, including live-attenuated, vectored, and whole inactivated virus (WIV) vaccines. Inactivated vaccines offer some advantages compared to other types of vaccines, including ease of production and lack of ability to revert to a virulent state. However, WIV are poorly immunogenic, especially when these vaccines are delivered to mucosal surfaces. There are several factors that contribute to the immunogenicity of vaccines, one of which is the method used to inactivate viruses. Several methods exist for producing influenza WIVs, including formaldehyde, a chemical that affects protein structures leading to virus inactivation. Other methods include treatment with beta-propiolactone (BPL) and the application of gamma radiation, both of which have less effects on protein structures compared to formaldehyde, and instead alter nucleic acids in the virion. Here, we sought to determine the effect of the above inactivation methods on immunogenicity of AIV vaccines. To this end, chickens were vaccinated with three different H9N2 WIVs using formaldehyde, BPL, and gamma radiation for inactivation. In addition to administering these three WIVs alone as vaccines, we also included CpG ODN 2007, a synthetic ligand recognized by Toll-like receptor (TLR)21 in chickens, as an adjuvant for each WIV. Subsequently, antibody- and cell-mediated immune responses were measured following vaccination. Antibody-mediated immune responses were increased in chickens that received the BPL and Gamma WIVs compared to the formaldehyde WIV. CpG ODN 2007 was found to significantly increase antibody responses for each WIV compared to WIV alone. Furthermore, we observed the presence of cell-mediated immune responses in chickens that received the BPL WIV combined with CpG ODN 2007. Based on these results, the BPL WIV + CpG ODN 2007 combination was the most effective vaccine at inducing adaptive immune responses against H9N2 AIV. Future studies should characterize mucosal adaptive immune responses to these vaccines.
Collapse
Affiliation(s)
- Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tamiru Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; Department of Biology, Wilfred Laurier University, Waterloo, ON N2L 3C5, Canada(1)
| | - Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah, 62511 Beni-Suef, Egypt
| | - Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - James John Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|