1
|
Bayrou C, Desmecht D, Van Laere AS. Schmallenberg Virus, from the Necropsy Room to the Laboratory. Methods Mol Biol 2025; 2893:223-246. [PMID: 39671041 DOI: 10.1007/978-1-0716-4338-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
In a world facing significant climate changes, arboviruses are expanding into new regions. In recent decades, Western Europe has experienced multiple outbreaks of epizootic arboviruses in ruminants, including the Schmallenberg virus. This virus emerged in 2011 and spread rapidly across the continent, causing severe malformations in the central nervous systems of ruminant fetuses. As such, it serves as a strong example of the potential threat posed to other species and provides a valuable model for studying vertical transmission and viral damage to the central nervous system of fetuses. This chapter presents a detailed methodology for studying the virus from natural cases. It begins with the systematic determination of the virus's distribution within the fetus and the associated lesions and continues with the biomolecular characterization of the virus.
Collapse
Affiliation(s)
- Calixte Bayrou
- Faculty of Veterinary Medicine, Clinical Department of Production Animals, FARAH Research Center, University of Liège, Liège, Belgium.
| | - Daniel Desmecht
- Faculty of Veterinary Medicine, Department of Morphology and Pathology, FARAH Research Center, University of Liège, Liège, Belgium
| | - Anne-Sophie Van Laere
- Faculty of Veterinary Medicine, Department of Morphology and Pathology, FARAH Research Center, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Wernike K, Beer M. More than a decade of research on Schmallenberg virus-Knowns and unknowns. Adv Virus Res 2024; 120:77-98. [PMID: 39455169 DOI: 10.1016/bs.aivir.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Schmallenberg virus, an arbovirus of the Orthobunyavirus genus that primarily infects ruminants, emerged in 2011 near the Dutch-German border region and subsequently caused a large number of abortions and the births of severely malformed newborns in the European livestock population. Immediate intensive research led to the development of reliable diagnostic tests, the identification of competent Culicoides vector species, and the elucidation of the pathogenesis in infected vertebrate hosts. In addition, the structure of the major antigenic domain has been elucidated in great detail, leading to the development of effective marker vaccine candidates. The knowledge gained over the last decade on the biology and pathogenesis of SBV and the experience acquired in its control will be of great value in the future for the control of any similar emerging pathogen of veterinary or public health importance such as Shuni or Oropouche virus. However, some important knowledge gaps remain, for example, the factors contributing to the highly variable transmission rate from dam to fetus or the viral factors responsible for the vector competence of Culicoides midges are largely unknown. Thus, questions still remain for the next decade of research on SBV and related viruses.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Breithaupt A, Sick F, Golender N, Beer M, Wernike K. Characterization of experimental Shuni virus infection in the mouse. Vet Pathol 2023; 60:341-351. [PMID: 36803054 DOI: 10.1177/03009858231155402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Shuni virus (SHUV), an orthobunyavirus of the Simbu serogroup, was initially isolated in Nigeria in the 1960s, further detected in other African countries and in the Middle East, and is now endemic in Israel. Transmitted by blood-sucking insects, SHUV infection is associated with neurological disease in cattle and horses, and with abortion, stillbirth, or the birth of malformed offspring in ruminants. Surveillance studies also indicated a zoonotic potential. This study aimed to test the susceptibility of the well-characterized interferon (IFN)-α/β receptor knock-out mouse model (Ifnar-/-), to identify target cells, and to describe the neuropathological features. Ifnar-/-mice were subcutaneously infected with two different SHUV strains, including a strain isolated from the brain of a heifer showing neurological signs. The second strain represented a natural deletion mutant exhibiting a loss of function of the S-segment-encoded nonstructural protein NSs, which counteracts the host's IFN response. Here it is shown that Ifnar-/-mice are susceptible to both SHUV strains and can develop fatal disease. Histological examination confirmed meningoencephalomyelitis in mice as described in cattle with natural and experimental infections. RNA in situ hybridization was applied using RNA Scope™ for SHUV detection. Target cells identified included neurons and astrocytes, as well as macrophages in the spleen and gut-associated lymphoid tissue. Thus, this mouse model is particularly beneficial for the evaluation of virulence determinants in the pathogenesis of SHUV infection in animals.
Collapse
Affiliation(s)
| | - Franziska Sick
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
Jiménez-Ruiz S, Vicente J, Risalde MA, Acevedo P, Cano-Terriza D, González-Barrio D, Barroso P, García-Bocanegra I. Survey of Culicoides-borne Bluetongue and Schmallenberg viruses at the wildlife-livestock interface in Doñana National Park (Spain). Transbound Emerg Dis 2022; 69:e1815-e1824. [PMID: 35304824 DOI: 10.1111/tbed.14516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
A cross-sectional study was carried out to assess the circulation of bluetongue virus (BTV) and Schmallenberg virus (SBV) within the wild and domestic ungulate host community in Doñana National Park (southwestern Spain). A total of 440 animals, including 138 cattle, 102 red deer (Cervus elaphus), 101 fallow deer (Dama dama) and 99 wild boar (Sus scrofa) were sampled in 2015 during the seasonal peak of Culicoides spp. (summer-autumn). Serum and spleen samples were analysed to detect exposure (using commercial blocking ELISAs) and infection (by RT-PCR), respectively, to BTV and SBV. Cattle were not tested by BTV-bELISA because all were previously vaccinated against BTV serotypes 1 and 4. High BTV seroprevalences were found in red deer (97.0%) and fallow deer (64.7%). Antibodies against SBV were detected in 37.0% of cattle, 16.8% of red deer, 23.5% of fallow deer and 2.0% of wild boar. Thirty-eight of the 203 deer (18.7%; 17 red deer and 21 fallow deer) were co-exposed to both viral agents. BTV-4 RNA was confirmed in four red deer and two fallow deer. SBV RNA was found in two fallow deer. Co-infections were not detected. Our results indicate high exposure, widespread distribution, and active circulation of BTV and SBV in the ruminant community in the study area. We provide additional evidence for the potential role of wild cervids as reservoirs of these Culicoides-borne viruses in two different epidemiological scenarios: with vaccination (BTV) and without vaccination (SBV) of sympatric livestock. This study highlights the importance of wildlife surveillance, particularly of cervid species, for the proper execution of control programmes of Culicoides-borne diseases in extensively reared livestock. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Saúl Jiménez-Ruiz
- Grupo de Investigación en Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, 13071, Spain.,Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Córdoba (UCO), Córdoba, 14014, Spain
| | - Joaquín Vicente
- Grupo de Investigación en Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, 13071, Spain
| | - María A Risalde
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Anatomía, Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba (UCO), Córdoba, 14014, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, 14004, Spain.,CIBERINFEC
| | - Pelayo Acevedo
- Grupo de Investigación en Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, 13071, Spain
| | - David Cano-Terriza
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Córdoba (UCO), Córdoba, 14014, Spain.,CIBERINFEC
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Madrid, 28220, Spain.,SALUVET, Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, 28040, Spain
| | - Patricia Barroso
- Grupo de Investigación en Sanidad y Biotecnología (SaBio). Instituto de Investigación en Recursos Cinegéticos IREC (UCLM-CSIC-JCCM), Ciudad Real, 13071, Spain
| | - Ignacio García-Bocanegra
- Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ). Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Córdoba (UCO), Córdoba, 14014, Spain.,CIBERINFEC
| |
Collapse
|
5
|
Foxi C, Satta G, Puggioni G, Ligios C. Biting Midges (Ceratopogonidae, Culicoides). ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:852-873. [DOI: 10.1016/b978-0-12-818731-9.00005-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Aebischer A, Wernike K, König P, Franzke K, Wichgers Schreur PJ, Kortekaas J, Vitikainen M, Wiebe M, Saloheimo M, Tchelet R, Audonnet JC, Beer M. Development of a Modular Vaccine Platform for Multimeric Antigen Display Using an Orthobunyavirus Model. Vaccines (Basel) 2021; 9:vaccines9060651. [PMID: 34203630 PMCID: PMC8232151 DOI: 10.3390/vaccines9060651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging infectious diseases represent an increasing threat to human and animal health. Therefore, safe and effective vaccines that could be available within a short time frame after an outbreak are required for adequate prevention and control. Here, we developed a robust and versatile self-assembling multimeric protein scaffold particle (MPSP) vaccine platform using lumazine synthase (LS) from Aquifex aeolicus. This scaffold allowed the presentation of peptide epitopes by genetic fusion as well as the presentation of large antigens by bacterial superglue-based conjugation to the pre-assembled particle. Using the orthobunyavirus model Schmallenberg virus (SBV) we designed MPSPs presenting major immunogens of SBV and assessed their efficacy in a mouse model as well as in cattle, a target species of SBV. All prototype vaccines conferred protection from viral challenge infection and the multivalent presentation of the selected antigens on the MPSP markedly improved their immunogenicity compared to the monomeric subunits. Even a single shot vaccination protected about 80% of mice from an otherwise lethal dose of SBV. Most importantly, the MPSPs induced a virtually sterile immunity in cattle. Altogether, LS represents a promising platform for modular and rapid vaccine design.
Collapse
Affiliation(s)
- Andrea Aebischer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Patricia König
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Kati Franzke
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
| | - Paul J. Wichgers Schreur
- Laboratory of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (P.J.W.S.); (J.K.)
| | - Jeroen Kortekaas
- Laboratory of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (P.J.W.S.); (J.K.)
| | - Marika Vitikainen
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (M.V.); (M.W.); (M.S.)
| | - Marilyn Wiebe
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (M.V.); (M.W.); (M.S.)
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd., 02150 Espoo, Finland; (M.V.); (M.W.); (M.S.)
| | - Ronen Tchelet
- Dyadic Netherland B.V., 6709 PA Wageningen, The Netherlands;
| | | | - Martin Beer
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany; (A.A.); (K.W.); (P.K.); (K.F.)
- Correspondence:
| |
Collapse
|
7
|
Differentiation of Antibodies against Selected Simbu Serogroup Viruses by a Glycoprotein Gc-Based Triplex ELISA. Vet Sci 2021; 8:vetsci8010012. [PMID: 33477718 PMCID: PMC7831895 DOI: 10.3390/vetsci8010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022] Open
Abstract
The Simbu serogroup of orthobunyaviruses includes several pathogens of veterinary importance, among them Schmallenberg virus (SBV), Akabane virus (AKAV) and Shuni virus (SHUV). They infect predominantly ruminants and induce severe congenital malformation. In adult animals, the intra vitam diagnostics by direct virus detection is limited to only a few days due to a short-lived viremia. For surveillance purposes the testing for specific antibodies is a superior approach. However, the serological differentiation is hampered by a considerable extent of cross-reactivity, as viruses were assigned into this serogroup based on antigenic relatedness. Here, we established a glycoprotein Gc-based triplex enzyme-linked immunosorbent assay (ELISA) for the detection and differentiation of antibodies against SBV, AKAV, and SHUV. A total of 477 negative samples of various ruminant species, 238 samples positive for SBV-antibodies, 36 positive for AKAV-antibodies and 53 SHUV antibody-positive samples were tested in comparison to neutralization tests. For the newly developed ELISA, overall diagnostic specificities of 84.56%, 94.68% and 89.39% and sensitivities of 89.08%, 69.44% and 84.91% were calculated for SBV, AKAV and SHUV, respectively, with only slight effects of serological cross-reactivity on the diagnostic specificity. Thus, this test system could be used for serological screening in suspected populations or as additional tool during outbreak investigations.
Collapse
|
8
|
Wernike K, Reimann I, Banyard AC, Kraatz F, La Rocca SA, Hoffmann B, McGowan S, Hechinger S, Choudhury B, Aebischer A, Steinbach F, Beer M. High genetic variability of Schmallenberg virus M-segment leads to efficient immune escape from neutralizing antibodies. PLoS Pathog 2021; 17:e1009247. [PMID: 33497419 PMCID: PMC7872300 DOI: 10.1371/journal.ppat.1009247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/09/2021] [Accepted: 12/21/2020] [Indexed: 11/19/2022] Open
Abstract
Schmallenberg virus (SBV) is the cause of severe fetal malformations when immunologically naïve pregnant ruminants are infected. In those malformed fetuses, a "hot-spot"-region of high genetic variability within the N-terminal region of the viral envelope protein Gc has been observed previously, and this region co-localizes with a known key immunogenic domain. We studied a series of M-segments of those SBV variants from malformed fetuses with point mutations, insertions or large in-frame deletions of up to 612 nucleotides. Furthermore, a unique cell-culture isolate from a malformed fetus with large in-frame deletions within the M-segment was analyzed. Each Gc-protein with amino acid deletions within the "hot spot" of mutations failed to react with any neutralizing anti-SBV monoclonal antibodies or a domain specific antiserum. In addition, in vitro virus replication of the natural deletion variant could not be markedly reduced by neutralizing monoclonal antibodies or antisera from the field. The large-deletion variant of SBV that could be isolated in cell culture was highly attenuated with an impaired in vivo replication following the inoculation of sheep. In conclusion, the observed amino acid sequence mutations within the N-terminal main immunogenic domain of glycoprotein Gc result in an efficient immune evasion from neutralizing antibodies in the special environment of a developing fetus. These SBV-variants were never detected as circulating viruses, and therefore should be considered to be dead-end virus variants, which are not able to spread further. The observations described here may be transferred to other orthobunyaviruses, particularly those of the Simbu serogroup that have been shown to infect fetuses. Importantly, such mutant strains should not be included in attempts to trace the spatial-temporal evolution of orthobunyaviruses in molecular-epidemiolocal approaches during outbreak investigations.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Ashley C. Banyard
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Franziska Kraatz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - S. Anna La Rocca
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Sarah McGowan
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Silke Hechinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Bhudipa Choudhury
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
| | - Andrea Aebischer
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Falko Steinbach
- Department of Virology, Animal and Plant Health Agency Weybridge, Addlestone, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| |
Collapse
|
9
|
Wernike K, Beer M. Schmallenberg Virus: To Vaccinate, or Not to Vaccinate? Vaccines (Basel) 2020; 8:E287. [PMID: 32521621 PMCID: PMC7349947 DOI: 10.3390/vaccines8020287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Schmallenberg virus (SBV), a teratogenic orthobunyavirus that infects predominantly ruminants, emerged in 2011 in Central Europe, spread rapidly throughout the continent, and subsequently established an endemic status with re-circulations to a larger extent every 2 to 3 years. Hence, it represents a constant threat to the continent's ruminant population when no effective countermeasures are implemented. Here, we discuss potential preventive measures to protect from Schmallenberg disease. Previous experiences with other arboviruses like bluetongue virus have already demonstrated that vaccination of livestock against a vector-transmitted disease can play a major role in reducing or even stopping virus circulation. For SBV, specific inactivated whole-virus vaccines have been developed and marketing authorizations were granted for such preparations. In addition, candidate marker vaccines either as live attenuated, DNA-mediated, subunit or live-vectored preparations have been developed, but none of these DIVA-capable candidate vaccines are currently commercially available. At the moment, the licensed inactivated vaccines are used only to a very limited extent. The high seroprevalence rates induced in years of virus re-occurrence to a larger extent, the wave-like and sometimes hard to predict circulation pattern of SBV, and the expenditures of time and costs for the vaccinations presumably impact on the willingness to vaccinate. However, one should bear in mind that the consequence of seronegative young animals and regular renewed virus circulation might be again more cases of fetal malformation caused by an infection of naïve dams during one of their first gestations. Therefore, an appropriate and cost-effective strategy might be to vaccinate naïve female animals of all affected species before the reproductive age.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | | |
Collapse
|
10
|
Vengušt G, Žele Vengušt D, Toplak I, Rihtarič D, Kuhar U. Post-epidemic investigation of Schmallenberg virus in wild ruminants in Slovenia. Transbound Emerg Dis 2020; 67:1708-1715. [PMID: 31991522 PMCID: PMC7383813 DOI: 10.1111/tbed.13495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/08/2019] [Accepted: 01/22/2020] [Indexed: 11/29/2022]
Abstract
Schmallenberg virus (SBV) is a vector-borne virus belonging to the genus Orthobunyavirus within the Bunyaviridae family. SBV emerged in Europe in 2011 and was characterized by epidemics of abortions, stillbirths and congenital malformations in domestic ruminants. The first evidence of SBV infection in Slovenia was from an ELISA-positive sample from a cow collected in August 2012; clinical manifestations of SBV disease in sheep and cattle were observed in 2013, with SBV RNA detected in samples collected from a total of 28 herds. A potential re-emergence of SBV in Europe is predicted to occur when population-level immunity declines. SBV is also capable of infecting several wild ruminant species, although clinical disease has not yet been described in these species. Data on SBV-positive wild ruminants suggest that these species might be possible sources for the re-emergence of SBV. The aim of this study was to investigate whether SBV was circulating among wild ruminants in Slovenia and whether these species can act as a virus reservoir. A total of 281 blood and spleen samples from wild ruminants, including roe deer, red deer, chamois and European mouflon, were collected during the 2017-2018 hunting season. Serum samples were tested for antibodies against SBV by ELISA; the overall seroprevalence was 18.1%. Seropositive samples were reported from all over the country in examined animal species from 1 to 15 years of age. Spleen samples from the seropositive animals and serum samples from the seronegative animals were tested for the presence of SBV RNA using real-time RT-PCR; all the samples tested negative. Based on the results of the seropositive animals, it was demonstrated that SBV was circulating in wild ruminant populations in Slovenia even after the epidemic, as almost half (23/51) of the seropositive animals were 1 or 2 years old.
Collapse
Affiliation(s)
- Gorazd Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Diana Žele Vengušt
- Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Danijela Rihtarič
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Endalew AD, Faburay B, Wilson WC, Richt JA. Schmallenberg Disease-A Newly Emerged Culicoides-borne Viral Disease of Ruminants. Viruses 2019; 11:v11111065. [PMID: 31731618 PMCID: PMC6893508 DOI: 10.3390/v11111065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
First appearing in 2011 in Northern Europe, Schmallenberg virus (SBV), an Orthobunyavirus of the Simbu serogroup, is associated with clinical disease mainly in ruminants such as cattle, sheep and goats. The clinical signs are characterized by abortion and congenital deformities in newborns. The virus is transmitted by Culicoides midges of the Obsoletus complex. SBV infection induces a solid protective immunity that persists for at least 4 or 6 years in sheep and cattle, respectively. SBV infection can be diagnosed directly by real-time RT-qPCR and virus isolation or indirectly by serological assays. Three vaccines are commercially available in Europe. This article provides a comprehensive literature review on this emerging disease regarding pathogenesis, transmission, diagnosis, control and prevention. This review also highlights that although much has been learned since SBV’s first emergence, there are still areas that require further study to devise better mitigation strategies.
Collapse
Affiliation(s)
- Abaineh D. Endalew
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
| | - Bonto Faburay
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
| | - William C. Wilson
- United States Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Disease Research Unit, Manhattan, KS 66506, USA
- Correspondence: (W.C.W.); (J.A.R.)
| | - Juergen A. Richt
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (A.D.E.); (B.F.)
- Correspondence: (W.C.W.); (J.A.R.)
| |
Collapse
|
12
|
Collins ÁB, Doherty ML, Barrett DJ, Mee JF. Schmallenberg virus: a systematic international literature review (2011-2019) from an Irish perspective. Ir Vet J 2019; 72:9. [PMID: 31624588 PMCID: PMC6785879 DOI: 10.1186/s13620-019-0147-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/05/2019] [Indexed: 11/10/2022] Open
Abstract
In Autumn 2011, nonspecific clinical signs of pyrexia, diarrhoea, and drop in milk yield were observed in dairy cattle near the German town of Schmallenberg at the Dutch/German border. Targeted veterinary diagnostic investigations for classical endemic and emerging viruses could not identify a causal agent. Blood samples were collected from animals with clinical signs and subjected to metagenomic analysis; a novel orthobunyavirus was identified and named Schmallenberg virus (SBV). In late 2011/early 2012, an epidemic of abortions and congenital malformations in calves, lambs and goat kids, characterised by arthrogryposis and hydranencephaly were reported in continental Europe. Subsequently, SBV RNA was confirmed in both aborted and congenitally malformed foetuses and also in Culicoides species biting midges. It soon became evident that SBV was an arthropod-borne teratogenic virus affecting domestic ruminants. SBV rapidly achieved a pan-European distribution with most countries confirming SBV infection within a year or two of the initial emergence. The first Irish case of SBV was confirmed in the south of the country in late 2012 in a bovine foetus. Since SBV was first identified in 2011, a considerable body of scientific research has been conducted internationally describing this novel emerging virus. The aim of this systematic review is to provide a comprehensive synopsis of the most up-to-date scientific literature regarding the origin of SBV and the spread of the Schmallenberg epidemic, in addition to describing the species affected, clinical signs, pathogenesis, transmission, risk factors, impact, diagnostics, surveillance methods and control measures. This review also highlights current knowledge gaps in the scientific literature regarding SBV, most notably the requirement for further research to determine if, and to what extent, SBV circulation occurred in Europe and internationally during 2017 and 2018. Moreover, recommendations are also made regarding future arbovirus surveillance in Europe, specifically the establishment of a European-wide sentinel herd surveillance program, which incorporates bovine serology and Culicoides entomology and virology studies, at national and international level to monitor for the emergence and re-emergence of arboviruses such as SBV, bluetongue virus and other novel Culicoides-borne arboviruses.
Collapse
Affiliation(s)
- Áine B Collins
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland.,2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Michael L Doherty
- 2School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Damien J Barrett
- Department of Agriculture, Surveillance, Animal By-Products and TSE Division, Food and the Marine, Backweston, Celbridge, Co. Kildare Ireland
| | - John F Mee
- Animal and Bioscience Research Department, Teagasc, Moorepark, Fermoy, Co, Cork, Ireland
| |
Collapse
|
13
|
Wernike K, Beer M. International proficiency trial demonstrates reliable Schmallenberg virus infection diagnosis in endemic and non-affected countries. PLoS One 2019; 14:e0219054. [PMID: 31247024 PMCID: PMC6597195 DOI: 10.1371/journal.pone.0219054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Schmallenberg virus (SBV), an orthobunyavirus infecting ruminants, emerged in 2011 in Central Europe, spread very rapidly throughout the continent and established an endemic status, thereby representing a constant threat not only to the European livestock population, but also to neighboring countries. Hence, in endemically infected regions, the maintenance and regular verification of diagnostics is needed and in not yet affected regions, suitable diagnostic systems should be established to be prepared for a potential introduction of the disease. In addition, also for the trade of animals into free regions, highly reliable and sensitive diagnostics are of utmost importance. Therefore, a laboratory proficiency trial was initiated to allow for performance evaluations of test systems available for SBV-diagnostics, but also for evaluation of veterinary diagnostic laboratories performing those tests. Ten serum samples (six seropositive, four seronegative) were provided for serological analysis, four of the seropositive samples were provided undiluted, while the remaining samples represented 1/2 and 1/4 dilutions of one of the aforementioned samples in negative serum. Ten further sera (five virus-positive, five negative) were sent to the participants to be analyzed by SBV genome detection methods. A total of 48 diagnostic laboratories from 15 countries of three continents (Europe, Asia, North America) and three kit manufacturers participated in the SBV proficiency test, thereby generating 131 result sets, corresponding to 1310 individual results. The sample panel aimed for serological analysis was tested 72 times; the applied diagnostic methods comprised different commercial ELISAs and standard micro-neutralization tests. The sample set aimed for genome detection was analyzed in 59 approaches by various commercial or in-house (real-time) RT-PCR protocols. Antibody or genome positive samples were correctly identified in every case, independent of the applied diagnostic test system. For seronegative samples, three incorrect, false-positive test results were produced. Virus-negative samples tested false-positive in two cases. Thus, a very high diagnostic accuracy of 99.58% and 99.66% was achieved by the serological and virological methods, respectively. Hence, this ring trial demonstrated that reliable and robust SBV-diagnostics has been established in veterinary diagnostic laboratories in affected and non-affected countries.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| |
Collapse
|
14
|
Potential use of hematological and acute phase protein parameters in the diagnosis of acute Schmallenberg virus infection in experimentally infected calves. Comp Immunol Microbiol Infect Dis 2019; 64:146-152. [PMID: 31174690 DOI: 10.1016/j.cimid.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
The initial viraemic phase of Schmallenberg virus (SBV) infection in bovine animals is characterized by the non-specific and inconspicuous clinical signs of pyrexia (>40 °C), drop in milk yield and sometimes diarrhea. As a result, the early detection of SBV epizootics can difficult, and typically only become apparent when the congenital form of the disease is observed. The aim of the study was to describe the course of the acute phase response and haematological findings in bovine calves following experimental SBV infection. No clinical signs except for increase in rectal temperature were observed in the calves inoculated subcutaneously with a Polish strain of SBV. Viral RNA was detected in serum at 2 and 4 days post inoculation (dpi). SBV antibodies were first detected by ELISA (9-21 dpi), and subsequently by virus neutralization test (14-32 dpi). The hematological parameters showed a reduction in mid-size leucocytes (MID), and also in red blood cell count (RBC). An increase in mean corpuscular hemoglobin was also observed in SBV infected calves. No significant difference in acute phase proteins (APP) was observed between experimentally infected and control calves, suggesting limited potential as diagnostic biomarker of acute SBV infection.
Collapse
|
15
|
Hellert J, Aebischer A, Wernike K, Haouz A, Brocchi E, Reiche S, Guardado-Calvo P, Beer M, Rey FA. Orthobunyavirus spike architecture and recognition by neutralizing antibodies. Nat Commun 2019; 10:879. [PMID: 30787296 PMCID: PMC6382863 DOI: 10.1038/s41467-019-08832-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/29/2019] [Indexed: 12/29/2022] Open
Abstract
Orthobunyaviruses (OBVs) form a distinct genus of arthropod-borne bunyaviruses that can cause severe disease upon zoonotic transmission to humans. Antigenic drift or genome segment re-assortment have in the past resulted in new pathogenic OBVs, making them potential candidates for causing emerging zoonoses in the future. Low-resolution electron cryo-tomography studies have shown that OBV particles feature prominent trimeric spikes, but their molecular organization remained unknown. Here we report X-ray crystallography studies of four different OBVs showing that the spikes are formed by an N-terminal extension of the fusion glycoprotein Gc. Using Schmallenberg virus, a recently emerged OBV, we also show that the projecting spike is the major target of the neutralizing antibody response, and provide X-ray structures in complex with two protecting antibodies. We further show that immunization of mice with the spike domains elicits virtually sterilizing immunity, providing fundamental knowledge essential in the preparation for potential newly emerging OBV zoonoses. Orthobunyaviruses (OBVs) cause severe disease in humans and farm animals, but the molecular basis for infection is not fully understood. Here, the authors present crystal structures of free and antibody-bound OBV envelope glycoproteins and show that their domains enable efficient immunization in a mouse model.
Collapse
Affiliation(s)
- Jan Hellert
- Structural Virology Unit, Virology Department, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015, Paris, France
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Ahmed Haouz
- Crystallography Platform, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 25-28 rue du Dr. Roux, 75015, Paris, France
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 7, 25125, Brescia, Italy
| | - Sven Reiche
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Pablo Guardado-Calvo
- Structural Virology Unit, Virology Department, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015, Paris, France
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Félix A Rey
- Structural Virology Unit, Virology Department, Institut Pasteur, CNRS UMR 3569, 25-28 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
16
|
Wernike K, Holsteg M, Szillat KP, Beer M. Development of within-herd immunity and long-term persistence of antibodies against Schmallenberg virus in naturally infected cattle. BMC Vet Res 2018; 14:368. [PMID: 30477532 PMCID: PMC6258403 DOI: 10.1186/s12917-018-1702-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background In 2011, the teratogenic, insect-transmitted Schmallenberg virus (SBV) emerged at the German/Dutch border region and subsequently spread rapidly throughout the European continent. In cattle, one of the major target species of SBV, first antibodies are detectable between one and three weeks after infection, but the duration of humoral immunity is unknown. To assess the course of immunity in individual animals and the development of the within-herd seroprevalence, cattle kept in a German farm with a herd size of about 300 lactating animals were annually blood sampled between December 2011 and December 2017 and tested for the presence of SBV-specific antibodies. Results During the monitored period, the within-herd seroprevalence declined from 74.92% in 2011 to 39.93% in 2015 and, thereafter, slightly increased to 49.53% in 2016 and 48.44% in 2017. From the animals that were tested in 2014 and 2015 for the first time (between 24 and 35 months of age) only 14.77% and 7.45%, respectively, scored positive. Thereafter, the seropositivity rate of this age group rose markedly to 58.04% in 2016 and 48.10% in 2017 indicating a circulation of SBV. Twenty-three individual animals were consistently sampled once per year between 2011 and 2017 after the respective insect vector season, 17 of them tested positive at the first sampling. Fourteen animals were still seropositive in December 2017, while three cattle (17.65%) became seronegative. Conclusions The regular re-emergence of SBV in Central Europe is a result of decreasing herd immunity caused by the replacement of animals by seronegative youngstock rather than of a drop of antibody levels in previously infected individual animals. The consequences of the overall decline in herd seroprevalence may be increasing virus circulation and more cases of fetal malformation caused by infection of naïve dams during gestation.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany.
| | - Mark Holsteg
- Chamber of Agriculture for North Rhine-Westphalia, Bovine Health Service, Haus Riswick, Kleve, Germany
| | - Kevin P Szillat
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
17
|
König P, Wernike K, Hechinger S, Tauscher K, Breithaupt A, Beer M. Fetal infection with Schmallenberg virus - An experimental pathogenesis study in pregnant cows. Transbound Emerg Dis 2018; 66:454-462. [PMID: 30354028 DOI: 10.1111/tbed.13045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/22/2018] [Accepted: 10/16/2018] [Indexed: 11/29/2022]
Abstract
Since its first appearance in 2011, Schmallenberg virus (SBV) has been repeatedly detected in aborted ruminant foetuses or severely malformed newborns whose mothers were naturally infected during pregnancy. However, especially the knowledge about dynamics of foetal infection in cattle is still scarce. Therefore, a total of 36 pregnant heifers were experimentally infected during two animal trials with SBV between days 60 and 150 of gestation. The foetuses were collected between 10 and 35 days after infection and virologically and pathologically investigated. Overall, 33 heifers yielded normally developed, macroscopically inconspicuous foetuses, but abundant virus replication was evident at the maternal/foetal interface and viral genome was detectable in at least one organ system of 18 out of 35 foetuses. One heifer was found to be not pregnant at autopsy. One of the animals aborted at day 4 after infection, viral RNA was detectable in the lymphatic tissue of the dam, in the maternal and foetal placenta, and in organs and lymphatic tissue of the foetus. In another foetus, SBV typical malformations like torticollis and arthrogryposis were observed. The corresponding dam was infected at day 90 of pregnancy and viral genome was detectable in the cerebellum of the unborn. Interestingly, no common patterns of infected foetal organs or maternal/foetal placentas could be identified, and both, sites of virus replication and genome loads, varied to a high degree in the individual foetuses. It is therefore concluded, that SBV infects in many cases also the bovine foetus of naïve pregnant cattle, however, the experimentally observed low abortion/malformation rate is in concordance to the reported low rates in the field during the first outbreak wave following the introduction of SBV. This observation speaks for a natural resistance of most bovine foetuses even during the vulnerable phase of early pregnancy, which has to be further studied in the future.
Collapse
Affiliation(s)
- Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Silke Hechinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Kerstin Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| |
Collapse
|
18
|
Stokes JE, Tarlinton RE, Lovatt F, Baylis M, Carson A, Duncan JS. Survey to determine the farm-level impact of Schmallenberg virus during the 2016-2017 United Kingdom lambing season. Vet Rec 2018; 183:690. [PMID: 30257875 PMCID: PMC6312887 DOI: 10.1136/vr.104866] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/15/2018] [Accepted: 08/26/2018] [Indexed: 11/18/2022]
Abstract
Schmallenberg virus (SBV) causes abortions, stillbirths and fetal malformations in naïve ruminants. The impact of the initial outbreak (2011/2012) on British sheep farms has been previously investigated, with higher farmer perceived impacts and increased lamb and ewe mortality reported on SBV-affected farms. After several years of low, or no, circulation the UK sheep flock once again became vulnerable to SBV infection. Re-emergence was confirmed in autumn 2016. This study reports the analysis of a questionnaire designed to determine the farm-level impact of SBV on the 2016/2017 UK lambing period. Higher neonatal lamb mortality, dystocia and associated ewe deaths, and higher perceived impacts on sheep welfare, flock financial performance and farmer emotional wellness were reported on SBV confirmed (n=59) and SBV suspected (n=82), than SBV not suspected (n=74) farms. Additionally, although few farmers (20.4 per cent) reported previously vaccinating against SBV, the majority (78.3 per cent) stated they would vaccinate if purchasing at less than £1 per dose. These results are largely comparable to the findings reported for the 2011/2012 outbreak, highlighting the ongoing impact of SBV on sheep farms. If SBV continues to re-emerge cyclically, the economic and animal welfare costs to the UK sheep farming industry will continue.
Collapse
Affiliation(s)
| | | | - Fiona Lovatt
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Amanda Carson
- Surveillance Intelligence Unit, Animal and Plant Health Agency, Surrey, UK
| | | |
Collapse
|
19
|
Oluwayelu D, Wernike K, Adebiyi A, Cadmus S, Beer M. Neutralizing antibodies against Simbu serogroup viruses in cattle and sheep, Nigeria, 2012-2014. BMC Vet Res 2018; 14:277. [PMID: 30200958 PMCID: PMC6131948 DOI: 10.1186/s12917-018-1605-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/31/2018] [Indexed: 11/27/2022] Open
Abstract
Background Simbu serogroup viruses of the Orthobunyavirus genus (Family Peribunyaviridae) include teratogenic pathogens that cause severe economic losses, abortions, stillbirths and congenital abnormalities in ruminants worldwide. Although they were initially isolated from ruminants and Culicoides biting midges about five decades ago in Nigeria, there is no current information on their prevalence and geographical distribution despite reports of abortions and congenital malformations in the country’s ruminant population. Here, apparently healthy cattle and sheep obtained from eight states in the three major vegetation zones of Nigeria were screened for the presence of specific neutralizing antibodies against Schmallenberg virus (SBV), Simbu virus (SIMV) and Shamonda virus (SHAV). Results Using a cross-sectional design, 490 cattle and 165 sheep sera were collected between 2012 and 2014 and tested by a commercial SBV ELISA kit which enables the detection of antibodies against various Simbu serogroup viruses. The seropositivity rates for cattle and sheep were 91.2% and 65.4%, respectively. In cattle, there was no association between ELISA seropositivity and vegetation zone. However, the prevalence of anti-Simbu serogroup antibodies was significantly higher in Ebonyi State compared to other states in the rainforest vegetation zone. The seroprevalence was significantly higher in sheep obtained from live animal markets compared to farms (OR = 5.8). Testing of 20 selected ELISA-positive sera by serum neutralisation test showed that all were positive for one or more of SBV, SIMV and SHAV with the highest titres obtained for SHAV. Antibodies to SBV or a closely related virus were detected in the Sudan savannah and rainforest zones, anti-SIMV antibodies were detected only in the rainforest zone, while anti-SHAV antibodies were found in the three vegetation zones. Conclusion The findings of this study reveal that following the early isolation of Simbu serogroup viruses in Nigeria in the 1960s, members of this virus group are still circulating in the country. Specifically, SBV, SIMV and SHAV or closely related viruses infect cattle and sheep across the three vegetation zones of Nigeria suggesting that insect vector activity is extensive in the country. The exact vegetation zone where the animals became exposed to the viruses could, however, not be determined in this study.
Collapse
Affiliation(s)
- Daniel Oluwayelu
- Department of Veterinary Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| | - Adebowale Adebiyi
- Department of Veterinary Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Simeon Cadmus
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| |
Collapse
|
20
|
Wernike K, Mundt A, Link EK, Aebischer A, Schlotthauer F, Sutter G, Fux R, Beer M. N-terminal domain of Schmallenberg virus envelope protein Gc delivered by recombinant equine herpesvirus type 1 and modified vaccinia virus Ankara: Immunogenicity and protective efficacy in cattle. Vaccine 2018; 36:5116-5123. [PMID: 30049630 DOI: 10.1016/j.vaccine.2018.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/11/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
Abstract
Schmallenberg virus (SBV), which emerged in 2011 in Central Europe and subsequently spread very rapidly throughout the continent, affects predominantly ruminants. SBV is transmitted by insect vectors, and therefore vaccination is one of the major tools of disease control. Only recently, a domain connected to virus neutralization has been identified at the amino-terminal part of the viral envelope protein Gc. Here, this Gc domain delivered by recombinant EHV-1 or MVA vector viruses was tested in a vaccination-challenge trial in cattle, one of the major target species of SBV. The EHV-1-based vaccine conferred protection in two of four animals, whereas immunization using the MVA vector vaccine efficiently induced an SBV-specific antibody response and full protection against SBV challenge infection in all the vaccinated animals. Moreover, due to the absence of antibodies against SBVs N-protein, both vector vaccines enable the differentiation between vaccinated and field-infected animals making them to a promising tool to control SBV spread as well as to prevent disease in domestic ruminants.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| | - Alice Mundt
- Boehringer Ingelheim Veterinary Research Centre, Bemeroder Str. 31, 30559 Hannover, Germany
| | - Ellen Kathrin Link
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 Munich, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Felicia Schlotthauer
- Boehringer Ingelheim Veterinary Research Centre, Bemeroder Str. 31, 30559 Hannover, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Ludwig-Maximilians-Universität, Veterinärstraße 13, 80539 Munich, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
21
|
Abstract
In late 2011, unspecific clinical symptoms such as fever, diarrhea, and decreased milk production were observed in dairy cattle in the Dutch/German border region. After exclusion of classical endemic and emerging viruses by targeted diagnostic systems, blood samples from acutely diseased cows were subjected to metagenomics analysis. An insect-transmitted orthobunyavirus of the Simbu serogroup was identified as the causative agent and named Schmallenberg virus (SBV). It was one of the first detections of the introduction of a novel virus of veterinary importance to Europe using the new technology of next-generation sequencing. The virus was subsequently isolated from identical samples as used for metagenomics analysis in insect and mammalian cell lines and disease symptoms were reproduced in calves experimentally infected with both, this culture-grown virus and blood samples of diseased cattle. Since its emergence, SBV spread very rapidly throughout the European ruminant population causing mild unspecific disease in adult animals, but also premature birth or stillbirth and severe fetal malformation when naive dams were infected during a critical phase of gestation. In the following years, SBV recirculated regularly to a larger extend; in the 2014 and 2016 vector seasons the virus was again repeatedly detected in the blood of adult ruminants, and in the following winter and spring months, a number of malformed calves and lambs was born. The genome of viruses present in viremic adult animals showed a very high sequence stability; in sequences generated between 2012 and 2016, only a few amino acid substitutions in comparison to the initial SBV isolate could be detected. In contrast, a high sequence variability was identified in the aminoterminal part of the glycoprotein Gc-encoding region of viruses present in the brain of malformed newborns. This mutation hotspot is independent of the region or host species from which the samples originated and is potentially involved in immune evasion mechanisms.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
22
|
Akabane, Aino and Schmallenberg virus-where do we stand and what do we know about the role of domestic ruminant hosts and Culicoides vectors in virus transmission and overwintering? Curr Opin Virol 2017; 27:15-30. [PMID: 29096232 DOI: 10.1016/j.coviro.2017.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/26/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022]
Abstract
Akabane, Aino and Schmallenberg virus belong to the Simbu serogroup of Orthobunyaviruses and depend on Culicoides vectors for their spread between ruminant hosts. Infections of adults are mostly asymptomatic or associated with only mild symptoms, while transplacental crossing of these viruses to the developing fetus can have important teratogenic effects. Research mainly focused on congenital malformations has established a correlation between the developmental stage at which a fetus is infected and the outcome of an Akabane virus infection. Available data suggest that a similar correlation also applies to Schmallenberg virus infections but is not yet entirely conclusive. Experimental and field data furthermore suggest that Akabane virus is more efficient in inducing congenital malformations than Aino and Schmallenberg virus, certainly in cattle. The mechanism by which these Simbu viruses cross-pass yearly periods of very low vector abundance in temperate climate zones remains undefined. Yearly wind-borne reintroductions of infected midges from tropical endemic regions with year-round vector activity have been proposed, just as overwintering in long-lived adult midges. Experimental and field data however indicate that a role of vertical virus transmission in the ruminant host currently cannot be excluded as an overwintering mechanism. More studies on Culicoides biology and specific groups of transplacentally infected newborn ruminants without gross malformations are needed to shed light on this matter.
Collapse
|
23
|
Zhai SL, Lv DH, Wen XH, Zhu XL, Yang YQ, Chen QL, Wei WK. Preliminary serological evidence for Schmallenberg virus infection in China. Trop Anim Health Prod 2017; 50:449-453. [DOI: 10.1007/s11250-017-1433-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/20/2017] [Indexed: 11/28/2022]
|
24
|
García-Bocanegra I, Cano-Terriza D, Vidal G, Rosell R, Paniagua J, Jiménez-Ruiz S, Expósito C, Rivero-Juarez A, Arenas A, Pujols J. Monitoring of Schmallenberg virus in Spanish wild artiodactyls, 2006-2015. PLoS One 2017; 12:e0182212. [PMID: 28813443 PMCID: PMC5559100 DOI: 10.1371/journal.pone.0182212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/16/2017] [Indexed: 01/06/2023] Open
Abstract
Schmallenberg disease is an emerging disease that affects domestic and wild ruminants in Europe. An epidemiological survey was carried out to assess exposure to Schmallenberg virus (SBV) in wild artiodactyls in Spain between 2006 and 2015. A total of 1751 sera from wild artiodactyls, including 1066 red deer, 304 fallow deer, 192 mouflon, 109 wild boar, 49 roe deer and 31 Spanish ibex were tested for antibodies against SBV by ELISA and confirmed by virus neutralization test. SBV was not detected between the 2006/2007 and the 2010/2011 hunting seasons. Overall seroprevalence (including samples collected between the 2011/2012 and 2014/2015 hunting seasons) was 14.6% (160/1099; 95%CI: 12.7–16.6). Mean SBV seroprevalence was 13.3±2.6% in red deer, 23.9±4.2% in fallow deer, 16.4±6.1% in mouflon and 2.8±3.1% in wild boar. No antibodies against SBV were found in roe deer or Spanish ibex. The presence of SBV RNA was confirmed in three of 255 (1.2%) spleen samples from wild ruminants analysed by rRT-PCR. In a multivariate mixed-effects logistic regression model, the main risk factors associated with SBV seroprevalence were: species (fallow deer, red deer and mouflon), age (adults) and interactions between hunting areas of more than 1000 hectares and hunting season (2012/2013, 2013/2014 and 2014/2015). The hypothesis of endemic circulation of SBV in the last few years is supported by the detection of SBV RNA in animals sampled in 2011 and 2015, as well as antibodies detected at low level in juveniles in 2012, 2013 and 2014. The results indicate that SBV circulated in wild ruminant populations in Spain during the same period when the virus was first reported in northern Europe, and at least five months before the first case was officially reported in livestock in Spain.
Collapse
Affiliation(s)
- Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
- * E-mail:
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Gema Vidal
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Rosa Rosell
- Centre de Recerca en Sanitat Animal (CReSA)—Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jorge Paniagua
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Saúl Jiménez-Ruiz
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Carlos Expósito
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Antonio Rivero-Juarez
- Infectious Diseases Unit. Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía de Córdoba, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Arenas
- Departamento de Sanidad Animal, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - Joan Pujols
- Centre de Recerca en Sanitat Animal (CReSA)—Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
25
|
Poskin A, Martinelle L, Van der Stede Y, Saegerman C, Cay B, De Regge N. Genetically stable infectious Schmallenberg virus persists in foetal envelopes of pregnant ewes. J Gen Virol 2017; 98:1630-1635. [PMID: 28699878 DOI: 10.1099/jgv.0.000841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Schmallenberg virus (SBV) is a recently emerged vector-borne virus, inducing congenital defects in bovines, ovines and caprines. Here we have shown that infectious SBV is capable of persisting until the moment of birth in the foetal envelopes of ewes infected with SBV-infectious serum at day 45 (1/5 positive) and 60 (4/6 positive) of gestation. This persistence of at least 100 days is a new aspect of the SBV pathogenesis that could help to explain how SBV overwinters the cold season in temperate climate zones. Furthermore, sequencing of the M segment shows that the persisting virus in the foetal envelopes is genetically stable since only a few mutations compared to the inoculum were found. This supports the hypothesis that persisting virus could start the infection of new hosts. Finally, neutralization tests showed that infectious SBV present in the foetal envelopes at birth can be neutralized by the humoral immunity present in the infected ewes.
Collapse
Affiliation(s)
- Antoine Poskin
- CODA-CERVA, Operational Directorate Viral Diseases, Groeselenberg 99, 1180 Brussels, Belgium
| | - Ludovic Martinelle
- University of Liège, Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals and Health (FARAH) Center, Avenue de Cureghem 7A, 4000 Liège, Belgium
| | | | - Claude Saegerman
- University of Liège, Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals and Health (FARAH) Center, Avenue de Cureghem 7A, 4000 Liège, Belgium
| | - Brigitte Cay
- CODA-CERVA, Operational Directorate Viral Diseases, Groeselenberg 99, 1180 Brussels, Belgium
| | - Nick De Regge
- CODA-CERVA, Operational Directorate Viral Diseases, Groeselenberg 99, 1180 Brussels, Belgium
| |
Collapse
|
26
|
Tauscher K, Wernike K, Fischer M, Wegelt A, Hoffmann B, Teifke JP, Beer M. Characterization of Simbu serogroup virus infections in type I interferon receptor knock-out mice. Arch Virol 2017; 162:3119-3129. [DOI: 10.1007/s00705-017-3475-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 06/05/2017] [Indexed: 11/29/2022]
|
27
|
Roman-Sosa G, Karger A, Kraatz F, Aebischer A, Wernike K, Maksimov P, Lillig CH, Reimann I, Brocchi E, Keller M, Beer M. The amino terminal subdomain of glycoprotein Gc of Schmallenberg virus: disulfide bonding and structural determinants of neutralization. J Gen Virol 2017. [PMID: 28640745 DOI: 10.1099/jgv.0.000810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orthobunyaviruses are enveloped viruses that can cause human and animal diseases. A novel and major member is the Schmallenberg virus (SBV), the etiological agent of an emerging disease of ruminants that has been spreading all over Europe since 2011. The glycoproteins Gn and Gc of orthobunyaviruses mediate the viral entry, and specifically Gc is a major target for the humoral immune response. For example, the N terminal subdomain of the SBV glycoprotein Gc is targeted by neutralizing monoclonal antibodies that recognize conformational epitopes. Here, we determined the structural features of the N terminus of Gc, and analysed its interaction with monoclonal antibodies. We were able to demonstrate that one of two N-glycosylation sites is essential for secretion and interaction with a subset of Gc-specific monoclonal antibodies. Furthermore, four disulfide bonds (S-S) were identified and the deletion of the third S-S blocked reactivity with another subset of mAbs with virus-neutralizing and non-neutralizing activity. The mutagenesis of the N-glycosylation sites and the disulfide bonds strongly indicated the independent folding of two subdomains within the SBV Gc N terminus. Further, the epitopes recognized by a panel of mAbs could be grouped into two clusters, as revealed by fine mapping using chimeric proteins. Combining the disulfide bonding and epitope mapping allowed us to generate a structural model of the SBV Gc N-terminus. This novel information about the role and structure of the amino terminal region of SBV Gc is of general relevance for the design of antivirals and vaccines against this virus.
Collapse
Affiliation(s)
- Gleyder Roman-Sosa
- Present address: Unité de Virologie Structurale, Institut Pasteur, France.,Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Franziska Kraatz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Pavlo Maksimov
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Christopher H Lillig
- Institute for Medical Biochemistry and Molecular Biology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Markus Keller
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
28
|
Stavrou A, Daly JM, Maddison B, Gough K, Tarlinton R. How is Europe positioned for a re-emergence of Schmallenberg virus? Vet J 2017; 230:45-51. [PMID: 28668462 DOI: 10.1016/j.tvjl.2017.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Schmallenberg virus (SBV) caused a large scale epidemic in Europe from 2011 to 2013, infecting ruminants and causing foetal deformities after infection of pregnant animals. The main impact of the virus was financial loss due to restrictions on trade of animals, meat and semen. Although effective vaccines were produced, their uptake was never high. Along with the subsequent decline in new SBV infections and natural replacement of previously exposed livestock, this has resulted in a decrease in the number of protected animals. Recent surveillance has shown that a large population of naïve animals is currently present in Europe and that the virus is circulating at a low level. These changes in animal status, in combination with favourable conditions for insect vectors, may open the door to the re-emergence of SBV and another large scale outbreak in Europe. This review details the potential and preparedness for SBV re-emergence in Europe, discusses possible co-ordinated sentinel monitoring programmes for ruminant seroconversion and the presence of SBV in the insect vectors, and provides an overview of the economic impact associated with diagnosis, control and the effects of non-vaccination.
Collapse
Affiliation(s)
- Anastasios Stavrou
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom; Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Janet M Daly
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Ben Maddison
- Biotechnology Group, ADAS, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Kevin Gough
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - Rachael Tarlinton
- School of Veterinary Medicine and Science the University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom.
| |
Collapse
|
29
|
Boshra HY, Charro D, Lorenzo G, Sánchez I, Lazaro B, Brun A, Abrescia NGA. DNA vaccination regimes against Schmallenberg virus infection in IFNAR -/- mice suggest two targets for immunization. Antiviral Res 2017; 141:107-115. [PMID: 28235558 DOI: 10.1016/j.antiviral.2017.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/04/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022]
Abstract
Schmallenberg virus (SBV) is an RNA virus of the Bunyaviridae family, genus Orthobunyavirus that infects wild and livestock species of ruminants. While inactivated and attenuated vaccines have been shown to prevent SBV infection, little is known about their mode of immunity; specifically, which components of the virus are responsible for inducing immunological responses in the host. As previous DNA vaccination experiments on other bunyaviruses have found that glycoproteins, as well as modified (i.e. ubiquitinated) nucleoproteins (N) can confer immunity against virulent viral challenge, constructs encoding for fragments of SBV glycoproteins GN and GC, as well as ubiquitinated and non-ubiquitinated N were cloned in mammalian expression vectors, and vaccinated intramuscularly in IFNAR-/- mice. Upon viral challenge with virulent SBV, disease progression was monitored. Both the ubiquitinated and non-ubiquitinated nucleoprotein candidates elicited high titers of antibodies against SBV, but only the non-ubiquitinated candidate induced statistically significant protection of the vaccinated mice from viral challenge. Another construct encoding for a putative ectodomain of glycoprotein GC (segment aa. 678-947) also reduced the SBV-viremia in mice after SBV challenge. When compared to other experimental groups, both the nucleoprotein and GC-ectodomain vaccinated groups displayed significantly reduced viremia, as well as exhibiting no clinical signs of SBV infection. These results show that both the nucleoprotein and the putative GC-ectodomain can serve as protective immunological targets against SBV infection, highlighting that viral glycoproteins, as well as nucleoproteins are potent targets in vaccination strategies against bunyaviruses.
Collapse
Affiliation(s)
- Hani Y Boshra
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | - Diego Charro
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain
| | | | | | | | | | - Nicola G A Abrescia
- Structural Biology Unit, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
30
|
Wernike K, Aebischer A, Roman-Sosa G, Beer M. The N-terminal domain of Schmallenberg virus envelope protein Gc is highly immunogenic and can provide protection from infection. Sci Rep 2017; 7:42500. [PMID: 28211908 PMCID: PMC5304187 DOI: 10.1038/srep42500] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/13/2017] [Indexed: 01/30/2023] Open
Abstract
Schmallenberg virus (SBV) is transmitted by insect vectors, and therefore vaccination is one of the most important tools of disease control. In our study, novel subunit vaccines on the basis of an amino-terminal domain of SBV Gc of 234 amino acids (“Gc Amino”) first were tested and selected using a lethal small animal challenge model and then the best performing formulations also were tested in cattle. We could show that neither E. coli expressed nor the reduced form of “Gc Amino” protected from SBV infection. In contrast, both, immunization with “Gc Amino”-encoding DNA plasmids and “Gc-amino” expressed in a mammalian system, conferred protection in up to 66% of the animals. Interestingly, the best performance was achieved with a multivalent antigen containing the covalently linked Gc domains of both, SBV and the related Akabane virus. All vaccinated cattle and mice were fully protected against SBV challenge infection. Furthermore, in the absence of antibodies against the viral N-protein, differentiation between vaccinated and field-infected animals allows an SBV marker vaccination concept. Moreover, the presented vaccine design also could be tested for other members of the Simbu serogroup and might allow the inclusion of additional immunogenic domains.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| | - Andrea Aebischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| | - Gleyder Roman-Sosa
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
31
|
Stokes JE, Baylis M, Duncan JS. A freedom from disease study: Schmallenberg virus in the south of England in 2015. Vet Rec 2016; 179:435. [PMID: 27729590 PMCID: PMC5136694 DOI: 10.1136/vr.103903] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2016] [Indexed: 01/02/2023]
Abstract
In 2011-2012, northern European livestock faced a threat from a newly emerged virus, Schmallenberg virus (SBV), only a few years after a major outbreak of bluetongue serotype 8 (BTV-8). Like BTV-8, SBV is transmitted by Culicoides biting midges to ruminants and spread throughout Europe. SBV, however, spread faster, reaching the UK within three months of initial discovery. Adult ruminants show only mild, if any, clinical signs; however, infection of naive ruminants by SBV during the vulnerable period of gestation leads to abortions, stillbirths and fetal malformations. Although some data exist for the prevalence of SBV on UK sheep farms early in the outbreak, we have no information on its current status. Is SBV still circulating in the UK? To answer this, the authors designed a freedom from disease study across the southernmost counties of the UK. During autumn 2015, 1444 sheep, from 131 farms, were tested for antibodies against SBV by ELISA; 5 samples from 4 farms were twice found positive by ELISA but were later confirmed negative by virus neutralisation test. As the sheep were born between October 2014 and April 2015, the authors conclude that it is unlikely that SBV is still circulating in the south of England.
Collapse
Affiliation(s)
- Jessica Eleanor Stokes
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| | - Matthew Baylis
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| | - Jennifer Sarah Duncan
- School of Veterinary Science, University of Liverpool, Leahurst Campus, Chester High Road, Neston CH64 7TE, UK
| |
Collapse
|
32
|
Wernike K, Beer M, Hoffmann B. Schmallenberg Virus Infection Diagnosis: Results of a German Proficiency Trial. Transbound Emerg Dis 2016; 64:1405-1410. [DOI: 10.1111/tbed.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- K. Wernike
- Institute of Diagnostic Virology; Friedrich-Loeffler-Institut; Greifswald - Insel Riems Germany
| | - M. Beer
- Institute of Diagnostic Virology; Friedrich-Loeffler-Institut; Greifswald - Insel Riems Germany
| | - B. Hoffmann
- Institute of Diagnostic Virology; Friedrich-Loeffler-Institut; Greifswald - Insel Riems Germany
| |
Collapse
|
33
|
Wüthrich M, Lechner I, Aebi M, Vögtlin A, Posthaus H, Schüpbach-Regula G, Meylan M. A case–control study to estimate the effects of acute clinical infection with the Schmallenberg virus on milk yield, fertility and veterinary costs in Swiss dairy herds. Prev Vet Med 2016; 126:54-65. [DOI: 10.1016/j.prevetmed.2016.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 01/13/2023]
|
34
|
Abstract
Schmallenberg virus (SBV) emerged in Germany in 2011, spread rapidly across Europe, and almost disappeared in 2013. However, since late summer 2014, new cases have occurred in adult cattle. Full-genome analysis revealed some amino acid substitution differences from the first SBV sample. Viremia developed in experimentally infected sheep and cattle for 4-6 days.
Collapse
|
35
|
TONBAK Ş, AZKUR AK, PESTİL Z, BIYIKLI E, ABAYLI H, BAYDAR E, POEL WHMVD, BULUT H. Circulation of Schmallenberg virus in Turkey, 2013. TURKISH JOURNAL OF VETERINARY & ANIMAL SCIENCES 2016. [DOI: 10.3906/vet-1507-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Abutarbush SM, La Rocca A, Wernike K, Beer M, Al Zuraikat K, Al Sheyab OM, Talafha AQ, Steinbach F. Circulation of a Simbu Serogroup Virus, Causing Schmallenberg Virus-Like Clinical Signs in Northern Jordan. Transbound Emerg Dis 2015; 64:1095-1099. [PMID: 26715241 DOI: 10.1111/tbed.12468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Indexed: 11/30/2022]
Abstract
Schmallenberg virus (SBV)-like clinical cases of abortions in northern Jordan in early 2013, together with the emergence of SBV in Europe in 2011, its rapid spread within the following years and the detection of this virus in Turkey, raised questions about the distribution of SBV or related orthobunyaviruses. To evaluate the occurrence of SBV or related members of the Simbu serogroup of orthobunyaviruses in Jordan, bulk milk (cattle) and serum samples (cattle, sheep and goat) collected in northern Jordan in 2013 were first tested by commercially available SBV antibody ELISAs. Indeed, 3 of 47 bulk milk samples and 57 of 115 serum samples provided positive results, but SBV specificity of the ELISA results could not be confirmed by virus neutralization assays. Instead, subsequent cross-neutralization tests were able to further investigate the specificity of these antibodies. Here, a significant inhibition of Aino virus was observed. Thus, the causative agent was most likely a Simbu serogroup virus closely related to Aino virus. Consequently, these results confirm that members of this group of virus are not only present in Europe, Africa or Australia, but also in the Middle East.
Collapse
Affiliation(s)
- S M Abutarbush
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan.,Veterinary Medicine Department, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - A La Rocca
- Virology Department, Animal and Plant Health Agency - Weybridge, Addlestone, Surrey, UK
| | - K Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - K Al Zuraikat
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - O M Al Sheyab
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - A Q Talafha
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - F Steinbach
- Virology Department, Animal and Plant Health Agency - Weybridge, Addlestone, Surrey, UK.,School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
37
|
Roman-Sosa G, Brocchi E, Schirrmeier H, Wernike K, Schelp C, Beer M. Analysis of the humoral immune response against the envelope glycoprotein Gc of Schmallenberg virus reveals a domain located at the amino terminus targeted by mAbs with neutralizing activity. J Gen Virol 2015; 97:571-580. [PMID: 26684324 DOI: 10.1099/jgv.0.000377] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orthobunyaviruses are enveloped viruses that are arthropod-transmitted and cause disease in humans and livestock. Viral attachment and entry are mediated by the envelope glycoproteins Gn and Gc, and the major glycoprotein, Gc, of certain orthobunyaviruses is targeted by neutralizing antibodies. The domains in which the epitopes of such antibodies are located on the glycoproteins of the animal orthobunyavirus Schmallenberg virus (SBV) have not been identified. Here, we analysed the reactivity of a set of mAbs and antisera against recombinant SBV glycoproteins. The M-segment-encoded proteins Gn and Gc of SBV were expressed as full-length proteins, and Gc was also produced as two truncated forms, which consisted of its amino-terminal third and carboxyl-terminal two-thirds. The sera from convalescent animals reacted only against the full-length Gc and its subdomains and not against the SBV glycoprotein Gn. Interestingly, the amino-terminal domain of SBV-Gc was targeted not only by polyclonal sera but also by the majority of murine mAbs with a neutralizing activity. Furthermore, the newly defined amino-terminal domain of about 230 aa of the SBV Gc protein could be affinity-purified and further characterized. This major neutralizing domain might be relevant for the development of prophylactic, diagnostic and therapeutic approaches for SBV and other orthobunyaviruses.
Collapse
Affiliation(s)
- Gleyder Roman-Sosa
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Via Bianchi 7, 25125 Brescia, Italy
| | - Horst Schirrmeier
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Christian Schelp
- IDEXX Switzerland AG, Stationsstrasse 12, 3097 Liebefeld-Bern, Switzerland
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
38
|
Wernike K, Holsteg M, Sasserath M, Beer M. Schmallenberg virus antibody development and decline in a naturally infected dairy cattle herd in Germany, 2011-2014. Vet Microbiol 2015; 181:294-7. [PMID: 26518458 DOI: 10.1016/j.vetmic.2015.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
In late 2011, the novel insect-transmitted orthobunyavirus Schmallenberg virus (SBV) emerged in Central Europe. Since that year, a dairy cattle herd kept in the German region in which the virus was initially detected was continuously monitored. In order to evaluate the development of the within-herd seroprevalence, but also to assess the long-term persistence of antibodies against SBV in individual animals, blood samples of all cows older than 24 months were taken yearly after the respective vector season and serologically analyzed. In December 2011, in 74% of the tested animals SBV-specific antibodies were detectable. Additional scattered seroconversions were observed between the 2011 and 2012 vector seasons, thereafter all seronegative animals remained negative. Until December 2014, the intra-herd seroprevalence decreased to 58%. A total of 122 cows infected presumable in autumn 2011 were sampled every year, 9 of them became seronegative until December 2014. Consequently, though SBV-specific antibodies were detected in about 90% of the monitored animals for more than three years, a lifelong antibody-based immunity is not expected in every animal. The loss of anti-SBV antibodies in individual animals combined with the missing infection of young stock results in a declining herd seroprevalence and increases the risk of a renewed virus circulation to a greater extent within the next years.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany
| | - Mark Holsteg
- Bovine Health Service, Chamber of Agriculture for North Rhine-Westphalia, Bonn, Germany
| | | | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Greifswald-Insel Riems, Germany.
| |
Collapse
|
39
|
Martinelle L, Poskin A, Dal Pozzo F, De Regge N, Cay B, Saegerman C. Experimental Infection of Sheep at 45 and 60 Days of Gestation with Schmallenberg Virus Readily Led to Placental Colonization without Causing Congenital Malformations. PLoS One 2015; 10:e0139375. [PMID: 26418420 PMCID: PMC4587791 DOI: 10.1371/journal.pone.0139375] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/11/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Main impact of Schmallenberg virus (SBV) on livestock consists in reproductive disorders, with teratogenic effects, abortions and stillbirths. SBV pathogenesis and viral placental crossing remain currently poorly understood. Therefore, we implemented an experimental infection of ewes, inoculated with SBV at 45 or 60 days of gestation (dg). METHODOLOGY "Mourerous" breed ewes were randomly separated in three groups: eight and nine ewes were subcutaneously inoculated with 1 ml of SBV infectious serum at 45 and 60 dg, respectively (G45 and G60). Six other ewes were inoculated subcutaneously with sterile phosphate buffer saline as control group. All SBV inoculated ewes showed RNAemia consistent with previously published studies, they seroconverted and no clinical sign was reported. Lambs were born at term via caesarian-section, and right after birth they were blood sampled and clinically examined. Then both lambs and ewes were euthanatized and necropsied. PRINCIPAL FINDINGS/SIGNIFICANCE No lambs showed any malformation suggestive of SBV infection and none of them had RNAemia or anti-SBV antibodies prior to colostrum uptake. Positive SBV RNA detection in organs was rare in both G45 and G60 lambs (2/11 and 1/10, respectively). Nevertheless most of the lambs in G45 (9/11) and G60 (9/10) had at least one extraembryonic structure SBV positive by RTqPCR. The number of positive extraembryonic structures was significantly higher in G60 lambs. Time of inoculation (45 or 60 dg) had no impact on the placental colonization success rate but affected the frequency of detecting the virus in the offspring extraembryonic structures by the time of lambing. SBV readily colonized the placenta when ewes were infected at 45 or 60 dg but infection of the fetuses was limited and did not lead to congenital malformations.
Collapse
Affiliation(s)
- Ludovic Martinelle
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| | - Antoine Poskin
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Operational Directorate Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Fabiana Dal Pozzo
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nick De Regge
- Operational Directorate Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Brigitte Cay
- Operational Directorate Viral Diseases, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
40
|
Mouchantat S, Wernike K, Lutz W, Hoffmann B, Ulrich RG, Börner K, Wittstatt U, Beer M. A broad spectrum screening of Schmallenberg virus antibodies in wildlife animals in Germany. Vet Res 2015; 46:99. [PMID: 26394618 PMCID: PMC4579581 DOI: 10.1186/s13567-015-0232-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/28/2015] [Indexed: 11/10/2022] Open
Abstract
To identify native wildlife species possibly susceptible to infection with Schmallenberg virus (SBV), a midge-transmitted orthobunyavirus that predominantly infects domestic ruminants, samples from various free-living ruminants, but also carnivores, small mammals and wild boar were analyzed serologically. Before 2011, no SBV-specific antibodies were detectable in any of the tested species, thereafter, a large proportion of the ruminant population became seropositive, while every sample taken from carnivores or small mammals tested negative. Surprisingly, SBV-specific-antibodies were also present in a large number of blood samples from wild boar during the 2011/2012 and 2012/2013 hunting seasons. Hence, free-ranging artiodactyls may play a role as wildlife host.
Collapse
Affiliation(s)
- Susan Mouchantat
- Junior Research Group Wildlife Diseases, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Walburga Lutz
- Institute of Wildlife Research, Pützchens Chaussee 228, 53229, Bonn, Germany.
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Rainer G Ulrich
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Konstantin Börner
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315, Berlin, Germany.
| | - Ulrich Wittstatt
- State Laboratory Berlin-Brandenburg (LLBB), Invalidenstr. 60, 10557, Berlin, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
41
|
Schmallenberg virus infection in South American camelids: Field and experimental investigations. Vet Microbiol 2015; 180:171-9. [PMID: 26361966 DOI: 10.1016/j.vetmic.2015.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 11/24/2022]
Abstract
During the first epizootic wave of the novel, teratogenic Schmallenberg virus (SBV, Orthobunyavirus) in ruminants in Northern Europe, serological evidence of a previous SBV-infection demonstrated that South American camelids (SAC) are also susceptible to SBV. However, their potential role in SBV spread remains unknown. To investigate the prevalence and course of SBV-infection in SAC, a German field study and an animal trial with three llamas and three alpacas were conducted. From September 2012 to December 2013, 313 of 502 SAC (62.35%) were found SBV seropositive, but negative for SBV-RNA. The estimated between-district (94.23% of 52) and median within-district (71.43%) and herd (73.13%) SBV seroprevalence in German SAC was similar to the seroprevalence reported in cattle herds and sheep flocks at the time. An age of >1 year was found a statistically significant risk factor for SBV-infection, which could be explained by the spatio-temporal spread of SBV in Germany during the study period. No clinical signs or an increase of abortion and congenital malformation associated with SBV-infection in SAC were reported by the study participants. Similar to SBV-infected ruminants, SBV-RNAemia in experimentally SBV-infected SAC was detected for a short time between days 3 and 7 after infection (dpi), and seroconversion occurred between 9 and 21 dpi. Despite the similar virological and serological results, the lack of clinical signs and congenital malformation associated with SBV-infection suggests that SBV causes subclinical infection in SAC. However, their role as reservoirs in the spread of SBV has to be further investigated.
Collapse
|
42
|
Laloy E, Riou M, Barc C, Belbis G, Bréard E, Breton S, Cordonnier N, Crochet D, Delaunay R, Moreau J, Pozzi N, Raimbourg M, Sarradin P, Trapp S, Viarouge C, Zientara S, Ponsart C. Schmallenberg virus: experimental infection in goats and bucks. BMC Vet Res 2015; 11:221. [PMID: 26297244 PMCID: PMC4546222 DOI: 10.1186/s12917-015-0516-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Background Schmallenberg virus (SBV) is an emerging Orthobunyavirus of ruminant livestock species currently circulating in Europe. SBV causes a subclinical or mild disease in adult animals but vertical transmission to pregnant dams may lead to severe malformations in the offspring. Data on the onset of clinical signs, viremia and seroconversion in experimentally infected adult animals are available for cattle and sheep but are still lacking for goats. For a better understanding of the pathogenesis of SBV infection in adult ruminants, we carried out experimental infections in adult goats. Our specific objectives were: (i) to record clinical signs, viremia and seroconversion; (ii) to monitor viral excretion in the semen of infected bucks; (iii) to determine in which tissues SBV replication took place and virus-induced lesions developed. Results Four goats and two bucks were inoculated with SBV. Virus inoculation was followed by a short viremic phase lasting 3 to 4 days and a seroconversion occurring between days 7 and 14 pi in all animals. The inoculated goats did not display any clinical signs, gross lesions or histological lesions. Viral genomic RNA was found in one ovary but could not be detected in other organs. SBV RNA was not found in the semen samples collected from two inoculated bucks. Conclusions In the four goats and two bucks, the kinetics of viremia and seroconversion appeared similar to those previously described for sheep and cattle. Our limited set of data provides no evidence of viral excretion in buck semen.
Collapse
Affiliation(s)
- E Laloy
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'anatomie pathologique, 7 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - M Riou
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - C Barc
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - G Belbis
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité de pathologie des animaux de production, 7 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - E Bréard
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - S Breton
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - N Cordonnier
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité d'anatomie pathologique, 7 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - D Crochet
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - R Delaunay
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - J Moreau
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - N Pozzi
- LNCR, Laboratoire national de contrôle des reproducteurs, 13 rue Jouët, 94703, Maisons-Alfort, France.
| | - M Raimbourg
- LNCR, Laboratoire national de contrôle des reproducteurs, 13 rue Jouët, 94703, Maisons-Alfort, France.
| | - P Sarradin
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie Expérimentale, secteur 3, route de Crotelles, 37380, Nouzilly, France.
| | - S Trapp
- INRA Centre Val de Loire, UMR 1282 Infectiologie et Santé Publique, 37380, Nouzilly, France. .,Université François Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, 37000, Tours, France.
| | - C Viarouge
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - S Zientara
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704, Maisons-Alfort, France.
| | - C Ponsart
- LNCR, Laboratoire national de contrôle des reproducteurs, 13 rue Jouët, 94703, Maisons-Alfort, France.
| |
Collapse
|
43
|
Abstract
Schmallenberg disease has emerged in North-Western Europe in 2011 and has since spread widely, even across the European borders. It has the potency to infect many, mainly ruminant, species, but seems to lack zoonotic potential. Horizontal transmission occurs through various Culicoides biting midges and subsequent trans-placental transmission causes teratogenic effects. In some small ruminants, clinical signs, including fever, decreased milk production and diarrhea occur during the viraemic phase, but infection is mostly asymptomatic. However, fetal Schmallenberg virus infection in naïve ewes and goats can result in stillborn offspring, showing a congenital arthrogryposis-hydranencephaly syndrome. The economic impact of infection depends on the number of malformed lambs, but is generally limited. There is debate on whether Schmallenberg virus has newly emerged or is re-emerging, since it is likely one of the ancestors of Shamonda virus, both Orthobunyaviruses belonging to the species Sathuperi virus within the Simbu serogroup viruses. Depending on the vector-borne transmission and the serologic status, future outbreaks of Schmallenberg disease induced congenital disease are expected.
Collapse
|
44
|
Schulz C, van der Poel WHM, Ponsart C, Cay AB, Steinbach F, Zientara S, Beer M, Hoffmann B. European interlaboratory comparison of Schmallenberg virus (SBV) real-time RT-PCR detection in experimental and field samples: The method of extraction is critical for SBV RNA detection in semen. J Vet Diagn Invest 2015; 27:422-30. [PMID: 26185122 DOI: 10.1177/1040638715593798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Molecular methods for the detection of Schmallenberg virus (SBV) RNA were rapidly developed after the emergence of this novel orthobunyavirus in Europe. The SBV epizootic wave has declined, but infectious SBV in SBV RNA-positive semen remains a possible risk for the distribution of SBV. However, the abilities of SBV molecular detection methods used at European laboratories have not yet been assessed, to our knowledge. The performances of extraction and real-time reverse transcription polymerase chain reaction (RT-qPCR) methods used at 27 German and 17 other European laboratories for SBV RNA detection in the matrices of whole blood, serum, tissue homogenate, RNA eluates, and bovine semen were evaluated in 2 interlaboratory trials with special emphasis on semen extraction methods. For reliable detection of viral genome in bovine semen samples, highly effective extraction methods are essential to cope with the potential inhibitory effects of semen components on PCR results. All methods used by the 44 laboratories were sufficiently robust to detect SBV RNA with high diagnostic sensitivity (100%) and specificity (95.8%) in all matrices, except semen. The trials demonstrated that the published recommended semen extraction methods (Hoffmann et al. 2013) and a combination of TRIzol LS with an alternative extraction kit have a considerably higher diagnostic sensitivity to detect SBV RNA in semen up to a detection limit of Cq ≤35 compared to other extraction methods used. A thorough validation of extraction methods with standardized semen batches is essential before their use for SBV RNA detection in bovine semen.
Collapse
Affiliation(s)
- Claudia Schulz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Wim H M van der Poel
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Claire Ponsart
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Ann Brigitte Cay
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Falko Steinbach
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Stéphan Zientara
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (Schulz, Beer, Hoffmann)Central Veterinary Institute of Wageningen University and Research Centre, Department of Virology, Lelystad, The Netherlands (Van der Poel)Virology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France (Ponsart, Zientara)Enzootic and (re)emerging Diseases Unit, Veterinary and Agrochemical Research Centre, Brussel, Belgium (Cay)Virology Department, Animal Health and Veterinary Laboratories Agency-Weybridge, New Haw, Addlestone, United Kingdom (Steinbach)
| |
Collapse
|
45
|
Preparation and characterization of a stable BHK-21 cell line constitutively expressing the Schmallenberg virus nucleocapsid protein. Mol Cell Probes 2015; 29:244-53. [PMID: 26013296 DOI: 10.1016/j.mcp.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/09/2015] [Accepted: 05/22/2015] [Indexed: 11/21/2022]
Abstract
Schmallenberg virus (SBV) is a newly emerged orthobunyavirus that predominantly infects livestock such as cattle, sheep, and goats. Its nucleocapsid (N) protein is an ideal target antigen for SBV diagnosis. In this study, a stable BHK-21 cell line, BHK-21-EGFP-SBV-N, constitutively expressing the SBV N protein was obtained using a lentivector-mediated gene transfer system combined with puromycin selection. To facilitate the purification of recombinant SBV N protein, the coding sequence for a hexa-histidine tag was introduced into the C-terminus of the SBV N gene during construction of the recombinant lentivirus vector pLV-EGFP-SBV-N. The BHK-21-EGFP-SBV-N cell line was demonstrated to spontaneously emit strong enhanced green fluorescent protein (EGFP) signals that exhibited a discrete punctate distribution throughout the cytoplasm. SBV N mRNA and protein expression in this cell line were detected by real-time RT-PCR and western blot, respectively. The expressed recombinant SBV N protein carried an N-terminal EGFP tag, and was successfully purified using Ni-NTA agarose by means of its C-terminal His tag. The purified SBV N protein could be recognized by SBV antisera and an anti-SBV monoclonal antibody (mAb) 2C8 in an indirect enzyme-linked immunosorbent assay and western blot analyses. Indirect immunofluorescence assays further demonstrated that the stable cell line reacts with SBV antisera and mAb 2C8. These results suggest that the generated cell line has the potential to be used in the serological diagnosis of SBV.
Collapse
|
46
|
Martinelle L, Poskin A, Dal Pozzo F, Mostin L, Van Campe W, Cay AB, De Regge N, Saegerman C. Three Different Routes of Inoculation for Experimental Infection with Schmallenberg Virus in Sheep. Transbound Emerg Dis 2015; 64:305-308. [PMID: 25891033 DOI: 10.1111/tbed.12356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Indexed: 01/10/2023]
Abstract
Schmallenberg virus (SBV) is an emerging Orthobunyavirus affecting European domestic ruminants. In this study, three groups of ewes (n = 3) were inoculated with 1 ml of an SBV infectious serum, via the subcutaneous (SC), intradermal (ID) or intranasal (IN) route. The ewes were monitored for 10 days and no clinical signs were reported. IN inoculation failed to generate any detectable RNAemia. SC and ID inoculation induced typical SBV RNAemia and seroconversion upon day 6 post-inoculation in 3/3 and 2/3 sheep, respectively. In all the animals that showed RNAemia, the viral genome could be detected in spleen and mesenteric lymph nodes. Both the SC and ID routes seem suitable to properly reproduce field conditions, as comparable observations were reported regarding RNAemia, seroconversion and viral genome detection in organs.
Collapse
Affiliation(s)
- L Martinelle
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - A Poskin
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.,Veterinary and Agrochemical Research Centre (CODA-CERVA), Operational Directorate Viral Diseases, Brussels, Belgium
| | - F Dal Pozzo
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - L Mostin
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Experimental Centre, Machelen, Belgium
| | - W Van Campe
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Experimental Centre, Machelen, Belgium
| | - A B Cay
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Operational Directorate Viral Diseases, Brussels, Belgium
| | - N De Regge
- Veterinary and Agrochemical Research Centre (CODA-CERVA), Operational Directorate Viral Diseases, Brussels, Belgium
| | - C Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
47
|
Häsler B, Alarcon P, Raboisson D, Waret-Szkuta A, Rushton J. Integration of production and financial models to analyse the financial impact of livestock diseases: a case study of Schmallenberg virus disease on British and French dairy farms. Vet Rec Open 2015; 2:e000035. [PMID: 26392883 PMCID: PMC4567140 DOI: 10.1136/vetreco-2014-000035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 11/25/2022] Open
Abstract
AIMS AND OBJECTIVES The aim of the study was to investigate and compare the financial impact of Schmallenberg disease for different dairy production types in the United Kingdom and France. MATERIALS AND METHODS Integrated production and financial models for dairy cattle were developed and applied to Schmallenberg virus (SBV) disease in a British and French context. The five main production systems that prevail in these two countries were considered. Their respective gross margins measuring the holding's profitability were calculated based on public benchmarking, literature and expert opinion data. A partial budget analysis was performed within each production model to estimate the impact of SBV in the systems modelled. Two disease scenarios were simulated: low impact and high impact. RESULTS The model gross margin obtained per cow space and year ranged from £1014 to £1484 for the UK and from £1037 to £1890 for France depending on the production system considered. In the UK, the net SBV disease costs in £/cow space/year for an average dairy farm with 100 milking spaces were estimated between £16.3 and £51.4 in the high-impact scenario and between £8.2 and £25.9 in the low-impact scenario. For France, the net SBV disease costs in £/cow space/year ranged from £19.6 to £48.6 in the high-impact scenario and £9.7 to £22.8 in the low-impact scenario, respectively. CONCLUSION The study illustrates how the combination of production and financial models allows assessing disease impact taking into account differing management and husbandry practices and associated price structures in the dairy sector. It supports decision-making of farmers and veterinarians who are considering disease control measures as it provides an approach to estimate baseline disease impact in common dairy production systems in the UK and France.
Collapse
Affiliation(s)
- Barbara Häsler
- Veterinary Epidemiology Economics and Public Health Group, Royal Veterinary College, London, UK
- Leverhulme Centre for Integrative Research on Agriculture and Health, Royal Veterinary College, London, UK
| | - Pablo Alarcon
- Veterinary Epidemiology Economics and Public Health Group, Royal Veterinary College, London, UK
| | - Didier Raboisson
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA – Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Agnes Waret-Szkuta
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA – Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Jonathan Rushton
- Veterinary Epidemiology Economics and Public Health Group, Royal Veterinary College, London, UK
- Leverhulme Centre for Integrative Research on Agriculture and Health, Royal Veterinary College, London, UK
| |
Collapse
|
48
|
Gale P, Kelly L, Snary EL. Pathways for Entry of Livestock Arboviruses into Great Britain: Assessing the Strength of Evidence. Transbound Emerg Dis 2015; 62:115-23. [DOI: 10.1111/tbed.12317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- P. Gale
- Department of Epidemiological Sciences; Animal Health and Veterinary Laboratories Agency; Addlestone UK
| | - L. Kelly
- Department of Epidemiological Sciences; Animal Health and Veterinary Laboratories Agency; Addlestone UK
- Department of Mathematics and Statistics; University of Strathclyde; Glasgow UK
| | - E. L. Snary
- Department of Epidemiological Sciences; Animal Health and Veterinary Laboratories Agency; Addlestone UK
| |
Collapse
|
49
|
Alarcon P, Häsler B, Raboisson D, Waret-Szkuta A, Corbière F, Rushton J. Application of integrated production and economic models to estimate the impact of Schmallenberg virus for various sheep production types in the UK and France. Vet Rec Open 2014; 1:e000036. [PMID: 26392876 PMCID: PMC4562446 DOI: 10.1136/vetreco-2014-000036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 11/08/2022] Open
Abstract
Objective The present study aimed to estimate and compare the economic impact of Schmallenberg virus (SBV) in different sheep production holdings using partial budget and gross margin analyses in combination with production models. Participants The sheep production types considered were lowland spring lambing, upland spring lambing and early lambing flocks in the UK, and grass lamb flocks of the Centre and West of France, extensive lambing flocks and dairy sheep flocks in France. Methodology Two disease scenarios with distinct input parameters associated with reproductive problems were considered: low and high impact. Sensitivity analyses were performed for the most uncertain input parameters, and the models were run with all of the lowest and highest values to estimate the range of disease impact. Results The estimated net SBV disease cost per year and ewe for the UK was £19.65–£20.85 for the high impact scenario and £6.40–£6.58 for the low impact scenario. No major differences were observed between the different production types. For France, the net SBV disease cost per year and ewe for the meat sheep holdings was £15.59–£17.20 for the high impact scenario and £4.75–£5.26 for the low impact scenario. For the dairy sheep, the costs per year and ewe were £29.81 for the high impact scenario and £10.34 for the low impact scenario. Conclusions The models represent a useful decision support tool for farmers and veterinarians who are facing decisions regarding disease control measures. They allow estimating disease impact on a farm accounting for differing production practices, which creates the necessary basis for cost effectiveness analysis of intervention strategies, such as vaccination.
Collapse
Affiliation(s)
- Pablo Alarcon
- Veterinary Epidemiology Economics and Public Health Group , Royal Veterinary College , London , UK
| | - Barbara Häsler
- Veterinary Epidemiology Economics and Public Health Group , Royal Veterinary College , London , UK ; Leverhulme Centre for Integrative Research on Agriculture and Health, Royal Veterinary College , London , UK
| | - Didier Raboisson
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA-Ecole Nationale Vétérinaire de Toulouse (ENVT) , Toulouse , France ; INRA, UMR 1225, IHAP, F-31076 Toulouse, France
| | - Agnes Waret-Szkuta
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA-Ecole Nationale Vétérinaire de Toulouse (ENVT) , Toulouse , France ; INRA, UMR 1225, IHAP, F-31076 Toulouse, France
| | - Fabien Corbière
- UMR1225, Interaction Hôte Agent Pathogène (IHAP), INRA-Ecole Nationale Vétérinaire de Toulouse (ENVT) , Toulouse , France ; INRA, UMR 1225, IHAP, F-31076 Toulouse, France
| | - Jonathan Rushton
- Veterinary Epidemiology Economics and Public Health Group , Royal Veterinary College , London , UK ; Leverhulme Centre for Integrative Research on Agriculture and Health, Royal Veterinary College , London , UK
| |
Collapse
|
50
|
Deletion mutants of Schmallenberg virus are avirulent and protect from virus challenge. J Virol 2014; 89:1825-37. [PMID: 25410877 DOI: 10.1128/jvi.02729-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Since its emergence, Schmallenberg virus (SBV), a novel insect-transmitted orthobunyavirus which predominantly infects ruminants, has caused a large epidemic in European livestock. Newly developed inactivated vaccines are available, but highly efficacious and safe live vaccines are still not available. Here, the properties of novel recombinant SBV mutants lacking the nonstructural protein NSs (rSBVΔNSs) or NSm (rSBVΔNSm) or both of these proteins (rSBVΔNSs/ΔNSm) were tested in vitro and in vivo in type I interferon receptor knockout mice (IFNAR(-/-)) and in a vaccination/challenge trial in cattle. As for other bunyaviruses, both nonstructural proteins of SBV are not essential for viral growth in vitro. In interferon-defective BHK-21 cells, rSBVΔNSs and rSBVΔNSm replicated to levels comparable to that of the parental rSBV; the double mutant virus, however, showed a mild growth defect, resulting in lower final virus titers. Additionally, both mutants with an NSs deletion induced high levels of interferon and showed a marked growth defect in interferon-competent sheep SFT-R cells. Nevertheless, in IFNAR(-/-) mice, all mutants were virulent, with the highest mortality rate for rSBVΔNSs and a reduced virulence for the NSm-deleted virus. In cattle, SBV lacking NSm caused viremia and seroconversion comparable to those caused by the wild-type virus, while the NSs and the combined NSs/NSm deletion mutant induced no detectable virus replication or clinical disease after immunization. Furthermore, three out of four cattle immunized once with the NSs deletion mutant and all animals vaccinated with the virus lacking both nonstructural proteins were fully protected against a challenge infection. Therefore, the double deletion mutant will provide the basis for further developments of safe and efficacious modified live SBV vaccines which could be also a model for other viruses of the Simbu serogroup and related orthobunyaviruses. IMPORTANCE SBV induces only mild clinical signs in adult ruminants but causes severe fetal malformation and, thereby, can have an important impact on animal welfare and production. As SBV is an insect-transmitted pathogen, vaccination will be one of the most important aspects of disease control. Here, mutant viruses lacking one or two proteins that essentially contribute to viral pathogenicity were tested as modified live vaccines in cattle. It could be demonstrated that a novel recombinant double deletion mutant is a safe and efficacious vaccine candidate. This is the first description of a putative modified live vaccine for the complete genus Orthobunyavirus, and in addition, such a vaccine type has never been tested in cattle for any virus of the entire family Bunyaviridae. Therefore, the described vaccine also represents the first model for a broad range of related viruses and is of high importance to the field.
Collapse
|