1
|
Goyal P, Malviya R. Stem Cell Therapy for the Management of Type 1 Diabetes: Advances and Perspectives. Endocr Metab Immune Disord Drug Targets 2024; 24:549-561. [PMID: 37861029 DOI: 10.2174/0118715303256582230919093535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/20/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Due to insulin resistance and excessive blood sugar levels, type 1 diabetes mellitus (T1DM) is characterized by pancreatic cell loss. This condition affects young people at a higher rate than any other chronic autoimmune disease. Regardless of the method, exogenous insulin cannot substitute for insulin produced by a healthy pancreas. An emerging area of medicine is pancreatic and islet transplantation for type 1 diabetics to restore normal blood sugar regulation. However, there are still obstacles standing in the way of the widespread use of these therapies, including very low availability of pancreatic and islets supplied from human organ donors, challenging transplantation conditions, high expenses, and a lack of easily accessible methods. Efforts to improve Type 1 Diabetes treatment have been conducted in response to the disease's increasing prevalence. Type 1 diabetes may one day be treated with stem cell treatment. Stem cell therapy has proven to be an effective treatment for type 1 diabetes. Recent progress in stem cell-based diabetes treatment is summarised, and the authors show how to isolate insulin-producing cells (IPCs) from a variety of progenitor cells.
Collapse
Affiliation(s)
- Priyanshi Goyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Dumasia NP, Khanna AP, Pethe PS. Retinoic acid signaling is critical for generation of pancreatic progenitors from human embryonic stem cells. Growth Factors 2023; 41:8-19. [PMID: 36373834 DOI: 10.1080/08977194.2022.2144284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Retinoic acid (RA) is essential for gut endoderm development and has been extensively used for in vitro pancreatic differentiation from human pluripotent stem cells. However, the gene regulatory network triggered by RA signaling remains poorly addressed. Also, whether RA signals control histone modifiers such as the Polycomb group proteins during pancreatic specification remains to be explored. Here, we assess the role of RA on pancreas-specific genes during the differentiation of human embryonic stem cells (hESCs). We demonstrate that RA helps cells exit the definitive endoderm stage and proceed toward a pancreatic fate. Inhibition of the RA pathway using the pharmacological inhibitor LE135 impairs the induction of pancreatic endoderm (PE) markers FOXA2, HNF4α, HNF1β, HHEX, and PDX1. We further determine that RA signals alter the expression of epigenetic-associated genes BMI1 and RING1B in the hESC-derived pancreatic progenitors. These findings broaden our understanding of the mechanisms that drive early PE specification.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, India
| | - Aparna P Khanna
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to-be) University, Mumbai, India
- Centre for Computational Biology & Translational Research, Amity Institute of Biotechnology (AIB), Amity University, Mumbai, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Pune, India
| |
Collapse
|
3
|
Verhoeff K, Cuesta-Gomez N, Jasra I, Marfil-Garza B, Dadheech N, Shapiro AMJ. Optimizing Generation of Stem Cell-Derived Islet Cells. Stem Cell Rev Rep 2022; 18:2683-2698. [PMID: 35639237 DOI: 10.1007/s12015-022-10391-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 02/06/2023]
Abstract
Islet transplantation is a highly effective treatment for select patients with type 1 diabetes. Unfortunately, current use is limited to those with brittle disease due to donor limitations and immunosuppression requirements. Discovery of factors for induction of pluripotent stem cells from adult somatic cells into a malleable state has reinvigorated the possibility of autologous-based regenerative cell therapies. Similarly, recent progress in allogeneic human embryonic stem cell islet products is showing early success in clinical trials. Describing safe and standardized differentiation protocols with clear pathways to optimize yield and minimize off-target growth is needed to efficiently move the field forward. This review discusses current islet differentiation protocols with a detailed break-down of differentiation stages to guide step-wise controlled generation of functional islet products.
Collapse
Affiliation(s)
- Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Nerea Cuesta-Gomez
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Ila Jasra
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Braulio Marfil-Garza
- National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, and CHRISTUS-LatAm Hub - Excellence and Innovation Center, Monterrey, Mexico
| | - Nidheesh Dadheech
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A M James Shapiro
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.
- 1-002 Li Ka Shing Centre for Health Research Innovation, 112 St. NW & 87 Ave NW, Edmonton, Alberta, T6G 2E1, Canada.
| |
Collapse
|
4
|
Guertin TM, Palaria A, Mager J, Sandell LL, Trainor PA, Tremblay KD. Deciphering the role of retinoic acid in hepatic patterning and induction in the mouse. Dev Biol 2022; 491:31-42. [PMID: 36028102 PMCID: PMC11651638 DOI: 10.1016/j.ydbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
Abstract
Retinoic acid (RA), a metabolite of vitamin A, is a small molecule and morphogen that is required for embryonic development. While normal RA signals are required for hepatic development in a variety of vertebrates, a role for RA during mammalian hepatic specification has yet to be defined. To examine the requirement for RA in murine liver induction, we performed whole embryo culture with the small molecule RA inhibitor, BMS493, to attenuate RA signaling immediately prior to hepatic induction and through liver bud formation. BMS493 treated embryos demonstrated a significant loss of hepatic specification that was confined to the prospective dorsal anterior liver bud. Examination of RA attenuated embryos demonstrates that while the liver bud displays normal expression of foregut endoderm markers and the hepato-pancreatobiliary domain marker, PROX1, the dorsal/anterior liver bud excludes the critical hepatic marker, HNF4α, indicating that RA signals are required for dorsal/anterior hepatic induction. These results were confirmed and extended by careful examination of Rdh10<sup>trex/trex</sup> embryos, which carry a genetic perturbation in RA synthesis. At E9.5 Rdh10<sup>trex/trex</sup> embryos display a similar yet more significant loss of the anterior/dorsal liver bud. Notably the anterior/dorsal liver bud loss correlates with the known dorsal-ventral gradient of the RA synthesis enzyme, Aldh1a2. In addition to altered hepatic specification, the mesoderm surrounding the liver bud is disorganized in RA abrogated embryos. Analysis of E10.5 Rdh10<sup>trex/trex</sup> embryos reveals small livers that appear to lack the dorsal/caudal lobes. Finally, addition of exogenous RA prior to hepatic induction results in a liver bud that has failed to thicken and is largely unspecified. Taken together our ex vivo and in vivo evidence demonstrate that the generation of normal RA gradients is required for hepatic patterning, specification, and growth.
Collapse
Affiliation(s)
- Taylor M Guertin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Amrita Palaria
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
5
|
Silva IBB, Kimura CH, Colantoni VP, Sogayar MC. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem Cell Res Ther 2022; 13:309. [PMID: 35840987 PMCID: PMC9284809 DOI: 10.1186/s13287-022-02977-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic disease characterized by an autoimmune destruction of insulin-producing β-pancreatic cells. Although many advances have been achieved in T1D treatment, current therapy strategies are often unable to maintain perfect control of glycemic levels. Several studies are searching for new and improved methodologies for expansion of β-cell cultures in vitro to increase the supply of these cells for pancreatic islets replacement therapy. A promising approach consists of differentiation of stem cells into insulin-producing cells (IPCs) in sufficient number and functional status to be transplanted. Differentiation protocols have been designed using consecutive cytokines or signaling modulator treatments, at specific dosages, to activate or inhibit the main signaling pathways that control the differentiation of induced pluripotent stem cells (iPSCs) into pancreatic β-cells. Here, we provide an overview of the current approaches and achievements in obtaining stem cell-derived β-cells and the numerous challenges, which still need to be overcome to achieve this goal. Clinical translation of stem cells-derived β-cells for efficient maintenance of long-term euglycemia remains a major issue. Therefore, research efforts have been directed to the final steps of in vitro differentiation, aiming at production of functional and mature β-cells and integration of interdisciplinary fields to generate efficient cell therapy strategies capable of reversing the clinical outcome of T1D.
Collapse
Affiliation(s)
- Isaura Beatriz Borges Silva
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Camila Harumi Kimura
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil
| | - Vitor Prado Colantoni
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil.,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center (NUCEL), School of Medicine, University of São Paulo, São Paulo, SP, 05360-130, Brazil. .,Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
6
|
López-Pérez AR, Balwierz PJ, Lenhard B, Muller F, Wardle FC, Manfroid I, Voz ML, Peers B. Identification of downstream effectors of retinoic acid specifying the zebrafish pancreas by integrative genomics. Sci Rep 2021; 11:22717. [PMID: 34811400 PMCID: PMC8608873 DOI: 10.1038/s41598-021-02039-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.
Collapse
Affiliation(s)
- Ana R López-Pérez
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Piotr J Balwierz
- Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Boris Lenhard
- Institute of Clinical Sciences and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ferenc Muller
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Fiona C Wardle
- Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Isabelle Manfroid
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium
| | - Marianne L Voz
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium
| | - Bernard Peers
- Laboratory of Zebrafish Development and Disease Models (ZDDM), GIGA-R, SART TILMAN, University of Liège, Avenue de l'Hôpital 1, B34, 4000, Liège, Belgium.
| |
Collapse
|
7
|
Generation of high yield insulin-producing cells (IPCs) from various sources of stem cells. VITAMINS AND HORMONES 2021; 116:235-268. [PMID: 33752820 DOI: 10.1016/bs.vh.2021.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Type 1 diabetes mellitus occurs when beta cell mass is reduced to less than 20% of the normal level due to immune system destruction of beta cell resulting in an inability to secrete enough insulin. The prevalence of diabetes is expanding according to the American Diabetes Association and the World Health Organization (WHO), foretold to exceed 350 million by 2030. The current treatment does not cure many of the serious complications associated with the disease such as neuropathy, nephropathy, dyslipidemia, retinopathy and cardiovascular disease. Whole pancreas or isolated pancreatic islet transplantation as an alternative therapy can prevent or reduce some of the complications of diabetes. However, the shortage of matched organ or islets cells donor and alloimmune responses limit this therapeutic strategy. Recently, several reports have raised extremely promising results to use different sources of stem cells to differentiate insulin-producing cells and focus on the expansion of these alternative sources. Stem cells, due to their potential for multiple differentiation and self-renewal can differentiate into all cell types, including insulin-producing cells (IPCs). Generation of new beta cells can be achieved from various stem cell sources, including embryonic stem cells (ESCs), adult stem cells, such as mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs). Thus, this chapter discusses on the assistance of cellular reprogramming of various stem cells as candidates for the generation of IPCs using transcription factors/miRNA, cytokines/small molecules and tissue engineering.
Collapse
|
8
|
Abstract
The endoderm is the innermost germ layer that forms the linings of the respiratory and gastrointestinal tracts, and their associated organs, during embryonic development. Xenopus embryology experiments have provided fundamental insights into how the endoderm develops in vertebrates, including the critical role of TGFβ-signaling in endoderm induction,elucidating the gene regulatory networks controlling germ layer development and the key molecular mechanisms regulating endoderm patterning and morphogenesis. With new genetic, genomic, and imaging approaches, Xenopus is now routinely used to model human disease, discover mechanisms underlying endoderm organogenesis, and inform differentiation protocols for pluripotent stem cell differentiation and regenerative medicine applications. In this chapter, we review historical and current discoveries of endoderm development in Xenopus, then provide examples of modeling human disease and congenital defects of endoderm-derived organs using Xenopus.
Collapse
Affiliation(s)
- Nicole A Edwards
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Aaron M Zorn
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
9
|
Zhou Y, Wang H, Zhou J, Qiu S, Cai T, Li H, Shen Z, Hu Y, Ding B, Luo M, Huang R, Yan R, Xu W, He C, Zhang Y, Li F, Sun Z, Ma J. Vitamin A and Its Multi-Effects on Pancreas: Recent Advances and Prospects. Front Endocrinol (Lausanne) 2021; 12:620941. [PMID: 33679618 PMCID: PMC7930481 DOI: 10.3389/fendo.2021.620941] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Vitamin A (VA), which is stored in several forms in most tissues, is required to maintain metabolite homeostasis and other processes, including the visual cycle, energy balance, epithelial cell integrity, and infection resistance. In recent years, VA molecules, also known as retinoids, have been extensively explored and used in the treatment of skin disorders and immune-related tumors. To date, several observational and interventional studies have explored the relationship between VA status and the pathogenesis of diabetes. In particular, VA micronutrients have been shown to regulate pancreatic development, β-cell function, pancreatic innate immune responses, and pancreatic stellate cells phenotypes through multiple mechanisms. However, there are still many problems to be proven or resolved. In this review, we summarize and discuss recent and available evidence on VA biological metabolism in the pancreas. Analysis of the effects of VA on metabolism in the pancreas will contribute to our understanding of the supportive physiological roles of VA in pancreas protection.
Collapse
Affiliation(s)
- Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiying Wang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junming Zhou
- Department of Cadre Gastroenterology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shanhu Qiu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
- Department of Endocrinology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tingting Cai
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiqin Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Hu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Ding
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Menghui Luo
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Huang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rengna Yan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Institute of Medical Sciences, Xuzhou Clinical School of Nanjing Medical University, Xuzhou, China
| | - Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yumin Zhang
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Fengfei Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Goenka V, Borkar T, Desai A, Das RK. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord 2020; 19:1979-1993. [PMID: 33520872 PMCID: PMC7843693 DOI: 10.1007/s40200-020-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients' lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Collapse
Affiliation(s)
- Vidul Goenka
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Tanhai Borkar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Aska Desai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
11
|
Single-cell patterning and axis characterization in the murine and human definitive endoderm. Cell Res 2020; 31:326-344. [PMID: 33106598 DOI: 10.1038/s41422-020-00426-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Defining the precise regionalization of specified definitive endoderm progenitors is critical for understanding the mechanisms underlying the generation and regeneration of respiratory and digestive organs, yet the patterning of endoderm progenitors remains unresolved, particularly in humans. We performed single-cell RNA sequencing on endoderm cells during the early somitogenesis stages in mice and humans. We developed molecular criteria to define four major endoderm regions (foregut, lip of anterior intestinal portal, midgut, and hindgut) and their developmental pathways. We identified the cell subpopulations in each region and their spatial distributions and characterized key molecular features along the body axes. Dorsal and ventral pancreatic progenitors appear to originate from the midgut population and follow distinct pathways to develop into an identical cell type. Finally, we described the generally conserved endoderm patterning in humans and clear differences in dorsal cell distribution between species. Our study comprehensively defines single-cell endoderm patterning and provides novel insights into the spatiotemporal process that drives establishment of early endoderm domains.
Collapse
|
12
|
Huang H, Bader TN, Jin S. Signaling Molecules Regulating Pancreatic Endocrine Development from Pluripotent Stem Cell Differentiation. Int J Mol Sci 2020; 21:E5867. [PMID: 32824212 PMCID: PMC7461594 DOI: 10.3390/ijms21165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022] Open
Abstract
Diabetes is one of the leading causes of death globally. Currently, the donor pancreas is the only source of human islets, placing extreme constraints on supply. Hence, it is imperative to develop renewable islets for diabetes research and treatment. To date, extensive efforts have been made to derive insulin-secreting cells from human pluripotent stem cells with substantial success. However, the in vitro generation of functional islet organoids remains a challenge due in part to our poor understanding of the signaling molecules indispensable for controlling differentiation pathways towards the self-assembly of functional islets from stem cells. Since this process relies on a variety of signaling molecules to guide the differentiation pathways, as well as the culture microenvironments that mimic in vivo physiological conditions, this review highlights extracellular matrix proteins, growth factors, signaling molecules, and microenvironments facilitating the generation of biologically functional pancreatic endocrine cells from human pluripotent stem cells. Signaling pathways involved in stepwise differentiation that guide the progression of stem cells into the endocrine lineage are also discussed. The development of protocols enabling the generation of islet organoids with hormone release capacities equivalent to native adult islets for clinical applications, disease modeling, and diabetes research are anticipated.
Collapse
Affiliation(s)
- Hui Huang
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
| | - Taylor N. Bader
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA; (H.H.); (T.N.B.)
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
13
|
Skuodas S, Clemons A, Hayes M, Goll A, Zora B, Weeks DL, Phillips BT, Fassler JS. The ABCF gene family facilitates disaggregation during animal development. Mol Biol Cell 2020; 31:1324-1345. [PMID: 32320318 PMCID: PMC7353142 DOI: 10.1091/mbc.e19-08-0443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein aggregation, once believed to be a harbinger and/or consequence of stress, age, and pathological conditions, is emerging as a novel concept in cellular regulation. Normal versus pathological aggregation may be distinguished by the capacity of cells to regulate the formation, modification, and dissolution of aggregates. We find that Caenorhabditis elegans aggregates are observed in large cells/blastomeres (oocytes, embryos) and in smaller, further differentiated cells (primordial germ cells), and their analysis using cell biological and genetic tools is straightforward. These observations are consistent with the hypothesis that aggregates are involved in normal development. Using cross-platform analysis in Saccharomyces cerevisiae, C. elegans, and Xenopus laevis, we present studies identifying a novel disaggregase family encoded by animal genomes and expressed embryonically. Our initial analysis of yeast Arb1/Abcf2 in disaggregation and animal ABCF proteins in embryogenesis is consistent with the possibility that members of the ABCF gene family may encode disaggregases needed for aggregate processing during the earliest stages of animal development.
Collapse
Affiliation(s)
- Sydney Skuodas
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Amy Clemons
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Michael Hayes
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Ashley Goll
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | - Betul Zora
- Department of Biology, University of Iowa, Iowa City, IA 52242
| | - Daniel L Weeks
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | | | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
14
|
Thakur G, Lee HJ, Jeon RH, Lee SL, Rho GJ. Small Molecule-Induced Pancreatic β-Like Cell Development: Mechanistic Approaches and Available Strategies. Int J Mol Sci 2020; 21:E2388. [PMID: 32235681 PMCID: PMC7178115 DOI: 10.3390/ijms21072388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the defining features of the two forms are insulin deficiency and resistance, respectively. Stem cell therapy is an efficient method for the treatment of diabetes, which can be achieved by differentiating pancreatic β-like cells. The consistent generation of glucose-responsive insulin releasing cells remains challenging. In this review article, we present basic concepts of pancreatic organogenesis, which intermittently provides a basis for engineering differentiation procedures, mainly based on the use of small molecules. Small molecules are more auspicious than any other growth factors, as they have unique, valuable properties like cell-permeability, as well as a nonimmunogenic nature; furthermore, they offer immense benefits in terms of generating efficient functional beta-like cells. We also summarize advances in the generation of stem cell-derived pancreatic cell lineages, especially endocrine β-like cells or islet organoids. The successful induction of stem cells depends on the quantity and quality of available stem cells and the efficient use of small molecules.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Hyeon-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Ryoung-Hoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (H.-J.L.); (S.-L.L.)
| |
Collapse
|
15
|
Pancreas organogenesis: The interplay between surrounding microenvironment(s) and epithelium-intrinsic factors. Curr Top Dev Biol 2019; 132:221-256. [DOI: 10.1016/bs.ctdb.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 2018; 92:77-88. [PMID: 30142440 DOI: 10.1016/j.semcdb.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing β-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-β superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to β-cells in vitro.
Collapse
|
17
|
Gere-Becker MB, Pommerenke C, Lingner T, Pieler T. Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis. Development 2018; 145:dev.161372. [PMID: 29769220 PMCID: PMC6031401 DOI: 10.1242/dev.161372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
Retinoic acid (RA) is required for pancreas specification in Xenopus and other vertebrates. However, the gene network that is directly induced by RA signalling in this context remains to be defined. By RNA sequencing of in vitro-generated pancreatic explants, we identified the genes encoding the transcription factor Hnf1β and the Wnt-receptor Fzd4/Fzd4s as direct RA target genes. Functional analyses of Hnf1b and Fzd4/Fzd4s in programmed pancreatic explants and whole embryos revealed their requirement for pancreatic progenitor formation and differentiation. Thus, Hnf1β and Fzd4/Fzd4s appear to be involved in pre-patterning events of the embryonic endoderm that allow pancreas formation in Xenopus.
Collapse
Affiliation(s)
- Maja B Gere-Becker
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| | - Thomas Lingner
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany.,Genevention GmbH, Rudolf-Wissel-Str. 28, 37079 Goettingen, Germany
| | - Tomas Pieler
- Department of Developmental Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| |
Collapse
|
18
|
Rankin SA, McCracken KW, Luedeke DM, Han L, Wells JM, Shannon JM, Zorn AM. Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis. Dev Biol 2017; 434:121-132. [PMID: 29217200 DOI: 10.1016/j.ydbio.2017.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
A small number of signaling pathways are used repeatedly during organogenesis, and they can have drastically different effects on the same population of cells depending on the embryonic stage. How cellular competence changes over developmental time is not well understood. Here we used Xenopus, mouse, and human pluripotent stem cells to investigate how the temporal sequence of Wnt, BMP, and retinoic acid (RA) signals regulates endoderm developmental competence and organ induction, focusing on respiratory fate. While Nkx2-1+ lung fate is not induced until late somitogenesis stages, here we show that lung competence is restricted by the gastrula stage as a result of Wnt and BMP-dependent anterior-posterior (A-P) patterning. These early Wnt and BMP signals make posterior endoderm refractory to subsequent RA/Wnt/BMP-dependent lung induction. We further mapped how RA modulates the response to Wnt and BMP in a temporal specific manner. In the gastrula RA promotes posterior identity, however in early somite stages of development RA regulates respiratory versus pharyngeal potential in anterior endoderm and midgut versus hindgut potential in posterior endoderm. Together our data suggest a dynamic and conserved response of vertebrate endoderm during organogenesis, wherein early Wnt/BMP/RA impacts how cells respond to later Wnt/BMP/RA signals, illustrating how reiterative combinatorial signaling can regulate both developmental competence and subsequent fate specification.
Collapse
Affiliation(s)
- Scott A Rankin
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Kyle W McCracken
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - David M Luedeke
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Lu Han
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - James M Wells
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - John M Shannon
- Pulmonary Biology, Cincinnati Children's Hospital, and the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Aaron M Zorn
- Center for Stem Cell&Organoid Medicine (CuSTOM), Perinatal Institute, Divisions of Developmental Biology the Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
19
|
Ferdek PE, Jakubowska MA. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch 2017; 469:1039-1050. [PMID: 28382480 PMCID: PMC5554282 DOI: 10.1007/s00424-017-1968-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic stellate cells, normally quiescent, are capable of remarkable transition into their activated myofibroblast-like phenotype. It is now commonly accepted that these cells play a pivotal role in the desmoplastic reaction present in severe pancreatic disorders. In recent years, enormous scientific effort has been devoted to understanding their roles in pancreatic cancer, which continues to remain one of the most deadly diseases. Therefore, it is not surprising that considerably less attention has been given to studying physiological functions of pancreatic stellate cells. Here, we review recent advances not only in the field of pancreatic stellate cell pathophysiology but also emphasise their roles in physiological processes.
Collapse
Affiliation(s)
- Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - Monika A Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK
| |
Collapse
|
20
|
Abstract
The zebrafish pancreas shares its basic organization and cell types with the mammalian pancreas. In addition, the developmental pathways that lead to the establishment of the pancreatic islets of Langherhans are generally conserved from fish to mammals. Zebrafish provides a powerful tool to probe the mechanisms controlling establishment of the pancreatic endocrine cell types from early embryonic progenitor cells, as well as the regeneration of endocrine cells after damage. This knowledge is, in turn, applicable to refining protocols to generate renewable sources of human pancreatic islet cells that are critical for regulation of blood sugar levels. Here, we review how previous and ongoing studies in zebrafish and beyond are influencing the understanding of molecular mechanisms underlying various forms of diabetes and efforts to develop cell-based approaches to cure this increasingly widespread disease.
Collapse
|
21
|
Arregi I, Climent M, Iliev D, Strasser J, Gouignard N, Johansson JK, Singh T, Mazur M, Semb H, Artner I, Minichiello L, Pera EM. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling. Endocrinology 2016; 157:4615-4631. [PMID: 27740873 DOI: 10.1210/en.2016-1745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon+ and insulin+ cells. During the secondary transition, the reduction of Neurogenin3+ endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.
Collapse
Affiliation(s)
- Igor Arregi
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Maria Climent
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Dobromir Iliev
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jürgen Strasser
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Nadège Gouignard
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Jenny K Johansson
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Tania Singh
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Magdalena Mazur
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Henrik Semb
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Isabella Artner
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Liliana Minichiello
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| | - Edgar M Pera
- Lund Stem Cell Center (I.Arr., M.C., D.I., J.S., N.G., J.K.J., T.S., M.M., I.Art., E.M.P.), Lund University, SE-22184 Lund, Sweden; The Danish Stem Cell Center (H.S.), University of Copenhagen, DK-2200 Copenhagen, Denmark; and Department of Pharmacology (L.M.), University of Oxford, OX1 3QT Oxford, United Kingdom
| |
Collapse
|
22
|
Maternal vitamin A deficiency during pregnancy affects vascularized islet development. J Nutr Biochem 2016; 36:51-59. [DOI: 10.1016/j.jnutbio.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/08/2016] [Accepted: 07/05/2016] [Indexed: 02/03/2023]
|
23
|
Huang W, Beer RL, Delaspre F, Wang G, Edelman HE, Park H, Azuma M, Parsons MJ. Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol 2016; 418:28-39. [PMID: 27565026 DOI: 10.1016/j.ydbio.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
Centroacinar cells (CACs) are ductal Notch-responsive progenitors that in the larval zebrafish pancreas differentiate to form new islets and ultimately contribute to the majority of the adult endocrine mass. Uncovering the mechanisms regulating CAC differentiation will facilitate understanding how insulin-producing β cells are formed. Previously we reported retinoic acid (RA) signaling and Notch signaling both regulate larval CAC differentiation, suggesting a shared downstream intermediate. Sox9b is a transcription factor important for islet formation whose expression is upregulated by Notch signaling in larval CACs. Here we report that sox9b expression in larval CACs is also regulated by RA signaling. Therefore, we hypothesized that Sox9b is an intermediate between both RA- and Notch-signaling pathways. In order to study the role of Sox9b in larval CACs, we generated two cre/lox based transgenic tools, which allowed us to express full-length or truncated Sox9b in larval CACs. In this way we were able to perform spatiotemporal-controlled Sox9b gain- and loss-of-function studies and observe the subsequent effect on progenitor differentiation. Our results are consistent with Sox9b regulating CAC differentiation by being a downstream intermediate of both RA- and Notch-signaling pathways. We also demonstrate that adult zebrafish with only one functional allele of sox9b undergo accelerated β-cell regeneration, an observation consistent with sox9b regulating CAC differentiation in adults.
Collapse
Affiliation(s)
- Wei Huang
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Rebecca L Beer
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Fabien Delaspre
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Guangliang Wang
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Hannah E Edelman
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Mizuki Azuma
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Michael J Parsons
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA; Department of Surgery, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Xuan S, Sussel L. GATA4 and GATA6 regulate pancreatic endoderm identity through inhibition of hedgehog signaling. Development 2016; 143:780-6. [PMID: 26932670 DOI: 10.1242/dev.127217] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GATA4 and GATA6 are zinc finger transcription factors that have important functions in several mesodermal and endodermal organs, including heart, liver and pancreas. In humans, heterozygous mutations of either factor are associated with pancreatic agenesis; however, homozygous deletion of both Gata4 and Gata6 is necessary to disrupt pancreas development in mice. In this study, we demonstrate that arrested pancreatic development in Gata4(fl/fl); Gata6(fl/fl); Pdx1:Cre (pDKO) embryos is accompanied by the transition of ventral and dorsal pancreatic fates into intestinal or stomach lineages, respectively. These results indicate that GATA4 and GATA6 play essential roles in maintaining pancreas identity by regulating foregut endodermal fates. Remarkably, pancreatic anlagen derived from pDKO embryos also display a dramatic upregulation of hedgehog pathway components, which are normally absent from the presumptive pancreatic endoderm. Consistent with the erroneous activation of hedgehog signaling, we demonstrate that GATA4 and GATA6 are able to repress transcription through the sonic hedgehog (Shh) endoderm-specific enhancer MACS1 and that GATA-binding sites within this enhancer are necessary for this repressive activity. These studies establish the importance of GATA4/6-mediated inhibition of hedgehog signaling as a major mechanism regulating pancreatic endoderm specification during patterning of the gut tube.
Collapse
Affiliation(s)
- Shouhong Xuan
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
25
|
BMP and retinoic acid regulate anterior-posterior patterning of the non-axial mesoderm across the dorsal-ventral axis. Nat Commun 2016; 7:12197. [PMID: 27406002 PMCID: PMC4947171 DOI: 10.1038/ncomms12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/09/2016] [Indexed: 11/23/2022] Open
Abstract
Despite the fundamental importance of patterning along the dorsal–ventral (DV) and anterior–posterior (AP) axes during embryogenesis, uncertainty exists in the orientation of these axes for the mesoderm. Here we examine the origin and formation of the zebrafish kidney, a ventrolateral mesoderm derivative, and show that AP patterning of the non-axial mesoderm occurs across the classic gastrula stage DV axis while DV patterning aligns along the animal–vegetal pole. We find that BMP signalling acts early to establish broad anterior and posterior territories in the non-axial mesoderm while retinoic acid (RA) functions later, but also across the classic DV axis. Our data support a model in which RA on the dorsal side of the embryo induces anterior kidney fates while posterior kidney progenitors are protected ventrally by the RA-catabolizing enzyme Cyp26a1. This work clarifies our understanding of vertebrate axis orientation and establishes a new paradigm for how the kidney and other mesodermal derivatives arise during embryogenesis. It is unclear how the dorsal-ventral (DV) and anterior-posterior (AP) axes established in the gastrula affect tissues. Here, the authors show that in zebrafish kidney development, with regard to non-axial mesoderm, the classic DV axis corresponds to the AP axis, and is regulated by BMP and retinoic acid.
Collapse
|
26
|
Davenport C, Diekmann U, Budde I, Detering N, Naujok O. Anterior-Posterior Patterning of Definitive Endoderm Generated from Human Embryonic Stem Cells Depends on the Differential Signaling of Retinoic Acid, Wnt-, and BMP-Signaling. Stem Cells 2016; 34:2635-2647. [PMID: 27299363 DOI: 10.1002/stem.2428] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/18/2016] [Accepted: 05/26/2016] [Indexed: 01/05/2023]
Abstract
As known from model organisms, such as frog, fish, mouse, and chicken, the anterior-posterior patterning of the definitive endoderm (DE) into distinct domains is controlled by a variety of signaling interactions between the DE and its surrounding mesoderm. This includes Wnt/FGFs and BMPs in the posterior half and all-trans-retinoic acid, TGF-β-ligands, Wnt-, and BMP-inhibitors in the anterior half of the DE sheet. However, it is currently unclear how these embryonic tissue interactions can be translated into a defined differentiation protocol for human embryonic stem cells. Activin A has been proposed to direct DE into a SOX2-positive foregut-like cell type. Due to the pleiotropic nature of SOX2 in pluripotency and developing cells of the foregut, we purified DE-cells by magnetic cell sorting and tested the effects of anteriorizing and posteriorizing factors on pure endoderm. We show in contrast to previous studies that the generation of the foregut marked by SOX2/FOXA2 double-positive cells does not depend on activin A/TGF-β-signaling but is mediated by the inhibition of Wnt- and BMP-signaling. Retinoic acid can posteriorize and at the same time dorsalize the foregut toward a PDX1-positive pancreatic duodenal cell type whereas active Wnt/beta-catenin signaling synergistically with FGF-2, BMP-4, and RA induces the formation of CDX2-positive posterior endoderm. Thus, these results provide new insights into the mechanisms behind cell specification of human DE derived from pluripotent stem cells. Stem Cells 2016;34:2635-2647.
Collapse
Affiliation(s)
- Claudia Davenport
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Nora Detering
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells. Methods 2016; 101:56-64. [DOI: 10.1016/j.ymeth.2015.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/16/2015] [Accepted: 10/24/2015] [Indexed: 01/15/2023] Open
|
28
|
Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid Models of Human Gastrointestinal Development and Disease. Gastroenterology 2016; 150:1098-1112. [PMID: 26774180 PMCID: PMC4842135 DOI: 10.1053/j.gastro.2015.12.042] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
We have greatly advanced our ability to grow a diverse range of tissue-derived and pluripotent stem cell-derived gastrointestinal (GI) tissues in vitro. These systems, broadly referred to as organoids, have allowed the field to move away from the often nonphysiological, transformed cell lines that have been used for decades in GI research. Organoids are derived from primary tissues and have the capacity for long-term growth. They contain varying levels of cellular complexity and physiological similarity to native organ systems. We review the latest discoveries from studies of tissue-derived and pluripotent stem cell-derived intestinal, gastric, esophageal, liver, and pancreatic organoids. These studies have provided important insights into GI development, tissue homeostasis, and disease and might be used to develop personalized medicines.
Collapse
Affiliation(s)
- Priya H. Dedhia
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio.
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Authors for Correspondence: Jason R. Spence – , Twitter: @TheSpenceLab, Yana Zavros –
| |
Collapse
|
29
|
Kim JH, Kim HW, Cha KJ, Han J, Jang YJ, Kim DS, Kim JH. Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. ACS NANO 2016; 10:3342-55. [PMID: 26900863 DOI: 10.1021/acsnano.5b06985] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although previous studies suggest that nanotopographical features influence properties and behaviors of stem cells, only a few studies have attempted to derive clinically useful somatic cells from human pluripotent stem cells using nanopatterned surfaces. In the present study, we report that polystyrene nanopore-patterned surfaces significantly promote the pancreatic differentiation of human embryonic and induced pluripotent stem cells. We compared different diameters of nanopores and showed that 200 nm nanopore-patterned surfaces highly upregulated the expression of PDX1, a critical transcription factor for pancreatic development, leading to an approximately 3-fold increase in the percentage of differentiating PDX1(+) pancreatic progenitors compared with control flat surfaces. Furthermore, in the presence of biochemical factors, 200 nm nanopore-patterned surfaces profoundly enhanced the derivation of pancreatic endocrine cells producing insulin, glucagon, or somatostatin. We also demonstrate that nanopore-patterned surface-induced upregulation of PDX1 is associated with downregulation of TAZ, suggesting the potential role of TAZ in nanopore-patterned surface-mediated mechanotransduction. Our study suggests that appropriate cytokine treatments combined with nanotopographical stimulation could be a powerful tool for deriving a high purity of desired cells from human pluripotent stem cells.
Collapse
Affiliation(s)
- Jong Hyun Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Hyung Woo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Kyoung Je Cha
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jiyou Han
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Yu Jin Jang
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University , 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
30
|
Womble M, Pickett M, Nascone-Yoder N. Frogs as integrative models for understanding digestive organ development and evolution. Semin Cell Dev Biol 2016; 51:92-105. [PMID: 26851628 PMCID: PMC4798877 DOI: 10.1016/j.semcdb.2016.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
The digestive system comprises numerous cells, tissues and organs that are essential for the proper assimilation of nutrients and energy. Many aspects of digestive organ function are highly conserved among vertebrates, yet the final anatomical configuration of the gut varies widely between species, especially those with different diets. Improved understanding of the complex molecular and cellular events that orchestrate digestive organ development is pertinent to many areas of biology and medicine, including the regeneration or replacement of diseased organs, the etiology of digestive organ birth defects, and the evolution of specialized features of digestive anatomy. In this review, we highlight specific examples of how investigations using Xenopus laevis frog embryos have revealed insight into the molecular and cellular dynamics of digestive organ patterning and morphogenesis that would have been difficult to obtain in other animal models. Additionally, we discuss recent studies of gut development in non-model frog species with unique feeding strategies, such as Lepidobatrachus laevis and Eleutherodactylous coqui, which are beginning to provide glimpses of the evolutionary mechanisms that may generate morphological variation in the digestive tract. The unparalleled experimental versatility of frog embryos make them excellent, integrative models for studying digestive organ development across multiple disciplines.
Collapse
Affiliation(s)
- Mandy Womble
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Melissa Pickett
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, United States.
| |
Collapse
|
31
|
Hayek A, King CC. Brief review: cell replacement therapies to treat type 1 diabetes mellitus. Clin Diabetes Endocrinol 2016; 2:4. [PMID: 28702240 PMCID: PMC5471705 DOI: 10.1186/s40842-016-0023-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/19/2016] [Indexed: 12/22/2022] Open
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent cells (iPSCs) have the potential to differentiate into any somatic cell, making them ideal candidates for cell replacement therapies to treat a number of human diseases and regenerate damaged or non-functional tissues and organs. Key to the promise of regenerative medicine is developing standardized protocols that can safely be applied in patients. Progress towards this goal has occurred in a number of fields, including type 1 diabetes mellitus (T1D). During the past 10 years, significant technological advances in hESC/iPSC biochemistry have provided a roadmap to generate sufficient quantities of glucose-responsive, insulin-producing cells capable of eliminating diabetes in rodents. Although many of the molecular mechanisms underlying the genesis of these cells remain to be elucidated, the field of cell-based therapeutics to treat T1D has advanced to the point where the first Phase I/II trials in humans have begun. Here, we provide a concise review of the history of cell replacement therapies to treat T1D from islet transplantations and xenotranplantation, to current work in hESC/iPSC. We also highlight the latest advances in efforts to employ insulin-producing, glucose-responsive β-like cells derived from hESC as therapeutics.
Collapse
Affiliation(s)
- Alberto Hayek
- Scripps Whittier Diabetes Institute, La Jolla, CA 92037 USA
| | - Charles C King
- Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
32
|
|
33
|
Shi W, Xu G, Wang C, Sperber SM, Chen Y, Zhou Q, Deng Y, Zhao H. Heat shock 70-kDa protein 5 (Hspa5) is essential for pronephros formation by mediating retinoic acid signaling. J Biol Chem 2015; 290:577-89. [PMID: 25398881 PMCID: PMC4281759 DOI: 10.1074/jbc.m114.591628] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/09/2014] [Indexed: 12/17/2022] Open
Abstract
Heat shock 70-kDa protein 5 (Hspa5), also known as binding immunoglobulin protein (Bip) or glucose-regulated protein 78 (Grp78), belongs to the heat shock protein 70 kDa family. As a multifunctional protein, it participates in protein folding and calcium homeostasis and serves as an essential regulator of the endoplasmic reticulum (ER) stress response. It has also been implicated in signal transduction by acting as a receptor or co-receptor residing at the plasma membrane. Its function during embryonic development, however, remains largely elusive. In this study, we used morpholino antisense oligonucleotides (MOs) to knock down Hspa5 activity in Xenopus embryos. In Hspa5 morphants, pronephros formation was strongly inhibited with the reduction of pronephric marker genes Lim homeobox protein 1 (lhx1), pax2, and β1 subunit of Na/K-ATPase (atp1b1). Pronephros tissue was induced in vitro by treating animal caps with all-trans-retinoic acid and activin. Depletion of Hspa5 in animal caps, however, blocked the induction of pronephros as well as reduced the expression of retinoic acid (RA)-responsive genes, suggesting that knockdown of Hspa5 attenuated RA signaling. Knockdown of Hspa5 in animal caps resulted in decreased expression of lhx1, a transcription factor directly regulated by RA signaling and essential for pronephros specification. Co-injection of Hspa5MO with lhx1 mRNA partially rescued the phenotype induced by Hspa5MO. These results suggest that the RA-Lhx1 signaling cascade is involved in Hspa5MO-induced pronephros malformation. This study shows that Hspa5, a key regulator of the unfolded protein response, plays an essential role in pronephros formation, which is mediated in part through RA signaling during early embryonic development.
Collapse
Affiliation(s)
- Weili Shi
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Gang Xu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, China
| | - Chengdong Wang
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Steven M Sperber
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574
| | - Yonglong Chen
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China, and
| | - Qin Zhou
- Division of Molecular Nephrology and Creative Training Center for Undergraduates, Ministry of Education Key Laboratory of Laboratory Medicine Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Deng
- Department of Biology, South University of Science and Technology of China, Shenzhen 518055, China,
| | - Hui Zhao
- From the Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region (SAR), China, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China,
| |
Collapse
|
34
|
Trasino SE, Benoit YD, Gudas LJ. Vitamin A deficiency causes hyperglycemia and loss of pancreatic β-cell mass. J Biol Chem 2014; 290:1456-73. [PMID: 25451926 DOI: 10.1074/jbc.m114.616763] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We show that vitamin A (all-trans-retinol) (VA) is required both for the maintenance of pancreatic β-cell and α-cell mass and for glucose-stimulated insulin secretion in adult mice. Dietary VA deprivation (VAD) causes greatly decreased pancreatic VA levels, hyperglycemia, and reduced insulin secretion. Adult mice fed VAD diets display remodeling of the endocrine pancreas, marked β-cell apoptosis, shifts to smaller islet size distributions, decreased β-cell mass, increased α-cell mass, and hyperglucagonemia. Importantly, although we induced VAD in the entire animal, the pancreatic β-cells are exquisitely sensitive to VAD-associated apoptosis compared with other cell types in other organs. VAD causes major reductions in levels of the VA intracellular binding protein Crbp1 and the retinoic acid-metabolizing enzyme Cyp26a1 specifically in larger islets, suggesting the use of these proteins as biomarkers for early endocrine mass abnormalities. In the VAD mice, the reductions in pancreatic islet sizes and the associated aberrant endocrine functions, which show similarities to the phenotype in advanced type 2 diabetes, result from reductions in pancreatic VA signaling. Reintroduction of dietary VA to VAD mice restores pancreatic VA levels, glycemic control, normal islet size distributions, β-cell to α-cell ratios, endocrine hormone profiles, and RARβ2 and RARγ2 transcript levels. Restoration of β-cell mass by reintroducing VA to VAD mice does not involve increased β-cell proliferation or neogenesis. Pharmacologic modulation of pancreatic VA signaling should be explored for the preservation and/or restoration of pancreatic β-cell mass and function in individuals with diabetes mellitus.
Collapse
Affiliation(s)
- Steven E Trasino
- From the Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Yannick D Benoit
- From the Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| | - Lorraine J Gudas
- From the Department of Pharmacology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
35
|
Tan G, Elefanty AG, Stanley EG. β-cell regeneration and differentiation: how close are we to the 'holy grail'? J Mol Endocrinol 2014; 53:R119-29. [PMID: 25385843 DOI: 10.1530/jme-14-0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes can be managed by careful monitoring of blood glucose and timely delivery of exogenous insulin. However, even with fastidious compliance, people with diabetes can suffer from numerous complications including atherosclerosis, retinopathy, neuropathy, and kidney disease. This is because delivery of exogenous insulin coupled with glucose monitoring cannot provide the fine level of glucose control normally provided by endogenous β-cells in the context of intact islets. Moreover, a subset of people with diabetes lack awareness of hypoglycemic events; a status that can have grave consequences. Therefore, much effort has been focused on replacing lost or dysfunctional β-cells with cells derived from other sources. The advent of stem cell biology and cellular reprogramming strategies have provided impetus to this work and raised hopes that a β-cell replacement therapy is on the horizon. In this review, we look at two components that will be required for successful β-cell replacement therapy: a reliable and safe source of β-cells and a mechanism by which such cells can be delivered and protected from host immune destruction. Particular attention is paid to insulin-producing cells derived from pluripotent stem cells because this platform addresses the issue of scale, one of the more significant hurdles associated with potential cell-based therapies. We also review methods for encapsulating transplanted cells, a technique that allows grafts to evade immune attack and survive for a long term in the absence of ongoing immunosuppression. In surveying the literature, we conclude that there are still several substantial hurdles that need to be cleared before a stem cell-based β-cell replacement therapy for diabetes becomes a reality.
Collapse
Affiliation(s)
- Gemma Tan
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| | - Edouard G Stanley
- Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia Department of Anatomy and Developmental BiologyMonash University, Building 73, Clayton, Victoria 3800, AustraliaMurdoch Childrens Research InstituteThe Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, AustraliaDepartment of PaediatricsThe Royal Children's Hospital, University of Melbourne, Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
36
|
Huang W, Wang G, Delaspre F, Vitery MDC, Beer RL, Parsons MJ. Retinoic acid plays an evolutionarily conserved and biphasic role in pancreas development. Dev Biol 2014; 394:83-93. [PMID: 25127993 PMCID: PMC4623430 DOI: 10.1016/j.ydbio.2014.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 02/06/2023]
Abstract
As the developing zebrafish pancreas matures, hormone-producing endocrine cells differentiate from pancreatic Notch-responsive cells (PNCs) that reside within the ducts. These new endocrine cells form small clusters known as secondary (2°) islets. We use the formation of 2° islets in the pancreatic tail of the larval zebrafish as a model of β-cell neogenesis. Pharmacological inhibition of Notch signaling leads to precocious endocrine differentiation and the early appearance of 2° islets in the tail of the pancreas. Following a chemical screen, we discovered that blocking the retinoic acid (RA)-signaling pathway also leads to the induction of 2° islets. Conversely, the addition of exogenous RA blocks the differentiation caused by Notch inhibition. In this report we characterize the interaction of these two pathways. We first verified that signaling via both RA and Notch ligands act together to regulate pancreatic progenitor differentiation. We produced a transgenic RA reporter, which demonstrated that PNCs directly respond to RA signaling through the canonical transcriptional pathway. Next, using a genetic lineage tracing approach, we demonstrated these progenitors produce endocrine cells following inhibition of RA signaling. Lastly, inhibition of RA signaling using a cell-type specific inducible cre/lox system revealed that RA signaling acts cell-autonomously in PNCs to regulate their differentiation. Importantly, the action of RA inhibition on endocrine formation is evolutionarily conserved, as shown by the differentiation of human embryonic stem cells in a model of human pancreas development. Together, these results revealed a biphasic function for RA in pancreatogenesis. As previously shown by others, RA initially plays an essential role during embryogenesis as it patterns the endoderm and specifies the pancreatic field. We reveal here that later in development RA is involved in negatively regulating the further differentiation of pancreatic progenitors and expands upon the developmental mechanisms by which this occurs.
Collapse
Affiliation(s)
- Wei Huang
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Guangliang Wang
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Fabien Delaspre
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Maria Del Carmen Vitery
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Rebecca L Beer
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| | - Michael J Parsons
- Department of Surgery, and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, 733 N. Broadway, 470 Miller Research Building, Baltimore, MD 21205, USA
| |
Collapse
|
37
|
Hou J, Wei W, Saund RS, Xiang P, Cunningham TJ, Yi Y, Alder O, Lu DYD, Savory JGA, Krentz NAJ, Montpetit R, Cullum R, Hofs N, Lohnes D, Humphries RK, Yamanaka Y, Duester G, Saijoh Y, Hoodless PA. A regulatory network controls nephrocan expression and midgut patterning. Development 2014; 141:3772-81. [PMID: 25209250 DOI: 10.1242/dev.108274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17(-/-) and Raldh2(-/-) embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1(-/-) embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain.
Collapse
Affiliation(s)
- Juan Hou
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Ranajeet S Saund
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Ping Xiang
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Thomas J Cunningham
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yuyin Yi
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Olivia Alder
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Daphne Y D Lu
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Joanne G A Savory
- Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Nicole A J Krentz
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rachel Montpetit
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Nicole Hofs
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - David Lohnes
- Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Experimental Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yojiro Yamanaka
- Goodman Cancer Research Centre, Department of Human Genetics, McGill University, Montreal, Quebec H2W 1S6, Canada
| | - Gregg Duester
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Yukio Saijoh
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132-3401, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada Cell and Developmental Biology Program, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
38
|
Jaramillo M, Mathew S, Mamiya H, Goh SK, Banerjee I. Endothelial cells mediate islet-specific maturation of human embryonic stem cell-derived pancreatic progenitor cells. Tissue Eng Part A 2014; 21:14-25. [PMID: 24943736 DOI: 10.1089/ten.tea.2014.0013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is well recognized that in vitro differentiation of embryonic stem cells (ESC) can be best achieved by closely recapitulating the in vivo developmental niche. Thus, implementation of directed differentiation strategies has yielded encouraging results in the area of pancreatic islet differentiation. These strategies have concentrated on direct addition of chemical signals, however, other aspect of the developmental niche are yet to be explored. During development, pancreatic progenitor (PP) cells grow as an epithelial sheet, which aggregates with endothelial cells (ECs) during the final stages of maturation. Several findings suggest that the interactions with EC play a role in pancreatic development. In this study, we recapitulated this phenomenon in an in vitro environment by maturing the human ESC (hESC)-derived PP cells in close contact with ECs. We find that co-culture with different ECs (but not fibroblast) alone results in pancreatic islet-specific differentiation of hESC-derived PP cells even in the absence of additional chemical induction. The differentiated cells responded to exogenous glucose levels by enhanced C-peptide synthesis. The co-culture system aligned well with endocrine development as determined by comprehensive analysis of involved signaling pathways. By recapitulating cell-cell interaction aspects of the developmental niche we achieved a differentiation model that aligns closely with islet organogenesis.
Collapse
Affiliation(s)
- Maria Jaramillo
- 1 Department of Bioengineering, University of Pittsburgh, Pittsburgh , Pennsylvania
| | | | | | | | | |
Collapse
|
39
|
Schiesser JV, Micallef SJ, Hawes S, Elefanty AG, Stanley EG. Derivation of insulin-producing beta-cells from human pluripotent stem cells. Rev Diabet Stud 2014; 11:6-18. [PMID: 25148364 DOI: 10.1900/rds.2014.11.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human embryonic stem cells have been advanced as a source of insulin-producing cells that could potentially replace cadaveric-derived islets in the treatment of type 1 diabetes. To this end, protocols have been developed that promote the formation of pancreatic progenitors and endocrine cells from human pluripotent stem cells, encompassing both embryonic stem cells and induced pluripotent stem cells. In this review, we examine these methods and place them in the context of the developmental and embryological studies upon which they are based. In particular, we outline the stepwise differentiation of cells towards definitive endoderm, pancreatic endoderm, endocrine lineages and the emergence of functional beta-cells. In doing so, we identify key factors common to many such protocols and discuss the proposed action of these factors in the context of cellular differentiation and ongoing development. We also compare strategies that entail transplantation of progenitor populations with those that seek to develop fully functional hormone expressing cells in vitro. Overall, our survey of the literature highlights the significant progress already made in the field and identifies remaining deficiencies in developing a pluripotent stem cell based treatment for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Suzanne J Micallef
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Susan Hawes
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Andrew G Elefanty
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| | - Edouard G Stanley
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building 75, STRIP1, West Ring Road, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
40
|
Schiesser JV, Wells JM. Generation of β cells from human pluripotent stem cells: are we there yet? Ann N Y Acad Sci 2014; 1311:124-37. [PMID: 24611778 DOI: 10.1111/nyas.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 1998, the landmark paper describing the isolation and culture of human embryonic stem cells (ESCs) was published. Since that time, the main goal of many diabetes researchers has been to derive β cells from ESCs as a renewable cell-based therapy for the treatment of patients with diabetes. In working toward this goal, numerous protocols that attempt to recapitulate normal pancreatic development have been published that result in the formation of pancreatic cell types from human pluripotent cells. This review examines stem cell differentiation methods and places them within the context of pancreatic development. We additionally compare strategies that are currently being used to generate pancreatic cell types and contrast them with approaches that have been used to generate functional cell types in different lineages. In doing this, we aim to identify how new approaches might be used to improve yield and functionality of in vitro-derived pancreatic β cells as an eventual cell-based therapy for type 1 diabetes.
Collapse
Affiliation(s)
- Jacqueline V Schiesser
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | |
Collapse
|
41
|
Gage BK, Webber TD, Kieffer TJ. Initial cell seeding density influences pancreatic endocrine development during in vitro differentiation of human embryonic stem cells. PLoS One 2013; 8:e82076. [PMID: 24324748 PMCID: PMC3852888 DOI: 10.1371/journal.pone.0082076] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells, we examined the effect of varying initial cell seeding density from 1.3 x 10(4) cells/cm(2) to 5.3 x 10(4) cells/cm(2) followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1, PTF1a, NGN3, ARX, and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin, glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression, followed by pancreatic endocrine specification marker expression (BRN4, PAX4, ARX, NEUROD1, NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin, glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment, which precedes pancreatic endocrine cell formation. This work highlights the need to examine standard culture variables such as seeding density when optimizing hESC differentiation protocols.
Collapse
Affiliation(s)
- Blair K. Gage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Travis D. Webber
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
42
|
Kam RKT, Shi W, Chan SO, Chen Y, Xu G, Lau CBS, Fung KP, Chan WY, Zhao H. Dhrs3 protein attenuates retinoic acid signaling and is required for early embryonic patterning. J Biol Chem 2013; 288:31477-87. [PMID: 24045938 DOI: 10.1074/jbc.m113.514984] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All-trans-retinoic acid (atRA) is an important morphogen involved in many developmental processes, including neural differentiation, body axis formation, and organogenesis. During early embryonic development, atRA is synthesized from all-trans-retinal (atRAL) in an irreversible reaction mainly catalyzed by retinal dehydrogenase 2 (aldh1a2), whereas atRAL is converted from all-trans-retinol via reversible oxidation by retinol dehydrogenases, members of the short-chain dehydrogenase/reductase family. atRA is degraded by cytochrome P450, family 26 (cyp26). We have previously identified a short-chain dehydrogenase/reductase 3 (dhrs3), which showed differential expression patterns in Xenopus embryos. We show here that the expression of dhrs3 was induced by atRA treatment and overexpression of Xenopus nodal related 1 (xnr1) in animal cap assay. Overexpression of dhrs3 enhanced the phenotype of excessive cyp26a1. In embryos overexpressing aldh1a2 or retinol dehydrogenase 10 (rdh10) in the presence of their respective substrates, Dhrs3 counteracted the action of Aldh1a2 or Rdh10, indicating that retinoic acid signaling is attenuated. Knockdown of Dhrs3 by antisense morpholino oligonucleotides resulted in a phenotype of shortened anteroposterior axis, reduced head structure, and perturbed somitogenesis, which were also found in embryos treated with an excess of atRA. Examination of the expression of brachyury, not, goosecoid, and papc indicated that convergent extension movement was defective in Dhrs3 morphants. Taken together, these studies suggest that dhrs3 participates in atRA metabolism by reducing atRAL levels and is required for proper anteroposterior axis formation, neuroectoderm patterning, and somitogenesis.
Collapse
|
43
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
44
|
Pérez RJ, Benoit YD, Gudas LJ. Deletion of retinoic acid receptor β (RARβ) impairs pancreatic endocrine differentiation. Exp Cell Res 2013; 319:2196-204. [PMID: 23756134 DOI: 10.1016/j.yexcr.2013.05.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022]
Abstract
All-trans retinoic acid (RA) signals via binding to retinoic acid receptors (RARs α, β, and γ). RA directly influences expression of Pdx1, a transcription factor essential for pancreatic development and beta-cell (β-cell) maturation. In this study we follow the differentiation of cultured wild-type (WT) vs. RARβ knockout (KO) embryonic stem (ES) cells into pancreatic islet cells. We found that RARβ KO ES cells show greatly reduced expression of some important endocrine markers of differentiated islet cells, such as glucagon, islet amyloid polypeptide (Iapp), and insulin 1 (Ins1) relative to WT. We conclude that RARβ activity is essential for proper differentiation of ES cells to pancreatic endocrine cells.
Collapse
Affiliation(s)
- Ronald J Pérez
- Pharmacology Department, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | |
Collapse
|
45
|
Zhang T, Guo X, Chen Y. Retinoic acid-activated Ndrg1a represses Wnt/β-catenin signaling to allow Xenopus pancreas, oesophagus, stomach, and duodenum specification. PLoS One 2013; 8:e65058. [PMID: 23741453 PMCID: PMC3669096 DOI: 10.1371/journal.pone.0065058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/22/2013] [Indexed: 12/14/2022] Open
Abstract
How cells integrate multiple patterning signals to achieve early endoderm regionalization remains largely unknown. Between gastrulation and neurulation, retinoic acid (RA) signaling is required, while Wnt/β-catenin signaling has to be repressed for the specification of the pancreas, oesophagus, stomach, and duodenum primordia in Xenopus embryos. In attempt to screen for RA regulated genes in Xenopus endoderm, we identified a direct RA target gene, N-myc downstream regulated gene 1a (ndrg1a) that showed expression early in the archenteron roof endoderm and late in the developing pancreas, oesophagus, stomach, and duodenum. Both antisense morpholino oligonucleotide mediated knockdown of ndrg1a in Xenopus laevis and the transcription activator-like effector nucleases (TALEN) mediated disruption of ndrg1 in Xenopus tropicalis demonstrate that like RA signaling, Ndrg1a is specifically required for the specification of Xenopus pancreas, oesophagus, stomach, and duodenum primordia. Immunofluorescence data suggest that RA-activated Ndrg1a suppresses Wnt/β-catenin signaling in Xenopus archenteron roof endoderm cells. Blocking Wnt/β-catenin signaling rescued Ndrg1a knockdown phenotype. Furthermore, overexpression of the putative Wnt/β-catenin target gene Atf3 phenocopied knockdown of Ndrg1a or inhibition of RA signaling, while Atf3 knockdown can rescue Ndrg1a knockdown phenotype. Lastly, the pancreas/stomach/duodenum transcription factor Pdx1 was able to rescue Atf3 overexpression or Ndrg1a knockdown phenotype. Together, we conclude that RA activated Ndrg1a represses Wnt/β-catenin signaling to allow the specification of pancreas, oesophagus, stomach, and duodenum progenitor cells in Xenopus embryos.
Collapse
Affiliation(s)
- Tiejun Zhang
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Guo
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
| | - Yonglong Chen
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- * E-mail:
| |
Collapse
|
46
|
Kraus MRC, Grapin-Botton A. Patterning and shaping the endoderm in vivo and in culture. Curr Opin Genet Dev 2012; 22:347-53. [PMID: 22742850 DOI: 10.1016/j.gde.2012.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/09/2012] [Accepted: 05/15/2012] [Indexed: 01/30/2023]
Abstract
The definitive endoderm (DE) was first defined as the innermost germ layer found in all metazoan embryos. During development, it gives rise to a vast array of specialized epithelial cell types lining the respiratory and digestive systems, and contributes to associated organs such as thyroid, thymus, lungs, liver, and pancreas. In the adult, the DE provides a protective barrier against the environment and assumes many essential functions including digestion, nutrient absorption, and glucose homeostasis. Since general endoderm formation and patterning have been reviewed recently in a comprehensive manner [1], we will only provide a brief summary of how extracellular signals and downstream transcription factors control endoderm patterning. We will then focus on emerging work addressing the chromatin remodeling events occurring during endoderm organ specification and discuss how these molecular tools can be used to engineer endodermal organs in vitro.
Collapse
Affiliation(s)
- Marine R C Kraus
- Swiss Institute for Experimental Cancer Research, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | | |
Collapse
|
47
|
McCracken KW, Wells JM. Molecular pathways controlling pancreas induction. Semin Cell Dev Biol 2012; 23:656-62. [PMID: 22743233 DOI: 10.1016/j.semcdb.2012.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/13/2012] [Indexed: 01/02/2023]
Abstract
Recent advances in generating pancreatic cell types from human pluripotent stem cells has depended on our knowledge of the developmental processes that regulate pancreas development in vivo. The developmental events between gastrulation and formation of the embryonic pancreatic primordia are both rapid and dynamic and studies in frog, fish, chick, and mouse have identified the molecular basis of how the pancreas develops from multipotent endoderm progenitors. Here, we review the current status of our understanding of molecular mechanisms that control endoderm formation, endoderm patterning, and pancreas specification and highlight how these discoveries have allowed for the development of robust methods to generate pancreatic cells from human pluripotent stem cells.
Collapse
Affiliation(s)
- Kyle W McCracken
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
48
|
Wang A, Sander M. Generating cells of the gastrointestinal system: current approaches and applications for the differentiation of human pluripotent stem cells. J Mol Med (Berl) 2012; 90:763-71. [DOI: 10.1007/s00109-012-0923-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 12/19/2022]
|
49
|
Homeoprotein hhex-induced conversion of intestinal to ventral pancreatic precursors results in the formation of giant pancreata in Xenopus embryos. Proc Natl Acad Sci U S A 2012; 109:8594-9. [PMID: 22592794 DOI: 10.1073/pnas.1206547109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Liver and ventral pancreas develop from neighboring territories within the endoderm of gastrulae. ventral pancreatic precursor 1 (vpp1) is a marker gene that is differentially expressed in a cell population within the dorsal endoderm in a pattern partially overlapping with that of hematopoietically expressed homeobox (hhex) during gastrulation. In tail bud embryos, vpp1 expression specifically demarcates two ventral pancreatic buds, whereas hhex expression is mainly restricted to the liver diverticulum. Ectopic expression of a critical dose of hhex led to a greatly enlarged vpp1-positive domain and, subsequently, to the formation of giant ventral pancreata, putatively by conversion of intestinal to ventral pancreatic precursor cells. Conversely, antisense morpholino oligonucleotide-mediated knockdown of hhex resulted in a down-regulation of vpp1 expression and a specific loss of the ventral pancreas. Furthermore, titration of hhex with a dexamethasone-inducible hhex-VP16GR fusion construct suggested that endogenous hhex activity during gastrulation is essential for the formation of ventral pancreatic progenitor cells. These observations suggest that, beyond its role in liver development, hhex controls specification of a vpp1-positive endodermal cell population during gastrulation that is required for the formation of the ventral pancreas.
Collapse
|
50
|
Abstract
Retinoic acid (RA) is a vitamin A-derived, non-peptidic, small lipophilic molecule that acts as ligand for nuclear RA receptors (RARs), converting them from transcriptional repressors to activators. The distribution and levels of RA in embryonic tissues are tightly controlled by regulated synthesis through the action of specific retinol and retinaldehyde dehydrogenases and by degradation via specific cytochrome P450s (CYP26s). Recent studies indicate that RA action involves an interplay between diffusion (morphogen-like) gradients and the establishment of signalling boundaries due to RA metabolism, thereby allowing RA to finely control the differentiation and patterning of various stem/progenitor cell populations. Here, we provide an overview of the RA biosynthesis, degradation and signalling pathways and review the main functions of this molecule during embryogenesis.
Collapse
Affiliation(s)
- Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
| | | |
Collapse
|