1
|
Dor G, Wilkinson E, Martin DP, Moir M, Tshiabuila D, Kekana D, Ntozini B, Joseph R, Iranzadeh A, Nyaga MM, Goedhals D, Maponga T, Maritz J, Laguda-Akingba O, Ramphal Y, MacIntyre C, Chabuka L, Pillay S, Giandhari J, Baxter C, Hsiao NY, Preiser W, Bhiman JN, Davies MA, Venter M, Treurnicht FK, Wolter N, Williamson C, von Gottberg A, Lessells R, Tegally H, de Oliveira T. Tracing the spatial origins and spread of SARS-CoV-2 Omicron lineages in South Africa. Nat Commun 2025; 16:4937. [PMID: 40436832 PMCID: PMC12120024 DOI: 10.1038/s41467-025-60081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 05/13/2025] [Indexed: 06/01/2025] Open
Abstract
Since November 2021, five genetically distinct SARS-CoV-2 Omicron lineages (BA.1-BA.5) are believed to have emerged in southern Africa, with four (BA.1, BA.2, BA.4, and BA.5) spreading globally and collectively dominating SARS-CoV-2 diversity. In 2023, BA.2.86, a highly divergent BA.2 lineage that rose to prominence worldwide, was first detected in Israel and Denmark, but the subsequent diversity of South African sequences suggests it too emerged in the region. Using Bayesian phylogeographic inference, we reconstruct the origins and dispersal patterns of BA.1-BA.5 and BA.2.86. Our findings suggest that Gauteng province in South Africa likely played a key role in the emergence and/or amplification of multiple Omicron lineages, though regions with limited sampling may have also contributed. The challenge of precisely tracing these origins highlights the need for broader genomic surveillance across the region to strengthen early detection, track viral evolution, and improve preparedness for future threats.
Collapse
Affiliation(s)
- Graeme Dor
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Monika Moir
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Derek Tshiabuila
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Dikeledi Kekana
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Buhle Ntozini
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Rageema Joseph
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Arash Iranzadeh
- Computational Biology Division, University of Cape Town, Cape Town, South Africa
| | - Martin M Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Dominique Goedhals
- Division of Virology, University of the Free State, Bloemfontein, South Africa
- PathCare, Pretoria, South Africa
| | - Tongai Maponga
- National Health Laboratory Service, Tygerberg, Cape Town, South Africa
- Division of Medical Virology, Faculty of Medicine & Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Jean Maritz
- Division of Medical Virology, Faculty of Medicine & Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- PathCare Reference Laboratory, Cape Town, South Africa
| | - Oluwakemi Laguda-Akingba
- National Health Laboratory Service, Port Elizabeth, South Africa
- Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Eastern Cape, South Africa
| | - Yajna Ramphal
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Caitlin MacIntyre
- Emerging Viral Threats, One Health surveillance and vaccines (EViTOH) Division, Infectious Disease and Oncology Research Institute (IDORI), School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lucious Chabuka
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Cheryl Baxter
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Nei-Yuan Hsiao
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Cape Town, South Africa
| | - Wolfgang Preiser
- National Health Laboratory Service, Tygerberg, Cape Town, South Africa
- Division of Medical Virology, Faculty of Medicine & Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Jinal N Bhiman
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary-Anne Davies
- Centre for Infectious Disease Epidemiology and Research, School of Public Health, University of Cape Town, Cape Town, South Africa
- Health Intelligence, Western Cape Government Health and Wellness, Cape Town, South Africa
| | - Marietjie Venter
- Emerging Viral Threats, One Health surveillance and vaccines (EViTOH) Division, Infectious Disease and Oncology Research Institute (IDORI), School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Arbo and Respiratory Virus Research (CEARV), Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Florette K Treurnicht
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Carolyn Williamson
- National Health Laboratory Service, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine and Wellcome Centre for Disease Research in Africa, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Houriiyah Tegally
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
| | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
2
|
Razzaq A, Disoma C, Iqbal S, Nisar A, Hameed M, Qadeer A, Waqar M, Mehmood SA, Gao L, Khan S, Xia Z. Genomic epidemiology and evolutionary dynamics of the Omicron variant of SARS-CoV-2 during the fifth wave of COVID-19 in Pakistan. Front Cell Infect Microbiol 2024; 14:1484637. [PMID: 39502171 PMCID: PMC11534695 DOI: 10.3389/fcimb.2024.1484637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed extraordinary challenges to global health systems and economies. The virus's rapid evolution has resulted in several variants of concern (VOCs), including the highly transmissible Omicron variant, characterized by extensive mutations. In this study, we investigated the genetic diversity, population differentiation, and evolutionary dynamics of the Omicron VOC during the fifth wave of COVID-19 in Pakistan. Methods A total of 954 Omicron genomes sequenced during the fifth wave of COVID-19 in Pakistan were analyzed. A Bayesian framework was employed for phylogenetic reconstructions, molecular dating, and population dynamics analysis. Results Using a population genomics approach, we analyzed Pakistani Omicron samples, revealing low within-population genetic diversity and significant structural variation in the spike (S) protein. Phylogenetic analysis showed that the Omicron variant in Pakistan originated from two distinct lineages, BA.1 and BA.2, which were introduced from South Africa, Thailand, Spain, and Belgium. Omicron-specific mutations, including those in the receptor-binding domain, were identified. The estimated molecular evolutionary rate was 2.562E-3 mutations per site per year (95% HPD interval: 8.8067E-4 to 4.1462E-3). Bayesian skyline plot analysis indicated a significant population expansion at the end of 2021, coinciding with the global Omicron outbreak. Comparative analysis with other VOCs showed Omicron as a highly divergent, monophyletic group, suggesting a unique evolutionary pathway. Conclusions This study provides a comprehensive overview of Omicron's genetic diversity, genomic epidemiology, and evolutionary dynamics in Pakistan, emphasizing the need for global collaboration in monitoring variants and enhancing pandemic preparedness.
Collapse
Affiliation(s)
- Aroona Razzaq
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Cyrollah Disoma
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Sonia Iqbal
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Muddassar Hameed
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Waqar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | | | - Lidong Gao
- Hunan Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
3
|
Wang F, Xiang L, Sze-Yin Leung K, Elsner M, Zhang Y, Guo Y, Pan B, Sun H, An T, Ying G, Brooks BW, Hou D, Helbling DE, Sun J, Qiu H, Vogel TM, Zhang W, Gao Y, Simpson MJ, Luo Y, Chang SX, Su G, Wong BM, Fu TM, Zhu D, Jobst KJ, Ge C, Coulon F, Harindintwali JD, Zeng X, Wang H, Fu Y, Wei Z, Lohmann R, Chen C, Song Y, Sanchez-Cid C, Wang Y, El-Naggar A, Yao Y, Huang Y, Cheuk-Fung Law J, Gu C, Shen H, Gao Y, Qin C, Li H, Zhang T, Corcoll N, Liu M, Alessi DS, Li H, Brandt KK, Pico Y, Gu C, Guo J, Su J, Corvini P, Ye M, Rocha-Santos T, He H, Yang Y, Tong M, Zhang W, Suanon F, Brahushi F, Wang Z, Hashsham SA, Virta M, Yuan Q, Jiang G, Tremblay LA, Bu Q, Wu J, Peijnenburg W, Topp E, Cao X, Jiang X, Zheng M, Zhang T, Luo Y, Zhu L, Li X, Barceló D, Chen J, Xing B, Amelung W, Cai Z, Naidu R, Shen Q, Pawliszyn J, Zhu YG, Schaeffer A, Rillig MC, Wu F, Yu G, Tiedje JM. Emerging contaminants: A One Health perspective. Innovation (N Y) 2024; 5:100612. [PMID: 38756954 PMCID: PMC11096751 DOI: 10.1016/j.xinn.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 05/18/2024] Open
Abstract
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Martin Elsner
- Technical University of Munich, TUM School of Natural Sciences, Institute of Hydrochemistry, 85748 Garching, Germany
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangguo Ying
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Bryan W. Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, TX, USA
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Timothy M. Vogel
- Laboratoire d’Ecologie Microbienne, Universite Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, 69622 Villeurbanne, France
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Myrna J. Simpson
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Scott X. Chang
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bryan M. Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, USA
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Karl J. Jobst
- Department of Chemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John’s, NL A1C 5S7, Canada
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Sciences, Hainan University, Haikou 570228, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankui Zeng
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Haijun Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Changer Chen
- Ministry of Education Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yang Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, UMR 5005 Laboratoire Ampère, CNRS, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali El-Naggar
- Department of Renewable Resources, University of Alberta, 442 Earth Sciences Building, Edmonton, AB T6G 2E3, Canada
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yanran Huang
- Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Chenggang Gu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Shen
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Weigang Road 1, Nanjing 210095, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Natàlia Corcoll
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Daniel S. Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Sino-Danish Center (SDC), Beijing, China
| | - Yolanda Pico
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre - CIDE (CSIC-UV-GV), Road CV-315 km 10.7, 46113 Moncada, Valencia, Spain
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianqiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Philippe Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Mao Ye
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Huan He
- Jiangsu Engineering Laboratory of Water and Soil Eco-remediation, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weina Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fidèle Suanon
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Laboratory of Physical Chemistry, Materials and Molecular Modeling (LCP3M), University of Abomey-Calavi, Republic of Benin, Cotonou 01 BP 526, Benin
| | - Ferdi Brahushi
- Department of Environment and Natural Resources, Agricultural University of Tirana, 1029 Tirana, Albania
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Syed A. Hashsham
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Marko Virta
- Department of Microbiology, University of Helsinki, 00010 Helsinki, Finland
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Louis A. Tremblay
- School of Biological Sciences, University of Auckland, Auckland, Aotearoa 1142, New Zealand
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing 100083, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands
- Leiden University, Center for Environmental Studies, Leiden, the Netherlands
| | - Edward Topp
- Agroecology Mixed Research Unit, INRAE, 17 rue Sully, 21065 Dijon Cedex, France
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Taolin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almeria, Spain
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Wulf Amelung
- Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, University of Bonn, 53115 Bonn, Germany
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle (UON), Newcastle, NSW 2308, Australia
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yong-guan Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Schaeffer
- Institute for Environmental Research, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias C. Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - James M. Tiedje
- Center for Microbial Ecology, Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Niu S, Zhao Z, Liu Z, Rong X, Chai Y, Bai B, Han P, Shang G, Ren J, Wang Y, Zhao X, Liu K, Tian WX, Wang Q, Gao GF. Structural basis and analysis of hamster ACE2 binding to different SARS-CoV-2 spike RBDs. J Virol 2024; 98:e0115723. [PMID: 38305152 PMCID: PMC10949455 DOI: 10.1128/jvi.01157-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Pet golden hamsters were first identified being infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delta variant of concern (VOC) and transmitted the virus back to humans in Hong Kong in January 2022. Here, we studied the binding of two hamster (golden hamster and Chinese hamster) angiotensin-converting enzyme 2 (ACE2) proteins to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants, including alpha, beta, gamma, delta, and four omicron sub-variants (BA.1, BA.2, BA.3, and BA.4/BA.5). We found that the two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2 (hACE2). Furthermore, the similar infectivity to host cells expressing hamster ACE2s and hACE2 was confirmed with the nine pseudotyped SARS-CoV-2 viruses. Additionally, we determined two cryo-electron microscopy (EM) complex structures of golden hamster ACE2 (ghACE2)/delta RBD and ghACE2/omicron BA.3 RBD. The residues Q34 and N82, which exist in many rodent ACE2s, are responsible for the lower binding affinity of ghACE2 compared to hACE2. These findings suggest that all SARS-CoV-2 VOCs may infect hamsters, highlighting the necessity of further surveillance of SARS-CoV-2 in these animals.IMPORTANCESARS-CoV-2 can infect many domestic animals, including hamsters. There is an urgent need to understand the binding mechanism of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to hamster receptors. Herein, we showed that two hamster angiotensin-converting enzyme 2s (ACE2s) (golden hamster ACE2 and Chinese hamster ACE2) can bind to the spike protein receptor-binding domains (RBDs) of SARS-CoV-2 prototype and eight variants and that pseudotyped SARS-CoV-2 viruses can infect hamster ACE2-expressing cells. The binding pattern of golden hamster ACE2 to SARS-CoV-2 RBDs is similar to that of Chinese hamster ACE2. The two hamster ACE2s present slightly lower affinity for the RBDs of all nine SARS-CoV-2 viruses tested than human ACE2. We solved the cryo-electron microscopy (EM) structures of golden hamster ACE2 in complex with delta RBD and omicron BA.3 RBD and found that residues Q34 and N82 are responsible for the lower binding affinity of ghACE2 compared to hACE2. Our work provides valuable information for understanding the cross-species transmission mechanism of SARS-CoV-2.
Collapse
Affiliation(s)
- Sheng Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhimin Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xiaoyu Rong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Han
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Guijun Shang
- Cryo-EM Center, Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Jianle Ren
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Ying Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wen-xia Tian
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Qihui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - George Fu Gao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Klein C, Michelitsch A, Allendorf V, Conraths FJ, Beer M, Denzin N, Wernike K. Dogs and Cats Are Less Susceptible to the Omicron Variant of Concern of SARS-CoV-2: A Field Study in Germany, 2021/2022. Transbound Emerg Dis 2023; 2023:1868732. [PMID: 40303725 PMCID: PMC12017219 DOI: 10.1155/2023/1868732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic of unprecedented extent. Besides humans, a number of animal species can be infected; however, in some species, differing susceptibilities were observed depending on the virus variant. Here, we serologically investigated cats and dogs living in households with human COVID-19 patients. The study was conducted during the transition period from delta as the dominating variant of concern (VOC) to omicron (BA.1/BA.2) to investigate the frequency of virus transmission of both VOCs from infected owners to their pets. The animal sera were tested by surrogate virus neutralization tests (sVNT) using either the original receptor-binding domain (RBD), enabling the detection of antibodies against the delta variant, or an omicron-specific RBD. Of the 290 canine samples, 20 tested positive by sVNT, but there were marked differences between the sampling time and, related thereto, the virus variants the dogs had contact to. While in November 2021, infected owners led to 50% seropositive dogs (18/36), only 0.8% (2/254) of animals with household contacts to SARS-CoV-2 between December 2021 and April 2022 tested positive. In all cases, the positive reaction was recorded against the original RBD. For cats, a similar pattern was seen, as in November 2021, 38.1% (16/42) tested positive, and between December 2021 and March 2022, only 5.0% (10/199). The markedly reduced ratio of seropositive animals during the period of omicron circulation suggests a considerably lower susceptibility of dogs and cats to this VOC. To examine the effect of further omicron subvariants, sera taken in the second and third quarter of 2022 from randomly selected cats were investigated. 2.3% (11/372) tested seropositive, and all of them showed a stronger reaction against the original RBD, further supporting the assumption of a lower susceptibility of companion animals to the omicron VOC.
Collapse
Affiliation(s)
| | | | | | | | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nicolai Denzin
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
6
|
Wu L, Zheng A, Tang Y, Chai Y, Chen J, Cheng L, Hu Y, Qu J, Lei W, Liu WJ, Wu G, Zeng S, Yang H, Wang Q, Gao GF. A pan-coronavirus peptide inhibitor prevents SARS-CoV-2 infection in mice by intranasal delivery. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2201-2213. [PMID: 37574525 DOI: 10.1007/s11427-023-2410-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Coronaviruses (CoVs) have brought serious threats to humans, particularly severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), which continually evolves into multiple variants. These variants, especially Omicron, reportedly escape therapeutic antibodies and vaccines, indicating an urgent need for new antivirals with pan-SARS-CoV-2 inhibitory activity. We previously reported that a peptide fusion inhibitor, P3, targeting heptad repeated-1 (HR1) of SARS-CoV-2 spike (S) protein, could inhibit viral infections. Here, we further designed multiple derivatives of the P3 based on structural analysis and found that one derivative, the P315V3, showed the most efficient antiviral activity against SARS-CoV-2 variants and several other sarbecoviruses, as well as other human-CoVs (HCoVs). P315V3 also exhibited effective prophylactic efficacy against the SARS-CoV-2 Delta and Omicron variants in mice via intranasal administration. These results suggest that P315V3, which is in Phase II clinical trial, is promising for further development as a nasal pan-SARS-CoV-2 or pan-CoVs inhibitor to prevent or treat CoV diseases.
Collapse
Affiliation(s)
- Lili Wu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Anqi Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangming Tang
- Hybio Pharmaceutical Co., Ltd., Shenzhen, 518109, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiantao Chen
- Hybio Pharmaceutical Co., Ltd., Shenzhen, 518109, China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Yu Hu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Qu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - William Jun Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Shaogui Zeng
- Hybio Pharmaceutical Co., Ltd., Shenzhen, 518109, China
| | - Hang Yang
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Hubei Jiangxia Laboratory, Wuhan, 430299, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Center for Disease Control and Prevention (China CDC), Beijing, 102206, China.
| |
Collapse
|
7
|
Poonsuk K, Loy D, Birn R, Buss B, Donahue M, Nordeen T, Sinclair K, Meduna L, Brodersen B, Loy JD. DETECTION OF SARS-COV-2 NEUTRALIZING ANTIBODIES IN RETROPHARYNGEAL LYMPH NODE EXUDATES OF WHITE-TAILED DEER (ODOCOILEUS VIRGINIANUS) FROM NEBRASKA, USA. J Wildl Dis 2023; 59:702-708. [PMID: 37768779 PMCID: PMC10913095 DOI: 10.7589/jwd-d-23-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 09/30/2023]
Abstract
Disease surveillance testing for emerging zoonotic pathogens in wildlife is a key component in understanding the epidemiology of these agents and potential risk to human populations. Recent emergence of SARS-CoV-2 in humans, and subsequent detection of this virus in wildlife, highlights the need for developing new One Health surveillance strategies. We used lymph node exudate, a sample type that is routinely collected in hunter-harvested white-tailed deer (WTD, Odocoileus virginianus) for surveillance of chronic wasting disease, to assess anti-SARS-CoV-2 neutralizing antibodies. A total of 132 pairs of retropharyngeal lymph nodes collected from Nebraska WTD harvested in Nebraska, US, in 2019 (pre-SARS-CoV-2 pandemic) and 2021 (post-SARS-CoV-2 pandemic) were tested for SARS-CoV-2 with reverse transcription PCR. Thereafter, exudates obtained from these same lymph nodes were tested for SARS-CoV-2 neutralizing antibodies using a surrogate virus neutralization test. Neutralizing antibodies were detected in the exudates with high diagnostic specificity (100% at proposed cutoff of 40% inhibition). Application of this testing approach to samples collected for use in other disease surveillance activities may provide additional epidemiological data on SARS-CoV-2 exposure, and there is further potential to apply this sample type to detection of other pathogens of interest.
Collapse
Affiliation(s)
- Korakrit Poonsuk
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Duan Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - Rachael Birn
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Council State and Territorial Epidemiologists, 2635 Century Pkwy NE no. 700, Atlanta, Georgia 30345, USA
| | - Bryan Buss
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
- Division of State and Local Readiness, Center for Preparedness and Response, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30329, USA
| | - Matthew Donahue
- Division of Public Health, Nebraska Department of Health and Human Services, 301 Centennial Mall S, Lincoln, Nebraska 68508, USA
| | - Todd Nordeen
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Kylie Sinclair
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Luke Meduna
- Nebraska Game and Parks Commission, 2200 N. 33rd St., Lincoln, Nebraska 68503, USA
| | - Bruce Brodersen
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| | - John Dustin Loy
- University of Nebraska–Lincoln, Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, 4040 E. Campus Loop N, Lincoln, Nebraska 68503, USA
| |
Collapse
|
8
|
Han P, Meng Y, Zhang D, Xu Z, Li Z, Pan X, Zhao Z, Li L, Tang L, Qi J, Liu K, Gao GF. Structural basis of white-tailed deer, Odocoileus virginianus, ACE2 recognizing all the SARS-CoV-2 variants of concern with high affinity. J Virol 2023; 97:e0050523. [PMID: 37676003 PMCID: PMC10537675 DOI: 10.1128/jvi.00505-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/01/2023] [Indexed: 09/08/2023] Open
Abstract
SARS-CoV-2 has been expanding its host range, among which the white-tailed deer (WTD), Odocoileus virginianus, became the first wildlife species infected on a large scale and might serve as a host reservoir for variants of concern (VOCs) in case no longer circulating in humans. In this study, we comprehensively assessed the binding of the WTD angiotensin-converting enzyme 2 (ACE2) receptor to the spike (S) receptor-binding domains (RBDs) from the SARS-CoV-2 prototype (PT) strain and multiple variants. We found that WTD ACE2 could be broadly recognized by all of the tested RBDs. We further determined the complex structures of WTD ACE2 with PT, Omicron BA.1, and BA.4/5 S trimer. Detailed structural comparison revealed the important roles of RBD residues on 486, 498, and 501 sites for WTD ACE2 binding. This study deepens our understanding of the interspecies transmission mechanisms of SARS-CoV-2 and further addresses the importance of constant monitoring on SARS-CoV-2 infections in wild animals. IMPORTANCE Even if we manage to eliminate the virus among humans, it will still circulate among wildlife and continuously be transmitted back to humans. A recent study indicated that WTD may serve as reservoir for nearly extinct SARS-CoV-2 strains. Therefore, it is critical to evaluate the binding abilities of SARS-CoV-2 variants to the WTD ACE2 receptor and elucidate the molecular mechanisms of binding of the RBDs to assess the risk of spillback events.
Collapse
Affiliation(s)
- Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Yumin Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Di Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Zhiyuan Li
- College of Veterinary Medicine, China Agricultural University , Beijing, China
| | - Xiaoqian Pan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
| | - Lingfeng Tang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Faculty of Health Sciences, University of Macau , Macau SAR, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- Beijing Life Science Academy , Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS) , Beijing, China
- University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
9
|
Si Y, Wu W, Xue X, Sun X, Qin Y, Li Y, Qiu C, Li Y, Zhuo Z, Mi Y, Zheng P. The evolution of SARS-CoV-2 and the COVID-19 pandemic. PeerJ 2023; 11:e15990. [PMID: 37701824 PMCID: PMC10493083 DOI: 10.7717/peerj.15990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Scientists have made great efforts to understand the evolution of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) to provide crucial information to public health experts on strategies to control this viral pathogen. The pandemic of the coronavirus disease that began in 2019, COVID-19, lasted nearly three years, and nearly all countries have set different epidemic prevention policies for this virus. The continuous evolution of SARS-CoV-2 alters its pathogenicity and infectivity in human hosts, thus the policy and treatments have been continually adjusted. Based on our previous study on the dynamics of binding ability prediction between the COVID-19 spike protein and human ACE2, the present study mined over 10 million sequences and epidemiological data of SARS-CoV-2 during 2020-2022 to understand the evolutionary path of SARS-CoV-2. We analyzed and predicted the mutation rates of the whole genome and main proteins of SARS-CoV-2 from different populations to understand the adaptive relationship between humans and COVID-19. Our study identified a correlation of the mutation rates from each protein of SARS-CoV-2 and various human populations. Overall, this analysis provides a scientific basis for developing data-driven strategies to confront human pathogens.
Collapse
Affiliation(s)
- Yuanfang Si
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Wu
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangdong Sun
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaping Qin
- School of Basic Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunjing Qiu
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Li
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Ziran Zhuo
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter Pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Cente, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Hou M, Shi J, Gong Z, Wen H, Lan Y, Deng X, Fan Q, Li J, Jiang M, Tang X, Wu CI, Li F, Ruan Y. Intra- vs. Interhost Evolution of SARS-CoV-2 Driven by Uncorrelated Selection-The Evolution Thwarted. Mol Biol Evol 2023; 40:msad204. [PMID: 37707487 PMCID: PMC10521905 DOI: 10.1093/molbev/msad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
In viral evolution, a new mutation has to proliferate within the host (Stage I) in order to be transmitted and then compete in the host population (Stage II). We now analyze the intrahost single nucleotide variants (iSNVs) in a set of 79 SARS-CoV-2 infected patients with most transmissions tracked. Here, every mutation has two measures: 1) iSNV frequency within each individual host in Stage I; 2) occurrence among individuals ranging from 1 (private), 2-78 (public), to 79 (global) occurrences in Stage II. In Stage I, a small fraction of nonsynonymous iSNVs are sufficiently advantageous to rise to a high frequency, often 100%. However, such iSNVs usually fail to become public mutations. Thus, the selective forces in the two stages of evolution are uncorrelated and, possibly, antagonistic. For that reason, successful mutants, including many variants of concern, have to avoid being eliminated in Stage I when they first emerge. As a result, they may not have the transmission advantage to outcompete the dominant strains and, hence, are rare in the host population. Few of them could manage to slowly accumulate advantageous mutations to compete in Stage II. When they do, they would appear suddenly as in each of the six successive waves of SARS-CoV-2 strains. In conclusion, Stage I evolution, the gate-keeper, may contravene the long-term viral evolution and should be heeded in viral studies.
Collapse
Affiliation(s)
- Mei Hou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jingrong Shi
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zanke Gong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haijun Wen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun Lan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xizi Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qinghong Fan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiaojiao Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mengling Jiang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng Li
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongsen Ruan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Holland SC, Holland LA, Smith MF, Lee MB, Hu JC, Lim ES. Digital PCR Discriminates between SARS-CoV-2 Omicron Variants and Immune Escape Mutations. Microbiol Spectr 2023; 11:e0525822. [PMID: 37306573 PMCID: PMC10434287 DOI: 10.1128/spectrum.05258-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mutations arise that will allow the virus to evade immune defenses and therapeutics. Assays that can identify these mutations can be used to guide personalized patient treatment plans. Digital PCR (dPCR) is a fast and reliable complement to whole-genome sequencing that can be used to discriminate single nucleotide polymorphisms (SNPs) in template molecules. Here, we developed a panel of SARS-CoV-2 dPCR assays and demonstrate its applications for typing variant lineages and therapeutic monoclonal antibody resistance. We first designed multiplexed dPCR assays for SNPs located at residue 3395 in the orf1ab gene that differentiate the Delta, Omicron BA.1, and Omicron BA.2 lineages. We demonstrate their effectiveness on 596 clinical saliva specimens that were sequence verified using Illumina whole-genome sequencing. Next, we developed dPCR assays for spike mutations R346T, K444T, N460K, F486V, and F486S, which are associated with host immune evasion and reduced therapeutic monoclonal antibody efficacy. We demonstrate that these assays can be run individually or multiplexed to detect the presence of up to 4 SNPs in a single assay. We perform these dPCR assays on 81 clinical saliva SARS-CoV-2-positive specimens and properly identify mutations in Omicron subvariants BA.2.75.2, BM.1.1, BN.1, BF.7, BQ.1, BQ.1.1, and XBB. Thus, dPCR could serve as a useful tool to determine if clinical specimens contain therapeutically relevant mutations and inform patient treatment. IMPORTANCE Spike mutations in the SARS-CoV-2 genome confer resistance to therapeutic monoclonal antibodies. Authorization for treatment options is typically guided by general trends of variant prevalence. For example, bebtelovimab is no longer authorized for emergency use in the United States due to the increased prevalence of antibody-resistant BQ.1, BQ.1.1, and XBB Omicron subvariants. However, this blanket approach limits access to life-saving treatment options to patients who are otherwise infected with susceptible variants. Digital PCR assays targeting specific mutations can complement whole-genome sequencing approaches to genotype the virus. In this study, we demonstrate the proof of concept that dPCR can be used to type lineage defining and monoclonal antibody resistance-associated mutations in saliva specimens. These findings show that digital PCR could be used as a personalized diagnostic tool to guide individual patient treatment.
Collapse
Affiliation(s)
- Steven C. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Matthew F. Smith
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mihyun B. Lee
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - James C. Hu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
12
|
Zhao Z, Xie Y, Bai B, Luo C, Zhou J, Li W, Meng Y, Li L, Li D, Li X, Li X, Wang X, Sun J, Xu Z, Sun Y, Zhang W, Fan Z, Zhao X, Wu L, Ma J, Li OY, Shang G, Chai Y, Liu K, Wang P, Gao GF, Qi J. Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants. Nat Commun 2023; 14:4405. [PMID: 37479708 PMCID: PMC10362042 DOI: 10.1038/s41467-023-39942-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/29/2023] [Indexed: 07/23/2023] Open
Abstract
Multiple SARS-CoV-2 Omicron sub-variants, such as BA.2, BA.2.12.1, BA.4, and BA.5, emerge one after another. BA.5 has become the dominant strain worldwide. Additionally, BA.2.75 is significantly increasing in some countries. Exploring their receptor binding and interspecies transmission risk is urgently needed. Herein, we examine the binding capacities of human and other 28 animal ACE2 orthologs covering nine orders towards S proteins of these sub-variants. The binding affinities between hACE2 and these sub-variants remain in the range as that of previous variants of concerns (VOCs) or interests (VOIs). Notably, R493Q reverse mutation enhances the bindings towards ACE2s from humans and many animals closely related to human life, suggesting an increased risk of cross-species transmission. Structures of S/hACE2 or RBD/hACE2 complexes for these sub-variants and BA.2 S binding to ACE2 of mouse, rat or golden hamster are determined to reveal the molecular basis for receptor binding and broader interspecies recognition.
Collapse
Affiliation(s)
- Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunliang Luo
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jingya Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumin Meng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Xiaoxiong Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Xiaoyun Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Junqing Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yeping Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Fan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linhuan Wu
- Chinese National Microbiology Data Center (NMDC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juncai Ma
- Chinese National Microbiology Data Center (NMDC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Odel Y Li
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Guijun Shang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Peiyi Wang
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
13
|
Sadeghi K, Zadheidar S, Zebardast A, Nejati A, Faraji M, Ghavami N, Kalantari S, Salimi V, Yavarian J, Abedi A, Jandaghi NZS, Mokhtari‐Azad T. Genomic surveillance of SARS-CoV-2 strains circulating in Iran during six waves of the pandemic. Influenza Other Respir Viruses 2023; 17:e13135. [PMID: 37078070 PMCID: PMC10106497 DOI: 10.1111/irv.13135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Background SARS-CoV-2 genomic surveillance is necessary for the detection, monitoring, and evaluation of virus variants, which can have increased transmissibility, disease severity, or other adverse effects. We sequenced 330 SARS-CoV-2 genomes during the sixth wave of the COVID pandemic in Iran and compared them with five previous waves, for identifying SARS-CoV-2 variants, the genomic behavior of the virus, and understanding its characteristics. Methods After viral RNA extraction from clinical samples collected during the COVID-19 pandemic, next generation sequencing was performed using the Nextseq and Nanopore platforms. The sequencing data were analyzed and compared with reference sequences. Results In Iran during the first wave, V and L clades were detected. The second wave was recognized by G, GH, and GR clades. Circulating clades during the third wave were GH and GR. In the fourth wave, GRY (alpha variant), GK (delta variant), and one GH clade (beta variant) were detected. All viruses in the fifth wave were in GK clade (delta variant). In the sixth wave, Omicron variant (GRA clade) was circulating. Conclusions Genome sequencing, a key strategy in genomic surveillance systems, helps to detect and monitor the prevalence of SARS-CoV-2 variants, monitor the viral evolution of SARS-CoV-2, identify new variants for disease prevention, control, and treatment, and also provide information for and conduct public health measures in this area. With this system, Iran could be ready for surveillance of other respiratory virus diseases besides influenza and SARS-CoV-2.
Collapse
Affiliation(s)
- Kaveh Sadeghi
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Sevrin Zadheidar
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Arghavan Zebardast
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Ahmad Nejati
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Marziyeh Faraji
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Nastaran Ghavami
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Shirin Kalantari
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Vahid Salimi
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Jila Yavarian
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
- Research Center for Antibiotic Stewardship & Antimicrobial ResistanceTehran University of Medical SciencesTehranIran
| | - Adel Abedi
- Mathematics DepartmentShahid Beheshti UniversityTehranIran
| | | | - Talat Mokhtari‐Azad
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Akaishi T, Fujiwara K. Insertion and deletion mutations preserved in SARS-CoV-2 variants. Arch Microbiol 2023; 205:154. [PMID: 37000302 PMCID: PMC10064622 DOI: 10.1007/s00203-023-03493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 04/01/2023]
Abstract
The insertion/deletion (indel) mutation profiles of SARS-CoV-2 variants, including Omicron, remain unclear. We compared whole-genome sequences from various lineages and used preserved indels to infer the ancestral relationships between different lineages. Thirteen indel patterns from twelve sites were seen in ≥ 2 sequences; six of these sites were located in the N-terminal domain of the viral spike gene. Preserved indels in the coding regions were also identified in the non-structural protein 3 (Nsp3), Nsp6, and nucleocapsid genes. Seven of the thirteen indel patterns were specific to the Omicron variants, four of which were observed in BA.1, making it the most mutated variant. Other preserved indels observed in the Omicron variants were also seen in Alpha and/or Gamma, but not Delta, suggesting that Omicron is phylogenetically more proximal to Alpha. We demonstrated distinct profiles of preserved indels among SARS-CoV-2 variants and sublineages, suggesting the importance of indels in viral evolution.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University, Seiryo-Machi 1-1, Aoba-Ku, Sendai, Miyagi, 980-8574, Japan.
- COVID-19 Testing Center, Tohoku University, Sendai, Japan.
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University, Nagoya, Japan
| |
Collapse
|
15
|
Liu H, Wu L, Liu B, Xu K, Lei W, Deng J, Rong X, Du P, Wang L, Wang D, Zhang X, Su C, Bi Y, Chen H, Liu WJ, Qi J, Cui Q, Qi S, Fan R, Jiang J, Wu G, Gao GF, Wang Q. Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice. Cell Rep Med 2023; 4:100918. [PMID: 36702124 PMCID: PMC9834170 DOI: 10.1016/j.xcrm.2023.100918] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 12/11/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
With the widespread vaccinations against coronavirus disease 2019 (COVID-19), we are witnessing gradually waning neutralizing antibodies and increasing cases of breakthrough infections, necessitating the development of drugs aside from vaccines, particularly ones that can be administered outside of hospitals. Here, we present two cross-reactive nanobodies (R14 and S43) and their multivalent derivatives, including decameric ones (fused to the immunoglobulin M [IgM] Fc) that maintain potent neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after aerosolization and display not only pan-SARS-CoV-2 but also varied pan-sarbecovirus activities. Through respiratory administration to mice, monovalent and decameric R14 significantly reduce the lung viral RNAs at low dose and display potent pre- and post-exposure protection. Furthermore, structural studies reveal the neutralizing mechanisms of R14 and S43 and the multiple inhibition effects that the multivalent derivatives exert. Our work demonstrates promising convenient drug candidates via respiratory administration against SARS-CoV-2 infection, which can contribute to containing the COVID-19 pandemic.
Collapse
Affiliation(s)
- Honghui Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lili Wu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Bo Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Ke Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jianguo Deng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xiaoyu Rong
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Pei Du
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Lebing Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Dongbin Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xiaolong Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Centre for Bioinformation, Beijing, China
| | - Chao Su
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Hua Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Centre for Bioinformation, Beijing, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qingwei Cui
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi Province, China
| | - Shuhui Qi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Ruiwen Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, China.
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Research Units of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Dhama K, Nainu F, Frediansyah A, Yatoo MI, Mohapatra RK, Chakraborty S, Zhou H, Islam MR, Mamada SS, Kusuma HI, Rabaan AA, Alhumaid S, Mutair AA, Iqhrammullah M, Al-Tawfiq JA, Mohaini MA, Alsalman AJ, Tuli HS, Chakraborty C, Harapan H. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health 2023; 16:4-14. [PMID: 36446204 PMCID: PMC9675435 DOI: 10.1016/j.jiph.2022.11.024] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022] Open
Abstract
Newly emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuously posing high global public health concerns and panic resulting in waves of coronavirus disease 2019 (COVID-19) pandemic. Depending on the extent of genomic variations, mutations and adaptation, few of the variants gain the ability to spread quickly across many countries, acquire higher virulency and ability to cause severe disease, morbidity and mortality. These variants have been implicated in lessening the efficacy of the current COVID-19 vaccines and immunotherapies resulting in break-through viral infections in vaccinated individuals and recovered patients. Altogether, these could hinder the protective herd immunity to be achieved through the ongoing progressive COVID-19 vaccination. Currently, the only variant of interest of SARS-CoV-2 is Omicron that was first identified in South Africa. In this review, we present the overview on the emerging SARS-CoV-2 variants with a special focus on the Omicron variant, its lineages and hybrid variants. We discuss the hypotheses of the origin, genetic change and underlying molecular mechanism behind higher transmissibility and immune escape of Omicron variant. Major concerns related to Omicron including the efficacy of the current available immunotherapeutics and vaccines, transmissibility, disease severity, and mortality are discussed. In the last part, challenges and strategies to counter Omicron variant, its lineages and hybrid variants amid the ongoing COVID-19 pandemic are presented.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Andri Frediansyah
- Research Division for Natural Product Technology (BPTBA), National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta 55861, Indonesia
| | - Mohd Iqbal Yatoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry Shuhama, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 190006, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, India
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Microbiology, NYU Grossman School of Medicine, New York 10016, USA
| | - Md Rabiul Islam
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka 1205, Bangladesh
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Hendrix Indra Kusuma
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Biology Education Department, Faculty of Tarbiyah and Teacher Training, Universitas Islam Negeri Ar-Raniry, Jl. Syeikh Abdur Rauf, Kopelma Darussalaml, Banda Aceh 23111, Indonesia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia; College of Nursing, Prince Nora University, Riyadh 11564, Saudi Arabia; School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia; Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Muhammad Iqhrammullah
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Jaffar A Al-Tawfiq
- Specialty Internal Medicine and Quality Department, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Infectious Disease Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Infectious Disease Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al-Ahsa 31982, Saudi Arabia; King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala 133207, Haryana, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Tropical Diseases Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia; Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia.
| |
Collapse
|
17
|
Dhama K, Chandran D, Chopra H, Islam MA, Emran TB, Rehman MEU, Dey A, Mohapatra RK, SV P, Mohankumar P, Sharma AK, Bhattacharya P. SARS-CoV-2 emerging Omicron subvariants with a special focus on BF.7 and XBB.1.5 recently posing fears of rising cases amid ongoing COVID-19 pandemic. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2022; 10:1215-1221. [DOI: 10.18006/2022.10(6).1215.1221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron versions have been the sole one circulating for quite some time. Subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 of the Omicron emerged over time and through mutation, with BA.1 responsible for the most severe global pandemic between December 2021 and January 2022. Other Omicron subvariants such as BQ.1, BQ.1.1, BA.4.6, BF.7, BA.2.75.2, XBB.1 appeared recently and could cause a new wave of increased cases amid the ongoing COVID-19 pandemic. There is evidence that certain Omicron subvariants have increased transmissibility, extra spike mutations, and ability to overcome protective effects of COVID-19 neutralizing antibodies through immunological evasion. In recent months, the Omicron BF.7 subvariant has been in the news due to its spread in China and a small number of other countries, raising concerns about a possible rebound in COVID-19 cases. More recently, the Omicron XBB.1.5 subvariant has captured international attention due to an increase in cases in the United States. As a highly transmissible sublineage of Omicron BA.5, as well as having a shorter incubation time and the potential to reinfect or infect immune population, BF.7 has stronger infection ability. It appears that the regional immunological landscape is affected by the amount and timing of previous Omicron waves, as well as the COVID-19 vaccination coverage, which in turn determines whether the increased immune escape of BF.7 and XBB.1.5 subvariants is sufficient to drive new infection waves. Expanding our understanding of the transmission and efficacy of vaccines, immunotherapeutics, and antiviral drugs against newly emerging Omicron subvariants and lineages, as well as bolstering genomic facilities for tracking their spread and maintaining a constant vigilance, and shedding more light on their evolution and mutational events, would help in the development of effective mitigation strategies. Importantly, reducing the occurrence of mutations and recombination in the virus can be aided by bolstering One health approach and emphasizing its significance in combating zoonosis and reversal zoonosis linked with COVID-19. This article provides a brief overview on Omicron variant, its recently emerging lineages and subvairants with a special focus on BF.7 and XBB.1.5 as much more infectious and highly transmissible variations that may once again threaten a sharp increase in COVID-19 cases globally amid the currently ongoing pandemic, along with presenting salient mitigation measures.
Collapse
|
18
|
Song G, Cao H, Liu L, Jin M. Analysis of Marine Microplastic Pollution of Disposable Masks under COVID-19 Epidemic-A DPSIR Framework. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16299. [PMID: 36498372 PMCID: PMC9735856 DOI: 10.3390/ijerph192316299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Marine microplastic pollution (MMP) is becoming one of the most pressing environmental problems facing humanity today. The novel coronavirus epidemic has raised the issue of environmental contamination caused by large-scale improper disposal of medical waste such as disposable masks (DMs). To assess the impact of MMP caused by DMs and to seek solutions for the prevention and control of MMP, this study uses the Driving force-Pressure-State-Impact-Response (DPSIR) framework to establish a causal chain of MMP caused by DMs. The conclusion shows that the novel coronavirus epidemic has led to a surge in the use of DMs, which has brought pressure on resource constraints and environmental pollution at the same time. Improperly DMs enter the environment and eventually transform into MMP, which not only endangers the marine ecological system but also poses potential human health risks as well as economic and social hazards. In addition, further research on environmentally friendly masks (cloth masks and biodegradable masks) is essential to mitigate the environmental damage caused by the large-scale global use of DMs. This study provides a scientific and theoretical basis for the assessment of MMP from discarded DMs, and the findings of this study will provide a reference for the formulation of relevant policies.
Collapse
Affiliation(s)
| | | | | | - Min Jin
- School of Environment and Natural Resources, Renmin University of China, No. 59 Zhongguancun Street, Beijing 100872, China
| |
Collapse
|
19
|
Farahat RA, Abdelaal A, Umar TP, El-Sakka AA, Benmelouka AY, Albakri K, Ali I, Al-Ahdal T, Abdelazeem B, Sah R, Rodriguez-Morales AJ. The emergence of SARS-CoV-2 Omicron subvariants: current situation and future trends. LE INFEZIONI IN MEDICINA 2022; 30:480-494. [PMID: 36482957 PMCID: PMC9714996 DOI: 10.53854/liim-3004-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
The SARS-CoV-2 Omicron variant (B.1.1.529) has been the most recent variant of concern (VOC) established by the World Health Organization (WHO). Because of its greater infectivity and immune evasion, this variant quickly became the dominant type of circulating SARS-CoV-2 worldwide. Our literature review thoroughly explains the current state of Omicron emergence, particularly by comparing different omicron subvariants, including BA.2, BA.1, and BA.3. Such elaboration would be based on structural variations, mutations, clinical manifestation, transmissibility, pathogenicity, and vaccination effectiveness. The most notable difference between the three subvariants is the insufficiency of deletion (Δ69-70) in the spike protein, which results in a lower detection rate of the spike (S) gene target known as (S) gene target failure (SGTF). Furthermore, BA.2 had a stronger affinity to the human Angiotensin-converting Enzyme (hACE2) receptor than other Omicron sub-lineages. Regarding the number of mutations, BA.1.1 has the most (40), followed by BA.1, BA.3, and BA.3 with 39, 34, and 31 mutations, respectively. In addition, BA.2 and BA.3 have greater transmissibility than other sub-lineages (BA.1 and BA.1.1). These characteristics are primarily responsible for Omicron's vast geographical spread and high contagiousness rates, particularly BA.2 sub-lineages.
Collapse
Affiliation(s)
| | - Abdelaziz Abdelaal
- Harvard Medical School, Boston, MA,
USA
- Boston University, MA,
USA
- General Practitioner, Tanta University Hospitals,
Egypt
| | | | | | | | - Khaled Albakri
- Faculty of Medicine, The Hashemite University, Zarqa,
Jordan
| | - Iftikhar Ali
- Department of Pharmacy, Paraplegic Center, Peshawar,
Pakistan
| | - Tareq Al-Ahdal
- Institute of Global Health (HIGH), Heidelberg University, Heidelberg,
Germany
| | - Basel Abdelazeem
- Department of Internal Medicine, McLaren Health Care, Flint, Michigan,
USA
- Department of Internal Medicine, Michigan State University, East Lansing, Michigan,
USA
| | - Ranjit Sah
- Department of Microbiology, Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu,
Nepal
- Dr. D.Y Patil Medical College, Hospital and Research Centre, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra,
India
| | - Alfonso J. Rodriguez-Morales
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de Las Américas, Pereira, Risaralda,
Colombia
- Faculty of Medicine, Institución Universitaria Vision de Las Americas, Pereira, Risaralda,
Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36,
Lebanon
- Master of Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima,
Perú
| |
Collapse
|
20
|
Xie L, Li J, Ai Y, He H, Chen X, Yin M, Li W, Huang W, Luo MY, He J. Current strategies for SARS-CoV-2 molecular detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4625-4642. [PMID: 36349688 DOI: 10.1039/d2ay01313d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular detection of SARS-CoV-2 is extremely important for the discovery and prevention of pandemic dissemination. Because SARS-CoV-2 is not always present in the samples that can be collected, the sample chosen for testing has inevitably become the key to the SARS-CoV-2 positive cases screening. The nucleotide amplification strategy mainly includes Q-PCR assays and isothermal amplification assays. The Q-PCR assay is the most used SARS-CoV-2 detection assay. Due to heavy expenditures and other drawbacks, isothermal amplification cannot replace the dominant position of the Q-PCR assay. The antibody-based detection combined with Q-PCR can help to find more positive cases than only using nucleotide amplification-based assays. Pooled testing based on Q-PCR significantly increases efficiency and reduces the cost of massive-scale screening. The endless stream of variants emerging across the world poses a great challenge to SARS-CoV-2 molecular detection. The multi-target assays and several other strategies have proved to be efficient in the detection of mutated SARS-CoV-2 variants. Further research work should concentrate on: (1) identifying more ideal sample plucking strategies, (2) ameliorating the Q-PCR primer and probes targeted toward mutated SARS-CoV-2 variants, (3) exploring more economical and precise isothermal amplification assays, and (4) developing more advanced strategies for antibody/antigen or engineered antibodies to ameliorate the antibody/antigen-based strategy.
Collapse
Affiliation(s)
- Lei Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Junlin Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Ying Ai
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Haolan He
- Guangzhou Eighth People's Hospital, Guangzhou 510080, China
| | - Xiuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Mingyu Yin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Wanxi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Wenguan Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Min-Yi Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| | - Jinyang He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, No. 12 Jichang Road, Guangzhou 510080, China.
| |
Collapse
|
21
|
Barnes JE, Lund-Andersen PK, Patel JS, Ytreberg FM. The effect of mutations on binding interactions between the SARS-CoV-2 receptor binding domain and neutralizing antibodies B38 and CB6. Sci Rep 2022; 12:18819. [PMID: 36335244 PMCID: PMC9637166 DOI: 10.1038/s41598-022-23482-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022] Open
Abstract
SARS-CoV-2 is the pathogen responsible for COVID-19 that has claimed over six million lives as of July 2022. The severity of COVID-19 motivates a need to understand how it could evolve to escape potential treatments and to find ways to strengthen existing treatments. Here, we used the molecular modeling methods MD + FoldX and PyRosetta to study the SARS-CoV-2 spike receptor binding domain (S-RBD) bound to two neutralizing antibodies, B38 and CB6 and generated lists of antibody escape and antibody strengthening mutations. Our resulting watchlist contains potential antibody escape mutations against B38/CB6 and consists of 211/186 mutations across 35/22 S-RBD sites. Some of these mutations have been identified in previous studies as being significant in human populations (e.g., N501Y). The list of potential antibody strengthening mutations that are predicted to improve binding of B38/CB6 to S-RBD consists of 116/45 mutations across 29/13 sites. These mutations could be used to improve the therapeutic value of these antibodies.
Collapse
Affiliation(s)
- Jonathan E Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83843, USA
| | - Peik K Lund-Andersen
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83843, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83843, USA
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83843, USA.
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83843, USA.
| | - F Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, 83843, USA.
- Department of Physics, University of Idaho, Moscow, ID, 83843, USA.
| |
Collapse
|
22
|
Zhao Z, Zhou J, Tian M, Huang M, Liu S, Xie Y, Han P, Bai C, Han P, Zheng A, Fu L, Gao Y, Peng Q, Li Y, Chai Y, Zhang Z, Zhao X, Song H, Qi J, Wang Q, Wang P, Gao GF. Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nat Commun 2022; 13:4958. [PMID: 36002453 PMCID: PMC9399999 DOI: 10.1038/s41467-022-32665-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022] Open
Abstract
Omicron SARS-CoV-2 is rapidly spreading worldwide. To delineate the impact of emerging mutations on spike's properties, we performed systematic structural analyses on apo Omicron spike and its complexes with human ACE2 or S309 neutralizing antibody (NAb) by cryo-EM. The Omicron spike preferentially adopts the one-RBD-up conformation both before and after ACE2 binding, which is in sharp contrast to the orchestrated conformational changes to create more up-RBDs upon ACE2 binding as observed in the prototype and other four variants of concern (VOCs). Furthermore, we found that S371L, S373P and S375F substitutions enhance the stability of the one-RBD-up conformation to prevent exposing more up-RBDs triggered by ACE2 binding. The increased stability of the one-RBD-up conformation restricts the accessibility of S304 NAb, which targets a cryptic epitope in the closed conformation, thus facilitating the immune evasion by Omicron. These results expand our understanding of Omicron spike's conformation, receptor binding and antibody evasion mechanism.
Collapse
Affiliation(s)
- Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingya Zhou
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingxiong Tian
- College of life Science, Shanxi University, Taiyuan, 030006, China
| | - Min Huang
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng Liu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chongzhi Bai
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, 030012, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Anqi Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lutang Fu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanzhu Gao
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zengyuan Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peiyi Wang
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - George F Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
- School of Life Science, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
23
|
Thakur P, Thakur V, Kumar P, Singh Patel SK. Emergence of novel omicron hybrid variants: BA(x), XE, XD, XF more than just alphabets. Int J Surg 2022; 104:106727. [PMID: 35753656 PMCID: PMC9225928 DOI: 10.1016/j.ijsu.2022.106727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Pryanka Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Vikram Thakur
- Department of Virology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | | |
Collapse
|
24
|
Anti-TNFα Treatment Impairs Long-Term Immune Responses to COVID-19 mRNA Vaccine in Patients with Inflammatory Bowel Diseases. Vaccines (Basel) 2022; 10:vaccines10081186. [PMID: 35893835 PMCID: PMC9330864 DOI: 10.3390/vaccines10081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/02/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) treated with anti-tumor-necrosis factor-alpha (TNFα) exhibited lower serologic responses one-month following the second dose of the COVID-19 BNT162b2 vaccine compared to those not treated with anti-TNFα (non-anti-TNFα) or to healthy controls (HCs). We comprehensively analyzed long-term humoral responses, including anti-spike (S) antibodies, serum inhibition, neutralization, cross-reactivity and circulating B cell six months post BNT162b2, in patients with IBD stratified by therapy compared to HCs. Subjects enrolled in a prospective, controlled, multi-center Israeli study received two BNT162b2 doses. Anti-S levels, functional activity, specific B cells, antigen cross-reactivity, anti-nucleocapsid levels, adverse events and IBD disease score were detected longitudinally. In total, 240 subjects, 151 with IBD (94 not treated with anti-TNFα and 57 treated with anti-TNFα) and 89 HCs participated. Six months after vaccination, patients with IBD treated with anti-TNFα had significantly impaired BNT162b2 responses, specifically, more seronegativity, decreased specific circulating B cells and cross-reactivity compared to patients untreated with anti-TNFα. Importantly, all seronegative subjects were patients with IBD; of those, >90% were treated with anti-TNFα. Finally, IBD activity was unaffected by BNT162b2. Altogether these data support the earlier booster dose administration in these patients.
Collapse
|
25
|
Li L, Han P, Huang B, Xie Y, Li W, Zhang D, Han P, Xu Z, Bai B, Zhou J, Kang X, Li X, Zheng A, Zhang R, Qiao S, Zhao X, Qi J, Wang Q, Liu K, Gao GF. Broader-species receptor binding and structural bases of Omicron SARS-CoV-2 to both mouse and palm-civet ACE2s. Cell Discov 2022; 8:65. [PMID: 35821014 PMCID: PMC9274624 DOI: 10.1038/s41421-022-00431-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 carries multiple unusual mutations, particularly in the receptor-binding domain (RBD) of the spike (S) protein. Moreover, host-adapting mutations, such as residues 493, 498, and 501, were also observed in the Omicron RBD, which indicates that it is necessary to evaluate the interspecies transmission risk of the Omicron variant. Herein, we evaluated the interspecies recognition of the Omicron BA.1 and Delta RBDs by 27 ACE2 orthologs, including humans. We found that Omicron BA.1 expanded its receptor binding spectra to palm-civet, rodents, more bats (least horseshoe bat and greater horseshoe bat) and lesser hedgehog tenrec. Additionally, we determined the cryo-electron microscopy (cryo-EM) structure of the Omicron BA.1 S protein complexed with mouse ACE2 (mACE2) and the crystal structure of Omicron RBD complexed with palm-civet ACE2 (cvACE2). Several key residues for the host range have been identified. These results suggest that surveillance should be enhanced on the Omicron variant for its broader-species receptor binding to prevent spillover and expansion of reservoir hosts for a prolonged pandemic.
Collapse
Affiliation(s)
- Linjie Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Baihan Huang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Weiwei Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Di Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Zepeng Xu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingya Zhou
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinrui Kang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Li
- Cryo-EM Center, Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi, China
| | - Anqi Zheng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Li B, Huang Y, Guo D, Liu Y, Liu Z, Han JC, Zhao J, Zhu X, Huang Y, Wang Z, Xing B. Environmental risks of disposable face masks during the pandemic of COVID-19: Challenges and management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153880. [PMID: 35189225 PMCID: PMC8855619 DOI: 10.1016/j.scitotenv.2022.153880] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 05/10/2023]
Abstract
Since the COVID-19 outbreak in early 2020, face mask (FM) has been recognized as an effective measure to reduce the infection, increasing its consumption across the world. However, the large amount of at-home FM usage changed traditional medical waste management practices, lack of improper management. Currently, few studies estimate FM consumption at a global scale, not to say a comprehensive investigation on the environmental risks of FM from a life cycle perspective. Therefore, global FM consumption and its associated environmental risks are clarified in the present study. Our result shows that 449.5 billion FMs were consumed from January 2020 to March 2021, with an average of 59.4 FMs per person worldwide. This review also provides a basis to understand the environmental risk of randomly disposed of FM and highlights the urgent requirement for the attention of FMs waste management to prevent pollution in the near future.
Collapse
Affiliation(s)
- Bing Li
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Department of Hydraulic Engineering, Tsinghua University, Beijing, PR China
| | - Yuxiong Huang
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Dengting Guo
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Chemical and Materials Engineering, The University of Auckland, New Zealand
| | - Yuzhi Liu
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Ziyi Liu
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Centre, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, PR China
| | - Jian Zhao
- School of Environmental Science and Engineering, Ocean University of China, Qingdao 214122, PR China
| | - Xiaoshan Zhu
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Yuefei Huang
- Water Research Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Department of Hydraulic Engineering, Tsinghua University, Beijing, PR China
| | - Zhenyu Wang
- Institute of Environmental Process and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
27
|
Abstract
With the rapid roll out of vaccination programs and extraordinary non-pharmaceutical interventions (NPIs) by the government, China has maintained a "dynamic zero-COVID-19" policy over the last two years. However, the global pandemic and immune evasion of Omicron variant poses a huge challenge to China. Currently, about 87.69% of the Chinese population has been vaccinated, most with inactivated vaccines. Although seroepidemiological data on the vaccinated are lacking, published data suggested that even a homologous booster of an inactivated vaccine displayed very limited neutralizing activity against the Omicron variant and that neutralizing activity was significantly lower than that of a heterologous booster or mRNA vaccine alone. A great concern is whether the neutralizing antibodies induced by inactivated vaccines can provide sufficient protection against the Omicron variant since local transmission of the Omicron variant is now occurring in China. The era of extraordinary NPIs by governments and countries to control the transmission of SARS-CoV-2 is going to change. Omicron's immune evasion of neutralizing antibodies induced by current vaccines and the majority of existing therapeutic SARS-CoV-2 monoclonal antibodies (mAbs) suggest an urgent need for more effective vaccines and highly effective oral antivirals, which will be the keys for the battle against Omicron in the future.
Collapse
Affiliation(s)
- Hongzhou Lu
- National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Qian Z, Li P, Tang X, Lu J. Evolutionary dynamics of the severe acute respiratory syndrome coronavirus 2 genomes. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:3-22. [PMID: 35658106 PMCID: PMC9047652 DOI: 10.1515/mr-2021-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused immense losses in human lives and the global economy and posed significant challenges for global public health. As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has evolved, thousands of single nucleotide variants (SNVs) have been identified across the viral genome. The roles of individual SNVs in the zoonotic origin, evolution, and transmission of SARS-CoV-2 have become the focus of many studies. This review summarizes recent comparative genomic analyses of SARS-CoV-2 and related coronaviruses (SC2r-CoVs) found in non-human animals, including delineation of SARS-CoV-2 lineages based on characteristic SNVs. We also discuss the current understanding of receptor-binding domain (RBD) evolution and characteristic mutations in variants of concern (VOCs) of SARS-CoV-2, as well as possible co-evolution between RBD and its receptor, angiotensin-converting enzyme 2 (ACE2). We propose that the interplay between SARS-CoV-2 and host RNA editing mechanisms might have partially resulted in the bias in nucleotide changes during SARS-CoV-2 evolution. Finally, we outline some current challenges, including difficulty in deciphering the complicated relationship between viral pathogenicity and infectivity of different variants, and monitoring transmission of SARS-CoV-2 between humans and animals as the pandemic progresses.
Collapse
Affiliation(s)
- Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Pei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100176, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100176, China
| |
Collapse
|