1
|
El-Heneidy A, Grimwood K, Lambert SB, Ware RS. Interference Between Enteric Viruses and Live-Attenuated Rotavirus Vaccine Virus in a Healthy Australian Birth Cohort. J Infect Dis 2023; 228:851-856. [PMID: 37014728 PMCID: PMC10547457 DOI: 10.1093/infdis/jiad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/11/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Rotavirus vaccines have reduced effectiveness in high-mortality settings. Interference between enteric viruses and live-attenuated oral vaccine strains may be a factor. METHODS In a birth cohort of healthy Australian infants, parents collected weekly stool samples. Three hundred eighty-one paired swabs collected within 10-days of RotaTeq vaccination from 140 infants were tested for 10 enteric viruses and RotaTeq strains. RESULTS Collectively, both ribonucleic acid and deoxyribonucleic acid viruses were negatively associated with RotaTeq shedding (adjusted odds ratio = 0.29, 95% confidence interval = 0.14-0.58 and adjusted odds ratio = 0.30, 95% confidence interval = 0.11-0.78, respectively). CONCLUSIONS Enteric viruses may interfere with RotaTeq replication in the gut and thus RotaTeq stool shedding.
Collapse
Affiliation(s)
- Asmaa El-Heneidy
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, Australia
| | - Stephen B Lambert
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Australia
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, Sydney, Australia
| | - Robert S Ware
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
2
|
Wang G, Zhao RQ, Xiang-Tang, Ren L, Zhang YF, Ding H, Li Y, Wang YN, Li S, Zhang LY, Liu EM, Xu HM, Zhang XA, Liu W. Age specific spectrum of etiological pathogens for viral diarrhea among children in twelve consecutive winter-spring seasons (2009-2021) in China. J Med Virol 2022; 94:3840-3846. [PMID: 35441419 PMCID: PMC9324210 DOI: 10.1002/jmv.27790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022]
Abstract
Viral diarrhea is one of the leading causes of morbidity and mortality in children. This study was conducted to disclose the etiological cause and epidemiological features of viral diarrhea among children in China. From 2009 to 2021, active surveillance was performed on pediatric patients with acute diarrhea and tested for five enteric viruses. Positive detection was determined in 65.56% (3325/5072) patients and an age‐specific infection pattern was observed. A significantly higher positive rate was observed in 12–23‐month‐old children for rotavirus (47.46%) and adenovirus (7.06%), while a significantly higher positive rate was observed for norovirus (37.62%) in 6–11‐month‐old patients, and for astrovirus (11.60%) and sapovirus (10.79%) in 24–47‐month‐old patients. A higher positive rate of rotavirus in girls and norovirus in boys was observed only among 6–11 months of patients. We also observed more norovirus among patients from rural areas in the 0–5‐ and 36–47‐month groups and more rotavirus among those from rural areas in the 12–23‐month group. Diarrhea severity was greater for rotavirus in the 6–23‐month group and norovirus in the 6–11‐month group. Coinfections were observed in 29.26% (973/3325) of positive patients, and were most frequently observed between rotavirus and others (89.31%). Our findings could help the prediction, prevention, and potential therapeutic approaches to viral diarrhea in children.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Rui-Qiu Zhao
- Children's Hospital of Chongqing Medical University, Chongqing, P. R China
| | - Xiang-Tang
- Children's Hospital of Chongqing Medical University, Chongqing, P. R China
| | - Luo Ren
- Children's Hospital of Chongqing Medical University, Chongqing, P. R China
| | - Yun-Fa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Heng Ding
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yu-Na Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Shuang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ling Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - En-Mei Liu
- Children's Hospital of Chongqing Medical University, Chongqing, P. R China
| | - Hong-Mei Xu
- Children's Hospital of Chongqing Medical University, Chongqing, P. R China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.,School of Public Health, Peking University, Beijing, P. R. China
| |
Collapse
|
3
|
Doerksen T, Christensen T, Lu A, Noll L, Bai J, Henningson J, Palinski R. Assessment of Porcine Rotavirus-associated virome variations in pigs with enteric disease. Vet Microbiol 2022; 270:109447. [PMID: 35561657 DOI: 10.1016/j.vetmic.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
|
4
|
Kim AH, Armah G, Dennis F, Wang L, Rodgers R, Droit L, Baldridge MT, Handley SA, Harris VC. Enteric virome negatively affects seroconversion following oral rotavirus vaccination in a longitudinally sampled cohort of Ghanaian infants. Cell Host Microbe 2021; 30:110-123.e5. [PMID: 34932985 PMCID: PMC8763403 DOI: 10.1016/j.chom.2021.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023]
Abstract
Rotavirus vaccines (RVVs) have substantially diminished mortality from severe rotavirus (RV) gastroenteritis but are significantly less effective in low- and middle-income countries (LMICs), limiting their life-saving potential. The etiology of RVV’s diminished effectiveness remains incompletely understood, but the enteric microbiota has been implicated in modulating immunity to RVVs. Here, we analyze the enteric microbiota in a longitudinal cohort of 122 Ghanaian infants, evaluated over the course of 3 Rotarix vaccinations between 6 and 15 weeks of age, to assess whether bacterial and viral populations are distinct between non-seroconverted and seroconverted infants. We identify bacterial taxa including Streptococcus and a poorly classified taxon in Enterobacteriaceae as positively correlating with seroconversion. In contrast, both bacteriophage diversity and detection of Enterovirus B and multiple novel cosaviruses are negatively associated with RVV seroconversion. These findings suggest that virome-RVV interference is an underappreciated cause of poor vaccine performance in LMICs. Longitudinal analysis of microbiota of Ghanaian infants receiving rotavirus vaccine Streptococcus and Enterobacteriaceae taxa positively associate with RVV seroconversion Enterovirus B, Cosavirus A, and phage richness negatively associate with RVV serostatus
Collapse
|
5
|
Bruland T, Østvik AE, Sandvik AK, Hansen MD. Host-Viral Interactions in the Pathogenesis of Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms221910851. [PMID: 34639191 PMCID: PMC8509287 DOI: 10.3390/ijms221910851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis is characterized by relapsing and remitting colonic mucosal inflammation. During the early stages of viral infection, innate immune defenses are activated, leading to the rapid release of cytokines and the subsequent initiation of downstream responses including inflammation. Previously, intestinal viruses were thought to be either detrimental or neutral to the host. However, persisting viruses may have a role as resident commensals and confer protective immunity during inflammation. On the other hand, the dysregulation of gut mucosal immune responses to viruses can trigger excessive, pathogenic inflammation. The purpose of this review is to discuss virus-induced innate immune responses that are at play in ulcerative colitis.
Collapse
Affiliation(s)
- Torunn Bruland
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Marianne Doré Hansen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway; (T.B.); (A.E.Ø.); (A.K.S.)
- Department of Medical Microbiology, Clinic of Laboratory Medicine, St. Olav’s University Hospital, 7030 Trondheim, Norway
- Correspondence:
| |
Collapse
|
6
|
Rotavirus A infection in pre- and post-vaccine period: Risk factors, genotypes distribution by vaccination status and age of children in Nampula Province, Northern Mozambique (2015-2019). PLoS One 2021; 16:e0255720. [PMID: 34358275 PMCID: PMC8345880 DOI: 10.1371/journal.pone.0255720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 07/22/2021] [Indexed: 02/03/2023] Open
Abstract
Mozambique introduced the monovalent rotavirus vaccine (Rotarix®, GSK Biologicals, Rixensart, Belgium) in September 2015. Previous analysis, showed that Nampula province continues reporting a high frequency of Rotavirus A (RVA) infection and the emergence of G9P[6], G9P[4] and G3P[4] genotypes. This analysis aimed to determine the RVA frequency; risk factors; genotype distribution by vaccination status and age between pre- and post-vaccine periods in children under-five years old with diarrhea in Nampula. A cross-sectional, hospital-based surveillance study was conducted in the Hospital Central de Nampula in Mozambique. Socio-demographic and clinical data were collected to assess factors related to RVA infection in both periods. Stool specimens were screened to detect RVA by ELISA, and positive samples were genotyped. Between 2015 (pre-vaccine period) and 2016–2019 (post-vaccine period), 614 stool specimens were collected and tested for RVA in which 34.9% (67/192) were positive in pre-vaccine period and 21.8% (92/422) in post-vaccine (p = 0.001). In the post-vaccine period, age, year, and contact with different animal species (chicken, duck, or multiple animals) were associated with RVA infection. RVA infection was higher in children partially vaccinated (40.7%, 11/27) followed by the fully vaccinated (29.3%, 56/191) and the unvaccinated (15.3%, 21/137) (p = 0.002). G1P[8] and G9P[4] were common in vaccinated children less than 12 months. The present analysis showed that RVA infection reduced slightly in the post-vaccine period, with a high proportion of infection and genotype diversity in children, under 12 months of age, vaccinated. Further research on factors associated with RVA infection on vaccinated compared to unvaccinated children and vaccination optimization should be done.
Collapse
|
7
|
Ghapoutsa RN, Boda M, Gautam R, Ndze VN, Mugyia AE, Etoa FX, Bowen MD, Esona MD. Detection of diarrhoea associated rotavirus and co-infection with diarrhoeagenic pathogens in the Littoral region of Cameroon using ELISA, RT-PCR and Luminex xTAG GPP assays. BMC Infect Dis 2021; 21:614. [PMID: 34182936 PMCID: PMC8237514 DOI: 10.1186/s12879-021-06318-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background Despite the global roll-out of rotavirus vaccines (RotaTeq/Rotarix / ROTAVAC/Rotasiil), mortality and morbidity due to group A rotavirus (RVA) remains high in sub-Saharan Africa, causing 104,000 deaths and 600,000 hospitalizations yearly. In Cameroon, Rotarix™ was introduced in March 2014, but, routine laboratory diagnosis of rotavirus infection is not yet a common practice, and vaccine effectiveness studies to determine the impact of vaccine introduction have not been done. Thus, studies examining RVA prevalence post vaccine introduction are needed. The study aim was to determine RVA prevalence in severe diarrhoea cases in Littoral region, Cameroon and investigate the role of other diarrheagenic pathogens in RVA-positive cases. Methods We carried out a study among hospitalized children < 5 years of age, presenting with acute gastroenteritis in selected hospitals of the Littoral region of Cameroon, from May 2015 to April 2016. Diarrheic stool samples and socio-demographic data including immunization and breastfeeding status were collected from these participating children. Samples were screened by ELISA (ProSpecT™ Rotavirus) for detection of RVA antigen and by gel-based RT-PCR for detection of the VP6 gene. Co-infection was assessed by multiplexed molecular detection of diarrheal pathogens using the Luminex xTAG GPP assay. Results The ELISA assay detected RVA antigen in 54.6% (71/130) of specimens, with 45, positive by VP6 RT-PCR and 54, positive using Luminex xTAG GPP. Luminex GPP was able to detect all 45 VP6 RT-PCR positive samples. Co-infections were found in 63.0% (34/54) of Luminex positive RVA infections, with Shigella (35.3%; 12/34) and ETEC (29.4%; 10/34) detected frequently. Of the 71 ELISA positive RVA cases, 57.8% (41/71) were fully vaccinated, receiving two doses of Rotarix. Conclusion This study provides insight on RVA prevalence in Cameroon, which could be useful for post-vaccine epidemiological studies, highlights higher than expected RVA prevalence in vaccinated children hospitalized for diarrhoea and provides the trend of RVA co-infection with other enteric pathogens. RVA genotyping is needed to determine circulating rotavirus genotypes in Cameroon, including those causing disease in vaccinated children.
Collapse
Affiliation(s)
- Rahinatou N Ghapoutsa
- Department of Biochemistry, Faculty of Science, The University of Yaoundé 1, Yaoundé, Cameroon
| | - Maurice Boda
- Department of Microbiology, Faculty of Science, The University of Yaoundé 1, Yaoundé, Cameroon.
| | - Rashi Gautam
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | | | - Akongnwi E Mugyia
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Francois-Xavier Etoa
- Department of Microbiology, Faculty of Science, The University of Yaoundé 1, Yaoundé, Cameroon
| | - Michael D Bowen
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| | - Mathew D Esona
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Diseases Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Li Y, Handley SA, Baldridge MT. The dark side of the gut: Virome-host interactions in intestinal homeostasis and disease. J Exp Med 2021; 218:e20201044. [PMID: 33760921 PMCID: PMC8006857 DOI: 10.1084/jem.20201044] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
The diverse enteric viral communities that infect microbes and the animal host collectively constitute the gut virome. Although recent advances in sequencing and analysis of metaviromes have revealed the complexity of the virome and facilitated discovery of new viruses, our understanding of the enteric virome is still incomplete. Recent studies have uncovered how virome-host interactions can contribute to beneficial or detrimental outcomes for the host. Understanding the complex interactions between enteric viruses and the intestinal immune system is a prerequisite for elucidating their role in intestinal diseases. In this review, we provide an overview of the enteric virome composition and summarize recent findings about how enteric viruses are sensed by and, in turn, modulate host immune responses during homeostasis and disease.
Collapse
Affiliation(s)
- Yuhao Li
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Scott A. Handley
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
9
|
Wang LP, Zhou SX, Wang X, Lu QB, Shi LS, Ren X, Zhang HY, Wang YF, Lin SH, Zhang CH, Geng MJ, Zhang XA, Li J, Zhao SW, Yi ZG, Chen X, Yang ZS, Meng L, Wang XH, Liu YL, Cui AL, Lai SJ, Liu MY, Zhu YL, Xu WB, Chen Y, Wu JG, Yuan ZH, Li MF, Huang LY, Li ZJ, Liu W, Fang LQ, Jing HQ, Hay SI, Gao GF, Yang WZ. Etiological, epidemiological, and clinical features of acute diarrhea in China. Nat Commun 2021; 12:2464. [PMID: 33927201 PMCID: PMC8085116 DOI: 10.1038/s41467-021-22551-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
National-based prospective surveillance of all-age patients with acute diarrhea was conducted in China between 2009‒2018. Here we report the etiological, epidemiological, and clinical features of the 152,792 eligible patients enrolled in this analysis. Rotavirus A and norovirus are the two leading viral pathogens detected in the patients, followed by adenovirus and astrovirus. Diarrheagenic Escherichia coli and nontyphoidal Salmonella are the two leading bacterial pathogens, followed by Shigella and Vibrio parahaemolyticus. Patients aged <5 years had higher overall positive rate of viral pathogens, while bacterial pathogens were more common in patients aged 18‒45 years. A joinpoint analysis revealed the age-specific positivity rate and how this varied for individual pathogens. Our findings fill crucial gaps of how the distributions of enteropathogens change across China in patients with diarrhea. This allows enhanced identification of the predominant diarrheal pathogen candidates for diagnosis in clinical practice and more targeted application of prevention and control measures.
Collapse
Affiliation(s)
- Li-Ping Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shi-Xia Zhou
- Anhui Medical University, Hefei, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China
| | - Lu-Sha Shi
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiang Ren
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hai-Yang Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yi-Fei Wang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sheng-Hong Lin
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cui-Hong Zhang
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng-Jie Geng
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun Li
- Sun Yat-sen University, Guangzhou, China
| | - Shi-Wen Zhao
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Zhi-Gang Yi
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Xiao Chen
- Zhejiang University, Hangzhou, China
| | - Zuo-Sen Yang
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Lei Meng
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | - Xin-Hua Wang
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, China
| | | | - Ai-Li Cui
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Sheng-Jie Lai
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, UK.,Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, China
| | - Meng-Yang Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu-Liang Zhu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen-Bo Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Chen
- Zhejiang University, Hangzhou, China
| | | | | | | | - Liu-Yu Huang
- The Institute for Disease Prevention and Control of PLA, Beijing, China
| | - Zhong-Jie Li
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China. .,Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, China.
| | - Li-Qun Fang
- Anhui Medical University, Hefei, China. .,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | - Huai-Qi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Simon I Hay
- Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA.,Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - George F Gao
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Wei-Zhong Yang
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | | |
Collapse
|
10
|
Enteric Viral Co-Infections: Pathogenesis and Perspective. Viruses 2020; 12:v12080904. [PMID: 32824880 PMCID: PMC7472086 DOI: 10.3390/v12080904] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Enteric viral co-infections, infections involving more than one virus, have been reported for a diverse group of etiological agents, including rotavirus, norovirus, astrovirus, adenovirus, and enteroviruses. These pathogens are causative agents for acute gastroenteritis and diarrheal disease in immunocompetent and immunocompromised individuals of all ages globally. Despite virus–virus co-infection events in the intestine being increasingly detected, little is known about their impact on disease outcomes or human health. Here, we review what is currently known about the clinical prevalence of virus–virus co-infections and how co-infections may influence vaccine responses. While experimental investigations into enteric virus co-infections have been limited, we highlight in vivo and in vitro models with exciting potential to investigate viral co-infections. Many features of virus–virus co-infection mechanisms in the intestine remain unclear, and further research will be critical.
Collapse
|
11
|
Overview of the Development, Impacts, and Challenges of Live-Attenuated Oral Rotavirus Vaccines. Vaccines (Basel) 2020; 8:vaccines8030341. [PMID: 32604982 PMCID: PMC7565912 DOI: 10.3390/vaccines8030341] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Safety, efficacy, and cost-effectiveness are paramount to vaccine development. Following the isolation of rotavirus particles in 1969 and its evidence as an aetiology of severe dehydrating diarrhoea in infants and young children worldwide, the quest to find not only an acceptable and reliable but cost-effective vaccine has continued until now. Four live-attenuated oral rotavirus vaccines (LAORoVs) (Rotarix®, RotaTeq®, Rotavac®, and RotaSIIL®) have been developed and licensed to be used against all forms of rotavirus-associated infection. The efficacy of these vaccines is more obvious in the high-income countries (HIC) compared with the low- to middle-income countries (LMICs); however, the impact is far exceeding in the low-income countries (LICs). Despite the rotavirus vaccine efficacy and effectiveness, more than 90 countries (mostly Asia, America, and Europe) are yet to implement any of these vaccines. Implementation of these vaccines has continued to suffer a setback in these countries due to the vaccine cost, policy, discharging of strategic preventive measures, and infrastructures. This review reappraises the impacts and effectiveness of the current live-attenuated oral rotavirus vaccines from many representative countries of the globe. It examines the problems associated with the low efficacy of these vaccines and the way forward. Lastly, forefront efforts put forward to develop initial procedures for oral rotavirus vaccines were examined and re-connected to today vaccines.
Collapse
|
12
|
Buey B, Bellés A, Latorre E, Abad I, Pérez MD, Grasa L, Mesonero JE, Sánchez L. Comparative effect of bovine buttermilk, whey, and lactoferrin on the innate immunity receptors and oxidative status of intestinal epithelial cells. Biochem Cell Biol 2020; 99:54-60. [PMID: 32538128 DOI: 10.1139/bcb-2020-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Milk contains bioactive molecules with important functions as defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effects of lactoferrin, whey, and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. The mRNA expression levels of innate immune system Toll-like receptors (TLR2, TLR4, and TLR9), lipid peroxidation (malondialdehyde + 4-hydroxyalkenals) and protein expression levels of carbonyl were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 h with different concentrations of lactoferrin, whey, or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey reduced the oxidative stress induced by lipopolysaccharide. With respect to TLR receptors, lactoferrin, whey, and buttermilk specifically altered the expression of TLR2, TLR4, and TLR9 receptors, with a strong decrease in the expression levels of TLR4. These results suggest that lactoferrin, whey, and buttermilk are potentially interesting ingredients for functional foods because they seem to modulate oxidative stress and the inflammatory response induced by the activation of TLRs.
Collapse
Affiliation(s)
- Berta Buey
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Andrea Bellés
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Eva Latorre
- Departamento de Bioquímica y Biología Molecular y Celular. Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Inés Abad
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - María Dolores Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Grasa
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - José Emilio Mesonero
- Departamento de Farmacología y Fisiología, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
13
|
Babji S, Manickavasagam P, Chen YH, Jeyavelu N, Jose NV, Praharaj I, Syed C, Kaliappan SP, John J, Giri S, Venugopal S, Kampmann B, Parker EPK, Iturriza-Gómara M, Kang G, Grassly NC, Uhlig HH. Immune predictors of oral poliovirus vaccine immunogenicity among infants in South India. NPJ Vaccines 2020; 5:27. [PMID: 32218999 PMCID: PMC7089977 DOI: 10.1038/s41541-020-0178-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Identification of the causes of poor oral vaccine immunogenicity in low-income countries might lead to more effective vaccines. We measured mucosal and systemic immune parameters at the time of vaccination with oral poliovirus vaccine (OPV) in 292 Indian infants aged 6-11 months, including plasma cytokines, leukocyte counts, fecal biomarkers of environmental enteropathy and peripheral blood T-cell phenotype, focused on gut-homing regulatory CD4+ populations. We did not find a distinct immune phenotype associated with OPV immunogenicity, although viral pathogens were more prevalent in stool at the time of immunization among infants who failed to seroconvert (63.9% vs. 45.6%, p = 0.002). Using a machine-learning approach, we could predict seroconversion a priori using immune parameters and infection status with a median 58% accuracy (cross-validation IQR: 50-69%) compared with 50% expected by chance. Better identification of immune predictors of OPV immunogenicity is likely to require sampling of mucosal tissue and improved oral poliovirus infection models.
Collapse
Affiliation(s)
- Sudhir Babji
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | | | - Yin-Huai Chen
- Translational Gastroenterology Unit, Nuffield Department of Medicine, and Department of Paediatrics, University of Oxford, Oxford, OX3 9DU UK
| | - Nithya Jeyavelu
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | - Nisha Vincy Jose
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | - Ira Praharaj
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | - Chanduni Syed
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | | | - Jacob John
- Department of Community Health, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | - Sidhartha Giri
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | - Srinivasan Venugopal
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | - Beate Kampmann
- The Vaccine Centre, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | - Edward P. K. Parker
- The Vaccine Centre, London School of Hygiene and Tropical Medicine, London, WC1E 7HT UK
| | - Miren Iturriza-Gómara
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu 632004 India
| | - Nicholas C. Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG UK
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, and Department of Paediatrics, University of Oxford, Oxford, OX3 9DU UK
| |
Collapse
|
14
|
Church JA, Chasekwa B, Rukobo S, Govha M, Lee B, Carmolli MP, Ntozini R, Mutasa K, McNeal MM, Majo FD, Tavengwa NV, Kirkpatrick BD, Moulton LH, Humphrey JH, Prendergast AJ. Predictors of oral rotavirus vaccine immunogenicity in rural Zimbabwean infants. Vaccine 2020; 38:2870-2878. [PMID: 32088018 PMCID: PMC7065039 DOI: 10.1016/j.vaccine.2020.01.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Oral rotavirus vaccines (RVV) have poor immunogenicity in low-income countries, for reasons that remain unclear. This study identified the determinants of RVV immunogenicity among infants in rural Zimbabwe. METHODS Anti-rotavirus IgA titres were measured among a sub-group of infants enrolled in the Sanitation Hygiene Infant Nutrition Efficacy (SHINE) trial (NCT01824940). SHINE was a cluster-randomized trial of improved infant and young child feeding, and improved water, sanitation and hygiene (WASH) in two rural Zimbabwean districts. Infants received RVV as part of the national immunisation programme. Among HIV-unexposed infants in the non-WASH trial arms, we evaluated associations between potential risk factors (vaccine schedule and dose, maternal and infant nutritional status, infant diarrhoea, and household environment) and RVV immunogenicity (seroconversion, seropositivity and geometric mean titres) using multivariable regression. RESULTS Among 219 infants with seroconversion data, 43 (20%) successfully seroconverted and 176 (80%) failed to seroconvert to RVV. Seroconversion was positively associated with a higher length-for-age Z-score (LAZ) around the time of vaccination (adjusted RR 1.27 (95% CI 1.04, 1.55), P = 0.021), and negatively associated with concurrent OPV and RVV administration (adjusted RR 0.36 (0.19, 0.71), P = 0.003). Among 472 infants with post-vaccination titres, a higher LAZ score was associated with increased seropositivity (aRR 1.21 (95% CI 1.06, 1.38), P = 0.004), and higher birthweight was associated with increased IgA titres (0.45 (95%CI 0.18, 1.09) U/mL greater per 100 g gain in birthweight; P = 0.001). CONCLUSIONS Infant ponderal and linear growth were positively associated with RVV immunogenicity, while concurrent administration of OPV was negatively associated with RVV immunogenicity. Together, these findings suggest that improving foetal growth and separating RVV and OPV administration are plausible approaches to increasing RVV immunogenicity.
Collapse
Affiliation(s)
- James A Church
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, UK.
| | - Bernard Chasekwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Sandra Rukobo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Margaret Govha
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Benjamin Lee
- Vaccine Testing Center, Department of Pediatrics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Marya P Carmolli
- Vaccine Testing Center, Department of Microbiology & Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Monica M McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Florence D Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Naume V Tavengwa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology & Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Lawrence H Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jean H Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew J Prendergast
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe; Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, UK; Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
15
|
Enteropathogens and Rotavirus Vaccine Immunogenicity in a Cluster Randomized Trial of Improved Water, Sanitation and Hygiene in Rural Zimbabwe. Pediatr Infect Dis J 2019; 38:1242-1248. [PMID: 31738342 PMCID: PMC7205402 DOI: 10.1097/inf.0000000000002485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oral rotavirus vaccines (RVVs) are less efficacious in low-income versus high-income settings, plausibly due to more enteropathogen exposure through poor water, sanitation and hygiene (WASH). We explored associations between enteropathogens and RVV immunogenicity and evaluated the effect of improved WASH on enteropathogen carriage. METHODS We detected stool enteropathogens using quantitative molecular methods and measured anti-rotavirus immunoglobulin A by enzyme-linked immunosorbent assay in infants enrolled to a cluster randomized 2 × 2 factorial trial of improved WASH and improved infant feeding in Zimbabwe (NCT01824940). We used multivariable regression to explore associations between enteropathogens and RVV seroconversion, seropositivity and geometric mean titer. We evaluated effects of improved WASH on enteropathogen prevalence using linear and binomial regression models with generalized estimating equations. RESULTS Among 224 infants with enteropathogen and immunogenicity data, 107 (47.8%) had ≥1 pathogen and 39 (17.4%) had ≥2 pathogens detected at median age 41 days (interquartile range: 35-54). RVV seroconversion was low (23.7%). After adjusting for Sabin-poliovirus quantity, pan-enterovirus quantity was positively associated with RVV seroconversion (relative risk 1.61 per 10-fold increase in pan-enterovirus; 95% confidence interval: 1.35-1.91); in the same model, Sabin quantity was negatively associated with RVV seroconversion (relative risk: 0.76; 95% confidence interval: 0.60-0.96). There were otherwise no meaningful associations between individual or total pathogens (bacteria, viruses, parasites or all pathogens) and any measure of RVV immunogenicity. Enteropathogen detection did not differ between randomized WASH and non-WASH groups. CONCLUSIONS Enteropathogen infections were common around the time of rotavirus vaccination in rural Zimbabwean infants but did not explain poor RVV immunogenicity and were not reduced by a package of household-level WASH interventions.
Collapse
|
16
|
Antirotavirus IgA seroconversion rates in children who receive concomitant oral poliovirus vaccine: A secondary, pooled analysis of Phase II and III trial data from 33 countries. PLoS Med 2019; 16:e1003005. [PMID: 31887139 PMCID: PMC6936798 DOI: 10.1371/journal.pmed.1003005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Despite the success of rotavirus vaccines over the last decade, rotavirus remains a leading cause of severe diarrheal disease among young children. Further progress in reducing the burden of disease is inhibited, in part, by vaccine underperformance in certain settings. Early trials suggested that oral poliovirus vaccine (OPV), when administered concomitantly with rotavirus vaccine, reduces rotavirus seroconversion rates after the first rotavirus dose with modest or nonsignificant interference after completion of the full rotavirus vaccine course. Our study aimed to identify a range of individual-level characteristics, including concomitant receipt of OPV, that affect rotavirus vaccine immunogenicity in high- and low-child-mortality settings, controlling for individual- and country-level factors. Our central hypothesis was that OPV administered concomitantly with rotavirus vaccine reduced rotavirus vaccine immunogenicity. METHODS AND FINDINGS Pooled, individual-level data from GlaxoSmithKline's Phase II and III clinical trials of the monovalent rotavirus vaccine (RV1), Rotarix, were analyzed, including 7,280 vaccinated infants (5-17 weeks of age at first vaccine dose) from 22 trials and 33 countries/territories (5 countries/territories with high, 13 with moderately low, and 15 with very low child mortality). Two standard markers for immune response were examined including antirotavirus immunoglobulin A (IgA) seroconversion (defined as the appearance of serum antirotavirus IgA antibodies in subjects initially seronegative) and serum antirotavirus IgA titer, both collected approximately 4-12 weeks after administration of the last rotavirus vaccine dose. Mixed-effect logistic regression and mixed-effect linear regression of log-transformed data were used to identify individual- and country-level predictors of seroconversion (dichotomous) and antibody titer (continuous), respectively. Infants in high-child-mortality settings had lower odds of seroconverting compared with infants in low-child-mortality settings (odds ratio [OR] = 0.48, 95% confidence interval [CI] 0.43-0.53, p < 0.001). Similarly, among those who seroconverted, infants in high-child-mortality settings had lower IgA titers compared with infants in low-child-mortality settings (mean difference [β] = 0.83, 95% CI 0.77-0.90, p < 0.001). Infants who received OPV concomitantly with both their first and their second doses of rotavirus vaccine had 0.63 times the odds of seroconverting (OR = 0.63, 95% CI 0.47-0.84, p = 0.002) compared with infants who received OPV but not concomitantly with either dose. In contrast, among infants who seroconverted, OPV concomitantly administered with both the first and second rotavirus vaccine doses was found to be positively associated with antirotavirus IgA titer (β = 1.28, 95% CI 1.07-1.53, p = 0.009). Our findings may have some limitations in terms of generalizability to routine use of rotavirus vaccine because the analysis was limited to healthy infants receiving RV1 in clinical trial settings. CONCLUSIONS Our findings suggest that OPV given concomitantly with RV1 was a substantial contributor to reduced antirotavirus IgA seroconversion, and this interference was apparent after the second vaccine dose of RV1, as with the original clinical trials that our reanalysis is based on. However, our findings do suggest that the forthcoming withdrawal of OPV from the infant immunization schedule globally has the potential to improve RV1 performance.
Collapse
|
17
|
Seo SU, Kweon MN. Virome-host interactions in intestinal health and disease. Curr Opin Virol 2019; 37:63-71. [PMID: 31295677 DOI: 10.1016/j.coviro.2019.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
The enteric virome consists largely of bacteriophages and prophages related to commensal bacteria. Bacteriophages indirectly affect the host immune system by targeting their associated bacteria; however, studies suggest that bacteriophages also have distinct pathways that enable them to interact directly with the host. Eukaryotic viruses are less abundant than bacteriophages but are more efficient in the stimulation of host immune responses. Acute, permanent, and latent viral infections are detected by different types of pattern recognition receptors and induce host immune responses, including the antiviral type I interferon response. Understanding the complex interplay between commensal microorganisms and the host immune system is a prerequisite to elucidating their role in intestinal diseases.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, South Korea.
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
18
|
Church JA, Parker EP, Kirkpatrick BD, Grassly NC, Prendergast AJ. Interventions to improve oral vaccine performance: a systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2019; 19:203-214. [PMID: 30712836 PMCID: PMC6353819 DOI: 10.1016/s1473-3099(18)30602-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/06/2018] [Accepted: 09/21/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oral vaccines underperform in low-income and middle-income countries compared with in high-income countries. Whether interventions can improve oral vaccine performance is uncertain. METHODS We did a systematic review and meta-analysis of interventions designed to increase oral vaccine efficacy or immunogenicity. We searched Ovid-MEDLINE and Embase for trials published until Oct 23, 2017. Inclusion criteria for meta-analysis were two or more studies per intervention category and available seroconversion data. We did random-effects meta-analyses to produce summary relative risk (RR) estimates. This study is registered with PROSPERO (CRD42017060608). FINDINGS Of 2843 studies identified, 87 were eligible for qualitative synthesis and 66 for meta-analysis. 22 different interventions were assessed for oral poliovirus vaccine (OPV), oral rotavirus vaccine (RVV), oral cholera vaccine (OCV), and oral typhoid vaccines. There was generally high heterogeneity. Seroconversion to RVV was significantly increased by delaying the first RVV dose by 4 weeks (RR 1·37, 95% CI 1·16-1·62) and OPV seroconversion was increased with monovalent or bivalent OPV compared with trivalent OPV (RR 1·51, 95% CI 1·20-1·91). There was some evidence that separating RVV and OPV increased RVV seroconversion (RR 1·21, 95% CI 1·00-1·47) and that higher vaccine inoculum improved OCV seroconversion (RR 1·12, 95% CI 1·00-1·26). There was no evidence of effect for anthelmintics, antibiotics, probiotics, zinc, vitamin A, withholding breastfeeding, extra doses, or vaccine buffering. INTERPRETATION Most strategies did not improve oral vaccine performance. Delaying RVV and reducing OPV valence should be considered within immunisation programmes to reduce global enteric disease. New strategies to address the gap in oral vaccine efficacy are urgently required. FUNDING Wellcome Trust, Bill & Melinda Gates Foundation, UK Medical Research Council, and WHO Polio Research Committee.
Collapse
Affiliation(s)
- James A Church
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, UK; Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe.
| | - Edward P Parker
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, UK
| | - Beth D Kirkpatrick
- Department of Microbiology and Molecular Genetics, Vaccine Testing Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, UK
| | - Andrew J Prendergast
- Centre for Genomics & Child Health, Blizard Institute, Queen Mary University of London, London, UK; Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| |
Collapse
|
19
|
Lopman B, Dahl R, Shah M, Parashar UD. Timing of Birth as an Emergent Risk Factor for Rotavirus Hospitalization and Vaccine Performance in the Postvaccination Era in the United States. Am J Epidemiol 2018; 187:1745-1751. [PMID: 29546358 DOI: 10.1093/aje/kwy054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/08/2018] [Indexed: 11/12/2022] Open
Abstract
Rotavirus vaccines were introduced in the United States in 2006, and in the years since they have fundamentally altered the seasonality of rotavirus infection and have shifted disease outbreaks from annual epidemics to biennial epidemics. We investigated whether season and year of birth have emerged as risk factors for rotavirus or have affected vaccine performance. We constructed a retrospective birth cohort of US children under age 5 years using the 2001-2014 MarketScan database (Truven Health Analytics, Chicago, Illinois). We evaluated the associations of season of birth, even/odd year of birth, and interactions with vaccination. We fitted Cox proportional hazards models to estimate the hazard of rotavirus hospitalization according to calendar year of birth and season of birth assessed for interaction with vaccination. After the introduction of rotavirus vaccine, we observed monotonically decreasing rates of rotavirus hospitalization for each subsequent birth cohort but a biennial incidence pattern by calendar year. In the postvaccine period, children born in odd calendar years had a higher hazard of rotavirus hospitalization than those born in even years. Children born in winter had the highest hazard of hospitalization but also had greater vaccine effectiveness than children born in spring, summer, or fall. With the emergence of a strong biennial pattern of disease following vaccine introduction, the timing of a child's birth has become a risk factor for rotavirus infection.
Collapse
Affiliation(s)
- Benjamin Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Rebecca Dahl
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Minesh Shah
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh D Parashar
- Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
20
|
Shahrudin S, Chen C, David SC, Singleton EV, Davies J, Kirkwood CD, Hirst TR, Beard M, Alsharifi M. Gamma-irradiated rotavirus: A possible whole virus inactivated vaccine. PLoS One 2018; 13:e0198182. [PMID: 29879130 PMCID: PMC5991763 DOI: 10.1371/journal.pone.0198182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022] Open
Abstract
Rotavirus (RV) causes significant morbidity and mortality in developing countries, where children and infants are highly susceptible to severe disease symptoms. While live attenuated vaccines are available, reduced vaccine efficacy in developing countries illustrates the need for highly immunogenic alternative vaccines. Here, we studied the possible inactivation of RV using gamma(γ)-irradiation, and assessed the sterility and immunogenicity of γ-irradiated RV (γ-RV) as a novel vaccine candidate. Interestingly, the inactivation curve of RV did not show a log-linear regression following exposure to increased doses of γ-rays, and consequently the radiation dose required to achieve the internationally accepted Sterility Assurance Level could not be calculated. Nonetheless, we performed sterility testing based on serial passages of γ-RV, and our data clearly illustrate the lack of infectivity of γ-RV preparations irradiated with 50 kGy. In addition, we tested the immunogenicity of 50 kGy γ-RV in mice and our data illustrate the induction of strong RV-specific neutralising antibody responses following administration of γ-RV without using adjuvant. Therefore, whilst γ-RV may not constitute a replacement for current RV vaccines, this study represents a proof-of-concept that γ-irradiation can be applied to inactivate RV for vaccine purposes. Further investigation will be required to address whether γ-irradiation can be applied to improve safety and efficacy of existing live attenuated vaccines.
Collapse
Affiliation(s)
- Shabihah Shahrudin
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Cheng Chen
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Shannon C. David
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Eve V. Singleton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Carl D. Kirkwood
- Enteric Virus Group, Murdoch Childrens Research Institute, Parkville, VIC, Australia
| | - Timothy R. Hirst
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, Australia
| | - Michael Beard
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mohammed Alsharifi
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, Australia
- * E-mail:
| |
Collapse
|
21
|
Abstract
Rotavirus is the leading cause of diarrheal death among children < 5 years old worldwide, estimated to have caused ~ 215,000 deaths in 2013. Prior to rotavirus vaccine implementation, > 65% of children had at least one rotavirus diarrhea illness by 5 years of age and rotavirus accounted for > 40% of all-cause diarrhea hospitalizations globally. Two live, oral rotavirus vaccines have been implemented nationally in > 100 countries since 2006 and their use has substantially reduced the burden of severe diarrheal illness in all settings. Vaccine efficacy and effectiveness estimates suggest there is a gradient in vaccine performance between low child-mortality countries (> 90%) and medium and high child-mortality countries (57-75%). Additionally, an increased risk of intussusception (~ 1-6 per 100,000 vaccinated infants) following vaccination has been documented in some countries, but this is outweighed by the large benefits of vaccination. Two additional live, oral rotavirus vaccines were recently licensed and these have improved on some programmatic limitations of earlier vaccines, such as heat stability, cost, and cold-chain footprint. Non-replicating rotavirus vaccines that are parenterally administered are in clinical testing, and these have the potential to reduce the performance differential and safety concerns associated with live oral rotavirus vaccines.
Collapse
Affiliation(s)
- Eleanor Burnett
- CDC Foundation for Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA, 30329-4027, USA.
| | - Umesh Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacqueline Tate
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
22
|
Wang H, Liu M, Sugata K, Wang Y, Hull J, Foytich K, Jiang B. Development of a new enzyme immunoassay for improved detection of rotavirus in fecal specimens of vaccinated infants. J Clin Virol 2018; 99-100:44-49. [PMID: 29306770 DOI: 10.1016/j.jcv.2017.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Group A rotavirus is the most common cause of acute diarrhea in young children worldwide. A simple and rapid enzyme immunoassay (EIA) has been commonly used to detect rotavirus infection and evaluate rotavirus vaccines. Currently licensed commercial EIA kits have low sensitivity. A more sensitive detection of rotavirus can improve rotavirus diagnostics and vaccine efficacy studies. OBJECTIVE A biotin-avidin based sandwich EIA was developed and compared with commercial EIA kits for improved detection of viral shedding in fecal samples from infants who received human rotavirus vaccine Rotarix in Mexico. STUDY DESIGN A monoclonal antibody (mAb: 1D4) specific to human rotavirus group antigen VP6 was prepared and used to develop a biotin-avidin based sandwich EIA. This EIA was employed to test 128 fecal samples from vaccinated infants, in comparison with two commercial EIA kits using RT-PCR as a reference. RESULTS A new biotin-avidin based sandwich EIA showed specific reaction to group A rotaviruses, but not to other enteric viruses. This new EIA had a detection rate of 36.7% for rotavirus antigen shedding in fecal specimens, which was two times higher (16.4%, 18.0%) than those from two commercial EIA kits. CONCLUSION The new EIA had specificity and higher sensitivity than commercial kits. This new EIA has the potential to detect rotavirus at lower concentration in clinical specimens and thus should be further evaluated as a more sensitive kit for use in diagnostics and vaccine efficacy and effectiveness studies.
Collapse
Affiliation(s)
- Houping Wang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA; IHRC Inc, Atlanta, USA
| | - Merry Liu
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, USA
| | - Ken Sugata
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Yuhuan Wang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jennifer Hull
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, USA.
| |
Collapse
|
23
|
Parker EPK, Ramani S, Lopman BA, Church JA, Iturriza-Gómara M, Prendergast AJ, Grassly NC. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol 2018; 13:97-118. [PMID: 29218997 PMCID: PMC7026772 DOI: 10.2217/fmb-2017-0128] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Oral vaccines are less immunogenic when given to infants in low-income compared with high-income countries, limiting their potential public health impact. Here, we review factors that might contribute to this phenomenon, including transplacental antibodies, breastfeeding, histo blood group antigens, enteric pathogens, malnutrition, microbiota dysbiosis and environmental enteropathy. We highlight several clear risk factors for vaccine failure, such as the inhibitory effect of enteroviruses on oral poliovirus vaccine. We also highlight the ambiguous and at times contradictory nature of the available evidence, which undoubtedly reflects the complex and interconnected nature of the factors involved. Mechanisms responsible for diminished immunogenicity may be specific to each oral vaccine. Interventions aiming to improve vaccine performance may need to reflect the diversity of these mechanisms.
Collapse
Affiliation(s)
- Edward PK Parker
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| | | | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - James A Church
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Miren Iturriza-Gómara
- Centre for Global Vaccine Research, Institute of Infection & Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Andrew J Prendergast
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
24
|
Velasquez DE, Parashar U, Jiang B. Decreased performance of live attenuated, oral rotavirus vaccines in low-income settings: causes and contributing factors. Expert Rev Vaccines 2017; 17:145-161. [PMID: 29252042 DOI: 10.1080/14760584.2018.1418665] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Numerous studies have shown that the oral rotavirus vaccines are less effective in infants born in low income countries compared to those born in developed countries. Identifying the specific factors in developing countries that decrease and/or compromise the protection that rotavirus vaccines offer, could lead to a path for designing new strategies for the vaccines' improvement. AREAS COVERED We accessed PubMed to identify rotavirus vaccine performance studies (i.e., efficacy, effectiveness and immunogenicity) and correlated performance with several risk factors. Here, we review the factors that might contribute to the low vaccine efficacy, including passive transfer of maternal rotavirus antibodies, rotavirus seasonality, oral polio vaccine (OPV) administered concurrently, microbiome composition and concomitant enteric pathogens, malnutrition, environmental enteropathy, HIV, and histo blood group antigens. EXPERT COMMENTARY We highlight two major factors that compromise rotavirus vaccines' efficacy: the passive transfer of rotavirus IgG antibodies to infants and the co-administration of rotavirus vaccines with OPV. We also identify other potential risk factors that require further research because the data about their interference with the efficacy of rotavirus vaccines are inconclusive and at times conflicting.
Collapse
Affiliation(s)
- Daniel E Velasquez
- a Division of Viral Diseases , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Umesh Parashar
- a Division of Viral Diseases , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Baoming Jiang
- a Division of Viral Diseases , Centers for Disease Control and Prevention , Atlanta , GA , USA
| |
Collapse
|
25
|
Tian Z, Zhang J, He H, Li J, Wu Y, Shen Z. MiR-525-3p mediates antiviral defense to rotavirus infection by targeting nonstructural protein 1. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3212-3225. [PMID: 28890396 DOI: 10.1016/j.bbadis.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) are short RNAs of approximately 22 nucleotides that post-transcriptionally regulate gene expression by controlling mRNA stability or translation. They play critical roles in intricate networks of host-pathogen interactions and innate immunity. Rotaviruses (RVs) are the leading cause of severe diarrhea among infants and young children worldwide. This study was undertaken to demonstrate the importance of cellular miRNAs during RV (human Wa RV or Rhesus RV) strains infection. Twenty-nine differentially regulated miRNAs were identified during RV infection, and miR-525-3p was downregulated and validated by quantitative real-time polymerase chain reaction (qRT-PCR). MiR-525-3p mimic inhibited RV replication in dose-dependent manner. Correspondingly, the miR-525-3p inhibitors enhanced RV replication. We confirmed that miR-525-3p was complementary to the 3' untranslated region (UTR) of nonstructural protein 1(NSP1) of RV (Wa or Rhesus) strains. Interestingly, miR-525-3p induced type I interferon (IFN) expression and proinflammatory cytokines during RV infection through IFN regulatory factor (IRF) 3/IRF7 and NF-κB activation, which can induce an antiviral state to further suppress RV infection. In addition, RV suppressed miR-525-3p expression to evade host innate immunity through the action of the RV protein NSP1. These results suggest that miR-525-3p has the potential to be used as an antiviral therapeutic against RV infection.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Ji Zhang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Haiyang He
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Jintao Li
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China..
| | - Zigang Shen
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China..
| |
Collapse
|
26
|
Ye L, Jiang Y, Yang G, Yang W, Hu J, Cui Y, Shi C, Liu J, Wang C. Murine bone marrow-derived DCs activated by porcine rotavirus stimulate the Th1 subtype response in vitro. Microb Pathog 2017; 110:325-334. [PMID: 28710013 DOI: 10.1016/j.micpath.2017.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 07/10/2017] [Indexed: 11/22/2022]
Abstract
Rotavirus (RV) infection causes acute, watery dehydrating diarrhea and even death in infants and other young animals, resulting in a severe economic burden; however, little is known about the innate immune mechanisms associated with RV infection. Dendritic cells (DCs), which are professional antigen-presenting cells (APCs), serve as a bridge connecting the innate and adaptive immune system. In this study, the interaction between murine bone marrow-derived DCs (BMDCs) and porcine rotavirus (PRV) was investigated in vitro. Upon stimulation, the expression levels of MHC-II, CD40, CD80, CD86 and CD83 in BMDCs increased in a time-dependent manner, indicating activation and maturation by PRV. In addition, up-regulated Toll-like receptor 2 (TLR2), TLR3 and NF-κB increased the production of interleukin-12 and interferon-γ. The PRV-stimulated BMDCs also showed increased stimulatory capacity in mixed lymphocyte reactions and promoted the Th1 subtype response.
Collapse
Affiliation(s)
- Liping Ye
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yanlong Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Guilian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wentao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yulin Cui
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunwei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Liu
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
27
|
Taniuchi M, Platts-Mills JA, Begum S, Uddin MJ, Sobuz SU, Liu J, Kirkpatrick BD, Colgate ER, Carmolli MP, Dickson DM, Nayak U, Haque R, Petri WA, Houpt ER. Impact of enterovirus and other enteric pathogens on oral polio and rotavirus vaccine performance in Bangladeshi infants. Vaccine 2016; 34:3068-3075. [PMID: 27154394 PMCID: PMC4912219 DOI: 10.1016/j.vaccine.2016.04.080] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Oral polio vaccine (OPV) and rotavirus vaccine (RV) exhibit poorer performance in low-income settings compared to high-income settings. Prior studies have suggested an inhibitory effect of concurrent non-polio enterovirus (NPEV) infection, but the impact of other enteric infections has not been comprehensively evaluated. METHODS In urban Bangladesh, we tested stools for a broad range of enteric viruses, bacteria, parasites, and fungi by quantitative PCR from infants at weeks 6 and 10 of life, coincident with the first OPV and RV administration respectively, and examined the association between enteropathogen quantity and subsequent OPV serum neutralizing titers, serum rotavirus IgA, and rotavirus diarrhea. RESULTS Campylobacter and enterovirus (EV) quantity at the time of administration of the first dose of OPV was associated with lower OPV1-2 serum neutralizing titers, while enterovirus quantity was also associated with diminished rotavirus IgA (-0.08 change in log titer per tenfold increase in quantity; P=0.037), failure to seroconvert (OR 0.78, 95% CI: 0.64-0.96; P=0.022), and breakthrough rotavirus diarrhea (OR 1.34, 95% CI: 1.05-1.71; P=0.020) after adjusting for potential confounders. These associations were not observed for Sabin strain poliovirus quantity. CONCLUSION In this broad survey of enteropathogens and oral vaccine performance we find a particular association between EV carriage, particularly NPEV, and OPV immunogenicity and RV protection. Strategies to reduce EV infections may improve oral vaccine responses. ClinicalTrials.gov Identifier: NCT01375647.
Collapse
Affiliation(s)
- Mami Taniuchi
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville 22908, USA.
| | - James A Platts-Mills
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville 22908, USA
| | - Sharmin Begum
- Center for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Md Jashim Uddin
- Center for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Shihab U Sobuz
- Center for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - Jie Liu
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville 22908, USA
| | - Beth D Kirkpatrick
- Vaccine Testing Center and Unit of Infectious Diseases, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - E Ross Colgate
- Vaccine Testing Center and Unit of Infectious Diseases, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Marya P Carmolli
- Vaccine Testing Center and Unit of Infectious Diseases, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Dorothy M Dickson
- Vaccine Testing Center and Unit of Infectious Diseases, Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Uma Nayak
- Center for Public Health Genomics, University of Virginia, Charlottesville 22908, USA
| | - Rashidul Haque
- Center for Vaccine Science and Parasitology Lab, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh
| | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville 22908, USA
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville 22908, USA
| |
Collapse
|
28
|
Grassly NC, Praharaj I, Babji S, Kaliappan SP, Giri S, Venugopal S, Parker EPK, Abraham A, Muliyil J, Doss S, Raman U, Liu J, Peter JV, Paranjape M, Jeyapaul S, Balakumar S, Ravikumar J, Srinivasan R, Bahl S, Iturriza-Gómara M, Uhlig HH, Houpt ER, John J, Kang G. The effect of azithromycin on the immunogenicity of oral poliovirus vaccine: a double-blind randomised placebo-controlled trial in seronegative Indian infants. THE LANCET. INFECTIOUS DISEASES 2016; 16:905-14. [PMID: 27156189 DOI: 10.1016/s1473-3099(16)30023-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Oral poliovirus vaccine is less immunogenic and effective in low-income countries than in high-income countries, similarly to other oral vaccines. The high prevalence of intestinal pathogens and associated environmental enteropathy has been proposed to explain this problem. Because administration of an antibiotic has the potential to resolve environmental enteropathy and clear bacterial pathogens, we aimed to assess whether antibiotics would improve oral poliovirus vaccine immunogenicity. METHODS We did a double-blind, randomised, placebo-controlled trial of the effect of azithromycin on the immunogenicity of serotype-3 monovalent oral poliovirus vaccine given to healthy infants living in 14 blocks of Vellore district, India. Infants were eligible to participate if they were 6-11 months old, available for the study duration, and lacked serum neutralising antibodies to serotype-3 poliovirus. Infants were randomly assigned (1:1) at enrolment to receive oral 10 mg/kg azithromycin or placebo once daily for 3 days, followed by serotype-3 monovalent oral poliovirus vaccine on day 14. The primary outcome was detection of serum neutralising antibodies to serotype-3 poliovirus at a dilution of one in eight or more on day 35 and was assessed in the per-protocol population (ie, all those who received azithromycin or placebo, oral poliovirus vaccine, and provided a blood sample according to the study protocol). Safety outcomes were assessed in all infants enrolled in the study. The trial is registered with the Clinical Trials Registry India, number CTRI/2014/05/004588. FINDINGS Between Aug 5, 2014, and March 21, 2015, 754 infants were randomly assigned: 376 to receive azithromycin and 378 to placebo. Of these, 348 (93%) of 376 in the azithromycin group and 357 (94%) of 378 infants in the placebo group completed the study per protocol. In the azithromycin group, 175 (50%) seroconverted to serotype-3 poliovirus compared with 192 (54%) in the placebo group (risk ratio 0·94, 95% CI 0·81-1·08; p=0·366). Azithromycin reduced faecal biomarkers of environmental enteropathy (calprotectin, myeloperoxidase, α1-antitrypsin) and the prevalence of bacterial but not viral or eukaryotic pathogens. Viral pathogens were associated with lower seroconversion. Three serious adverse events were reported (two in the azithromycin group and one in the placebo group), but none was considered related to the study interventions. INTERPRETATION Azithromycin did not improve the immunogenicity of oral poliovirus vaccine despite reducing biomarkers of environmental enteropathy and the prevalence of pathogenic intestinal bacteria. Viral interference and innate antiviral immune mechanisms might be more important determinants of the immunogenicity of live-virus oral vaccines. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Nicholas C Grassly
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Christian Medical College, Vellore, Tamil Nadu, India.
| | - Ira Praharaj
- Christian Medical College, Vellore, Tamil Nadu, India
| | - Sudhir Babji
- Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | | | - Edward P K Parker
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Asha Abraham
- Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Sridhar Doss
- Christian Medical College, Vellore, Tamil Nadu, India
| | - Uma Raman
- Christian Medical College, Vellore, Tamil Nadu, India
| | - Jie Liu
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | | | | | | | | - Sunil Bahl
- WHO Regional Office for South-East Asia, New Delhi, India
| | - Miren Iturriza-Gómara
- Institute of Infection and Global Health, and NIHR Health Protection Research Unit in Gastrointestinal Infection, University of Liverpool, Liverpool, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine, and Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jacob John
- Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
29
|
Emperador DM, Velasquez DE, Estivariz CF, Lopman B, Jiang B, Parashar U, Anand A, Zaman K. Interference of Monovalent, Bivalent, and Trivalent Oral Poliovirus Vaccines on Monovalent Rotavirus Vaccine Immunogenicity in Rural Bangladesh. Clin Infect Dis 2015; 62:150-6. [PMID: 26349548 DOI: 10.1093/cid/civ807] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/28/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Trivalent oral poliovirus vaccine (OPV) is known to interfere with monovalent rotavirus vaccine (RV1) immunogenicity. The interference caused by bivalent and monovalent OPV formulations, which will be increasingly used globally in coming years, has not been examined. We conducted a post hoc analysis to assess the effect of coadministration of different OPV formulations on RV1 immunogenicity. METHODS Healthy infants in Matlab, Bangladesh, were randomized to receive 3 doses of monovalent OPV type 1 or bivalent OPV types 1 and 3 at either 6, 8, and 10 or 6, 10, and 14 weeks of age or trivalent OPV at 6, 10, and 14 weeks of age. All infants received 2 doses of RV1 at about 6 and 10 weeks of age. Concomitant administration was defined as RV1 and OPV given on the same day; staggered administration as RV1 and OPV given ≥1 day apart. Rotavirus seroconversion was defined as a 4-fold rise in immunoglobulin A titer from before the first RV1 dose to ≥3 weeks after the second RV1 dose. RESULTS There were no significant differences in baseline RV1 immunogenicity among the 409 infants included in the final analysis. Infants who received RV1 and OPV concomitantly, regardless of OPV formulation, were less likely to seroconvert (47%; 95% confidence interval, 39%-54%) than those who received both vaccines staggered ≥1 day (63%; 57%-70%; P < .001). For staggered administration, we found no evidence that the interval between RV1 and OPV administration affected RV1 immunogenicity. CONCLUSIONS Coadministration of monovalent, bivalent, or trivalent OPV seems to lower RV1 immunogenicity. CLINICAL TRIALS REGISTRATION NCT01633216.
Collapse
Affiliation(s)
| | | | - Concepcion F Estivariz
- Global Immunization Division, Centers for Diseases Control and Prevention, Atlanta, Georgia
| | | | | | | | - Abhijeet Anand
- Global Immunization Division, Centers for Diseases Control and Prevention, Atlanta, Georgia
| | - Khalequ Zaman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
30
|
Premkumar PS, Parashar UD, Gastanaduy PA, McCracken JP, de Oliveira LH, Payne DC, Patel MM, Tate JE, Lopman BA. Reduced rotavirus vaccine effectiveness among children born during the rotavirus season: a pooled analysis of 5 case-control studies from the Americas. Clin Infect Dis 2014; 60:1075-8. [PMID: 25452592 DOI: 10.1093/cid/ciu956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using data from rotavirus vaccine effectiveness (VE) studies, we assessed whether rotavirus season modifies rotavirus VE in infants. In the first year of life, adjusted VE was 72% for children born during rotavirus season and 84% for children born in other months (P = .01). Seasonal factors may interfere with vaccine performance.
Collapse
Affiliation(s)
- Prasanna S Premkumar
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Umesh D Parashar
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Paul A Gastanaduy
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - John P McCracken
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City
| | | | - Daniel C Payne
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Manish M Patel
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jacqueline E Tate
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ben A Lopman
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
31
|
Construction of high-quality Caco-2 three-frame cDNA library and its application to yeast two-hybrid for the human astrovirus protein-protein interaction. J Virol Methods 2014; 205:104-9. [PMID: 24859048 DOI: 10.1016/j.jviromet.2014.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/08/2014] [Accepted: 05/13/2014] [Indexed: 11/24/2022]
Abstract
Human epithelial colorectal adenocarcinoma (Caco-2) cells are widely used as an in vitro model of the human small intestinal mucosa. Caco-2 cells are host cells of the human astrovirus (HAstV) and other enteroviruses. High quality cDNA libraries are pertinent resources and critical tools for protein-protein interaction research, but are currently unavailable for Caco-2 cells. To construct a three-open reading frame, full length-expression cDNA library from the Caco-2 cell line for application to HAstV protein-protein interaction screening, total RNA was extracted from Caco-2 cells. The switching mechanism at the 5' end of the RNA transcript technique was used for cDNA synthesis. Double-stranded cDNA was digested by Sfi I and ligated to reconstruct a pGADT7-Sfi I three-frame vector. The ligation mixture was transformed into Escherichia coli HST08 premium electro cells by electroporation to construct the primary cDNA library. The library capacity was 1.0×10(6)clones. Gel electrophoresis results indicated that the fragments ranged from 0.5kb to 4.2kb. Randomly picked clones show that the recombination rate was 100%. The three-frame primary cDNA library plasmid mixture (5×10(5)cfu) was also transformed into E. coli HST08 premium electro cells, and all clones were harvested to amplify the cDNA library. To detect the sufficiency of the cDNA library, HAstV capsid protein as bait was screened and tested against the Caco-2 cDNA library by a yeast two-hybrid (Y2H) system. A total of 20 proteins were found to interact with the capsid protein. These results showed that a high-quality three-frame cDNA library from Caco-2 cells was successfully constructed. This library was efficient for the application to the Y2H system, and could be used for future research.
Collapse
|
32
|
New concepts in diagnostics for infectious diarrhea. Mucosal Immunol 2013; 6:876-85. [PMID: 23881355 DOI: 10.1038/mi.2013.50] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/11/2013] [Indexed: 02/04/2023]
Abstract
Conventional approaches to the diagnosis of infectious diarrhea must include several modalities to detect an array of potential viruses, bacteria, and parasites. We will provide a general overview of the wide range of diagnostic modalities available for enteropathogens, briefly discuss some of the limitations of conventional methods, and then focus on new molecular methods, including real-time PCR and next-generation sequencing. In particular, we will discuss quantitation of pathogen load with these techniques. We will then describe examples whereby novel diagnostics may help illuminate the etiology of infectious diarrhea, where they may not, and how they may benefit studies of immunity to enteric infections.
Collapse
|
33
|
Johannessen LE, Spilsberg B, Wiik-Nielsen CR, Kristoffersen AB, Holst-Jensen A, Berdal KG. DNA-fragments are transcytosed across CaCo-2 cells by adsorptive endocytosis and vesicular mediated transport. PLoS One 2013; 8:e56671. [PMID: 23409196 PMCID: PMC3569430 DOI: 10.1371/journal.pone.0056671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/16/2013] [Indexed: 11/22/2022] Open
Abstract
Dietary DNA is degraded into shorter DNA-fragments and single nucleosides in the gastrointestinal tract. Dietary DNA is mainly taken up as single nucleosides and bases, but even dietary DNA-fragments of up to a few hundred bp are able to cross the intestinal barrier and enter the blood stream. The molecular mechanisms behind transport of DNA-fragments across the intestine and the effects of this transport on the organism are currently unknown. Here we investigate the transport of DNA-fragments across the intestinal barrier, focusing on transport mechanisms and rates. The human intestinal epithelial cell line CaCo-2 was used as a model. As DNA material a PCR-fragment of 633 bp was used and quantitative real time PCR was used as detection method. DNA-fragments were found to be transported across polarized CaCo-2 cells in the apical to basolateral direction (AB). After 90 min the difference in directionality AB vs. BA was >103 fold. Even undegraded DNA-fragments of 633 bp could be detected in the basolateral receiver compartment at this time point. Transport of DNA-fragments was sensitive to low temperature and inhibition of endosomal acidification. DNA-transport across CaCo-2 cells was not competed out with oligodeoxynucleotides, fucoidan, heparin, heparan sulphate and dextrane sulphate, while linearized plasmid DNA, on the other hand, reduced transcytosis of DNA-fragments by a factor of approximately 2. Our findings therefore suggest that vesicular transport is mediating transcytosis of dietary DNA-fragments across intestinal cells and that DNA binding proteins are involved in this process. If we extrapolate our findings to in vivo conditions it could be hypothesized that this transport mechanism has a function in the immune system.
Collapse
|