1
|
Hickson SE, Brekke E, Schwerk J, Saluhke I, Zaver S, Woodward J, Savan R, Hyde JL. Sequence Diversity in the 3' Untranslated Region of Alphavirus Modulates IFIT2-Dependent Restriction in a Cell Type-Dependent Manner. J Interferon Cytokine Res 2025; 45:133-149. [PMID: 40079162 DOI: 10.1089/jir.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Alphaviruses (family Togaviridae) are a diverse group of positive-sense RNA (+ssRNA) viruses that are transmitted by arthropods and are the causative agent of several significant human and veterinary diseases. Interferon (IFN)-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding IFN-stimulated genes (ISGs) that are highly upregulated following viral infection and have been identified as potential restrictors of alphaviruses. The mechanism by which IFIT1 restricts RNA viruses is dependent on self and non-self-discrimination of RNA, and alphaviruses evade this recognition via their 5' untranslated region (UTR). However, the role of IFIT2 during alphavirus replication and the mechanism of viral replication inhibition is unclear. In this study, we identify IFIT2 as a restriction factor for Venezuelan equine encephalitis virus (VEEV) and show that IFIT2 binds the 3' 3'UTR of the virus. We investigated the potential role of variability in the 3'UTR of the virus affecting IFIT2 antiviral activity by studying infection with VEEV. Comparison of recombinant VEEV clones containing 3'UTR sequences derived from epizootic and enzootic isolates exhibited differential sensitivity to IFIT2 restriction in vitro infection studies, suggesting that the alphavirus 3'UTR sequence may function in part to evade IFIT2 restriction. In vitro binding assays demonstrate that IFIT2 binds to the VEEV 3'UTR; however, in contrast to previous studies, VEEV restriction did not appear to be dependent on the ability of IFIT2 to inhibit translation of viral RNA, suggesting a novel mechanism of IFIT2 restriction. Our study demonstrates that IFIT2 is a restriction factor for alphaviruses and variability in the 3'UTR of VEEV can modulate viral restriction by IFIT2. Ongoing studies are exploring the biological consequences of IFIT2-VEEV RNA interaction in viral pathogenesis and defining sequence and structural features of RNAs that regulate IFIT2 recognition.
Collapse
Affiliation(s)
- Sarah E Hickson
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Eden Brekke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Indraneel Saluhke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Shivam Zaver
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua Woodward
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jennifer L Hyde
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Parashar B, Malviya R, Sridhar SB, Wadhwa T, Talath S, Shareef J. Eastern equine encephalitis virus: Pathogenesis, immune response, and clinical manifestations. INFECTIOUS MEDICINE 2025; 4:100167. [PMID: 40026316 PMCID: PMC11869868 DOI: 10.1016/j.imj.2025.100167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Eastern equine encephalitis virus (EEEV) is a lethal Alphavirus transmitted by Culiseta melanura mosquitoes that primarily cycles between birds. Although rare, infections in humans and horses are associated with high mortality rates and severe neurological effects. Climate change appears to be increasing the spread of this virus. This study aims to provide a comprehensive analysis of EEEV, including its transmission dynamics, pathogenesis, induced host immune response, and long-term impacts on survivors. It also highlights the virus's unique immune evasion strategies that complicate disease management and contribute to severe clinical outcomes, such as encephalitis with fever, convulsions, and coma. Survivors often face chronic cognitive, motor, and psychosocial impairments. Despite these significant public health risks, gaps remain in understanding the molecular mechanisms underlying immune evasion and the long-term neurological sequelae in survivors. By collating current knowledge, this review underscores the urgent need for the development of targeted vaccines and therapeutic interventions to mitigate the growing threat of EEEV, particularly in the context of climate change-driven geographical expansion.
Collapse
Affiliation(s)
- Bhumika Parashar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 201310, Uttar Pradesh, India
- Galgotias Multi-Disciplinary Research & Development Cell (G-MRDC), Galgotias University, Greater Noida 201308, Uttar Pradesh, India
| | - Sathvik Belagodu Sridhar
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Tarun Wadhwa
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sirajunisa Talath
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Javedh Shareef
- RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
3
|
de Oliveira Souza R, Duarte Júnior JWB, Della Casa VS, Santoro Rosa D, Renia L, Claser C. Unraveling the complex interplay: immunopathology and immune evasion strategies of alphaviruses with emphasis on neurological implications. Front Cell Infect Microbiol 2024; 14:1421571. [PMID: 39211797 PMCID: PMC11358129 DOI: 10.3389/fcimb.2024.1421571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024] Open
Abstract
Arthritogenic alphaviruses pose a significant public health concern due to their ability to cause joint inflammation, with emerging evidence of potential neurological consequences. In this review, we examine the immunopathology and immune evasion strategies employed by these viruses, highlighting their complex mechanisms of pathogenesis and neurological implications. We delve into how these viruses manipulate host immune responses, modulate inflammatory pathways, and potentially establish persistent infections. Further, we explore their ability to breach the blood-brain barrier, triggering neurological complications, and how co-infections exacerbate neurological outcomes. This review synthesizes current research to provide a comprehensive overview of the immunopathological mechanisms driving arthritogenic alphavirus infections and their impact on neurological health. By highlighting knowledge gaps, it underscores the need for research to unravel the complexities of virus-host interactions. This deeper understanding is crucial for developing targeted therapies to address both joint and neurological manifestations of these infections.
Collapse
Affiliation(s)
- Raquel de Oliveira Souza
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Victória Simões Della Casa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Laurent Renia
- ASTAR Infectious Diseases Labs (ASTAR ID Labs), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Carla Claser
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
4
|
Jian Z, Jiang C, Zhu L, Li F, Deng L, Ai Y, Lai S, Xu Z. Infectivity and pathogenesis characterization of getah virus (GETV) strain via different inoculation routes in mice. Heliyon 2024; 10:e33432. [PMID: 39040396 PMCID: PMC11260979 DOI: 10.1016/j.heliyon.2024.e33432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
In recent years, the epidemiological profile of Getah virus (GETV) has become increasingly serious, posing a huge threat to animal and public health in China. GETV can cause multi-species infection, including horses, pigs, rats, cattle, kangaroos, reptiles and birds. However, there were few reports on the efficiency of the virus entering the host via routes of different systems. In the present study, a GETV strain (SC201807) was obtained from a piglet's blood in 2018 in Sichuan, China. First, we established a quantitative real-time polymerase chain reaction (qRT-PCR) SYBR assay specific to GETV. Then, we evaluated the infection efficiency of different routes using mouse animal model. 108 male mice were randomly divided into four groups as follows: intramuscular, intraoral and intranasal infection routes, and negative control. All mice in the experimental group were inoculated with 4 × 102.85 TCID50 GETV virus. Tissue tropism experiments show that GETV has a wide range of tissue distribution, and intramuscular infection is the first to infect all tissues of the body, and suggest that oral infection may be a new GETV transmission route. Histopathological examination results showed that intramuscular injection of GETV mainly caused different degrees of pathological damage to the tissues, and could rapidly induce a large amount of inflammatory regulatory factors such as IL-6 and TNF-α. Our data may help us to evaluate the risk of transmission of Porcine Getah virus and provide an experimental basis for the prevention and control of Porcine Getah virus.
Collapse
Affiliation(s)
- Zhijie Jian
- Veterinary Medicine College, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
| | - Chaoyuan Jiang
- Veterinary Medicine College, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
- Chengdu Zhongji Agriculture and Animal Husbandry Co., Ltd, No. 37, Middle Section, Heshan Street, Pujiang County, Chengdu, Sichuan Province, China
| | - Ling Zhu
- Veterinary Medicine College, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
| | - Fengqin Li
- Veterinary Medicine College, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
- College of Animal Science, Xichang University, Xichang, 615000, Sichuan, China
| | - Lishuang Deng
- Veterinary Medicine College, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
| | - Yanru Ai
- Veterinary Medicine College, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
| | - Siyuan Lai
- Veterinary Medicine College, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
| | - Zhiwen Xu
- Veterinary Medicine College, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Hernández-Sarmiento LJ, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Mayaro virus infection elicits a robust pro-inflammatory and antiviral response in human macrophages. Acta Trop 2024; 252:107146. [PMID: 38342287 DOI: 10.1016/j.actatropica.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Mayaro virus (MAYV), the etiological agent of Mayaro fever (MAYF), is an emergent arbovirus pathogen belonging to Togaviridae family. MAYF is characterized by high inflammatory component that can cause long-lasting arthralgia that persists for months. Macrophages are viral targets and reservoirs, key components of innate immunity and host response. Given the importance of this pathogen, our aim was to determine the inflammatory and antiviral response of human monocyte-derived macrophages (MDMs) infected with MAYV. First, we established the replication kinetics of the virus. Thereafter, we determined the expression of pattern recognition receptors, NF-ĸB complex, interferons (IFNs), two interleukin 27 (IL27) subunits, IFN-stimulated genes (ISGs), and the production of cytokines/chemokines. We found that human MDMs are susceptible to MAYV infection in vitro, with a peak of viral particles released between 24- and 48-hours post-infection (h.p.i) at MOI 0.5, and between 12 and 24 h.p.i at MOI 1. Interestingly, we observed a significant decline in the production of infectious viral particles at 72 h.p.i that was associated with the induction of antiviral response and high cytotoxic effect of MAYV infection in MDMs. We observed modulation of several genes after MAYV infection, as well, we noted the activation of antiviral detection and response pathways (Toll-like receptors, RIG-I/MDA5, and PKR) at 48 h.p.i but not at 6 h.p.i. Furthermore, MAYV-infected macrophages express high levels of the three types of IFNs and the two IL27 subunits at 48 h.p.i. Moreover, we found higher production of IL6, IL1β, CXCL8/IL8, CCL2, and CCL5 at 48 h.p.i as compared to 6 h.p.i. A robust antiviral response (ISG15, APOBEC3A, IFITM1, and MX2) was observed at 48 but not at 6 h.p.i. The innate and antiviral responses of MAYV-infected MDMs differ at 6 and 48 h.p.i. We conclude that MAYV infection induces robust pro-inflammatory and antiviral responses in human primary macrophages.
Collapse
Affiliation(s)
| | - Y S Tamayo-Molina
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan Felipe Valdés-López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
6
|
Mou C, Meng H, Shi K, Huang Y, Liu M, Chen Z. GETV nsP2 plays a critical role in the interferon antagonism and viral pathogenesis. Cell Commun Signal 2023; 21:361. [PMID: 38110975 PMCID: PMC10729338 DOI: 10.1186/s12964-023-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Getah virus (GETV) was becoming more serious and posing a potential threat to animal safety and public health. Currently, there is limited comprehension regarding the pathogenesis and immune evasion mechanisms employed by GETV. Our study reveals that GETV infection exhibits the capacity for interferon antagonism. Specifically, the nonstructural protein nsP2 of GETV plays a crucial role in evading the host immune response. GETV nsP2 effectively inhibits the induction of IFN-β by blocking the phosphorylation and nuclear translocation of IRF3. Additionally, GETV nsP2 hinders the phosphorylation of STAT1 and its nuclear accumulation, leading to significantly impaired JAK-STAT signaling. Furthermore, the amino acids K648 and R649, situated in the C-terminal region of GETV nsP2, play a crucial role in facilitating nuclear localization. Not only do they affect the interference of nsP2 with the innate immune response, but they also exert an influence on the pathogenicity of GETV in mice. In summary, our study reveals novel mechanisms by which GETV evades the immune system, thereby offering a foundation for comprehending the pathogenic nature of GETV. Video Abstract.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Hui Meng
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, GX, China
| | - Yanmei Huang
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
| | - Meiqi Liu
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
8
|
Mayaro Virus Non-Structural Protein 2 Circumvents the Induction of Interferon in Part by Depleting Host Transcription Initiation Factor IIE Subunit 2. Cells 2021; 10:cells10123510. [PMID: 34944018 PMCID: PMC8700540 DOI: 10.3390/cells10123510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging mosquito-transmitted virus that belongs to the genus Alphavirus within the family Togaviridae. Humans infected with MAYV often develop chronic and debilitating arthralgia and myalgia. The virus is primarily maintained via a sylvatic cycle, but it has the potential to adapt to urban settings, which could lead to large outbreaks. The interferon (IFN) system is a critical antiviral response that limits replication and pathogenesis of many different RNA viruses, including alphaviruses. Here, we investigated how MAYV infection affects the induction phase of the IFN response. Production of type I and III IFNs was efficiently suppressed during MAYV infection, and mapping revealed that expression of the viral non-structural protein 2 (nsP2) was sufficient for this process. Interactome analysis showed that nsP2 interacts with DNA-directed RNA polymerase II subunit A (Rpb1) and transcription initiation factor IIE subunit 2 (TFIIE2), which are host proteins required for RNA polymerase II-mediated transcription. Levels of these host proteins were reduced by nsP2 expression and during infection by MAYV and related alphaviruses, suggesting that nsP2-mediated inhibition of host cell transcription is an important aspect of how some alphaviruses block IFN induction. The findings from this study may prove useful in design of vaccines and antivirals, which are currently not available for protection against MAYV and infection by other alphaviruses.
Collapse
|
9
|
Rogers KJ, Jones-Burrage S, Maury W, Mukhopadhyay S. TF protein of Sindbis virus antagonizes host type I interferon responses in a palmitoylation-dependent manner. Virology 2020; 542:63-70. [PMID: 32056669 DOI: 10.1016/j.virol.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
Abstract
Sindbis virus (SINV) produces the small membrane protein TF from the 6K gene via a (-1) programmed ribosomal frameshifting. While several groups have shown that TF-deficient virus exhibits reduced virulence, the mechanism(s) by which this occurs remain unknown. Here, we demonstrate a role for TF in antagonizing the host interferon response. Using wild-type and type 1 interferon receptor-deficient mice and primary cells derived from these animals, we show that TF controls the induction of the host interferon response at early times during infection. Loss of TF production leads to elevated interferon and a concurrent reduction in viral loads with a loss of pathogenicity. Palmitoylation of TF has been shown to be important for particle assembly and morphology. We find that palmitoylation of TF also contributes to the ability of TF to antagonize host interferon responses as dysregulated palmitoylation of TF reduces virulence in a manner similar to loss of TF.
Collapse
Affiliation(s)
- K J Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - S Jones-Burrage
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - W Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - S Mukhopadhyay
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
10
|
Macromolecular Synthesis Shutoff Resistance by Myeloid Cells Is Critical to IRF7-Dependent Systemic Interferon Alpha/Beta Induction after Alphavirus Infection. J Virol 2019; 93:JVI.00872-19. [PMID: 31578290 DOI: 10.1128/jvi.00872-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Alphavirus infection of fibroblastic cell types in vitro inhibits host cell translation and transcription, leading to suppression of interferon alpha/beta (IFN-α/β) production. However, the effect of infection upon myeloid cells, which are often the first cells encountered by alphaviruses in vivo, is unclear. Previous studies demonstrated an association of systemic IFN-α/β production with myeloid cell infection efficiency. Murine infection with wild-type Venezuelan equine encephalitis virus (VEEV), a highly myeloid-cell-tropic alphavirus, results in secretion of very high systemic levels of IFN-α/β, suggesting that stress responses in responding cells are active. Here, we infected myeloid cell cultures with VEEV to identify the cellular source of IFN-α/β, the timing and extent of translation and/or transcription inhibition in infected cells, and the transcription factors responsible for IFN-α/β induction. In contrast to fibroblast infection, myeloid cell cultures infected with VEEV secreted IFN-α/β that increased until cell death was observed. VEEV inhibited translation in most cells early after infection (<6 h postinfection [p.i.]), while transcription inhibition occurred later (>6 h p.i.). Furthermore, the interferon regulatory factor 7 (IRF7), but not IRF3, transcription factor was critical for IFN-α/β induction in vitro and in sera of mice. We identified a subset of infected Raw 264.7 myeloid cells that resisted VEEV-induced translation inhibition and secreted IFN-α/β despite virus infection. However, in the absence of IFN receptor signaling, the size of this cell population was diminished. These results indicate that IFN-α/β induction in vivo is IRF7 dependent and arises in part from a subset of myeloid cells that are resistant, in an IFN-α/β-dependent manner, to VEEV-induced macromolecular synthesis inhibition.IMPORTANCE Most previous research exploring the interaction of alphaviruses with host cell antiviral responses has been conducted using fibroblast lineage cell lines. Previous studies have led to the discovery of virus-mediated activities that antagonize host cell antiviral defense pathways, such as host cell translation and transcription inhibition and suppression of STAT1 signaling. However, their relevance and impact upon myeloid lineage cell types, which are key responders during the initial stages of alphavirus infection in vivo, have not been well studied. Here, we demonstrate the different abilities of myeloid cells to resist VEEV infection compared to nonmyeloid cell types and begin to elucidate the mechanisms by which host antiviral responses are upregulated in myeloid cells despite the actions of virus-encoded antagonists.
Collapse
|
11
|
Meshram CD, Lukash T, Phillips AT, Akhrymuk I, Frolova EI, Frolov I. Lack of nsP2-specific nuclear functions attenuates chikungunya virus replication both in vitro and in vivo. Virology 2019; 534:14-24. [PMID: 31163352 DOI: 10.1016/j.virol.2019.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 05/26/2019] [Indexed: 01/07/2023]
Abstract
Chikungunya virus (CHIKV) is an important arthritogenic human pathogen that is already circulating in both hemispheres. In the present study, we substituted VLoop, located on the surface of nsP2, by other amino acid sequences. These modifications had deleterious effects on viral nuclear functions and made CHIKV incapable of interfering with the induction of type I interferon and the antiviral response in both mouse and human cells. Importantly, the identified mutations have no significant effects on the synthesis of virus-specific RNAs and viral structural proteins. The designed mutants induced a few orders of magnitude lower viremia but remained highly immunogenic in mice. Thus, the proposed modifications of nsP2 can additionally improve the safety of the attenuated strain CHIKV 181/25. Furthermore, defined mutations in the macro domain of another nonstructural protein, nsP3, additionally reduce cytopathogenicity of nsP2 mutants in human cells, and can be potentially applied for CHIKV attenuation.
Collapse
Affiliation(s)
- Chetan D Meshram
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tetyana Lukash
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aaron T Phillips
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ivan Akhrymuk
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elena I Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
New World alphavirus protein interactomes from a therapeutic perspective. Antiviral Res 2019; 163:125-139. [PMID: 30695702 DOI: 10.1016/j.antiviral.2019.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
The New World alphaviruses, Venezuelan, eastern and western equine encephalitis viruses (VEEV, EEEV, and WEEV), are important human pathogens due to their ability to cause varying levels of morbidity and mortality in humans. There is also concern about VEEV and EEEV being used as bioweapons. Currently, a FDA-approved antiviral is lacking for New World alphaviruses. In this review, the function of each viral protein is discussed with an emphasis on how these functions can be targeted by therapeutics. Both direct acting antivirals as well as inhibitors that impact host protein interactions with viral proteins are described. Non-structural protein 3 (nsP3), capsid, and E2 proteins have garnered attention in recent years, whereas little is known regarding host protein interactions of the other viral proteins and is an important avenue for future study.
Collapse
|
13
|
The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. mSphere 2018; 3:3/5/e00209-18. [PMID: 30232164 PMCID: PMC6147134 DOI: 10.1128/msphere.00209-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs. Type I interferon (IFN)-stimulated genes (ISGs) have critical roles in inhibiting virus replication and dissemination. Despite advances in understanding the molecular basis of ISG restriction, the antiviral mechanisms of many remain unclear. The 20-kDa ISG ISG20 is a nuclear 3′–5′ exonuclease with preference for single-stranded RNA (ssRNA) and has been implicated in the IFN-mediated restriction of several RNA viruses. Although the exonuclease activity of ISG20 has been shown to degrade viral RNA in vitro, evidence has yet to be presented that virus inhibition in cells requires this activity. Here, we utilized a combination of an inducible, ectopic expression system and newly generated Isg20−/− mice to investigate mechanisms and consequences of ISG20-mediated restriction. Ectopically expressed ISG20 localized primarily to Cajal bodies in the nucleus and restricted replication of chikungunya and Venezuelan equine encephalitis viruses. Although restriction by ISG20 was associated with inhibition of translation of infecting genomic RNA, degradation of viral RNAs was not observed. Instead, translation inhibition of viral RNA was associated with ISG20-induced upregulation of over 100 other genes, many of which encode known antiviral effectors. ISG20 modulated the production of IFIT1, an ISG that suppresses translation of alphavirus RNAs. Consistent with this observation, the pathogenicity of IFIT1-sensitive alphaviruses was increased in Isg20−/− mice compared to that of wild-type viruses but not in cells ectopically expressing ISG20. Our findings establish an indirect role for ISG20 in the early restriction of RNA virus replication by regulating expression of other ISGs that inhibit translation and possibly other activities in the replication cycle. IMPORTANCE The host immune responses to infection lead to the production of type I interferon (IFN), and the upregulation of interferon-stimulated genes (ISGs) reduces virus replication and virus dissemination within a host. Ectopic expression of the interferon-induced 20-kDa exonuclease ISG20 suppressed replication of chikungunya virus and Venezuelan equine encephalitis virus, two mosquito-vectored RNA alphaviruses. Since the replication of alphavirus genomes occurs exclusively in the cytoplasm, the mechanism of nucleus-localized ISG20 inhibition of replication is unclear. In this study, we determined that ISG20 acts as a master regulator of over 100 genes, many of which are ISGs. Specifically, ISG20 upregulated IFIT1 genes and inhibited translation of the alphavirus genome. Furthermore, IFIT1-sensitive alphavirus replication was increased in Isg20−/− mice compared to the replication of wild-type viruses but not in cells ectopically expressing ISG20. We propose that ISG20 acts as an indirect regulator of RNA virus replication in the cytoplasm through the upregulation of many other ISGs.
Collapse
|
14
|
Dias Junior AG, Sampaio NG, Rehwinkel J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol 2018; 27:75-85. [PMID: 30201512 PMCID: PMC6319154 DOI: 10.1016/j.tim.2018.08.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/28/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Induction of interferons during viral infection is mediated by cellular proteins that recognise viral nucleic acids. MDA5 is one such sensor of virus presence and is activated by RNA. MDA5 is required for immunity against several classes of viruses, including picornaviruses. Recent work showed that mutations in the IFIH1 gene, encoding MDA5, lead to interferon-driven autoinflammatory diseases. Together with observations made in cancer cells, this suggests that MDA5 detects cellular RNAs in addition to viral RNAs. It is therefore important to understand the properties of the RNAs which activate MDA5. New data indicate that RNA length and secondary structure are features sensed by MDA5. We review these developments and discuss how MDA5 strikes a balance between antiviral immunity and autoinflammation. MDA5 is a pattern-recognition receptor for RNA and induces a type I interferon response. MDA5 is activated in a variety of clinically relevant settings. This includes infection with ssRNA, dsRNA, and dsDNA viruses; several autoimmune and autoinflammatory diseases, such as type 1 diabetes and Aicardi–Goutières syndrome; and some forms of cancer treatment. Synthetic, viral, and cellular RNAs can all activate MDA5. The latter may include transcripts from endogenous retroelements such as Alu repeats. Length and secondary structure are important features that determine whether an RNA molecule is detected by MDA5. Indeed, long, base-paired RNA molecules potently activate MDA5 in the test tube.
Collapse
Affiliation(s)
- Antonio Gregorio Dias Junior
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK. https://twitter.com/GregorioDias1
| | - Natalia G Sampaio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
15
|
The Methyltransferase-Like Domain of Chikungunya Virus nsP2 Inhibits the Interferon Response by Promoting the Nuclear Export of STAT1. J Virol 2018; 92:JVI.01008-18. [PMID: 29925658 DOI: 10.1128/jvi.01008-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has evolved effective mechanisms to counteract the type I interferon (IFN) response. Upon recognition of the virus, cells secrete IFNs, which signal through transmembrane receptors (IFNAR) to phosphorylate STAT proteins (pSTAT). pSTAT dimers are transported into the nucleus by importin-α5 and activate the transcription of IFN-stimulated genes (ISGs), increasing cellular resistance to infection. Subsequently, STAT proteins are shuttled back into the cytoplasm by the exportin CRM1. CHIKV nonstructural protein 2 (nsP2) reduces ISG expression by inhibiting general host cell transcription and by specifically reducing the levels of nuclear pSTAT1 via an unknown mechanism. To systematically examine where nsP2 acts within the JAK/STAT signaling cascade, we used two well-characterized mutants of nsP2, P718S and KR649AA. Both mutations abrogate nsP2's ability to shut off host transcription, but only the KR649AA mutant localizes exclusively to the cytoplasm and no longer specifically inhibits JAK/STAT signaling. These mutant nsP2 proteins did not differentially affect IFNAR expression levels or STAT1 phosphorylation in response to IFNs. Coimmunoprecipitation experiments showed that in the presence of nsP2, STAT1 still effectively bound importin-α5. Chemically blocking CRM1-mediated nuclear export in the presence of nsP2 additionally showed that nuclear translocation of STAT1 is not affected by nsP2. nsP2 putatively has five domains. Redirecting the nsP2 KR649AA mutant or just nsP2's C-terminal methyltransferase-like domain into the nucleus strongly reduced nuclear pSTAT in response to IFN stimulation. This demonstrates that the C-terminal domain of nuclear nsP2 specifically inhibits the IFN response by promoting the nuclear export of STAT1.IMPORTANCE Chikungunya virus is an emerging pathogen associated with large outbreaks on the African, Asian, European, and both American continents. In most patients, infection results in high fever, rash, and incapacitating (chronic) arthralgia. CHIKV effectively inhibits the first line of defense, the innate immune response. As a result, stimulation of the innate immune response with interferons (IFNs) is ineffective as a treatment for CHIKV disease. The IFN response requires an intact downstream signaling cascade called the JAK/STAT signaling pathway, which is effectively inhibited by CHIKV nonstructural protein 2 (nsP2) via an unknown mechanism. The research described here specifies where in the JAK/STAT signaling cascade the IFN response is inhibited and which protein domain of nsP2 is responsible for IFN inhibition. The results illuminate new aspects of antiviral defense and CHIKV counterdefense strategies and will direct the search for novel antiviral compounds.
Collapse
|
16
|
Abstract
Interferon alpha/beta (IFN-α/β) is a critical mediator of protection against most viruses, with host survival frequently impossible in its absence. Many studies have investigated the pathways involved in the induction of IFN-α/β after virus infection and the resultant upregulation of antiviral IFN-stimulated genes (ISGs) through IFN-α/β receptor complex signaling. However, other than examining the effects of genetic deletion of induction or effector pathway components, little is known regarding the functionality of these responses in intact hosts and whether host genetic or environmental factors might influence their potency. Here, we demonstrate that the IFN-α/β response against multiple arthropod-vectored viruses, which replicate over a wide temperature range, is extremely sensitive to fluctuations in temperature, exhibiting reduced antiviral efficacy at subnormal cellular temperatures and increased efficacy at supranormal temperatures. The effect involves both IFN-α/β and ISG upregulation pathways with a major aspect of altered potency reflecting highly temperature-dependent transcription of IFN response genes that leads to altered IFN-α/β and ISG protein levels. Discordantly, signaling steps prior to transcription that were examined showed the opposite effect from gene transcription, with potentiation at low temperature and inhibition at high temperature. Finally, we demonstrate that by lowering the temperature of mice, chikungunya arbovirus replication and disease are exacerbated in an IFN-α/β-dependent manner. This finding raises the potential for use of hyperthermia as a therapeutic modality for viral infections and in other contexts such as antitumor therapy. The increased IFN-α/β efficacy at high temperatures may also reflect an innate immune-relevant aspect of the febrile response. The interferon alpha/beta (IFN-α/β) response is a first-line innate defense against arthropod-borne viruses (arboviruses). Arboviruses, such as chikungunya virus (CHIKV), can infect cells and replicate across a wide temperature range due to their replication in both mammalian/avian and arthropod hosts. Accordingly, these viruses can cause human disease in tissues regularly exposed to temperatures below the normal mammalian core temperature, 37°C. We questioned whether temperature variation could affect the efficacy of IFN-α/β responses against these viruses and help to explain some aspects of human disease manifestations. We observed that IFN-α/β efficacy was dramatically lower at subnormal temperatures and modestly enhanced at febrile temperatures, with the effects involving altered IFN-α/β response gene transcription but not IFN-α/β pathway signaling. These results provide insight into the functioning of the IFN-α/β response in vivo and suggest that temperature elevation may represent an immune-enhancing therapeutic modality for a wide variety of IFN-α/β-sensitive infections and pathologies.
Collapse
|
17
|
Gall B, Pryke K, Abraham J, Mizuno N, Botto S, Sali TM, Broeckel R, Haese N, Nilsen A, Placzek A, Morrison T, Heise M, Streblow D, DeFilippis V. Emerging Alphaviruses Are Sensitive to Cellular States Induced by a Novel Small-Molecule Agonist of the STING Pathway. J Virol 2018; 92:e01913-17. [PMID: 29263267 PMCID: PMC5827377 DOI: 10.1128/jvi.01913-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
The type I interferon (IFN) system represents an essential innate immune response that renders cells resistant to virus growth via the molecular actions of IFN-induced effector proteins. IFN-mediated cellular states inhibit growth of numerous and diverse virus types, including those of known pathogenicity as well as potentially emerging agents. As such, targeted pharmacologic activation of the IFN response may represent a novel therapeutic strategy to prevent infection or spread of clinically impactful viruses. In light of this, we employed a high-throughput screen to identify small molecules capable of permeating the cell and of activating IFN-dependent signaling processes. Here we report the identification and characterization of N-(methylcarbamoyl)-2-{[5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}-2-phenylacetamide (referred to as C11), a novel compound capable of inducing IFN secretion from human cells. Using reverse genetics-based loss-of-function assays, we show that C11 activates the type I IFN response in a manner that requires the adaptor protein STING but not the alternative adaptors MAVS and TRIF. Importantly, treatment of cells with C11 generated a cellular state that potently blocked replication of multiple emerging alphavirus types, including chikungunya, Ross River, Venezuelan equine encephalitis, Mayaro, and O'nyong-nyong viruses. The antiviral effects of C11 were subsequently abrogated in cells lacking STING or the type I IFN receptor, indicating that they are mediated, at least predominantly, by way of STING-mediated IFN secretion and subsequent autocrine/paracrine signaling. This work also allowed characterization of differential antiviral roles of innate immune signaling adaptors and IFN-mediated responses and identified MAVS as being crucial to cellular resistance to alphavirus infection.IMPORTANCE Due to the increase in emerging arthropod-borne viruses, such as chikungunya virus, that lack FDA-approved therapeutics and vaccines, it is important to better understand the signaling pathways that lead to clearance of virus. Here we show that C11 treatment makes human cells refractory to replication of a number of these viruses, which supports its value in increasing our understanding of the immune response and viral pathogenesis required to establish host infection. We also show that C11 depends on signaling through STING to produce antiviral type I interferon, which further supports its potential as a therapeutic drug or research tool.
Collapse
Affiliation(s)
- Bryan Gall
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Kara Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tina M Sali
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rebecca Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Nicole Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, Oregon, USA
| | | | - Thomas Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Mark Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daniel Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
18
|
Sokoloski KJ, Nease LM, May NA, Gebhart NN, Jones CE, Morrison TE, Hardy RW. Identification of Interactions between Sindbis Virus Capsid Protein and Cytoplasmic vRNA as Novel Virulence Determinants. PLoS Pathog 2017; 13:e1006473. [PMID: 28662211 PMCID: PMC5507600 DOI: 10.1371/journal.ppat.1006473] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 07/12/2017] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
Alphaviruses are arthropod-borne viruses that represent a significant threat to public health at a global level. While the formation of alphaviral nucleocapsid cores, consisting of cargo nucleic acid and the viral capsid protein, is an essential molecular process of infection, the precise interactions between the two partners are ill-defined. A CLIP-seq approach was used to screen for candidate sites of interaction between the viral Capsid protein and genomic RNA of Sindbis virus (SINV), a model alphavirus. The data presented in this report indicates that the SINV capsid protein binds to specific viral RNA sequences in the cytoplasm of infected cells, but its interaction with genomic RNA in mature extracellular viral particles is largely non-specific in terms of nucleotide sequence. Mutational analyses of the cytoplasmic viral RNA-capsid interaction sites revealed a functional role for capsid binding early in infection. Interaction site mutants exhibited decreased viral growth kinetics; however, this defect was not a function of decreased particle production. Rather mutation of the cytoplasmic capsid-RNA interaction sites negatively affected the functional capacity of the incoming viral genomic RNAs leading to decreased infectivity. Furthermore, cytoplasmic capsid interaction site mutants are attenuated in a murine model of neurotropic alphavirus infection. Collectively, the findings of this study indicate that the identified cytoplasmic interactions of the viral capsid protein and genomic RNA, while not essential for particle formation, are necessary for genomic RNA function early during infection. This previously unappreciated role of capsid protein during the alphaviral replication cycle also constitutes a novel virulence determinant. Alphaviruses can cause significant disease in infected individuals; however, our understanding of the molecular interactions that enable infection and contribute to the development of disease is limited. The work detailed in this manuscript characterizes the interaction of a viral RNA-binding protein, Capsid, with the viral genomic RNA. Importantly, these interactions were found to be at specific sites on the genome but not essential for virus assembly. Mutation of the capsid / RNA interaction sites decreased the replication of the virus and the severity of disease in a mouse model of infection. Taken together, these findings identify a previously undiscovered determinant of disease severity, and provide a potential basis for the development of new vaccines.
Collapse
Affiliation(s)
- Kevin J. Sokoloski
- Department of Microbiology and Immunology, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville KY, United States of America
| | - Lauren M. Nease
- Department of Biology, College of Arts and Sciences, Indiana University, Bloomington IN, United States of America
| | - Nicholas A. May
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Natasha N. Gebhart
- Department of Biology, College of Arts and Sciences, Indiana University, Bloomington IN, United States of America
| | - Claire E. Jones
- Department of Microbiology and Immunology, and the Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville KY, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Richard W. Hardy
- Department of Biology, College of Arts and Sciences, Indiana University, Bloomington IN, United States of America
- * E-mail:
| |
Collapse
|
19
|
Trobaugh DW, Klimstra WB. Alphaviruses suppress host immunity by preventing myeloid cell replication and antagonizing innate immune responses. Curr Opin Virol 2017; 23:30-34. [PMID: 28288385 DOI: 10.1016/j.coviro.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Alphaviruses are medically important mosquito-borne viruses that cause a range of diseases in humans from febrile illness to arthritis or encephalitis. The innate immune response functions to suppress virus replication through upregulation of antiviral molecules and contributes to development of the adaptive immune response. Myeloid cells act as master regulators of virus infection by initiating both the innate and adaptive immune responses. Alphaviruses are capable of antagonizing individual components of these responses to increase replicative fitness in vivo. However, recently, studies have demonstrated that some alphaviruses avoid myeloid cell replication altogether to achieve a similar effect. In this review, we summarize how alphaviruses evade myeloid cell infection and individual inductive mechanisms, thereby limiting the activation of the innate immune response.
Collapse
Affiliation(s)
- Derek W Trobaugh
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - William B Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
20
|
Sindbis Virus Can Exploit a Host Antiviral Protein To Evade Immune Surveillance. J Virol 2016; 90:10247-10258. [PMID: 27581990 DOI: 10.1128/jvi.01487-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/29/2016] [Indexed: 01/01/2023] Open
Abstract
Viral infection induces production of type I interferons (IFNs), which stimulate the expression of a variety of antiviral factors to inhibit viral replication. To establish effective infection, viruses need to develop strategies to evade the immune responses. A neurovirulent Sindbis virus strain with neuroinvasive properties (SVNI) causes lethal encephalitis in mice, and its replication in cultured cells is inhibited by the zinc finger antiviral protein (ZAP), a host factor that specifically inhibits the replication of certain viruses by binding to the viral mRNAs, repressing the translation of target mRNA, and promoting the degradation of target mRNA. We report here that murine embryonic fibroblast cells from ZAP knockout mice supported more efficient SVNI replication than wild-type cells. SVNI infection of 10-day-old suckling mice led to reduced survival in the knockout mice. Unexpectedly, however, SVNI infection of 23-day-old weanling mice, whose immune system is more developed than that of the suckling mice, resulted in significantly improved survival in ZAP knockout mice. Further analyses revealed that in the weanling knockout mice, SVNI replicated more efficiently in lymphoid tissues at early times postinfection and induced higher levels of IFN production, which restricted viral spread to the central nervous system. Blocking IFN activity through the use of receptor-neutralizing antibodies rendered knockout mice more sensitive to SVNI infection than wild-type mice. These results uncover a mechanism by which SVNI exploits a host antiviral factor to evade innate immune surveillance. IMPORTANCE Sindbis virus, a prototypic member of the Alphavirus genus, has been used to study the pathogenesis of acute viral encephalitis in mice for many years. How the virus evades immune surveillance to establish effective infection is largely unknown. ZAP is a host antiviral factor that potently inhibits Sindbis virus replication in cell culture. We show here that infection of ZAP knockout suckling mice with an SVNI led to faster disease progression. However, SVNI infection of weanling mice led to slower disease progression in knockout mice. Further analyses revealed that in weanling knockout mice, SVNI replicated more efficiently in lymphoid tissues at early times postinfection and induced higher levels of interferon production, which restricted viral spread to the central nervous system. These results uncover a mechanism by which SVNI exploits a host antiviral factor to evade innate immune surveillance and allow enhanced neuroinvasion.
Collapse
|
21
|
Bhalla N, Sun C, Metthew Lam LK, Gardner CL, Ryman KD, Klimstra WB. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus. Virology 2016; 496:147-165. [PMID: 27318152 PMCID: PMC5821108 DOI: 10.1016/j.virol.2016.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus.
Collapse
Affiliation(s)
- Nishank Bhalla
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - L K Metthew Lam
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christina L Gardner
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kate D Ryman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
22
|
Akhrymuk I, Frolov I, Frolova EI. Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode. Virology 2015; 487:230-41. [PMID: 26550947 DOI: 10.1016/j.virol.2015.09.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 01/27/2023]
Abstract
Alphaviruses are a family of positive-strand RNA viruses that circulate on all continents between mosquito vectors and vertebrate hosts. Despite a significant public health threat, their biology is not sufficiently investigated, and the mechanisms of alphavirus replication and virus-host interaction are insufficiently understood. In this study, we have applied a variety of experimental systems to further understand the mechanism by which infected cells detect replicating alphaviruses. Our new data strongly suggest that activation of the antiviral response by alphavirus-infected cells is determined by the integrity of viral genes encoding proteins with nuclear functions, and by the presence of two cellular pattern recognition receptors (PRRs), RIG-I and MDA5. No type I IFN response is induced in their absence. The presence of either of these PRRs is sufficient for detecting virus replication. However, type I IFN activation in response to pathogenic alphaviruses depends on the basal levels of RIG-I or MDA5.
Collapse
Affiliation(s)
- Ivan Akhrymuk
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Ilya Frolov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA
| | - Elena I Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| |
Collapse
|
23
|
Cross-species comparative analysis of Dicer proteins during Sindbis virus infection. Sci Rep 2015; 5:10693. [PMID: 26024431 PMCID: PMC4448662 DOI: 10.1038/srep10693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/22/2015] [Indexed: 12/25/2022] Open
Abstract
In plants and invertebrates RNA silencing is a major defense mechanism against virus infections. The first event in RNA silencing is dicing of long double stranded RNAs into small interfering RNAs (siRNAs). The Dicer proteins involved in this process are phylogenetically conserved and have the same domain organization. Accordingly, the production of viral derived siRNAs has also been observed in the mouse, but only in restricted cell types. To gain insight on this restriction, we compare the dicing activity of human Dicer and fly Dicer-2 in the context of Sindbis virus (SINV) infection. Expression of human Dicer in flies inefficiently rescues the production of viral siRNAs but confers some protection against SINV. Conversely, expression of Dicer-2 in human cells allows the production of viral 21 nt small RNAs. However, this does not confer resistance to viral infection, but on the contrary results in stronger accumulation of viral RNA. We further show that Dicer-2 expression in human cells perturbs interferon (IFN) signaling pathways and antagonizes protein kinase R (PKR)-mediated antiviral immunity. Overall, our data suggest that a functional incompatibility between the Dicer and IFN pathways explains the predominance of the IFN response in mammalian somatic cells.
Collapse
|
24
|
Abstract
Antiviral immunity is initiated upon host recognition of viral products via non-self molecular patterns known as pathogen-associated molecular patterns (PAMPs). Such recognition initiates signaling cascades that induce intracellular innate immune defenses and an inflammatory response that facilitates development of the acquired immune response. The retinoic acid-inducible gene I (RIG-I) and the RIG-I-like receptor (RLR) protein family are key cytoplasmic pathogen recognition receptors that are implicated in the recognition of viruses across genera and virus families, including functioning as major sensors of RNA viruses, and promoting recognition of some DNA viruses. RIG-I, the charter member of the RLR family, is activated upon binding to PAMP RNA. Activated RIG-I signals by interacting with the adapter protein MAVS leading to a signaling cascade that activates the transcription factors IRF3 and NF-κB. These actions induce the expression of antiviral gene products and the production of type I and III interferons that lead to an antiviral state in the infected cell and surrounding tissue. RIG-I signaling is essential for the control of infection by many RNA viruses. Recently, RIG-I crosstalk with other pathogen recognition receptors and components of the inflammasome has been described. In this review, we discuss the current knowledge regarding the role of RIG-I in recognition of a variety of virus families and its role in programming the adaptive immune response through cross-talk with parallel arms of the innate immune system, including how RIG-I can be leveraged for antiviral therapy.
Collapse
Affiliation(s)
- Alison M Kell
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
25
|
Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A 2014; 111:E4504-12. [PMID: 25288727 DOI: 10.1073/pnas.1408759111] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy is a growing treatment modality that uses replicating viruses as selective antineoplastic agents. Safety and efficacy considerations dictate that an ideal oncolytic agent would discriminate between normal and cancer cells on the basis of common genetic abnormalities in human cancers. Here, we identify a naturally occurring alphavirus (M1) as a novel selective killer targeting zinc-finger antiviral protein (ZAP)-deficient cancer cells. In vitro, in vivo, and ex vivo studies showed potent oncolytic efficacy and high tumor tropism of M1. We showed that the selectivity depends on ZAP deficiency by systematic identification. A large-scale multicenter pathology study using tissue microarrays reveals that ZAP is commonly deficient in human cancers, suggesting extensive application prospects for M1. Additionally, M1 killed cancer cells by inducing endoplasmic reticulum stress-mediated apoptosis. Our report provides novel insights into potentially personalized cancer therapy using oncolytic viruses.
Collapse
|
26
|
Voss K, Amaya M, Mueller C, Roberts B, Kehn-Hall K, Bailey C, Petricoin E, Narayanan A. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells. Virology 2014; 468-470:490-503. [PMID: 25261871 PMCID: PMC7127730 DOI: 10.1016/j.virol.2014.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/31/2014] [Accepted: 09/06/2014] [Indexed: 01/13/2023]
Abstract
New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. VEEV infection activated multiple components of the ERK signaling cascade. Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. Activation of ERK by Ceramide C6 increased infectious titers of TC-83. Ag-126 inhibited virulent strains of all New World alphaviruses. Ag-126 treatment increased percent survival of infected cells.
Collapse
Affiliation(s)
- Kelsey Voss
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA
| | - Moushimi Amaya
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA, USA
| | - Brian Roberts
- Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA
| | - Charles Bailey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA, USA.
| |
Collapse
|
27
|
Zajakina A, Vasilevska J, Zhulenkovs D, Skrastina D, Spaks A, Plotniece A, Kozlovska T. High efficiency of alphaviral gene transfer in combination with 5-fluorouracil in a mouse mammary tumor model. BMC Cancer 2014; 14:460. [PMID: 24950740 PMCID: PMC4077127 DOI: 10.1186/1471-2407-14-460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/17/2014] [Indexed: 11/17/2022] Open
Abstract
Background The combination of virotherapy and chemotherapy may enable efficient tumor regression that would be unachievable using either therapy alone. In this study, we investigated the efficiency of transgene delivery and the cytotoxic effects of alphaviral vector in combination with 5-fluorouracil (5-FU) in a mouse mammary tumor model (4 T1). Methods Replication-deficient Semliki Forest virus (SFV) vectors carrying genes encoding fluorescent proteins were used to infect 4 T1 cell cultures treated with different doses of 5-FU. The efficiency of infection was monitored via fluorescence microscopy and quantified by fluorometry. The cytotoxicity of the combined treatment with 5-FU and alphaviral vector was measured using an MTT-based cell viability assay. In vivo experiments were performed in a subcutaneous 4 T1 mouse mammary tumor model with different 5-FU doses and an SFV vector encoding firefly luciferase. Results Infection of 4 T1 cells with SFV prior to 5-FU treatment did not produce a synergistic anti-proliferative effect. An alternative treatment strategy, in which 5-FU was used prior to virus infection, strongly inhibited SFV expression. Nevertheless, in vivo experiments showed a significant enhancement in SFV-driven transgene (luciferase) expression upon intratumoral and intraperitoneal vector administration in 4 T1 tumor-bearing mice pretreated with 5-FU: here, we observed a positive correlation between 5-FU dose and the level of luciferase expression. Conclusions Although 5-FU inhibited SFV-mediated transgene expression in 4 T1 cells in vitro, application of the drug in a mouse model revealed a significant enhancement of intratumoral transgene synthesis compared with 5-FU untreated mice. These results may have implications for efficient transgene delivery and the development of potent cancer treatment strategies using alphaviral vectors and 5-FU.
Collapse
Affiliation(s)
- Anna Zajakina
- Department of Cell Biology, Biomedical Research and Study Centre, Ratsupites Str,, 1, Riga LV-1067, Latvia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Small RNA analysis in Sindbis virus infected human HEK293 cells. PLoS One 2013; 8:e84070. [PMID: 24391886 PMCID: PMC3877139 DOI: 10.1371/journal.pone.0084070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/12/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION In contrast to the defence mechanism of RNA interference (RNAi) in plants and invertebrates, its role in the innate response to virus infection of mammals is a matter of debate. Since RNAi has a well-established role in controlling infection of the alphavirus Sindbis virus (SINV) in insects, we have used this virus to investigate the role of RNAi in SINV infection of human cells. RESULTS SINV AR339 and TR339-GFP were adapted to grow in HEK293 cells. Deep sequencing of small RNAs (sRNAs) early in SINV infection (4 and 6 hpi) showed low abundance (0.8%) of viral sRNAs (vsRNAs), with no size, sequence or location specific patterns characteristic of Dicer products nor did they possess any discernible pattern to ascribe to a specific RNAi biogenesis pathway. This was supported by multiple variants for each sequence, and lack of hot spots along the viral genome sequence. The abundance of the best defined vsRNAs was below the limit of Northern blot detection. The adaptation of the virus to HEK293 cells showed little sequence changes compared to the reference; however, a SNP in E1 gene with a preference from G to C was found. Deep sequencing results showed little variation of expression of cellular microRNAs (miRNAs) at 4 and 6 hpi compared to uninfected cells. Twelve miRNAs exhibiting some minor differential expression by sequencing, showed no difference in expression by Northern blot analysis. CONCLUSIONS We show that, unlike SINV infection of invertebrates, generation of Dicer-dependent svRNAs and change in expression of cellular miRNAs were not detected as part of the Human response to SINV.
Collapse
|
29
|
Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease. J Virol 2013; 88:2035-46. [PMID: 24307590 DOI: 10.1128/jvi.02990-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Engineered alphavirus vectors expressing reporters of infection have been used for a number of years due to their relatively low costs for analysis of virus replication and the capacity to utilize imaging systems for longitudinal measurements of growth within single animals. In general, these vectors have been derived from Old World alphaviruses using a second viral subgenomic promoter to express the transgenes, placed either immediately after the nonstructural proteins or at the 3' end of the viral coding sequences. However, the relevance of these vectors to natural infections is questionable, as they have not been rigorously tested for virulence in vivo in comparison with parental viruses or for the retention of the reporter during replication. Here, we report construction of new expression vectors for two Old World arthritogenic alphaviruses (Sindbis and Chikungunya viruses) and two New World encephalitic alphaviruses (eastern and Venezuelan equine encephalitis viruses) based upon either fusion of the reporter protein in frame within nonstructural protein 3 (nsP3) or insertion of the reporter as a cleavable element between the capsid and PE2 structural proteins. We have compared these with a traditional 3' double subgenomic promoter virus expressing either a large, firefly luciferase (fLuc; 1,650 nucleotides), or small, NanoLuc (nLuc; 513 nucleotides), luminescent reporter protein. Results indicate that the nLuc is substantially more stable than fLuc during repeated rounds of infection regardless of the transgene location. However, the capsid-PE2 insertion and nsP3 fusion viruses exhibit the most authentic mimicking of parental virus infection regardless of expressed protein. IMPORTANCE As more antiviral therapeutics and vaccines are developed, rapid and accurate in vivo modeling of their efficacy will be required. However, current alphavirus vectors expressing reporters of infection have not been extensively tested for accurate mimicking of the infection characteristics of unmodified parental viruses. Additionally, use of in vivo imaging systems detecting light emitted from luciferase reporters can significantly decrease costs associated with efficacy studies by minimizing numbers of animals. Herein we report development and testing of new expression vectors for Sindbis, Chikungunya, and eastern and Venezuelan equine encephalitis viruses and demonstrate that a small (∼500-nucleotide) reporter gene (NanoLuc; Promega) is very stable and causes a disease severity similar to that caused by unmodified parental viruses. In contrast, expression of larger reporters is very rapidly lost with virus replication and can be significantly attenuating. The utility of NanoLuc for in vivo imaging is also demonstrated.
Collapse
|
30
|
Nikonov A, Mölder T, Sikut R, Kiiver K, Männik A, Toots U, Lulla A, Lulla V, Utt A, Merits A, Ustav M. RIG-I and MDA-5 detection of viral RNA-dependent RNA polymerase activity restricts positive-strand RNA virus replication. PLoS Pathog 2013; 9:e1003610. [PMID: 24039580 PMCID: PMC3764220 DOI: 10.1371/journal.ppat.1003610] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/25/2013] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFN) are important for antiviral responses. Melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-induced gene I (RIG-I) proteins detect cytosolic double-stranded RNA (dsRNA) or 5'-triphosphate (5'-ppp) RNA and mediate IFN production. Cytosolic 5'-ppp RNA and dsRNA are generated during viral RNA replication and transcription by viral RNA replicases [RNA-dependent RNA polymerases (RdRp)]. Here, we show that the Semliki Forest virus (SFV) RNA replicase can induce IFN-β independently of viral RNA replication and transcription. The SFV replicase converts host cell RNA into 5'-ppp dsRNA and induces IFN-β through the RIG-I and MDA-5 pathways. Inactivation of the SFV replicase RdRp activity prevents IFN-β induction. These IFN-inducing modified host cell RNAs are abundantly produced during both wild-type SFV and its non-pathogenic mutant infection. Furthermore, in contrast to the wild-type SFV replicase a non-pathogenic mutant replicase triggers increased IFN-β production, which leads to a shutdown of virus replication. These results suggest that host cells can restrict RNA virus replication by detecting the products of unspecific viral replicase RdRp activity.
Collapse
Affiliation(s)
- Andrei Nikonov
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Tarmo Mölder
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
- FIT Biotech Oy, Tartu, Estonia
| | | | - Kaja Kiiver
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Andres Männik
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Urve Toots
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Aleksei Lulla
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Valeria Lulla
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Age Utt
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
- FIT Biotech Oy, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
31
|
Molecular mechanisms involved in the pathogenesis of alphavirus-induced arthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:973516. [PMID: 24069610 PMCID: PMC3771267 DOI: 10.1155/2013/973516] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/22/2013] [Indexed: 11/17/2022]
Abstract
Arthritogenic alphaviruses, including Ross River virus (RRV), Chikungunya virus (CHIKV), Sindbis virus (SINV), Mayaro virus (MAYV), O'nyong-nyong virus (ONNV), and Barmah Forest virus (BFV), cause incapacitating and long lasting articular disease/myalgia. Outbreaks of viral arthritis and the global distribution of these diseases point to the emergence of arthritogenic alphaviruses as an important public health problem. This review discusses the molecular mechanisms involved in alphavirus-induced arthritis, exploring the recent data obtained with in vitro systems and in vivo studies using animal models and samples from patients. The factors associated to the extension and persistence of symptoms are highlighted, focusing on (a) virus replication in target cells, and tissues, including macrophages and muscle cells; (b) the inflammatory and immune responses with recruitment and activation of macrophage, NK cells and T lymphocytes to the lesion focus and the increase of inflammatory mediators levels; and (c) the persistence of virus or viral products in joint and muscle tissues. We also discuss the importance of the establishment of novel animal models to test new molecular targets and to develop more efficient and selective drugs to treat these diseases.
Collapse
|
32
|
Seymour RL, Rossi SL, Bergren NA, Plante KS, Weaver SC. The role of innate versus adaptive immune responses in a mouse model of O'nyong-nyong virus infection. Am J Trop Med Hyg 2013; 88:1170-9. [PMID: 23568285 PMCID: PMC3752819 DOI: 10.4269/ajtmh.12-0674] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/01/2013] [Indexed: 01/04/2023] Open
Abstract
O'nyong-nyong virus (ONNV), an alphavirus closely related to chikungunya virus (CHIKV), has caused three major epidemics in Africa since 1959. Both ONNV and CHIKV produce similar syndromes with fever, rash, and debilitating arthralgia. To determine the roles of the innate and adaptive immune responses, we infected different knockout mice with two strains of ONNV (SG650 and MP30). Wild-type, RAG1 KO, and IFNγR KO mice showed no signs of illness or viremia. The STAT1 KO and A129 mice exhibited 50-55% mortality when infected with SG650. Strain SG650 was more virulent in the STAT1 KO and A129 than MP30. Deficiency in interferon α/β signaling (A129 and STAT1 KO) leaves mice susceptible to lethal disease; whereas a deficiency of interferon γ signaling alone had no effect on survival. Our findings highlight the importance of type I interferon in protection against ONNV infection, whereas the adaptive immune system is relatively unimportant in the acute infection.
Collapse
Affiliation(s)
- Robert L Seymour
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The innate immune system uses multiple strategies to detect viral infections. Because all viruses rely on host cells for their synthesis and propagation, the molecular features used to detect viral infections must be unique to viruses and absent from host cells. Research in the past decade has advanced our understanding of various cell-intrinsic and cell-extrinsic modes of virus recognition. This review examines the innate recognition from the point of view of virus invasion and replication strategies, and places innate sensors in the context of detecting viral genome, replication intermediate, transcriptional by-product, and other viral invasion strategies. On the basis of other unique features common to viral infections, undiscovered areas of virus detection are discussed.
Collapse
Affiliation(s)
- Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
34
|
Neurotropic arboviruses induce interferon regulatory factor 3-mediated neuronal responses that are cytoprotective, interferon independent, and inhibited by Western equine encephalitis virus capsid. J Virol 2012. [PMID: 23192868 DOI: 10.1128/jvi.02858-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cell-intrinsic innate immune responses mediated by the transcription factor interferon regulatory factor 3 (IRF-3) are often vital for early pathogen control, and effective responses in neurons may be crucial to prevent the irreversible loss of these critical central nervous system cells after infection with neurotropic pathogens. To investigate this hypothesis, we used targeted molecular and genetic approaches with cultured neurons to study cell-intrinsic host defense pathways primarily using the neurotropic alphavirus western equine encephalitis virus (WEEV). We found that WEEV activated IRF-3-mediated neuronal innate immune pathways in a replication-dependent manner, and abrogation of IRF-3 function enhanced virus-mediated injury by WEEV and the unrelated flavivirus St. Louis encephalitis virus. Furthermore, IRF-3-dependent neuronal protection from virus-mediated cytopathology occurred independently of autocrine or paracrine type I interferon activity. Despite being partially controlled by IRF-3-dependent signals, WEEV also disrupted antiviral responses by inhibiting pattern recognition receptor pathways. This antagonist activity was mapped to the WEEV capsid gene, which disrupted signal transduction downstream of IRF-3 activation and was independent of capsid-mediated inhibition of host macromolecular synthesis. Overall, these results indicate that innate immune pathways have important cytoprotective activity in neurons and contribute to limiting injury associated with infection by neurotropic arboviruses.
Collapse
|
35
|
An attenuating mutation in a neurovirulent Sindbis virus strain interacts with the IPS-1 signaling pathway in vivo. Virology 2012; 435:269-80. [PMID: 23084425 DOI: 10.1016/j.virol.2012.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/27/2012] [Accepted: 09/13/2012] [Indexed: 12/24/2022]
Abstract
The AR86 strain of Sindbis virus causes lethal neurologic disease in adult mice. Previous studies have identified a virulence determinant at nonstructural protein (nsP) 1 position 538 that regulates neurovirulence, modulates clearance from the CNS, and interferes with the type I interferon pathway. The studies herein demonstrate that in the absence of type I interferon signaling, the attenuated mutant exhibited equivalent virulence to S300 virus. Furthermore, both S300 and nsP1 T538I viruses displayed similar neurovirulence and replication kinetics in IPS-1-/- mice. TRIF dependent signaling played a modest role in protecting against disease by both S300 and nsP1 T538I, but did not contribute to control of nsP1 T538I replication within the CNS, while MyD88 played no role in the disease process. These results indicate that the control of the nsP1 T538I mutant virus is largely mediated by IPS-1-dependent RLR signaling, with TRIF-dependent TLR signaling also contributing to protection from virus-induced neurologic disease.
Collapse
|
36
|
Neighbours LM, Long K, Whitmore AC, Heise MT. Myd88-dependent toll-like receptor 7 signaling mediates protection from severe Ross River virus-induced disease in mice. J Virol 2012; 86:10675-85. [PMID: 22837203 PMCID: PMC3457316 DOI: 10.1128/jvi.00601-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
Abstract
Arthralgia-associated alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), pose significant public health threats because of their ability to cause explosive outbreaks of debilitating arthralgia and myalgia in human populations. Although the host inflammatory response is known to contribute to the pathogenesis of alphavirus-induced arthritis and myositis, the role that Toll-like receptors (TLRs), which are major regulators of host antiviral and inflammatory responses, play in the pathogenesis of alphavirus-induced arthritis and myositis has not been extensively studied. Using a mouse model of RRV-induced myositis/arthritis, we found that myeloid differentiation primary response gene 88 (Myd88)-dependent TLR7 signaling is involved in protection from severe RRV-associated disease. Infections of Myd88- and TLR7-deficient mouse strains with RRV revealed that both Myd88 and TLR7 significantly contributed to protection from RRV-induced mortality, and both mouse strains exhibited more severe tissue damage than wild-type (WT) mice following RRV infection. While viral loads were unchanged in either Myd88 or TLR7 knockout mice compared to WT mice at early times postinfection, both Myd88 and TLR7 knockout mice exhibited higher viral loads than WT mice at late times postinfection. Furthermore, while high levels of RRV-specific antibody were produced in TLR7-deficient mice, this antibody had very little neutralizing activity and had lower affinity than WT antibody. Additionally, TLR7- and Myd88-deficient mice showed defects in germinal center activity, suggesting that TLR7-dependent signaling is critical for the development of protective antibody responses against RRV.
Collapse
Affiliation(s)
- Lauren M. Neighbours
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kristin Long
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan C. Whitmore
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark T. Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Vaccine Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Li YG, Siripanyaphinyo U, Tumkosit U, Noranate N, A-Nuegoonpipat A, Pan Y, Kameoka M, Kurosu T, Ikuta K, Takeda N, Anantapreecha S. Poly (I:C), an agonist of toll-like receptor-3, inhibits replication of the Chikungunya virus in BEAS-2B cells. Virol J 2012; 9:114. [PMID: 22698190 PMCID: PMC3490739 DOI: 10.1186/1743-422x-9-114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 06/01/2012] [Indexed: 11/29/2022] Open
Abstract
Background Double-stranded RNA (dsRNA) and its mimic, polyinosinic acid: polycytidylic acid [Poly (I:C)], are recognized by toll-like receptor 3 (TLR3) and induce interferon (IFN)-β in many cell types. Poly (I:C) is the most potent IFN inducer. In in vivo mouse studies, intraperitoneal injection of Poly (I:C) elicited IFN-α/β production and natural killer (NK) cells activation. The TLR3 pathway is suggested to contribute to innate immune responses against many viruses, including influenza virus, respiratory syncytial virus, herpes simplex virus 2, and murine cytomegalovirus. In Chikungunya virus (CHIKV) infection, the viruses are cleared within 7–10 days postinfection before adaptive immune responses emerge. The innate immune response is important for CHIKV clearance. Results The effects of Poly (I:C) on the replication of CHIKV in human bronchial epithelial cells, BEAS-2B, were studied. Poly (I:C) suppressed cytopathic effects (CPE) induced by CHIKV infection in BEAS-2B cells in the presence of Poly (I:C) and inhibited the replication of CHIKV in the cells. The virus titers of Poly (I:C)-treated cells were much lower compared with those of untreated cells. CHIKV infection and Poly (I:C) treatment of BEAS-2B cells induced the production of IFN-β and increased the expression of anti-viral genes, including IFN-α, IFN-β, MxA, and OAS. Both Poly (I:C) and CHIKV infection upregulate the expression of TLR3 in BEAS-2B cells. Conclusions CHIKV is sensitive to innate immune response induced by Poly (I:C). The inhibition of CHIKV replication by Poly (I:C) may be through the induction of TLR3, which triggers the production of IFNs and other anti-viral genes. The innate immune response is important to clear CHIKV in infected cells.
Collapse
Affiliation(s)
- Yong-Gang Li
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Clavarino G, Cláudio N, Couderc T, Dalet A, Judith D, Camosseto V, Schmidt EK, Wenger T, Lecuit M, Gatti E, Pierre P. Induction of GADD34 is necessary for dsRNA-dependent interferon-β production and participates in the control of Chikungunya virus infection. PLoS Pathog 2012; 8:e1002708. [PMID: 22615568 PMCID: PMC3355096 DOI: 10.1371/journal.ppat.1002708] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 04/03/2012] [Indexed: 01/08/2023] Open
Abstract
Nucleic acid sensing by cells is a key feature of antiviral responses, which generally result in type-I Interferon production and tissue protection. However, detection of double-stranded RNAs in virus-infected cells promotes two concomitant and apparently conflicting events. The dsRNA-dependent protein kinase (PKR) phosphorylates translation initiation factor 2-alpha (eIF2α) and inhibits protein synthesis, whereas cytosolic DExD/H box RNA helicases induce expression of type I-IFN and other cytokines. We demonstrate that the phosphatase-1 cofactor, growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), an important component of the unfolded protein response (UPR), is absolutely required for type I-IFN and IL-6 production by mouse embryonic fibroblasts (MEFs) in response to dsRNA. GADD34 expression in MEFs is dependent on PKR activation, linking cytosolic microbial sensing with the ATF4 branch of the UPR. The importance of this link for anti-viral immunity is underlined by the extreme susceptibility of GADD34-deficient fibroblasts and neonate mice to Chikungunya virus infection. Nucleic acids detection by multiple molecular sensors results in type-I interferon production, which protects cells and tissues from viral infections. At the intracellular level, the detection of double-stranded RNA by one of these sensors, the dsRNA-dependent protein kinase also leads to the profound inhibition of protein synthesis. We describe here that the inducible phosphatase 1 co-factor Ppp1r15a/GADD34, a well known player in the endoplasmic reticulum unfolded protein response (UPR), is activated during double-stranded RNA detection and is absolutely necessary to allow cytokine production in cells exposed to poly I:C or Chikungunya virus. Our data shows that the cellular response to nucleic acids can reveal unanticipated connections between innate immunity and fundamental stress pathways, such as the ATF4 branch of the UPR.
Collapse
Affiliation(s)
- Giovanna Clavarino
- Centre d'Immunologie de Marseille-Luminy, UM2, Aix-Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR 7280, Marseille, France
| | - Nuno Cláudio
- Centre d'Immunologie de Marseille-Luminy, UM2, Aix-Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR 7280, Marseille, France
| | - Thérèse Couderc
- Institut Pasteur, ‘Microbes and host barriers’ Group, Paris, France
- Inserm, Equipe avenir U604, Paris, France
| | - Alexandre Dalet
- Centre d'Immunologie de Marseille-Luminy, UM2, Aix-Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR 7280, Marseille, France
| | - Delphine Judith
- Institut Pasteur, ‘Microbes and host barriers’ Group, Paris, France
- Inserm, Equipe avenir U604, Paris, France
| | - Voahirana Camosseto
- Centre d'Immunologie de Marseille-Luminy, UM2, Aix-Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR 7280, Marseille, France
| | - Enrico K. Schmidt
- Centre d'Immunologie de Marseille-Luminy, UM2, Aix-Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR 7280, Marseille, France
| | - Till Wenger
- Centre d'Immunologie de Marseille-Luminy, UM2, Aix-Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR 7280, Marseille, France
| | - Marc Lecuit
- Institut Pasteur, ‘Microbes and host barriers’ Group, Paris, France
- Inserm, Equipe avenir U604, Paris, France
- Université Paris Descartes, Hôpital Necker-Enfants malades, Service des Maladies Infectieuses et Tropicales, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, UM2, Aix-Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR 7280, Marseille, France
- * E-mail: (EG) (EG); (PP) (PP)
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, UM2, Aix-Marseille Université, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR 7280, Marseille, France
- * E-mail: (EG) (EG); (PP) (PP)
| |
Collapse
|
39
|
Abstract
Alphaviruses are a group of important human and animal pathogens. They efficiently replicate to high titers in vivo and in many commonly used cell lines of vertebrate origin. They have also evolved effective means of interfering with development of the innate immune response. Nevertheless, most of the alphaviruses are known to induce a type I interferon (IFN) response in vivo. The results of this study demonstrate that the first hours postinfection play a critical role in infection spread and development of the antiviral response. During this window, a balance is struck between virus replication and spread in vertebrate cells and IFN response development. The most important findings are as follows: (i) within the first 2 to 4 h postinfection, alphavirus-infected cells become unable to respond to IFN-β, and this occurs before the virus-induced decrease in STAT1 phosphorylation in response to IFN treatment. (ii) Most importantly, very low, subprotective doses of IFN-β, which do not induce the antiviral response in uninfected cells, have a very strong stimulatory effect on the cells' ability to express type I IFN and activate interferon-stimulated genes during subsequent infection with Sindbis virus (SINV). (iii) Small changes in SINV nsP2 protein affect its ability to inhibit cellular transcription and IFN release. Thus, the balance between type I IFN induction and the ability of the virus to develop further rounds of infection is determined in the first few hours of virus replication, when only low numbers of cells and infectious virus are involved.
Collapse
|
40
|
Gardner CL, Burke CW, Higgs ST, Klimstra WB, Ryman KD. Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate. Virology 2012; 425:103-12. [PMID: 22305131 DOI: 10.1016/j.virol.2011.12.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/12/2011] [Accepted: 12/31/2011] [Indexed: 11/29/2022]
Abstract
In humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthralgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent.
Collapse
Affiliation(s)
- Christina L Gardner
- Center for Vaccine Research and Dept. of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
41
|
Leung LW, Park MS, Martinez O, Valmas C, López CB, Basler CF. Ebolavirus VP35 suppresses IFN production from conventional but not plasmacytoid dendritic cells. Immunol Cell Biol 2011; 89:792-802. [PMID: 21263462 PMCID: PMC4148147 DOI: 10.1038/icb.2010.169] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ebolaviruses naturally infect a wide variety of cells including macrophages and dendritic cells (DCs), and the resulting cytokine and interferon-α/β (IFN) responses of infected cells are thought to influence viral pathogenesis. The VP35 protein impairs RIG-I-like receptor-dependent signaling to inhibit IFN production, and this function has been suggested to promote the ineffective host immune response characteristic of ebolavirus infection. To assess the impact of VP35 on innate immunity in biologically relevant primary cells, we used a recombinant Newcastle disease virus encoding VP35 (NDV/VP35) to infect macrophages and conventional DCs, which primarily respond to RNA virus infection via RIG-I-like pathways. VP35 suppressed not only IFN but also tumor necrosis factor (TNF)-α secretion, which are normally produced from these cells upon NDV infection. Additionally, in cells susceptible to the activity of VP35, IRF7 activation is impaired. In contrast, NDV/VP35 infection of plasmacytoid DCs, which activate IRF7 and produce IFN through TLR-dependent signaling, leads to robust IFN production. When plasmacytoid DCs deficient for TLR signaling were infected, NDV/VP35 was able to inhibit IFN production. Consistent with this, VP35 was less able to inhibit TLR-dependent versus RIG-I-dependent signaling in vitro. These data demonstrate that ebolavirus VP35 suppresses both IFN and cytokine production in multiple primary human cell types. However, cells that utilize the TLR pathway can circumvent this inhibition, suggesting that the presence of multiple viral sensors enables the host to overcome viral immune evasion mechanisms.
Collapse
Affiliation(s)
- Lawrence W. Leung
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Man-Seong Park
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Osvaldo Martinez
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Charalampos Valmas
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Carolina B. López
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Christopher F. Basler
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| |
Collapse
|
42
|
Dhanushkodi NR, Mohankumar V, Raju R. Sindbis virus induced phosphorylation of IRF3 in human embryonic kidney cells is not dependent on mTOR. Innate Immun 2011; 18:325-32. [PMID: 21768204 DOI: 10.1177/1753425911406944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) plays critical roles in immunity. We previously showed that infection of human embryonic kidney (HEK) cells with Sindbis virus (SIN), an enveloped RNA alphavirus, profoundly suppresses Akt/mTOR signaling, and host translation late during infection. To understand how SIN mediated suppression of mTOR affects innate response, we analyzed phosphorylation of interferon regulatory factor 3 (IRF3) and expression of two antiviral genes. Here we show strong phosphorylation of IRF3, and an increase in mRNA levels for antiviral genes interferon stimulated gene (ISG)56 and interferon gamma inducible protein (IP)-10 when intracellular viral RNA levels are high during late infection. The mTOR inhibitors rapamycin and torin1 do not block, but mildly upregulate these responses. Even after prolonged treatment with Ly294002, the PI3K inhibitor only partially blocks SIN induced phosphorylation of IRF3. While Ly294002 treatment downregulated the SIN induced expression of ISG56 mRNA levels, it had no effect on SIN induced upregulation of IP-10 expression. These results point to SIN replication-mediated activation of IRF3, independent of mTOR function, when host protein synthesis is severely suppressed by virus infection.
Collapse
Affiliation(s)
- Nisha R Dhanushkodi
- Department of Microbiology and Immunology, Meharry Medical College, School of Medicine, Nashville, Tennessee, USA
| | | | | |
Collapse
|
43
|
Hollidge BS, Weiss SR, Soldan SS. The role of interferon antagonist, non-structural proteins in the pathogenesis and emergence of arboviruses. Viruses 2011; 3:629-58. [PMID: 21994750 PMCID: PMC3185780 DOI: 10.3390/v3060629] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/04/2011] [Accepted: 05/07/2011] [Indexed: 12/24/2022] Open
Abstract
A myriad of factors favor the emergence and re-emergence of arthropod-borne viruses (arboviruses), including migration, climate change, intensified livestock production, an increasing volume of international trade and transportation, and changes to ecosystems (e.g., deforestation and loss of biodiversity). Consequently, arboviruses are distributed worldwide and represent over 30% of all emerging infectious diseases identified in the past decade. Although some arboviral infections go undetected or are associated with mild, flu-like symptoms, many are important human and veterinary pathogens causing serious illnesses such as arthritis, gastroenteritis, encephalitis and hemorrhagic fever and devastating economic loss as a consequence of lost productivity and high mortality rates among livestock. One of the most consistent molecular features of emerging arboviruses, in addition to their near exclusive use of RNA genomes, is the inclusion of viral, non-structural proteins that act as interferon antagonists. In this review, we describe these interferon antagonists and common strategies that arboviruses use to counter the host innate immune response. In addition, we discuss the complex interplay between host factors and viral determinants that are associated with virus emergence and re-emergence, and identify potential targets for vaccine and anti-viral therapies.
Collapse
Affiliation(s)
- Bradley S. Hollidge
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; E-Mail:
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; E-Mail:
| | - Samantha S. Soldan
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-215-898-3502; Fax: +1-215-573-2029
| |
Collapse
|
44
|
Myskiw C, Arsenio J, Booy EP, Hammett C, Deschambault Y, Gibson SB, Cao J. RNA species generated in vaccinia virus infected cells activate cell type-specific MDA5 or RIG-I dependent interferon gene transcription and PKR dependent apoptosis. Virology 2011; 413:183-93. [PMID: 21354589 DOI: 10.1016/j.virol.2011.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/08/2011] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
RNA species produced during virus replication are pathogen-associated molecular patterns (PAMPs) triggering cellular innate immune responses including induction of type I interferon expression and apoptosis. Pattern recognition receptors (PRRs) for these RNAs include the retinoic acid-inducible gene I (RIG-I) like receptors (RLRs) RIG-I and melanoma differentiation associated gene 5 (MDA5) and the dsRNA dependent protein kinase (PKR). Currently, poxvirus PAMPs and their associated PRRs are not well characterized. We report that RNA species generated in vaccinia infected cells can activate MDA5 or RIG-I dependent interferon-β (IFN-β) gene transcription in a cell type-specific manner. These RNA species also induce the activation of apoptosis in a PKR dependent, but MDA5 and RIG-I independent, manner. Collectively our results demonstrate that RNA species generated during vaccinia virus replication are major PAMPs activating apoptosis and IFN-β gene transcription. Moreover, our results delineate the signaling pathways involved in the recognition of RNA-based poxvirus PAMPs.
Collapse
Affiliation(s)
- Chad Myskiw
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada R3T 2N2
| | | | | | | | | | | | | |
Collapse
|
45
|
Design of chimeric alphaviruses with a programmed, attenuated, cell type-restricted phenotype. J Virol 2011; 85:4363-76. [PMID: 21345954 DOI: 10.1128/jvi.00065-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Alphavirus genus in the Togaviridae family contains a number of human and animal pathogens. The importance of alphaviruses has been strongly underappreciated; however, epidemics of chikungunya virus (CHIKV), causing millions of cases of severe and often persistent arthritis in the Indian subcontinent, have raised their profile in recent years. In spite of a continuous public health threat, to date no licensed vaccines have been developed for alphavirus infections. In this study, we have applied an accumulated knowledge about the mechanism of alphavirus replication and protein function in virus-host interactions to introduce a new approach in designing attenuated alphaviruses. These variants were constructed from genes derived from different, geographically isolated viruses. The resulting viable variants encoded CHIKV envelope and, in contrast to naturally circulating viruses, lacked the important contributors to viral pathogenesis: genes encoding proteins functioning in inhibition of cellular transcription and downregulation of the cellular antiviral response. To make these viruses incapable of transmission by mosquito vectors and to differentially regulate expression of viral structural proteins, their replication was made dependent on the internal ribosome entry sites, derived from other positive-polarity RNA (RNA(+)) viruses. The rational design of the genomes was complemented by selection procedures, which adapted viruses to replication in tissue culture and produced variants which (i) demonstrated different levels of replication and production of the individual structural proteins, (ii) efficiently induced the antiviral response in infected cells, (iii) were incapable of replication in cells of mosquito origin, and (iv) efficiently replicated in Vero cells. This modular approach to genome design is applicable for the construction of other alphaviruses with a programmed, irreversibly attenuated phenotype.
Collapse
|
46
|
Domingo-Gil E, Toribio R, Nájera JL, Esteban M, Ventoso I. Diversity in viral anti-PKR mechanisms: a remarkable case of evolutionary convergence. PLoS One 2011; 6:e16711. [PMID: 21311764 PMCID: PMC3032782 DOI: 10.1371/journal.pone.0016711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/11/2011] [Indexed: 12/22/2022] Open
Abstract
Most viruses express during infection products that prevent or neutralize the effect of the host dsRNA activated protein kinase (PKR). Translation of Sindbis virus (SINV) mRNA escapes to PKR activation and eIF2 phosphorylation in infected cells by a mechanism that requires a stem loop structure in viral 26S mRNA termed DLP to initiate translation in the absence of functional eIF2. Unlike the rest of viruses tested, we found that Alphavirus infection allowed a strong PKR activation and eIF2α phosphorylation in vitro and in infected animals so that the presence of DLP structure in mRNA was critical for translation and replication of SINV. Interestingly, infection of MEFs with some viruses that express PKR inhibitors prevented eIF2α phosphorylation after superinfection with SINV, suggesting that viral anti-PKR mechanisms could be exchangeable. Thus, translation of SINV mutant lacking the DLP structure (ΔDLP) in 26S mRNA was partially rescued in cells expressing vaccinia virus (VV) E3 protein, a known inhibitor of PKR. This case of heterotypic complementation among evolutionary distant viruses confirmed experimentally a remarkable case of convergent evolution in viral anti-PKR mechanisms. Our data reinforce the critical role of PKR in regulating virus-host interaction and reveal the versatility of viruses to find different solutions to solve the same conflict.
Collapse
Affiliation(s)
- Elena Domingo-Gil
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - René Toribio
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - José Luis Nájera
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Mariano Esteban
- Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Iván Ventoso
- Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Chikungunya virus induces IPS-1-dependent innate immune activation and protein kinase R-independent translational shutoff. J Virol 2010; 85:606-20. [PMID: 20962078 DOI: 10.1128/jvi.00767-10] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic mosquito-transmitted alphavirus that is undergoing reemergence in areas around the Indian Ocean. Despite the current and potential danger posed by this virus, we know surprisingly little about the induction and evasion of CHIKV-associated antiviral immune responses. With this in mind we investigated innate immune reactions to CHIKV in human fibroblasts, a demonstrable in vivo target of virus replication and spread. We show that CHIKV infection leads to activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent transcription of IRF3-dependent antiviral genes, including beta interferon (IFN-β). IRF3 activation occurs by way of a virus-induced innate immune signaling pathway that includes the adaptor molecule interferon promoter stimulator 1 (IPS-1). Despite strong transcriptional upregulation of these genes, however, translation of the corresponding proteins is not observed. We further demonstrate that translation of cellular (but not viral) genes is blocked during infection and that although CHIKV is found to trigger inactivation of the translational molecule eukaryotic initiation factor subunit 2α by way of the double-stranded RNA sensor protein kinase R, this response is not required for the block to protein synthesis. Furthermore, overall diminution of cellular RNA synthesis is also observed in the presence of CHIKV and transcription of IRF3-dependent antiviral genes appears specifically blocked late in infection. We hypothesize that the observed absence of IFN-β and antiviral proteins during infection results from an evasion mechanism exhibited by CHIKV that is dependent on widespread shutoff of cellular protein synthesis and a targeted block to late synthesis of antiviral mRNA transcripts.
Collapse
|
48
|
Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol 2010; 84:10877-87. [PMID: 20686047 DOI: 10.1128/jvi.00949-10] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging human pathogen transmitted by mosquitoes. Like that of other alphaviruses, CHIKV replication causes general host shutoff, leading to severe cytopathicity in mammalian cells, and inhibits the ability of infected cells to respond to interferon (IFN). Recent research, however, suggests that alphaviruses may have additional mechanisms to circumvent the host's antiviral IFN response. Here we show that CHIKV replication is resistant to inhibition by interferon once RNA replication has been established and that CHIKV actively suppresses the antiviral IFN response by preventing IFN-induced gene expression. Both CHIKV infection and CHIKV replicon RNA replication efficiently blocked STAT1 phosphorylation and/or nuclear translocation in mammalian cells induced by either type I or type II IFN. Expression of individual CHIKV nonstructural proteins (nsPs) showed that nsP2 was a potent inhibitor of IFN-induced JAK-STAT signaling. In addition, mutations in CHIKV-nsP2 (P718S) and Sindbis virus (SINV)-nsP2 (P726S) that render alphavirus replicons noncytopathic significantly reduced JAK-STAT inhibition. This host shutoff-independent inhibition of IFN signaling by CHIKV is likely to have an important role in viral pathogenesis.
Collapse
|
49
|
Logue CH, Phillips AT, Mossel EC, Ledermann JP, Welte T, Dow SW, Olson KE, Powers AM. Treatment with cationic liposome-DNA complexes (CLDCs) protects mice from lethal Western equine encephalitis virus (WEEV) challenge. Antiviral Res 2010; 87:195-203. [PMID: 20452378 PMCID: PMC3568752 DOI: 10.1016/j.antiviral.2010.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 12/28/2022]
Abstract
Having recently characterized a CD-1 outbred mouse model of pathogenesis for Western equine encephalitis virus, we examined the possible protective effects of cationic liposome-DNA complexes (CLDCs) against encephalitic arboviral infection. In this investigation, mice were pre-treated, co-treated, or post-treated with CLDC then challenged with a subcutaneous or aerosol dose of the highly virulent WEEV-McMillan strain, lethal in mice 4-5 days after inoculation. Pre-treatment with CLDCs provided a significant protective effect in mice, which was reflected in significantly increased survival rates. Further, in some instances a therapeutic effect of CLDC administration up to 12h after WEEV challenge was observed. Mice treated with CLDC had significantly increased serum IFN-gamma, TNF-alpha, and IL-12, suggesting a strong Th1-biased antiviral activation of the innate immune system. In virus-infected animals, large increases in production of IFN-gamma, TNF-alpha, MCP-1, IL-12, and IL-10 in the brain were observed by 72h after infection, consistent with neuroinvasion and viral replication in the CNS. These results indicate that strong non-specific activation of innate immunity with an immune therapeutic such as CLDC is capable of eliciting significant protective immunity against a rapidly lethal strain of WEEV and suggest a possible prophylactic option for exposed individuals.
Collapse
Affiliation(s)
- Christopher H. Logue
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control, Fort Collins, CO 80521, USA
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Aaron T. Phillips
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric C. Mossel
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control, Fort Collins, CO 80521, USA
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeremy P. Ledermann
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control, Fort Collins, CO 80521, USA
| | - Thomas Welte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Steve W. Dow
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ken E. Olson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ann M. Powers
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control, Fort Collins, CO 80521, USA
| |
Collapse
|
50
|
Her Z, Malleret B, Chan M, Ong EKS, Wong SC, Kwek DJC, Tolou H, Lin RTP, Tambyah PA, Rénia L, Ng LFP. Active infection of human blood monocytes by Chikungunya virus triggers an innate immune response. THE JOURNAL OF IMMUNOLOGY 2010; 184:5903-13. [PMID: 20404274 DOI: 10.4049/jimmunol.0904181] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chikungunya virus (CHIKV) is an alphavirus that causes chronic and incapacitating arthralgia in humans. To date, interactions between the immune system and the different stages of the virus life cycle remain poorly defined. We demonstrated for the first time that CHIKV Ags could be detected in vivo in the monocytes of acutely infected patients. Using in vitro experimental systems, whole blood and purified monocytes, we confirmed that monocytes could be infected and virus growth could be sustained. CHIKV interactions with monocytes, and with other blood leukocytes, induced a robust and rapid innate immune response with the production of specific chemokines and cytokines. In particular, high levels of IFN-alpha were produced rapidly after CHIKV incubation with monocytes. The identification of monocytes during the early phase of CHIKV infection in vivo is significant as infected monocyte/macrophage cells have been detected in the synovial tissues of chronically CHIKV-infected patients, and these cells may behave as the vehicles for virus dissemination. This may explain the persistence of joint symptoms despite the short duration of viremia. Our results provide a better understanding on the basic mechanisms of infection and early antiviral immune responses and will help in the development of future effective control strategies.
Collapse
Affiliation(s)
- Zhisheng Her
- Singapore Immunology Network, Agency for Science, Technology and Research, Biopolis, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|