1
|
Hogan BLM. Bud, branch, breathe! Building a mammalian lung over space and time. Dev Biol 2025; 522:64-75. [PMID: 40107482 DOI: 10.1016/j.ydbio.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Many mammalian organs, such as the mammary and lachrymal glands, kidney and lungs develop by the process known as branching morphogenesis. An essential feature of this process is the reciprocal interaction between the inner branched tubular epithelium and the surrounding mesenchyme to optimize the final amount of epithelial tissue that is generated for specific functions. To achieve this expansion the initial epithelial population undergoes repeated rounds of bud formation, branch outgrowth and tip bifurcations, with each repertoire requiring dynamic changes in cell behavior. The process of branching morphogenesis was first studied experimentally by Grobstein and others who showed that the embryonic epithelium did not develop without so-called inductive signals from the mesenchyme. However, it was not known whether this activity was uniformly distributed throughout the mesoderm or localized to specific regions. The mouse lung was seen as a powerful system in which to investigate such questions since its early branching is highly stereotypic, both in vivo and in culture. This advantage was exploited by two young scientists, Alescio and Cassini, who used grafting techniques with explanted embryonic mouse lungs. They showed that mesenchyme from around distal buds could induce ectopic buds in the trachea and other non-branching regions of the epithelium. At the same time, distal regions denuded of their mesoderm failed to develop further. They speculated that inductive factors that promote bud formation and continued outgrowth in competent endoderm are specifically localized within the distal mesenchyme, establishing a conceptual framework for future experimentation. Since then, advances in many areas of biology and bioengineering have enabled the identification of gene regulatory networks, signaling pathways and biomechanical properties that mediate lung branching morphogenesis. However, a quantitative model of how these parameters are coordinated over space and time to control the pattern and scale of branching and the overall size of the lung, still remains elusive.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Department of Cell Biology, Duke University Medical School, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Ling Z, Niego B, Li Q, Villa VS, Bhattaram D, Hu M, Gong Z, Smith LM, Frey BL, Ren X. Chemoselective Characterization of New Extracellular Matrix Deposition in Bioengineered Tumor Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643336. [PMID: 40166338 PMCID: PMC11956949 DOI: 10.1101/2025.03.18.643336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The extracellular matrix (ECM), present in nearly all tissues, provides extensive support to resident cells through structural, biomechanical, and biochemical means, and in return the ECM undergoes constant remodeling from interacting cells to adapt to the evolving tissue states. Bioengineered 3D tissues, commonly known as cell-ECM composites, are robust model systems to recapitulate and investigate native pathophysiology. Key to this engineered morphogenesis process are the intricate cell-ECM interactions reflected by how cells respond to and thereby modulate their surrounding microenvironments through their ongoing ECM secretome. However, investigating ECM-regulated new ECM production has been challenging due to the proteomic background from the pre-existing biomaterial ECM. To address this hindrance, here we present a chemoselective strategy to label, enrich, and characterize newly synthesized ECM (newsECM) proteins produced by resident cells, allowing distinction from the pre-existing ECM background. Applying our analytical pipeline to bioengineered tumor tissues, either built upon decellularized ECM (dECM-tumors) or as ECM-free tumor spheroids (tumoroids), we observed distinct ECM synthesis patterns that were linked to their extracellular environments. Tumor cells responded to the dECM presence with elevated ECM remodeling activities, mediated by augmented digestion of pre-existing ECM coupled with upregulated synthesis of tumor-associated ECM. Our findings highlight the sensitivity of newsECM profiling to capture remodeling events that are otherwise under-represented by bulk proteomics and underscore the significance of dECM support for enabling native-like tumor cell behaviors. We anticipate the described newsECM analytical pipeline to be broadly applicable to other tissue-engineered systems to probe ECM-regulated ECM synthesis and remodeling, both fundamental aspects of cell-ECM crosstalk in engineered tissue morphogenesis.
Collapse
Affiliation(s)
- Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Burke Niego
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States
| | - Qingyang Li
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Vanessa Serna Villa
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Dhruv Bhattaram
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Michael Hu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Zhuowei Gong
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States
| | - Brian L. Frey
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
3
|
Towler AG, Perciaccante AJ, Aballo TJ, Zhu Y, Wang F, Lloyd S, Kadoya K, He Y, Tian Y, Ge Y. A Single-Step Protein Extraction for Lung Extracellular Matrix Proteomics Enabled by the Photocleavable Surfactant Azo and timsTOF Pro. Mol Cell Proteomics 2025:100950. [PMID: 40107422 DOI: 10.1016/j.mcpro.2025.100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic, complex network of proteins, collectively known as the 'matrisome', which not only provides essential structural support to cells and tissues but also regulates critical cellular processes. Dysregulation of the ECM is implicated in many diseases, underscoring the need to characterize the matrisome to better understand disease mechanisms. We have previously developed a dual-step protocol enabled by the photocleavable surfactant Azo for the extraction of ECM proteins from tissue using pH-neutral decellularization followed by solubilization by Azo. While effective for characterization of the ECM proteins, such a dual-step protocol requires two extracts per sample, limiting the throughput and complicating the comparison of protein quantitation across different extraction conditions. Here, we develop a single-step Azo-enabled protein extraction for the solubilization of ECM proteins from lung tissue to improve the throughput for studies with large sample sizes. Using this method, we identified 324 ECM proteins, including 137 core ECM and 187 ECM associated proteins. Core ECM proteins including elastin, fibronectin, and fibrillar collagens were reproducibly identified and quantified. We observed a 94.6% overlap in the ECM proteins identified between the single-step and dual-step Azo extracts, indicating the single-step Azo extraction achieves ECM protein coverage comparable to the dual-step extraction. Overall, we have demonstrated that this single-step Azo extraction is not only highly efficient but also comprehensive for ECM protein identification and quantification, making it a powerful method for ECM proteomics, especially for studies with large sample size.
Collapse
Affiliation(s)
- Anna G Towler
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Timothy J Aballo
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yanlong Zhu
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fei Wang
- Quantitative Translational & ADME Science, AbbVie Bioresearch Center, Worcester, MA 01605
| | - Sarah Lloyd
- Discovery Immunology, Pharmacology and Pathology, AbbVie, Inc., North Chicago, IL 60064
| | - Kuniko Kadoya
- Allergan Aesthetics, an AbbVie company, 2525 Dupont Drive, Irvine, CA 92612 USA
| | - Yupeng He
- Discovery Immunology, Pharmacology and Pathology, AbbVie, Inc., North Chicago, IL 60064.
| | - Yu Tian
- Quantitative Translational & ADME Science, AbbVie Bioresearch Center, Worcester, MA 01605.
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
4
|
Tanneberger AE, Blomberg R, Kary AD, Lu A, Riches DW, Magin CM. Biomaterial-based 3D human lung models replicate pathological characteristics of early pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637970. [PMID: 40027659 PMCID: PMC11870410 DOI: 10.1101/2025.02.12.637970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable lung disease characterized by tissue scarring that disrupts gas exchange. Epithelial cell dysfunction, fibroblast activation, and excessive extracellular matrix deposition drive this pathology that ultimately leads to respiratory failure. Mechanistic studies have shown that repeated injury to alveolar epithelial cells initiates an aberrant wound-healing response in surrounding fibroblasts through secretion of mediators like transforming growth factor-β, yet the precise biological pathways contributing to disease progression are not fully understood. To better study these interactions there is a critical need for lung models that replicate the cellular heterogeneity, geometry, and biomechanics of the distal lung microenvironment. In this study, induced pluripotent stem cell-derived alveolar epithelial type II (iATII) cells and human pulmonary fibroblasts were arranged to replicate human lung micro-architecture and embedded in soft or stiff poly(ethylene glycol) norbornene (PEG-NB) hydrogels that recapitulated the mechanical properties of healthy and fibrotic lung tissue, respectively. The co-cultured cells were then exposed to pro-fibrotic biochemical cues, including inflammatory cytokines and growth factors. iATIIs and fibroblasts exhibited differentiation pathways and gene expression patterns consistent with trends observed during IPF progression in vivo. A design of experiments statistical analysis identified stiff hydrogels combined with pro-fibrotic biochemical cue exposure as the most effective condition for modeling fibrosis in vitro. Finally, treatment with Nintedanib, one of only two Food and Drug Administration (FDA)-approved drugs for IPF, was assessed. Treatment reduced fibroblast activation, as indicated by downregulation of key activation genes, and upregulated several epithelial genes. These findings demonstrate that human 3D co-culture models hold tremendous potential for advancing our understanding of IPF and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Alicia E. Tanneberger
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO
| | - Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO
| | - Anton D. Kary
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO
| | - Andrew Lu
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO
| | - David W.H. Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO
- Department of Research, Veterans Affairs Eastern Colorado Health Care System, Aurora, CO
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Chelsea M. Magin
- Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
Nappi F, Nassif A, Schoell T. External Scaffold for Strengthening the Pulmonary Autograft in the Ross Procedure. Biomimetics (Basel) 2024; 9:674. [PMID: 39590246 PMCID: PMC11591583 DOI: 10.3390/biomimetics9110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Despite offering several potential benefits over standard prosthetic aortic valve replacement, the use of the pulmonary autograft has been limited to date due to concerns over the risk of pulmonary autograft expansion and the need for reintervention. Several techniques using materials with biomimetic potential have been developed to reduce this complication. The incidence, risk factors, and pathophysiology of pulmonary autograft dilatation are discussed in this article. This seminar will provide an overview of the techniques of external pulmonary autograft support and their advantages and limitations. It also considers future directions for further investigation and future clinical applications of external pulmonary autograft support. Dilatation of the autograft is more likely to occur in patients with aortic regurgitation and a dilated aortic annulus. External scaffolding may prevent autograft stretching and expansion in these specific cases. However, from a biomimetic point of view, any permanent scaffold potentially restricts the movement of the autograft root. This reduces some of the benefits associated with the use of autologous tissue, which is the priority of the Ross procedure. To address this issue, several bioresorbable matrices could be used to support the root during its initial adaptive phase. Control of blood pressure with aggressive therapy is the first line to avoid this problem in the first year after pulmonary autograft implantation, together with support of the annular and sinotubular junction in some selected cases. This is the best way to maintain stable autograft root dimensions while preserving root dynamics. However, to determine the efficacy of this combined external support and best medical management, it is important to perform regular imaging and clinical follow-up.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.N.); (T.S.)
| | | | | |
Collapse
|
6
|
Mohanty S, Roy S. Bioactive Hydrogels Inspired by Laminin: An Emerging Biomaterial for Tissue Engineering Applications. Macromol Biosci 2024; 24:e2400207. [PMID: 39172212 DOI: 10.1002/mabi.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Tissue or organ damage due to severe injuries or chronic diseases can adversely affect the quality of life. Current treatments rely on organ or tissue transplantation which has limitations including unavailability of donors, ethical issues, or immune rejection after transplantations. These limitations can be addressed by tissue regeneration which involves the development of bioactive scaffolds closely mimicking the extracellular matrix (ECM). One of the major components of ECM is the laminin protein which supports several tissues associated with important organs. In this direction, peptide-based hydrogels can effectively mimic the essential characteristics of laminin. While several reports have discussed the structure of laminin, the potential of laminin-derived peptide hydrogels as effective biomaterial for tissue engineering applications is yet to be discussed. In this context, the current review focuses on the structure of laminin and its role as an essential ECM protein. Further, the potential of short peptide hydrogels in mimicking the crucial properties of laminin is proposed. The review further highlights the significance of bioactive hydrogels inspired by laminin - in addressing numerous tissue engineering applications including angiogenesis, neural, skeletal muscle, liver, and adipose tissue regeneration along with a brief outlook on the future applications of these laminin-based hydrogels.
Collapse
Affiliation(s)
- Sweta Mohanty
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| | - Sangita Roy
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, Punjab, 140306, India
| |
Collapse
|
7
|
Pinezich MR, Mir M, Graney PL, Tavakol DN, Chen J, Hudock M, Gavaudan O, Chen P, Kaslow SR, Reimer JA, Van Hassel J, Guenthart BA, O’Neill JD, Bacchetta M, Kim J, Vunjak-Novakovic G. Lung-Mimetic Hydrofoam Sealant to Treat Pulmonary Air Leak. Adv Healthc Mater 2024; 13:e2303026. [PMID: 38279961 PMCID: PMC11102335 DOI: 10.1002/adhm.202303026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/22/2023] [Indexed: 01/29/2024]
Abstract
Pulmonary air leak is the most common complication of lung surgery, contributing to post-operative morbidity in up to 60% of patients; yet, there is no reliable treatment. Available surgical sealants do not match the demanding deformation mechanics of lung tissue; and therefore, fail to seal air leak. To address this therapeutic gap, a sealant with structural and mechanical similarity to subpleural lung is designed, developed, and systematically evaluated. This "lung-mimetic" sealant is a hydrofoam material that has alveolar-like porous ultrastructure, lung-like viscoelastic properties (adhesive, compressive, tensile), and lung extracellular matrix-derived signals (matrikines) to support tissue repair. In biocompatibility testing, the lung-mimetic sealant shows minimal cytotoxicity and immunogenicity in vitro. Human primary monocytes exposed to sealant matrikines in vitro upregulate key genes (MARCO, PDGFB, VEGF) known to correlate with pleural wound healing and tissue repair in vivo. In rat and swine models of pulmonary air leak, this lung-mimetic sealant rapidly seals air leak and restores baseline lung mechanics. Altogether, these data indicate that the lung-mimetic sealant can effectively seal pulmonary air leak and promote a favorable cellular response in vitro.
Collapse
Affiliation(s)
| | - Mohammad Mir
- Stevens Institute of Technology, Department of Biomedical Engineering
| | | | | | - Jiawen Chen
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Maria Hudock
- Columbia University, Department of Biomedical Engineering
| | | | - Panpan Chen
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Sarah R. Kaslow
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Jonathan A. Reimer
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Julie Van Hassel
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | | | - John D. O’Neill
- State University of New York Downstate Medical Center, Department of Cell Biology
| | - Matthew Bacchetta
- Vanderbilt University Medical Center, Department of Thoracic Surgery
- Vanderbilt University, Department of Biomedical Engineering
| | - Jinho Kim
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Gordana Vunjak-Novakovic
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Medicine
| |
Collapse
|
8
|
Aue A, Englert N, Harrer L, Schwiering F, Gaab A, König P, Adams R, Schmidtko A, Friebe A, Groneberg D. NO-sensitive guanylyl cyclase discriminates pericyte-derived interstitial from intra-alveolar myofibroblasts in murine pulmonary fibrosis. Respir Res 2023; 24:167. [PMID: 37349733 DOI: 10.1186/s12931-023-02479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The origin of αSMA-positive myofibroblasts, key players within organ fibrosis, is still not fully elucidated. Pericytes have been discussed as myofibroblast progenitors in several organs including the lung. METHODS Using tamoxifen-inducible PDGFRβ-tdTomato mice (PDGFRβ-CreERT2; R26tdTomato) lineage of lung pericytes was traced. To induce lung fibrosis, a single orotracheal dose of bleomycin was given. Lung tissue was investigated by immunofluorescence analyses, hydroxyproline collagen assay and RT-qPCR. RESULTS Lineage tracing combined with immunofluorescence for nitric oxide-sensitive guanylyl cyclase (NO-GC) as marker for PDGFRβ-positive pericytes allows differentiating two types of αSMA-expressing myofibroblasts in murine pulmonary fibrosis: (1) interstitial myofibroblasts that localize in the alveolar wall, derive from PDGFRβ+ pericytes, express NO-GC and produce collagen 1. (2) intra-alveolar myofibroblasts which do not derive from pericytes (but express PDGFRβ de novo after injury), are negative for NO-GC, have a large multipolar shape and appear to spread over several alveoli within the injured areas. Moreover, NO-GC expression is reduced during fibrosis, i.e., after pericyte-to-myofibroblast transition. CONCLUSION In summary, αSMA/PDGFRβ-positive myofibroblasts should not be addressed as a homogeneous target cell type within pulmonary fibrosis.
Collapse
Affiliation(s)
- Annemarie Aue
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
- Zentrum für Interdisziplinäre Schmerzmedizin, Klinik für Anästhesiologie Intensivmedizin, Notfallmedizin und Schmerztherapie, Universitätsklinikum Würzburg, 97080, Würzburg, Germany
| | - Nils Englert
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Leon Harrer
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Fabian Schwiering
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Annika Gaab
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| | - Peter König
- Institut für Anatomie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, 23562, Lübeck, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Giessen, Germany
| | - Ralf Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Faculty of Medicine, University of Münster, 48149, Münster, Germany
| | - Achim Schmidtko
- Institut für Pharmakologie und Klinische Pharmazie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Andreas Friebe
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany.
| | - Dieter Groneberg
- Physiologisches Institut, Julius-Maximilians-Universität Würzburg, Röntgenring 9, 97070, Würzburg, Germany
| |
Collapse
|
9
|
Alsobaie S, Alsobaie T, Alshammary A, Mantalaris S. Differentiation of human induced pluripotent stem cells into functional lung alveolar epithelial cells in 3D dynamic culture. Front Bioeng Biotechnol 2023; 11:1173149. [PMID: 37388774 PMCID: PMC10303808 DOI: 10.3389/fbioe.2023.1173149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Understanding lung epithelium cell development from human induced pluripotent stem cells (IPSCs) in vitro can lead to an individualized model for lung engineering, therapy, and drug testing. Method: We developed a protocol to produce lung mature type I pneumocytes using encapsulation of human IPSCs in 1.1% (w/v) alginate solution within a rotating wall bioreactor system in only 20 days without using feeder cells. The aim was to reduce exposure to animal products and laborious interventions in the future. Results: The three-dimensional (3D) bioprocess allowed cell derivation into endoderm, and subsequently into type II alveolar epithelial cells within a very short period. Cells successfully expressed surfactant proteins C and B associated with type II alveolar epithelial cells, and the key structure of lamellar bodies and microvilli was shown by transmission electron microscopy. The survival rate was the highest under dynamic conditions, which reveal the possibility of adapting this integration for large-scale cell production of alveolar epithelial cells from human IPSCs. Discussion: We were able to develop a strategy for the culture and differentiation of human IPSCs into alveolar type II cells using an in vitro system that mimics the in vivo environment. Hydrogel beads would offer a suitable matrix for 3D cultures and that the high-aspect-ratio vessel bioreactor can be used to increase the differentiation of human IPSCs relative to the results obtained with traditional monolayer cultures.
Collapse
Affiliation(s)
- Sarah Alsobaie
- Department of Clinical Laboratory Science, King Saud University, Riyadh, Saudi Arabia
| | - Tamador Alsobaie
- Biological Systems Engineering Laboratory, Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Amal Alshammary
- Department of Clinical Laboratory Science, King Saud University, Riyadh, Saudi Arabia
| | - Sakis Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
10
|
Eckersley A, Ozols M, Chen P, Tam V, Ward LJ, Hoyland JA, Trafford A, Yuan XM, Schiller HB, Chan D, Sherratt MJ. Peptide location fingerprinting identifies species- and tissue-conserved structural remodelling of proteins as a consequence of ageing and disease. Matrix Biol 2022; 114:108-137. [PMID: 35618217 DOI: 10.1016/j.matbio.2022.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/30/2022]
Abstract
Extracellular matrices (ECMs) in the intervertebral disc (IVD), lung and artery are thought to undergo age-dependant accumulation of damage by chronic exposure to mechanisms such as reactive oxygen species, proteases and glycation. It is unknown whether this damage accumulation is species-dependant (via differing lifespans and hence cumulative exposures) or whether it can influence the progression of age-related diseases such as atherosclerosis. Peptide location fingerprinting (PLF) is a new proteomic analysis method, capable of the non-targeted identification of structure-associated changes within proteins. Here we applied PLF to publicly available ageing human IVD (outer annulus fibrosus), ageing mouse lung and human arterial atherosclerosis datasets and bioinformatically identified novel target proteins alongside common age-associated differences within protein structures which were conserved between three ECM-rich organs, two species, three IVD tissue regions, sexes and in an age-related disease. We identify peptide yield differences across protein structures which coincide with biological regions, potentially reflecting the functional consequences of ageing or atherosclerosis for macromolecular assemblies (collagen VI), enzyme/inhibitor activity (alpha-2 macroglobulin), activation states (complement C3) and interaction states (laminins, perlecan, fibronectin, filamin-A, collagen XIV and apolipoprotein-B). Furthermore, we show that alpha-2 macroglobulin and collagen XIV exhibit possible shared structural consequences in IVD ageing and arterial atherosclerosis, providing novel links between an age-related disease and intrinsic ageing. Crucially, we also demonstrate that fibronectin, laminin beta chains and filamin-A all exhibit conserved age-associated structural differences between mouse lung and human IVD, providing evidence that ECM, and their associating proteins, may be subjected to potentially similar mechanisms or consequences of ageing across both species, irrespective of differences in lifespan and tissue function.
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Department of Human Genetics, Wellcome Sanger Institute, Genome Campus, Hinxton, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, Guangdong 518053, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Liam J Ward
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Judith A Hoyland
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew Trafford
- Division of Cardiovascular Sciences, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xi-Ming Yuan
- Occupational and Environmental Medicine, Division of Prevention, Rehabilitation and Community Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Herbert B Schiller
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
11
|
Ahmed F, Young LR, Perman MJ. Junctional epidermolysis bullosa with extensive lung involvement in three patients with a LAMB3 Mutation. Pediatr Dermatol 2022; 39:264-267. [PMID: 35178765 PMCID: PMC9018490 DOI: 10.1111/pde.14942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Junctional epidermolysis bullosa (JEB) is characterized by skin and mucous membrane fragility leading to easy blistering. Blistering may be the result of multiple genetic mutations, including the LAMB3 gene encoding a subunit of laminin 332, an important protein in the basement membrane zone. The clinical presentation of JEB includes blistering and granulation tissue forming anywhere on the skin including around oral and nasal cavities, fingers, toes, and within mucous membranes such as the upper respiratory tract. Lung pathology associated with JEB is less commonly reported; we describe three children with LAMB3 pathogenic variants with extensive lung injury contributing to decline in clinical status and likely leading to their demise early in life.
Collapse
Affiliation(s)
- Fahad Ahmed
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Section of Pediatric Dermatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lisa R Young
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marissa J Perman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Section of Pediatric Dermatology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Clair G, Bramer LM, Misra R, McGraw MD, Bhattacharya S, Kitzmiller JA, Feng S, Danna VG, Bandyopadhyay G, Bhotika H, Huyck HL, Deutsch GH, Mariani TJ, Carson JP, Whitsett JA, Pryhuber GS, Adkins JN, Ansong C. Proteomic Analysis of Human Lung Development. Am J Respir Crit Care Med 2022; 205:208-218. [PMID: 34752721 PMCID: PMC8787240 DOI: 10.1164/rccm.202008-3303oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2021] [Indexed: 01/17/2023] Open
Abstract
Rationale: The current understanding of human lung development derives mostly from animal studies. Although transcript-level studies have analyzed human donor tissue to identify genes expressed during normal human lung development, protein-level analysis that would enable the generation of new hypotheses on the processes involved in pulmonary development are lacking. Objectives: To define the temporal dynamic of protein expression during human lung development. Methods: We performed proteomics analysis of human lungs at 10 distinct times from birth to 8 years to identify the molecular networks mediating postnatal lung maturation. Measurements and Main Results: We identified 8,938 proteins providing a comprehensive view of the developing human lung proteome. The analysis of the data supports the existence of distinct molecular substages of alveolar development and predicted the age of independent human lung samples, and extensive remodeling of the lung proteome occurred during postnatal development. Evidence of post-transcriptional control was identified in early postnatal development. An extensive extracellular matrix remodeling was supported by changes in the proteome during alveologenesis. The concept of maturation of the immune system as an inherent part of normal lung development was substantiated by flow cytometry and transcriptomics. Conclusions: This study provides the first in-depth characterization of the human lung proteome during development, providing a unique proteomic resource freely accessible at Lungmap.net. The data support the extensive remodeling of the lung proteome during development, the existence of molecular substages of alveologenesis, and evidence of post-transcriptional control in early postnatal development.
Collapse
Affiliation(s)
| | | | - Ravi Misra
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Matthew D. McGraw
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | | | - Joseph A. Kitzmiller
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio
| | | | | | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Harsh Bhotika
- Environmental Molecular Science Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Heidie L. Huyck
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - Gail H. Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; and
| | - Thomas J. Mariani
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | - James P. Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, Texas
| | - Jeffrey A. Whitsett
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| | | | | |
Collapse
|
13
|
Negretti NM, Plosa EJ, Benjamin JT, Schuler BA, Habermann AC, Jetter CS, Gulleman P, Bunn C, Hackett AN, Ransom M, Taylor CJ, Nichols D, Matlock BK, Guttentag SH, Blackwell TS, Banovich NE, Kropski JA, Sucre JMS. A single-cell atlas of mouse lung development. Development 2021; 148:dev199512. [PMID: 34927678 PMCID: PMC8722390 DOI: 10.1242/dev.199512] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Lung organogenesis requires precise timing and coordination to effect spatial organization and function of the parenchymal cells. To provide a systematic broad-based view of the mechanisms governing the dynamic alterations in parenchymal cells over crucial periods of development, we performed a single-cell RNA-sequencing time-series yielding 102,571 epithelial, endothelial and mesenchymal cells across nine time points from embryonic day 12 to postnatal day 14 in mice. Combining computational fate-likelihood prediction with RNA in situ hybridization and immunofluorescence, we explore lineage relationships during the saccular to alveolar stage transition. The utility of this publicly searchable atlas resource (www.sucrelab.org/lungcells) is exemplified by discoveries of the complexity of type 1 pneumocyte function and characterization of mesenchymal Wnt expression patterns during the saccular and alveolar stages - wherein major expansion of the gas-exchange surface occurs. We provide an integrated view of cellular dynamics in epithelial, endothelial and mesenchymal cell populations during lung organogenesis.
Collapse
Affiliation(s)
- Nicholas M. Negretti
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Erin J. Plosa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T. Benjamin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bryce A. Schuler
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Christopher S. Jetter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Peter Gulleman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Claire Bunn
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alice N. Hackett
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Meaghan Ransom
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chase J. Taylor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David Nichols
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brittany K. Matlock
- Vanderbilt Ingram Cancer Center and Vanderbilt Digestive Disease Research Center, Flow Cytometry Shared Resource, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Susan H. Guttentag
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Timothy S. Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | - Nicholas E. Banovich
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Jonathan A. Kropski
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | - Jennifer M. S. Sucre
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Jandl K, Mutgan AC, Eller K, Schaefer L, Kwapiszewska G. The basement membrane in the cross-roads between the lung and kidney. Matrix Biol 2021; 105:31-52. [PMID: 34839001 DOI: 10.1016/j.matbio.2021.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
The basement membrane (BM) is a specialized layer of extracellular matrix components that plays a central role in maintaining lung and kidney functions. Although the composition of the BM is usually tissue specific, the lung and the kidney preferentially use similar BM components. Unsurprisingly, diseases with BM defects often have severe pulmonary or renal manifestations, sometimes both. Excessive remodeling of the BM, which is a hallmark of both inflammatory and fibrosing diseases in the lung and the kidney, can lead to the release of BM-derived matrikines, proteolytic fragments with distinct biological functions. These matrikines can then influence disease activity at the site of liberation. However, they are also released to the circulation, where they can directly affect the vascular endothelium or target other organs, leading to extrapulmonary or extrarenal manifestations. In this review, we will summarize the current knowledge of the composition and function of the BM and its matrikines in health and disease, both in the lung and in the kidney. By comparison, we will highlight, why the BM and its matrikines may be central in establishing a renal-pulmonary interaction axis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Pharmacology, Medical University of Graz, Graz, Austria
| | - Ayse Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria; Institute for Lung Health (ILH), Giessen, Germany..
| |
Collapse
|
15
|
Rao S, Baranova A, Cao H, Chen J, Zhang X, Zhang F. Genetic mechanisms of COVID-19 and its association with smoking and alcohol consumption. Brief Bioinform 2021; 22:6326524. [PMID: 34308962 DOI: 10.1093/bib/bbab284] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/14/2022] Open
Abstract
We aimed to investigate the genetic mechanisms associated with coronavirus disease of 2019 (COVID-19) outcomes in the host and to evaluate the possible associations between smoking and drinking behavior and three COVID-19 outcomes: severe COVID-19, hospitalized COVID-19 and COVID-19 infection. We described the genomic loci and risk genes associated with the COVID-19 outcomes, followed by functional analyses of the risk genes. Then, a summary data-based Mendelian randomization (SMR) analysis, and a transcriptome-wide association study (TWAS) were performed for the severe COVID-19 dataset. A two-sample Mendelian randomization (MR) analysis was used to evaluate the causal associations between various measures of smoking and alcohol consumption and the COVID-19 outcomes. A total of 26 protein-coding genes, enriched in chemokine binding, cytokine binding and senescence-related functions, were associated with either severe COVID-19 or hospitalized COVID-19. The SMR and the TWAS analyses highlighted functional implications of some GWAS hits and identified seven novel genes for severe COVID-19, including CCR5, CCR5AS, IL10RB, TAC4, RMI1 and TNFSF15, some of which are targets of approved or experimental drugs. According to our studies, increasing consumption of cigarettes per day by 1 standard deviation is related to a 2.3-fold increase in susceptibility to severe COVID-19 and a 1.6-fold increase in COVID-19-induced hospitalization. Contrarily, no significant links were found between alcohol consumption or binary smoking status and COVID-19 outcomes. Our study revealed some novel COVID-19 related genes and suggested that genetic liability to smoking may quantitatively contribute to an increased risk for a severe course of COVID-19.
Collapse
Affiliation(s)
- Shuquan Rao
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, China
| | - Hongbao Cao
- School of Systems Biology, George Mason University, China
| | - Jiu Chen
- Affiliated Brain Hospital of Nanjing Medical University, China
| | - Xiangrong Zhang
- Affiliated Brain Hospital of Nanjing Medical University, China
| | - Fuquan Zhang
- Affiliated Brain Hospital of Nanjing Medical University, China
| |
Collapse
|
16
|
Li L, Li H, Wang L, Bu T, Liu S, Mao B, Cheng CY. A local regulatory network in the testis mediated by laminin and collagen fragments that supports spermatogenesis. Crit Rev Biochem Mol Biol 2021; 56:236-254. [PMID: 33761828 DOI: 10.1080/10409238.2021.1901255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is almost five decades since the discovery of the hypothalamic-pituitary-testicular axis. This refers to the hormonal axis that connects the hypothalamus, pituitary gland and testes, which in turn, regulates the production of spermatozoa through spermatogenesis in the seminiferous tubules, and testosterone through steroidogenesis by Leydig cells in the interstitium, of the testes. Emerging evidence has demonstrated the presence of a regulatory network across the seminiferous epithelium utilizing bioactive molecules produced locally at specific domains of the epithelium. Studies have shown that biologically active fragments are produced from structural laminin and collagen chains in the basement membrane. Additionally, bioactive peptides are also produced locally in non-basement membrane laminin chains at the Sertoli-spermatid interface known as apical ectoplasmic specialization (apical ES, a testis-specific actin-based anchoring junction type). These bioactive peptides are derived from structural laminins and/or collagens at the corresponding sites through proteolytic cleavage by matrix metalloproteinases (MMPs). They in turn serve as autocrine and/or paracrine factors to modulate and coordinate cellular events across the epithelium by linking the apical and basal compartments, the apical and basal ES, the blood-testis barrier (BTB), and the basement membrane of the tunica propria. The cellular events supported by these bioactive peptides/fragments include the release of spermatozoa at spermiation, remodeling of the immunological barrier to facilitate the transport of preleptotene spermatocytes across the BTB, and the transport of haploid spermatids across the epithelium to support spermiogenesis. In this review, we critically evaluate these findings. Our goal is to identify research areas that deserve attentions in future years. The proposed research also provides the much needed understanding on the biology of spermatogenesis supported by a local network of regulatory biomolecules.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Lingling Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Tiao Bu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shiwen Liu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| |
Collapse
|
17
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
18
|
Bista S, Singh P, Bernard Q, Yang X, Hart T, Lin YP, Kitsou C, Singh Rana V, Zhang F, Linhardt RJ, Zhnag K, Akins DR, Hritzo L, Kim Y, Grab DJ, Dumler JS, Pal U. A Novel Laminin-Binding Protein Mediates Microbial-Endothelial Cell Interactions and Facilitates Dissemination of Lyme Disease Pathogens. J Infect Dis 2021; 221:1438-1447. [PMID: 31758693 DOI: 10.1093/infdis/jiz626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Borrelia burgdorferi conserved gene products BB0406 and BB0405, members of a common B. burgdorferi paralogous gene family, share 59% similarity. Although both gene products can function as potential porins, only BB0405 is essential for infection. Here we show that, despite sequence homology and coexpression from the same operon, both proteins differ in their membrane localization attributes, antibody accessibility, and immunogenicity in mice. BB0406 is required for spirochete survival in mammalian hosts, particularly for the disseminated infection in distant organs. We identified that BB0406 interacts with laminin, one of the major constituents of the vascular basement membrane, and facilitates spirochete transmigration across host endothelial cell barriers. A better understanding of how B. burgdorferi transmigrates through dermal and tissue vascular barriers and establishes disseminated infections will contribute to the development of novel therapeutics to combat early infection.
Collapse
Affiliation(s)
- Sandhya Bista
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Preeti Singh
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Quentin Bernard
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Thomas Hart
- Department of Biological Science, State University of New York at Albany, Albany, New York, USA.,Division of Infectious Diseases, Wadsworth Center New York State Department of Health, Albany, New York, USA
| | - Yi-Pin Lin
- Department of Biological Science, State University of New York at Albany, Albany, New York, USA.,Department of Biomedical Science, State University of New York at Albany, Albany, New York, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Vipin Singh Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA.,Department of Biology and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Kai Zhnag
- Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lucy Hritzo
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Yuri Kim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Dennis J Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - J Stephen Dumler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA.,Virginia-Maryland College of Veterinary Medicine, College Park, Maryland
| |
Collapse
|
19
|
Jones MR, Chong L, Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front Cell Dev Biol 2021; 8:620667. [PMID: 33511132 PMCID: PMC7835514 DOI: 10.3389/fcell.2020.620667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Airway branching morphogenesis depends on the intricate orchestration of numerous biological and physical factors connected across different spatial scales. One of the key regulatory pathways controlling airway branching is fibroblast growth factor 10 (Fgf10) signaling via its epithelial fibroblast growth factor receptor 2b (Fgfr2b). Fine reviews have been published on the molecular mechanisms, in general, involved in branching morphogenesis, including those mechanisms, in particular, connected to Fgf10/Fgfr2b signaling. However, a comprehensive review looking at all the major biological and physical factors involved in branching, at the different scales at which branching operates, and the known role of Fgf10/Fgfr2b therein, is missing. In the current review, we attempt to summarize the existing literature on airway branching morphogenesis by taking a broad approach. We focus on the biophysical and mechanical forces directly shaping epithelial bud initiation, branch elongation, and branch tip bifurcation. We then shift focus to more passive means by which branching proceeds, via extracellular matrix remodeling and the influence of the other pulmonary arborized networks: the vasculature and nerves. We end the review by briefly discussing work in computational modeling of airway branching. Throughout, we emphasize the known or speculative effects of Fgfr2b signaling at each point of discussion. It is our aim to promote an understanding of branching morphogenesis that captures the multi-scalar biological and physical nature of the phenomenon, and the interdisciplinary approach to its study.
Collapse
Affiliation(s)
- Matthew R. Jones
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Lei Chong
- National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
20
|
Bein K, Ganguly K, Martin TM, Concel VJ, Brant KA, Di YPP, Upadhyay S, Fabisiak JP, Vuga LJ, Kaminski N, Kostem E, Eskin E, Prows DR, Jang AS, Leikauf GD. Genetic determinants of ammonia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2020; 320:L41-L62. [PMID: 33050709 DOI: 10.1152/ajplung.00276.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, a genetically diverse panel of 43 mouse strains was exposed to ammonia, and genome-wide association mapping was performed employing a single-nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was used to help resolve the genetic determinants of ammonia-induced acute lung injury. The encoded proteins were prioritized based on molecular function, nonsynonymous SNP within a functional domain or SNP within the promoter region that altered expression. This integrative functional approach revealed 14 candidate genes that included Aatf, Avil, Cep162, Hrh4, Lama3, Plcb4, and Ube2cbp, which had significant SNP associations, and Aff1, Bcar3, Cntn4, Kcnq5, Prdm10, Ptcd3, and Snx19, which had suggestive SNP associations. Of these genes, Bcar3, Cep162, Hrh4, Kcnq5, and Lama3 are particularly noteworthy and had pathophysiological roles that could be associated with acute lung injury in several ways.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Koustav Ganguly
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timothy M Martin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent J Concel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kelly A Brant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Y P Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Swapna Upadhyay
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - James P Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Louis J Vuga
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Naftali Kaminski
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Emrah Kostem
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Eleazar Eskin
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Daniel R Prows
- Division of Human Genetics, Cincinnati Children's Hospital and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Ann-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Jandl K, Marsh LM, Hoffmann J, Mutgan AC, Baum O, Bloch W, Thekkekara-Puthenparampil H, Kolb D, Sinn K, Klepetko W, Heinemann A, Olschewski A, Olschewski H, Kwapiszewska G. Basement Membrane Remodeling Controls Endothelial Function in Idiopathic Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2020; 63:104-117. [PMID: 32160015 DOI: 10.1165/rcmb.2019-0303oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) increasingly emerges as an active driver in several diseases, including idiopathic pulmonary arterial hypertension (IPAH). The basement membrane (BM) is a specialized class of ECM proteins. In pulmonary arteries, the BM is in close contact and direct proximity to vascular cells, including endothelial cells. So far, the role of the BM has remained underinvestigated in IPAH. Here, we aimed to shed light on the involvement of the BM in IPAH, by addressing its structure, composition, and function. On an ultrastructural level, we observed a marked increase in BM thickness in IPAH pulmonary vessels. BM composition was distinct in small and large vessels and altered in IPAH. Proteoglycans were mostly responsible for distinction between smaller and larger vessels, whereas BM collagens and laminins were more abundantly expressed in IPAH. Type IV collagen and laminin both strengthened endothelial barrier integrity. However, only type IV collagen concentration dependently increased cell adhesion of both donor and IPAH-derived pulmonary arterial endothelial cells (PAECs) and induced nuclear translocation of mechanosensitive transcriptional coactivator of the hippo pathway YAP (Yes-activated protein). On the other hand, laminin caused cytoplasmic retention of YAP in IPAH PAECs. Accordingly, silencing of COL4A5 and LAMC1, respectively, differentially affected tight junction formation and barrier integrity in both donor and IPAH PAECs. Collectively, our results highlight the importance of a well-maintained BM homeostasis. By linking changes in BM structure and composition to altered endothelial cell function, we here suggest an active involvement of the BM in IPAH pathogenesis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pharmacology and
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | - Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wilhelm Bloch
- German Sports University Cologne, Cologne, Germany; and
| | | | | | - Katharina Sinn
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Experimental Anaesthesiology, Department of Anaesthesiology and Intensive Care Medicine, and
| | - Horst Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology, Otto Loewi Research Center
| |
Collapse
|
22
|
Mutgan AC, Jandl K, Kwapiszewska G. Endothelial Basement Membrane Components and Their Products, Matrikines: Active Drivers of Pulmonary Hypertension? Cells 2020; 9:cells9092029. [PMID: 32899187 PMCID: PMC7563239 DOI: 10.3390/cells9092029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease that is characterized by elevated pulmonary arterial pressure (PAP) due to progressive vascular remodeling. Extracellular matrix (ECM) deposition in pulmonary arteries (PA) is one of the key features of vascular remodeling. Emerging evidence indicates that the basement membrane (BM), a specialized cluster of ECM proteins underlying the endothelium, may be actively involved in the progression of vascular remodeling. The BM and its steady turnover are pivotal for maintaining appropriate vascular functions. However, the pathologically elevated turnover of BM components leads to an increased release of biologically active short fragments, which are called matrikines. Both BM components and their matrikines can interfere with pivotal biological processes, such as survival, proliferation, adhesion, and migration and thus may actively contribute to endothelial dysfunction. Therefore, in this review, we summarize the emerging role of the BM and its matrikines on the vascular endothelium and further discuss its implications on lung vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Correspondence:
| |
Collapse
|
23
|
Sharmin A, Adnan N, Haque A, Mashimo Y, Mie M, Kobatake E. Construction of multifunctional fusion proteins with a laminin-derived short peptide to promote neural differentiation of mouse induced pluripotent stem cells. J Biomed Mater Res B Appl Biomater 2020; 108:2691-2698. [PMID: 32167675 DOI: 10.1002/jbm.b.34600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/18/2020] [Accepted: 02/22/2020] [Indexed: 11/07/2022]
Abstract
There is growing interest in the functional roles of the extracellular matrix (ECM) in regulating the fate of pluripotent stem cells (PSCs). An artificially bioengineered ECM provides an excellent model for studying the molecular mechanisms underlying self-renewal and differentiation of PSCs, without multiple unknown and variable factors associated with natural substrates. Here, we have engineered multifunctional fusion proteins that are based on peptides from laminin, including p20, RGD, and elastin-like polypeptide (ELP), where laminin peptides work as cell adhesion molecules (CAMs) and ELP to promote anchorage. The functionality of these chimeric proteins, referred to as ERE-p20 and E-p20, was assessed by determining their ability to immobilize cells on a hydrophobic polystyrene surface, improve mouse induced pluripotent stem cells (miPSCs) attachment, and promote miPSC differentiation to neural progenitors. ERE-p20 and E-p20 proteins showed hydrophobic binding saturation to the polystyrene plates around 500 nM (2.39 μg/cm2 ) and 750 nM (2.27 μg/cm2 ) protein concentrations, respectively. The apparent maximum cell binding to ERE-p20 and E-p20 was approximately 81% and 73%, respectively, relative to gelatin. For neural precursors, neurite outgrowth was enhanced by the presence of RGD and p20 peptides. The expression levels of neuronal marker protein MAP2 were upregulated approximately 2.5-fold and threefold by ERE-p20 and E-p20, respectively, relative to laminin. Overall, we have shown that elastin-mimetic fusion proteins consisting of p20 with and without RGD peptides are able to induce neuronal differentiation. In conclusion, our newly designed bioengineered fusion proteins allow preparation of specific bioactive matrices or coating/scaffold for miPSCs differentiation.
Collapse
Affiliation(s)
- Afroza Sharmin
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nihad Adnan
- Department of Microbiology, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | | | - Yasumasa Mashimo
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
24
|
Young BM, Shankar K, Tho CK, Pellegrino AR, Heise RL. Laminin-driven Epac/Rap1 regulation of epithelial barriers on decellularized matrix. Acta Biomater 2019; 100:223-234. [PMID: 31593773 DOI: 10.1016/j.actbio.2019.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Decellularized tissues offer a unique tool for developing regenerative biomaterials or in vitro platforms for the study of cell-extracellular matrix (ECM) interactions. One main challenge associated with decellularized lung tissue is that ECM components can be stripped away or altered by the detergents used to remove cellular debris. Without characterizing the composition of lung decellularized ECM (dECM) and the cellular response caused by the altered composition, it is difficult to utilize dECM for regeneration and specifically, engineering the complexities of the alveolar-capillary barrier. This study takes steps towards uncovering if dECM must be enhanced with lost ECM proteins to achieve proper epithelial barrier formation. To achieve this, the epithelial barrier function was assessed on dECM coatings with and without the systematic addition of several key basement membrane proteins. After comparing barrier function on collagen I, fibronectin, laminin, and dECM in varying combinations as an in vitro coating, the alveolar epithelium exhibited superior barrier function when dECM was supplemented with laminin as evidenced by trans-epithelial electrical resistance (TEER) and permeability assays. Increased barrier resistance with laminin addition was associated with upregulation of Claudin-18, E-cadherin, and junction adhesion molecule (JAM)-A, and stabilization of zonula occludens (ZO)-1 at junction complexes. The Epac/Rap1 pathway was observed to play a role in the ECM-mediated barrier function determined by protein expression and Epac inhibition. These findings revealed potential ECM coatings and molecular therapeutic targets for improved regeneration with decellularized scaffolds. STATEMENT OF SIGNIFICANCE: Efforts to produce a transplantable organ-scale biomaterial for lung regeneration has not been entirely successful to date, due to incomplete cell-cell junction formation, ultimately leading to severe edema in vivo. To fully understand the process of alveolar junction formation on ECM-derived biomaterials, this research has characterized and tailored decellularized ECM (dECM) to mitigate reductions in barrier strength or cell attachment caused by abnormal ECM compositions or detergent damage to dECM. These results indicate that laminin-driven Epac signaling plays a vital role in the stabilization of the alveolar barrier. Addition of laminin or Epac agonists during alveolar regeneration can reduce epithelial permeability within bioengineered lungs.
Collapse
Affiliation(s)
- Bethany M Young
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Keerthana Shankar
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Cindy K Tho
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Amanda R Pellegrino
- Department of Biomedical Engineering and Nursing, Duquesne University, 600 Forbes Ave, Pittsburg, Pennsylvania 15282, United States
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States; Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, 1101 East Marshall St, Richmond, Virginia 23298, United States.
| |
Collapse
|
25
|
Prabhala P, Wright DB, Robbe P, Bitter C, Pera T, Ten Hacken NHT, van den Berge M, Timens W, Meurs H, Dekkers BGJ. Laminin α4 contributes to airway remodeling and inflammation in asthma. Am J Physiol Lung Cell Mol Physiol 2019; 317:L768-L777. [PMID: 31553662 DOI: 10.1152/ajplung.00222.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Airway inflammation and remodeling are characteristic features of asthma, with both contributing to airway hyperresponsiveness (AHR) and lung function limitation. Airway smooth muscle (ASM) accumulation and extracellular matrix deposition are characteristic features of airway remodeling, which may contribute to persistent AHR. Laminins containing the α2-chain contribute to characteristics of ASM remodeling in vitro and AHR in animal models of asthma. The role of other laminin chains, including the laminin α4 and α5 chains, which contribute to leukocyte migration in other diseases, is currently unknown. The aim of the current study was to investigate the role of these laminin chains in ASM function and in AHR, remodeling, and inflammation in asthma. Expression of both laminin α4 and α5 was observed in the human and mouse ASM bundle. In vitro, laminin α4 was found to promote a pro-proliferative, pro-contractile, and pro-fibrotic ASM cell phenotype. In line with this, treatment with laminin α4 and α5 function-blocking antibodies reduced allergen-induced increases in ASM mass in a mouse model of allergen-induced asthma. Moreover, eosinophilic inflammation was reduced by the laminin α4 function-blocking antibody as well. Using airway biopsies from healthy subjects and asthmatic patients, we found inverse correlations between ASM α4-chain expression and lung function and AHR, whereas eosinophil numbers correlated positively with expression of laminin α4 in the ASM bundle. This study, for the first time, indicates a prominent role for laminin α4 in ASM function and in inflammation, AHR, and remodeling in asthma, whereas the role of laminin α5 is more subtle.
Collapse
Affiliation(s)
- Pavan Prabhala
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - David B Wright
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Patricia Robbe
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Catrin Bitter
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Tonio Pera
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nick H T Ten Hacken
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen, The Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Herman Meurs
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands
| | - Bart G J Dekkers
- University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.,University of Groningen, Groningen Research Institute for Pharmacy, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
26
|
Shibata S, Hayashi R, Okubo T, Kudo Y, Katayama T, Ishikawa Y, Toga J, Yagi E, Honma Y, Quantock AJ, Sekiguchi K, Nishida K. Selective Laminin-Directed Differentiation of Human Induced Pluripotent Stem Cells into Distinct Ocular Lineages. Cell Rep 2018; 25:1668-1679.e5. [DOI: 10.1016/j.celrep.2018.10.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022] Open
|
27
|
Lee CM, Cho SJ, Cho WK, Park JW, Lee JH, Choi AM, Rosas IO, Zheng M, Peltz G, Lee CG, Elias JA. Laminin α1 is a genetic modifier of TGF-β1-stimulated pulmonary fibrosis. JCI Insight 2018; 3:99574. [PMID: 30232270 DOI: 10.1172/jci.insight.99574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/03/2018] [Indexed: 01/08/2023] Open
Abstract
The pathogenetic mechanisms underlying the pathologic fibrosis in diseases such as idiopathic pulmonary fibrosis (IPF) are poorly understood. To identify genetic factors affecting susceptibility to IPF, we analyzed a murine genetic model of IPF in which a profibrotic cytokine (TGF-β1) was expressed in the lungs of 10 different inbred mouse strains. Surprisingly, the extent of TGF-β1-induced lung fibrosis was highly strain dependent. Haplotype-based computational genetic analysis and gene expression profiling of lung tissue obtained from fibrosis-susceptible and -resistant strains identified laminin α1 (Lama1) as a genetic modifier for susceptibility to IPF. Subsequent studies demonstrated that Lama1 plays an important role in multiple processes that affect the pulmonary response to lung injury and susceptibility to fibrosis, which include: macrophage activation, fibroblast proliferation, myofibroblast transformation, and the production of extracellular matrix. Also, Lama1 mRNA expression was significantly increased in lung tissue obtained from IPF patients. These studies identify Lama1 as the genetic modifier of TGF-β1 effector responses that significantly affects the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Soo Jung Cho
- Weill Cornell Medicine Pulmonary and Critical Care Medicine, New York, New York, USA
| | - Won-Kyung Cho
- International Health Care Center, Pulmonary and Critical Care Medicine, Ulsan University College of Medicine, Seoul, South Korea
| | - Jin Wook Park
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jae-Hyun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Augustine M Choi
- Weill Cornell Medicine Pulmonary and Critical Care Medicine, New York, New York, USA
| | - Ivan O Rosas
- Brigham and Women's Hospital, Medicine-Clinics 3, Boston, Massachusetts, USA
| | - Ming Zheng
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California, USA
| | - Gary Peltz
- Department of Anesthesia, Stanford University School of Medicine, Stanford, California, USA
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA.,Division of Medicine and Biological Sciences, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
28
|
Ding H, Wang Y, Dong W, Ren R, Mao Y, Deng X. Proteomic Lung Analysis of Mice with Ventilator-Induced Lung Injury (VILI) Using iTRAQ-Based Quantitative Proteomics. Chem Pharm Bull (Tokyo) 2018; 66:691-700. [PMID: 29962452 DOI: 10.1248/cpb.c17-00844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventilator-induced lung injury (VILI) has implications for mortality from acute lung injury (ALI) and for acute respiratory distress syndrome (ARDS) patients; the complicated mechanisms of VILI have not been well defined. To discover new biomarkers and mechanisms of VILI, isobaric Tag for Relative and Absolute Quantitation (iTRAQ)-based quantitative proteomics were applied to identify differentially expressed proteins in mice treated with high tidal volume ventilation (HV), low tidal volume ventilation (LV) and lipopolysaccharide (LPS). A total of 14 dysregulated proteins showed the same change trend both in the LV and HV group and no change in the LPS group, and most importantly, the fold change of these proteins increased with the increase of volume ventilation, which indicates these proteins may be considered as potential markers specific for VILI. Ingenuity pathway analysis (IPA) canonical pathways analysis identified the top 4 canonical pathways, including the extrinsic prothrombin activation pathway, coagulation systems, the intrinsic prothrombin activation pathway and the acute phase response, suggesting that these pathways, as associated with these proteins' expression, may be important therapeutic targets for reducing VILI. These findings will provide a new perspective for understanding the pathogenesis of VILI in the future.
Collapse
Affiliation(s)
- Haoshu Ding
- Faculty of Anesthesiology, Changhai Hospital Affiliated to Second Military Medical University.,Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Yan Wang
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Wenwen Dong
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Rongrong Ren
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Yanfei Mao
- Department of Anesthesiology and Critical Care Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital Affiliated to Second Military Medical University
| |
Collapse
|
29
|
Sengyoku H, Tsuchiya T, Obata T, Doi R, Hashimoto Y, Ishii M, Sakai H, Matsuo N, Taniguchi D, Suematsu T, Lawn M, Matsumoto K, Miyazaki T, Nagayasu T. Sodium hydroxide based non-detergent decellularizing solution for rat lung. Organogenesis 2018; 14:94-106. [PMID: 29889592 PMCID: PMC6150056 DOI: 10.1080/15476278.2018.1462432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lung transplantation is the last option for the treatment of end stage chronic lung disorders. Because the shortage of donor lung organs represents the main hurdle, lung regeneration has been considered to overcome this hurdle. Recellularization of decellularized organ scaffold is a promising option for organ regeneration. Although detergents are ordinarily used for decellularization, other approaches are possible. Here we used high alkaline (pH12) sodium hydroxide (NaOH)-PBS solution without detergents for lung decellularization and compared the efficacy on DNA elimination and ECM preservation with detergent based decellularization solutions CHAPS and SDS. Immunohistochemical image analysis showed that cell components were removed by NaOH solution as well as other detergents. A Collagen and GAG assay showed that the collagen reduction of the NaOH group was comparable to that of the CHAPS and SDS groups. However, DNA reduction was more significant in the NaOH group than in other groups (p < 0.0001). The recellularization of HUVEC revealed cell attachment was not inferior to that of the SDS group. Ex vivo functional analysis showed 100% oxygen ventilation increased oxygen partial pressure as artificial hemoglobin vesicle-PBS solution passed through regenerated lungs in the SDS or NaOH group. It was concluded that the NaOH-PBS based decellularization solution was comparable to ordinal decellularizaton solutions and competitive in cost effectiveness and residues in the decellularized scaffold negligible, thus providing another potential option to detergent for future clinical usage.
Collapse
Affiliation(s)
- Hideyori Sengyoku
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan
| | - Tomoshi Tsuchiya
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan.,b Translational Research Center , Research Institute for Science & Technology, Tokyo University of Science , Chiba , Japan
| | - Tomohiro Obata
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan.,c Medical-Engineering Hybrid Professional Development Center , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Ryoichiro Doi
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan
| | - Yasumasa Hashimoto
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan.,c Medical-Engineering Hybrid Professional Development Center , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Mitsutoshi Ishii
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan.,c Medical-Engineering Hybrid Professional Development Center , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Hiromi Sakai
- d Department of Chemistry, School of Medicine , Nara Medical University , Nara , Japan
| | - Naoto Matsuo
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan.,c Medical-Engineering Hybrid Professional Development Center , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Daisuke Taniguchi
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan.,c Medical-Engineering Hybrid Professional Development Center , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Takashi Suematsu
- e Division of Electron Microscopy , Nagasaki University Graduate School of Biomedical Sciences , 1-12-4 Sakamoto, Nagasaki City , Japan
| | - Murray Lawn
- c Medical-Engineering Hybrid Professional Development Center , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Keitaro Matsumoto
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan.,c Medical-Engineering Hybrid Professional Development Center , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| | - Takuro Miyazaki
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan
| | - Takeshi Nagayasu
- a Department of Surgical Oncology , Nagasaki University Graduate School of Biomedical Sciences , 1-7-1 Sakamoto, Nagasaki City , Japan.,c Medical-Engineering Hybrid Professional Development Center , Nagasaki University Graduate School of Biomedical Sciences , Nagasaki , Japan
| |
Collapse
|
30
|
Spatial and temporal changes in extracellular elastin and laminin distribution during lung alveolar development. Sci Rep 2018; 8:8334. [PMID: 29844468 PMCID: PMC5974327 DOI: 10.1038/s41598-018-26673-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Lung alveolarization requires precise coordination of cell growth with extracellular matrix (ECM) synthesis and deposition. The role of extracellular matrices in alveogenesis is not fully understood, because prior knowledge is largely extrapolated from two-dimensional structural analysis. Herein, we studied temporospatial changes of two important ECM proteins, laminin and elastin that are tightly associated with alveolar capillary growth and lung elastic recoil respectively, during both mouse and human lung alveolarization. By combining protein immunofluorescence staining with two- and three-dimensional imaging, we found that the laminin network was simplified along with the thinning of septal walls during alveogenesis, and more tightly associated with alveolar endothelial cells in matured lung. In contrast, elastin fibers were initially localized to the saccular openings of nascent alveoli, forming a ring-like structure. Then, throughout alveolar growth, the number of such alveolar mouth ring-like structures increased, while the relative ring size decreased. These rings were interconnected via additional elastin fibers. The apparent patches and dots of elastin at the tips of alveolar septae found in two-dimensional images were cross sections of elastin ring fibers in the three-dimension. Thus, the previous concept that deposition of elastin at alveolar tips drives septal inward growth may potentially be conceptually challenged by our data.
Collapse
|
31
|
Zhang X, Biagini Myers JM, Burleson JD, Ulm A, Bryan KS, Chen X, Weirauch MT, Baker TA, Butsch Kovacic MS, Ji H. Nasal DNA methylation is associated with childhood asthma. Epigenomics 2018; 10:629-641. [PMID: 29692198 DOI: 10.2217/epi-2017-0127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM We aim to study DNA methylation (DNAm) variations associated with childhood asthma. METHODS Nasal DNAm was compared between sibling pairs discordant for asthma, 29 sib pairs for genome-wide association studies and 54 sib pairs for verification by pyrosequencing. Associations of methylation with asthma symptoms, allergy and environmental exposures were evaluated. In vitro experiments and functional genomic analyses were performed to explore biologic relevance. RESULTS Three CpGs were associated with asthma. cg14830002 was associated with allergies in nonasthmatics. cg23602092 was associated with asthma symptoms. cg14830002 and cg23602092 were associated with traffic-related air pollution exposure. Nearby genes were transcriptionally regulated by diesel exhaust, house dust mite and 5-aza-2'-deoxycytidine. Active chromatin marks and transcription factor binding were found around these sites. CONCLUSION We identified novel DNAm variations associated with childhood asthma and suggested new disease-contributing epigenetic mechanisms.
Collapse
Affiliation(s)
- Xue Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Pyrosequencing Lab for Genomic & Epigenomic Research, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jocelyn M Biagini Myers
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - J D Burleson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ashley Ulm
- Pyrosequencing Lab for Genomic & Epigenomic Research, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kelly S Bryan
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.,Center for Autoimmune Genomics & Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Divisions of Biomedical Informatics & Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Theresa A Baker
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melinda S Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.,Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hong Ji
- Pyrosequencing Lab for Genomic & Epigenomic Research, Cincinnati, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
32
|
Zhang CY, Zhu JY, Ye Y, Zhang M, Zhang LJ, Wang SJ, Song YN, Zhang H. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses. Biomed Pharmacother 2017; 95:520-528. [PMID: 28866419 DOI: 10.1016/j.biopha.2017.08.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
AIMS The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). MATERIALS AND METHODS The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). RESULTS Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. CONCLUSIONS EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Chun-Yan Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Jian-Yong Zhu
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Miao Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Li-Jun Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Su-Juan Wang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China
| | - Ya-Nan Song
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China.
| | - Hong Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, 358 Datong Road, Pudong, Shanghai, 200137, China.
| |
Collapse
|
33
|
Ji X, Wu B, Han R, Yang J, Ayaaba E, Wang T, Han L, Ni C. The association of LAMB1 polymorphism and expression changes with the risk of coal workers' pneumoconiosis. ENVIRONMENTAL TOXICOLOGY 2017; 32:2182-2190. [PMID: 28444932 DOI: 10.1002/tox.22431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Pneumoconiosis is a serious occupational disease worldwide, which is characterized by irreversible and diffuse lung fibrotic lesions. Laminin beta 1(LAMB1) is widely expressed in tissues and it is crucial for both lung morphogenesis and physiological function. In this study, we explored the association between LAMB1 rs4320486 and risk of pneumoconiosis in a Chinese population, as well as its mechanisms. METHODS In this case-control study, 600 CWP patients and 605 controls were genotyped for the LAMB1 rs4320486 polymorphism using TaqMan methods. Luciferase reporter assay was used to assess the LAMB1 transcriptional activities. The protein levels in cells and tissues were detected by western blot, and mRNA levels were determined by qRT-PCR. RESULTS Logistic regression analysis revealed that individuals with LAMB1 rs4320486 CT/TT genotypes had a significantly decreased risk of CWP (adjusted OR = 0.78, 95%CI = 0.64-0.94), compared with individuals with CC genotypes. Luciferase assays showed that the LAMB1 rs4320486(C > T) substitution could decrease the expression of LAMB1. Compared with normal groups, mRNA levels of LAMB1 were up-regulated in lung tissues of patients with pulmonary fibrosis. Additionally, expressions of LAMB1 and α-SMA were enhanced progressively, along with the development of lung fibrosis, while E-cadherin decreased. CONCLUSIONS In this study, the functional LAMB1 rs4320486 mutation was associated with a decreased risk of CWP in a Chinese population, probably owing to the reduced activity of LAMB1 transcription. LAMB1 expression was increased in the progress of lung fibrosis, which suggests that LAMB1 may affect the initiation and progression of pneumoconiosis, or serve as a potential biomarker of pneumoconiosis for diagnosis and genetic susceptibility.
Collapse
Affiliation(s)
- Xiaoming Ji
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Baiqun Wu
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjin Yang
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Esther Ayaaba
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Han
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Randles MJ, Humphries MJ, Lennon R. Proteomic definitions of basement membrane composition in health and disease. Matrix Biol 2017; 57-58:12-28. [PMID: 27553508 DOI: 10.1016/j.matbio.2016.08.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Basement membranes are formed from condensed networks of extracellular matrix (ECM) proteins. These structures underlie all epithelial, mesothelial and endothelial sheets and provide an essential structural scaffold. Candidate-based investigations have established that predominant components of basement membranes are laminins, collagen type IV, nidogens and heparan sulphate proteoglycans. More recently, global proteomic approaches have been applied to investigate ECM and these analyses confirm tissue-specific ECM proteomes with a high degree of complexity. The proteomes consist of structural as well as regulatory ECM proteins such as proteases and growth factors. This review is focused on the proteomic analysis of basement membranes and illustrates how this approach can be used to build our understanding of ECM regulation in health and disease.
Collapse
Affiliation(s)
- Michael J Randles
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Paediatric Nephrology, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK.
| |
Collapse
|
35
|
Čunderlíková B. Clinical significance of immunohistochemically detected extracellular matrix proteins and their spatial distribution in primary cancer. Crit Rev Oncol Hematol 2016; 105:127-44. [DOI: 10.1016/j.critrevonc.2016.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023] Open
|
36
|
Godin LM, Sandri BJ, Wagner DE, Meyer CM, Price AP, Akinnola I, Weiss DJ, Panoskaltsis-Mortari A. Decreased Laminin Expression by Human Lung Epithelial Cells and Fibroblasts Cultured in Acellular Lung Scaffolds from Aged Mice. PLoS One 2016; 11:e0150966. [PMID: 26954258 PMCID: PMC4783067 DOI: 10.1371/journal.pone.0150966] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/22/2016] [Indexed: 12/21/2022] Open
Abstract
The lung changes functionally and structurally with aging. However, age-related effects on the extracellular matrix (ECM) and corresponding effects on lung cell behavior are not well understood. We hypothesized that ECM from aged animals would induce aging-related phenotypic changes in healthy inoculated cells. Decellularized whole organ scaffolds provide a powerful model for examining how ECM cues affect cell phenotype. The effects of age on ECM composition in both native and decellularized mouse lungs were assessed as was the effect of young vs old acellular ECM on human bronchial epithelial cells (hBECs) and lung fibroblasts (hLFs). Native aged (1 year) lungs demonstrated decreased expression of laminins α3 and α4, elastin and fibronectin, and elevated collagen, compared to young (3 week) lungs. Proteomic analyses of decellularized ECM demonstrated similar findings, and decellularized aged lung ECM contained less diversity in structural proteins compared to young ECM. When seeded in old ECM, hBECs and hLFs demonstrated lower gene expression of laminins α3 and α4, respectively, as compared to young ECM, paralleling the laminin deficiency of aged ECM. ECM changes appear to be important factors in potentiating aging-related phenotypes and may provide clues to mechanisms that allow for aging-related lung diseases.
Collapse
Affiliation(s)
- Lindsay M. Godin
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Brian J. Sandri
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Darcy E. Wagner
- Department of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Carolyn M. Meyer
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Andrew P. Price
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Ifeolu Akinnola
- MSTP Program, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
37
|
Morales-Nebreda LI, Rogel MR, Eisenberg JL, Hamill KJ, Soberanes S, Nigdelioglu R, Chi M, Cho T, Radigan KA, Ridge KM, Misharin AV, Woychek A, Hopkinson S, Perlman H, Mutlu GM, Pardo A, Selman M, Jones JCR, Budinger GRS. Lung-specific loss of α3 laminin worsens bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2016; 52:503-12. [PMID: 25188360 DOI: 10.1165/rcmb.2014-0057oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Laminins are heterotrimeric proteins that are secreted by the alveolar epithelium into the basement membrane, and their expression is altered in extracellular matrices from patients with pulmonary fibrosis. In a small number of patients with pulmonary fibrosis, we found that the normal basement membrane distribution of the α3 laminin subunit was lost in fibrotic regions of the lung. To determine if these changes play a causal role in the development of fibrosis, we generated mice lacking the α3 laminin subunit specifically in the lung epithelium by crossing mice expressing Cre recombinase driven by the surfactant protein C promoter (SPC-Cre) with mice expressing floxed alleles encoding the α3 laminin gene (Lama3(fl/fl)). These mice exhibited no developmental abnormalities in the lungs up to 6 months of age, but, compared with control mice, had worsened mortality, increased inflammation, and increased fibrosis after the intratracheal administration of bleomycin. Similarly, the severity of fibrosis induced by an adenovirus encoding an active form of transforming growth factor-β was worse in mice deficient in α3 laminin in the lung. Taken together, our results suggest that the loss of α3 laminin in the lung epithelium does not affect lung development, but plays a causal role in the development of fibrosis in response to bleomycin or adenovirally delivered transforming growth factor-β. Thus, we speculate that the loss of the normal basement membrane organization of α3 laminin that we observe in fibrotic regions from the lungs of patients with pulmonary fibrosis contributes to their disease progression.
Collapse
Affiliation(s)
- Luisa I Morales-Nebreda
- 1 Division of Pulmonary and Critical Care Medicine and the Department of Cell and Molecular Biology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Aguilera-Aguirre L, Hosoki K, Bacsi A, Radák Z, Sur S, Hegde ML, Tian B, Saavedra-Molina A, Brasier AR, Ba X, Boldogh I. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling. Free Radic Biol Med 2015; 89:20-33. [PMID: 26187872 PMCID: PMC4924473 DOI: 10.1016/j.freeradbiomed.2015.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER by-product 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, ≥ 3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling.
Collapse
Affiliation(s)
- Leopoldo Aguilera-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Koa Hosoki
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zsolt Radák
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sanjiv Sur
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, and, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, and, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo Saavedra-Molina
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, and, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Molecular Medicine, and, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
39
|
Stabler CT, Lecht S, Mondrinos MJ, Goulart E, Lazarovici P, Lelkes PI. Revascularization of decellularized lung scaffolds: principles and progress. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1273-85. [PMID: 26408553 DOI: 10.1152/ajplung.00237.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
There is a clear unmet clinical need for novel biotechnology-based therapeutic approaches to lung repair and/or replacement, such as tissue engineering of whole bioengineered lungs. Recent studies have demonstrated the feasibility of decellularizing the whole organ by removal of all its cellular components, thus leaving behind the extracellular matrix as a complex three-dimensional (3D) biomimetic scaffold. Implantation of decellularized lung scaffolds (DLS), which were recellularized with patient-specific lung (progenitor) cells, is deemed the ultimate alternative to lung transplantation. Preclinical studies demonstrated that, upon implantation in rodent models, bioengineered lungs that were recellularized with airway and vascular cells were capable of gas exchange for up to 14 days. However, the long-term applicability of this concept is thwarted in part by the failure of current approaches to reconstruct a physiologically functional, quiescent endothelium lining the entire vascular tree of reseeded lung scaffolds, as inferred from the occurrence of hemorrhage into the airway compartment and thrombosis in the vasculature in vivo. In this review, we explore the idea that successful whole lung bioengineering will critically depend on 1) preserving and/or reestablishing the integrity of the subendothelial basement membrane, especially of the ultrathin respiratory membrane separating airways and capillaries, during and following decellularization and 2) restoring vascular physiological functionality including the barrier function and quiescence of the endothelial lining following reseeding of the vascular compartment. We posit that physiological reconstitution of the pulmonary vascular tree in its entirety will significantly promote the clinical translation of the next generation of bioengineered whole lungs.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Mark J Mondrinos
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ernesto Goulart
- Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; and
| | - Philip Lazarovici
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania;
| |
Collapse
|
40
|
Seeger T, Hart M, Patarroyo M, Rolauffs B, Aicher WK, Klein G. Mesenchymal Stromal Cells for Sphincter Regeneration: Role of Laminin Isoforms upon Myogenic Differentiation. PLoS One 2015; 10:e0137419. [PMID: 26406476 PMCID: PMC4583377 DOI: 10.1371/journal.pone.0137419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are well known for their tri-lineage potential and ability to differentiate in vitro into osteogenic, chondrogenic or adipogenic lineages. By selecting appropriate conditions MSCs can also be differentiated in vitro into the myogenic lineage and are therefore a promising option for cell-based regeneration of muscle tissue such as an aged or damaged sphincter muscle. For the differentiation into the myogenic lineage there is still a need to evaluate the effects of extracellular matrix proteins such as laminins (LM) which are crucial for different stem cell types and for normal muscle function. The laminin family consists of 16 functionally different isoforms with LM-211 being the most abundant isoform of adult muscle tissues. In the sphincter tissue a strong expression of the isoforms LM-211/221, LM-411/421 and LM-511/521 can be detected in the different cell layers. Bone marrow-derived MSCs in culture, however, mainly express the isoforms LM-411 and LM-511, but not LM-211. Even after myogenic differentiation, LM-211 can hardly be detected. All laminin isoforms tested (LM-211, LM-411, LM-511 and LM-521) showed a significant inhibition of the proliferation of undifferentiated MSCs but, with the exception of LM-521, they had no influence on the proliferation of MSCs cultivated in myogenic medium. The strongest cellular adhesion of MSCs was to LM-511 and LM-521, whereas LM-211 was only a weakly-adhesive substrate for MSCs. Myogenic differentiation of MSCs even reduced the interaction with LM-211, but it did not affect the interaction with LM-511 and LM-521. Since during normal myogenesis the latter two isoforms are the major laminins surrounding developing myogenic progenitors, α5 chain-containing laminins are recommended for further improvements of myogenic differentiation protocols of MSCs into smooth muscle cells.
Collapse
Affiliation(s)
- Tanja Seeger
- University Medical Clinic Department II, Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Melanie Hart
- Department of Urology, University of Tübingen, Tübingen, Germany
| | - Manuel Patarroyo
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Bernd Rolauffs
- BG Trauma Clinic, University of Tübingen, Tübingen, Germany
| | | | - Gerd Klein
- University Medical Clinic Department II, Center for Medical Research, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
41
|
Melo E, Kasper JY, Unger RE, Farré R, Kirkpatrick CJ. Development of a Bronchial Wall Model: Triple Culture on a Decellularized Porcine Trachea. Tissue Eng Part C Methods 2015; 21:909-21. [DOI: 10.1089/ten.tec.2014.0543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Esther Melo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Bunyola, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Jennifer Y. Kasper
- Institute of Pathology, University Medical Center, Johannes-Guttenberg-University Mainz, Mainz, Germany
| | - Ronald E. Unger
- Institute of Pathology, University Medical Center, Johannes-Guttenberg-University Mainz, Mainz, Germany
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Bunyola, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Charles James Kirkpatrick
- Institute of Pathology, University Medical Center, Johannes-Guttenberg-University Mainz, Mainz, Germany
| |
Collapse
|
42
|
Szymanski JM, Ba M, Feinberg AW. Spontaneous Helical Structure Formation in Laminin Nanofibers. J Mater Chem B 2015; 3:7993-8000. [PMID: 26693018 DOI: 10.1039/c5tb01003a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Laminin is a cross-shaped heterotrimer composed of three polypeptides chains that assembles into an insoluble extracellular matrix (ECM) network as part of the basement membrane, serving a vital role in many processes such as embryonic development, differentiation, and muscle and nerve regeneration. Here we engineered monodisperse laminin nanofibers using a surface-initiated assembly technique in order to investigate how changes in protein composition affect formation and structure of the network. Specifically, we compared laminin 111 with varying degrees of purity and with and without entactin to determine whether these changes alter biophysical properties. All the laminin types were reproducibly patterned as 200 μm long, 20 μm wide nanofibers that were successfuly released during surface-initiated assembly into solution. All nanofibers contracted upon release, and while initial lengths were identical, lengths of released fibers depended on the laminin type. Uniquely, the laminin 111 at high purity (>95%) and without entactin spontaneouly formed helical nanofibers at greater than 90%. Atomic force microscopy revealed that the nanofiber contraction was associated with a change in nanostructure from fibrillar to nodular, suggestive of refolding of laminin molecules into a globular-like conformation. Further, for the high purity laminin that formed helices, the density of the laminin at the edges of the nanofiber was higher than in the middle, providing a possible origin for the differential pre-stress driving the helix formation. Together, these results show that variation in the purity of laminin 111 and presence of entactin can have significant impact on the biophysical properties of the assembled protein networks. This highlights the fact that our understanding of protein assembly and function is still incomplete and that cell-free, in vitro assays can provide unique insights into the ECM.
Collapse
Affiliation(s)
- John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15219, USA
| | - Mengchen Ba
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15219, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15219, USA ; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15219, USA
| |
Collapse
|
43
|
Abstract
Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell-cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages.
Collapse
Affiliation(s)
- Leilani Marty-Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| |
Collapse
|
44
|
Schiller HB, Fernandez IE, Burgstaller G, Schaab C, Scheltema RA, Schwarzmayr T, Strom TM, Eickelberg O, Mann M. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol 2015; 11:819. [PMID: 26174933 PMCID: PMC4547847 DOI: 10.15252/msb.20156123] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) is a key regulator of tissue morphogenesis and repair. However, its composition and architecture are not well characterized. Here, we monitor remodeling of the extracellular niche in tissue repair in the bleomycin-induced lung injury mouse model. Mass spectrometry quantified 8,366 proteins from total tissue and bronchoalveolar lavage fluid (BALF) over the course of 8 weeks, surveying tissue composition from the onset of inflammation and fibrosis to its full recovery. Combined analysis of proteome, secretome, and transcriptome highlighted post-transcriptional events during tissue fibrogenesis and defined the composition of airway epithelial lining fluid. To comprehensively characterize the ECM, we developed a quantitative detergent solubility profiling (QDSP) method, which identified Emilin-2 and collagen-XXVIII as novel constituents of the provisional repair matrix. QDSP revealed which secreted proteins interact with the ECM, and showed drastically altered association of morphogens to the insoluble matrix upon injury. Thus, our proteomic systems biology study assigns proteins to tissue compartments and uncovers their dynamic regulation upon lung injury and repair, potentially contributing to the development of anti-fibrotic strategies.
Collapse
Affiliation(s)
- Herbert B Schiller
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Isis E Fernandez
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christoph Schaab
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Richard A Scheltema
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, University Hospital of the Ludwig-Maximilians-University Munich and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
45
|
Hill RC, Calle EA, Dzieciatkowska M, Niklason LE, Hansen KC. Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Mol Cell Proteomics 2015; 14:961-73. [PMID: 25660013 PMCID: PMC4390273 DOI: 10.1074/mcp.m114.045260] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Indexed: 01/20/2023] Open
Abstract
The use of extracellular matrix (ECM) scaffolds, derived from decellularized tissues for engineered organ generation, holds enormous potential in the field of regenerative medicine. To support organ engineering efforts, we developed a targeted proteomics method to extract and quantify extracellular matrix components from tissues. Our method provides more complete and accurate protein characterization than traditional approaches. This is accomplished through the analysis of both the chaotrope-soluble and -insoluble protein fractions and using recombinantly generated stable isotope labeled peptides for endogenous protein quantification. Using this approach, we have generated 74 peptides, representing 56 proteins to quantify protein in native (nondecellularized) and decellularized lung matrices. We have focused on proteins of the ECM and additional intracellular proteins that are challenging to remove during the decellularization procedure. Results indicate that the acellular lung scaffold is predominantly composed of structural collagens, with the majority of these proteins found in the insoluble ECM, a fraction that is often discarded using widely accepted proteomic methods. The decellularization procedure removes over 98% of intracellular proteins evaluated and retains, to varying degrees, proteoglycans and glycoproteins of the ECM. Accurate characterization of ECM proteins from tissue samples will help advance organ engineering efforts by generating a molecular readout that can be correlated with functional outcome to drive the next generation of engineered organs.
Collapse
Affiliation(s)
- Ryan C Hill
- ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045
| | | | - Monika Dzieciatkowska
- ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045
| | - Laura E Niklason
- §Department of Biomedical Engineering and Anesthesiology, ¶Yale University, New Haven, CT 06519
| | - Kirk C Hansen
- ‡Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045,
| |
Collapse
|
46
|
Plosa EJ, Young LR, Gulleman PM, Polosukhin VV, Zaynagetdinov R, Benjamin JT, Im AM, van der Meer R, Gleaves LA, Bulus N, Han W, Prince LS, Blackwell TS, Zent R. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development 2014; 141:4751-62. [PMID: 25395457 PMCID: PMC4299273 DOI: 10.1242/dev.117200] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022]
Abstract
Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for β1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of β1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete β1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. β1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for β1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial β1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.
Collapse
Affiliation(s)
- Erin J Plosa
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lisa R Young
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Peter M Gulleman
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amanda M Im
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Riet van der Meer
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nada Bulus
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Han
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lawrence S Prince
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA 92103, USA
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Nashville Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | - Roy Zent
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Nashville Veterans Affairs Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Lecht S, Gerstenhaber JA, Stabler CT, Pimton P, Karamil S, Marcinkiewicz C, Schulman ES, Lelkes PI. Heterogeneous Mixed-Lineage Differentiation of Mouse Embryonic Stem Cells Induced by Conditioned Media from A549 Cells. Stem Cells Dev 2014; 23:1923-36. [DOI: 10.1089/scd.2014.0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Jonathan A. Gerstenhaber
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Collin T. Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Pimchanok Pimton
- Department of Biology, School of Science, Walailak University, Thammarat, Thailand
| | - Seda Karamil
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Edward S. Schulman
- Division of Pulmonary, Critical Care and Sleep Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Peter I. Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Tsuchiya T, Balestrini JL, Mendez J, Calle EA, Zhao L, Niklason LE. Influence of pH on extracellular matrix preservation during lung decellularization. Tissue Eng Part C Methods 2014; 20:1028-36. [PMID: 24735501 DOI: 10.1089/ten.tec.2013.0492] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The creation of decellularized organs for use in regenerative medicine requires the preservation of the organ extracellular matrix (ECM) as a means to provide critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. The purpose of this study was to assess the influence of varying pH levels on the preservation of key ECM components during the decellularization of rat lungs. Herein, we show that the pH of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-based decellularization solution influences ECM retention, cell removal, and also the potential for host response upon implantation of acellular lung tissue. The preservation of ECM components, including elastin, fibronectin, and laminin, were better retained in the lower pH conditions that were tested (pH ranges tested: 8, 10, 12); glycosaminoglycans were preserved to a higher extent in the lower pH groups as well. The DNA content following decellularization of the rat lung was inversely correlated with the pH of the decellularization solution. Despite detectible levels of cyotoskeletal proteins and significant residual DNA, tissues decellularized at pH 8 demonstrated the greatest tissue architecture maintenance and the least induction of host response of all acellular conditions. These results highlight the effect of pH on the results obtained by organ decellularization and suggest that altering the pH of the solutions used for decellularization may influence the ability of cells to properly differentiate and home to appropriate locations within the scaffold, based on the preservation of key ECM components and implantation results.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- 1 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| | | | | | | | | | | |
Collapse
|
49
|
Wagner DE, Bonvillain RW, Jensen T, Girard ED, Bunnell BA, Finck CM, Hoffman AM, Weiss DJ. Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds. Respirology 2014; 18:895-911. [PMID: 23614471 DOI: 10.1111/resp.12102] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 01/06/2023]
Abstract
For patients with end-stage lung diseases, lung transplantation is the only available therapeutic option. However, the number of suitable donor lungs is insufficient and lung transplants are complicated by significant graft failure and complications of immunosuppressive regimens. An alternative to classic organ replacement is desperately needed. Engineering of bioartificial organs using either natural or synthetic scaffolds is an exciting new potential option for generation of functional pulmonary tissue for human clinical application. Natural organ scaffolds can be generated by decellularization of native tissues; these acellular scaffolds retain the native organ ultrastructure and can be seeded with autologous cells towards the goal of regenerating functional tissues. Several decellularization strategies have been employed for lungs; however, there is no consensus on the optimal approach. A variety of cell types have been investigated as potential candidates for effective recellularization of acellular lung scaffolds. Candidate cells that might be best utilized are those which can be easily and reproducibly isolated, expanded in vitro, seeded onto decellularized matrices, induced to differentiate into pulmonary lineage cells, and which survive to functional maturity. Whole lung cell suspensions, endogenous progenitor cells, embryonic and adult stem cells and induced pluripotent stem (iPS) cells have been investigated for their applicability to repopulate acellular lung matrices. Ideally, patient-derived autologous cells would be used for lung recellularization as they have the potential to reduce the need for post-transplant immunosuppression. Several studies have performed transplantation of rudimentary bioengineered lung scaffolds in animal models with limited, short-term functionality but much further study is needed.
Collapse
Affiliation(s)
- Darcy E Wagner
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Protective Effects of Bu-Shen-Huo-Xue Formula against 5/6 Nephrectomy-Induced Chronic Renal Failure in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:589846. [PMID: 24864155 PMCID: PMC4020566 DOI: 10.1155/2014/589846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/20/2014] [Accepted: 03/10/2014] [Indexed: 12/02/2022]
Abstract
Chronic renal failure (CRF) is a serious disease related to increasing incidence and prevalence as well as decline in quality of life. Bu-Shen-Huo-Xue formula (BSHX), one of traditional herbal formulations, has been clinically employed to treat CRF for decades, but the mechanisms involved have not been investigated. In the present study, we investigated the effects of BSHX on some closely related parameters in 5/6 nephrectomy CRF rats. Rats with CRF were divided into five groups, namely, one control group, one enalapril group, and three BSHX treatment groups (0.25, 0.5, and 1 g/kg·d). The rats subjected to sham operation were used as a normal control. After eight weeks of treatment, BSHX significantly decreased the levels of Scr and BUN, downregulated the mRNA expression levels of TGF-β1, CTGF, NF-κB, TNF-α, and OPN, upregulated the mRNA expression of PPARγ, and reduced in situ expression of fibronectin and laminins. Histological findings also showed significant amelioration of the damaged renal tissue. BSHX protects 5/6 nephrectomy rats against chronic renal failure probably via regulating the expression of TNF-α, NF-κB, TGF-β1, CTGF, PPARγ, OPN, fibronectin, and laminins and is useful for therapy of CRF.
Collapse
|