1
|
Rekler D, Ofek S, Kagan S, Friedlander G, Kalcheim C. Retinoic acid, an essential component of the roof plate organizer, promotes the spatiotemporal segregation of dorsal neural fates. Development 2024; 151:dev202973. [PMID: 39250350 PMCID: PMC11463963 DOI: 10.1242/dev.202973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
Dorsal neural tube-derived retinoic acid promotes the end of neural crest production and transition into a definitive roof plate. Here, we analyze how this impacts the segregation of central and peripheral lineages, a process essential for tissue patterning and function. Localized in ovo inhibition in quail embryos of retinoic acid activity followed by single-cell transcriptomics unraveled a comprehensive list of differentially expressed genes relevant to these processes. Importantly, progenitors co-expressed neural crest, roof plate and dI1 interneuron markers, indicating a failure in proper lineage segregation. Furthermore, separation between roof plate and dI1 interneurons is mediated by Notch activity downstream of retinoic acid, highlighting their crucial role in establishing the roof plate-dI1 boundary. Within the peripheral branch, where absence of retinoic acid resulted in neural crest production and emigration extending into the roof plate stage, sensory progenitors failed to separate from melanocytes, leading to formation of a common glia-melanocyte cell with aberrant migratory patterns. In summary, the implementation of single-cell RNA sequencing facilitated the discovery and characterization of a molecular mechanism responsible for the segregation of dorsal neural fates during development.
Collapse
Affiliation(s)
- Dina Rekler
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Shai Ofek
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Sarah Kagan
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
2
|
Zeng X, Lv H, Jin Y, Liu Y, Wang J, Lian W, Huang S, Shen J, Wu F, Zhang Q, Xu J. Enhanced quality of hESC-derived melanocytes through modified concentration of endothelin-1. Exp Dermatol 2024; 33:e15004. [PMID: 38284190 DOI: 10.1111/exd.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The study investigated the effectiveness of EDN1 and EDN3 cytokines in the differentiation of melanocytes from hESCs. The findings showed that 100 nM EDN1 was more effective in promoting hESC to CD117+/TYR+ melanoblasts compared to 100 nM EDN3. Additionally, maintaining melanoblasts is beneficial for preserving the ability to proliferate. The study found that 10 nM EDN1 helped maintain the proliferation of melanoblasts without over maturing them into melanocytes in the late stage of differentiation. Thus, using 100 nM EDN1 in the initial stage and 10 nM EDN1 in the late stage proved to be an efficient and cost-effective method for obtaining hESC-derived melanocytes. The preliminary results suggest that EDN1 promotes melanoblast formation during the initial differentiation stage through its binding to both the EDNRB receptor and EDNRA receptor. This study provides a valuable tool for studying the development of human melanocytes and modelling the biology of disease.
Collapse
Affiliation(s)
- Xuanhao Zeng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haozhen Lv
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yiting Jin
- Department of Thyroid and Breast Surgery, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yating Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinqi Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiling Lian
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyi Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiayi Shen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fuyue Wu
- ReMed Regenerative Medicine Clinical Application Institute, Shanghai, China
| | - Qi Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- The Shanghai Institute of Dermatology, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- The Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|
3
|
Bonnamour G, Charrier B, Sallis S, Leduc E, Pilon N. NR2F1 regulates a Schwann cell precursor-vs-melanocyte cell fate switch in a mouse model of Waardenburg syndrome type IV. Pigment Cell Melanoma Res 2022; 35:506-516. [PMID: 35816394 DOI: 10.1111/pcmr.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
Waardenburg syndrome type 4 (WS4) combines abnormal development of neural crest cell (NCC)-derived melanocytes (causing depigmentation and inner ear dysfunction) and enteric nervous system (causing aganglionic megacolon). The full spectrum of WS4 phenotype is present in Spot mice, in which an insertional mutation close to a silencer element leads to NCC-specific upregulation of the transcription factor-coding gene Nr2f1. These mice were previously found to develop aganglionic megacolon because of NR2F1-induced premature differentiation of enteric neural progenitors into enteric glia. Intriguingly, this prior work also showed that inner ear dysfunction in Spot mutants specifically affects balance but not hearing, consistent with the absence of melanocytes in the vestibule only. Here, we report an analysis of the effect of Nr2f1 upregulation on the development of both inner ear and skin melanocytes, also taking in consideration their origin relative to the dorsolateral and ventral NCC migration pathways. In the trunk, we found that NR2F1 overabundance in Spot NCCs forces dorso-laterally migrating melanoblasts to abnormally adopt a Schwann cell precursor (SCP) fate and conversely prevents ventrally migrating SCPs to normally adopt a melanoblast fate. In the head, Nr2f1 upregulation appears not to be uniform, which might explain why SCP-derived melanocytes do colonize the cochlea while non-SCP-derived melanocytes cannot reach the vestibule. Collectively, these data point to a key role for NR2F1 in the control of SCP-vs-melanocyte fate choice and unveil a new pathogenic mechanism for WS4. Moreover, our data argue against the proposed existence of a transit-amplifying compartment of melanocyte precursors in hair follicles.
Collapse
Affiliation(s)
- Grégoire Bonnamour
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Baptiste Charrier
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Sephora Sallis
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Elizabeth Leduc
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Université du Québec à Montréal, Montréal, Canada.,Département de Pédiatrie, Université de Montréal, Montréal, Canada
| |
Collapse
|
4
|
Colombo S, Petit V, Wagner RY, Champeval D, Yajima I, Gesbert F, Aktary Z, Davidson I, Delmas V, Larue L. Stabilization of β-catenin promotes melanocyte specification at the expense of the Schwann cell lineage. Development 2021; 149:274086. [PMID: 34878101 PMCID: PMC8917410 DOI: 10.1242/dev.194407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
The canonical Wnt/β-catenin pathway governs a multitude of developmental processes in various cell lineages, including the melanocyte lineage. Indeed, β-catenin regulates transcription of Mitf-M, the master regulator of this lineage. The first wave of melanocytes to colonize the skin is directly derived from neural crest cells, whereas the second wave of melanocytes is derived from Schwann cell precursors (SCPs). We investigated the influence of β-catenin in the development of melanocytes of the first and second waves by generating mice expressing a constitutively active form of β-catenin in cells expressing tyrosinase. Constitutive activation of β-catenin did not affect the development of truncal melanoblasts but led to marked hyperpigmentation of the paws. By activating β-catenin at various stages of development (E8.5-E11.5), we showed that the activation of β-catenin in bipotent SCPs favored melanoblast specification at the expense of Schwann cells in the limbs within a specific temporal window. Furthermore, in vitro hyperactivation of the Wnt/β-catenin pathway, which is required for melanocyte development, induces activation of Mitf-M, in turn repressing FoxD3 expression. In conclusion, β-catenin overexpression promotes SCP cell fate decisions towards the melanocyte lineage. Summary: Activation of β-catenin in bipotent Schwann cell precursors during a specific developmental window induces Mitf and represses FoxD3 to promote melanoblast cell fate at the expense of Schwann cells in limbs.
Collapse
Affiliation(s)
- Sophie Colombo
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Valérie Petit
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Roselyne Y Wagner
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Delphine Champeval
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Ichiro Yajima
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Franck Gesbert
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Zackie Aktary
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Irwin Davidson
- Equipes Labellisées Ligue Contre le Cancer, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UNISTRA, 1 Rue Laurent Fries, 67404 Illkirch Cedex. Department of Functional Genomics and Cancer, France
| | - Véronique Delmas
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France.,Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France.,Equipes Labellisées Ligue Contre le Cancer, France
| |
Collapse
|
5
|
Kelsh RN, Camargo Sosa K, Farjami S, Makeev V, Dawes JHP, Rocco A. Cyclical fate restriction: a new view of neural crest cell fate specification. Development 2021; 148:273451. [PMID: 35020872 DOI: 10.1242/dev.176057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural crest cells are crucial in development, not least because of their remarkable multipotency. Early findings stimulated two hypotheses for how fate specification and commitment from fully multipotent neural crest cells might occur, progressive fate restriction (PFR) and direct fate restriction, differing in whether partially restricted intermediates were involved. Initially hotly debated, they remain unreconciled, although PFR has become favoured. However, testing of a PFR hypothesis of zebrafish pigment cell development refutes this view. We propose a novel 'cyclical fate restriction' hypothesis, based upon a more dynamic view of transcriptional states, reconciling the experimental evidence underpinning the traditional hypotheses.
Collapse
Affiliation(s)
- Robert N Kelsh
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Karen Camargo Sosa
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Saeed Farjami
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK
| | - Vsevolod Makeev
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK.,Department of Physics, FEPS, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
6
|
Etchevers HC. Pericyte Ontogeny: The Use of Chimeras to Track a Cell Lineage of Diverse Germ Line Origins. Methods Mol Biol 2021; 2235:61-87. [PMID: 33576971 DOI: 10.1007/978-1-0716-1056-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The goal of lineage tracing is to understand body formation over time by discovering which cells are the progeny of a specific, identified, ancestral progenitor. Subsidiary questions include unequivocal identification of what they have become, how many descendants develop, whether they live or die, and where they are located in the tissue or body at the end of the window examined. A classical approach in experimental embryology, lineage tracing continues to be used in developmental biology and stem cell and cancer research, wherever cellular potential and behavior need to be studied in multiple dimensions, of which one is time. Each technical approach has its advantages and drawbacks. This chapter, with some previously unpublished data, will concentrate nonexclusively on the use of interspecies chimeras to explore the origins of perivascular (or mural) cells, of which those adjacent to the vascular endothelium are termed pericytes for this purpose. These studies laid the groundwork for our understanding that pericytes derive from progenitor mesenchymal pools of multiple origins in the vertebrate embryo, some of which persist into adulthood. The results obtained through xenografting, like in the methodology described here, complement those obtained through genetic lineage-tracing techniques within a given species.
Collapse
|
7
|
Neural Differentiation Dynamics Controlled by Multiple Feedback Loops in a Comprehensive Molecular Interaction Network. Processes (Basel) 2020. [DOI: 10.3390/pr8020166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mathematical model simulation is a useful method for understanding the complex behavior of a living system. The construction of mathematical models using comprehensive information is one of the techniques of model construction. Such a comprehensive knowledge-based network tends to become a large-scale network. As a result, the variation of analyses is limited to a particular kind of analysis because of the size and complexity of the model. To analyze a large-scale regulatory network of neural differentiation, we propose a contractive method that preserves the dynamic behavior of a large network. The method consists of the following two steps: comprehensive network building and network reduction. The reduction phase can extract network loop structures from a large-scale regulatory network, and the subnetworks were combined to preserve the dynamics of the original large-scale network. We confirmed that the extracted loop combination reproduced the known dynamics of HES1 and ASCL1 before and after differentiation, including oscillation and equilibrium of their concentrations. The model also reproduced the effects of the overexpression and knockdown of the Id2 gene. Our model suggests that the characteristic change in HES1 and ASCL1 expression in the large-scale regulatory network is controlled by a combination of four feedback loops, including a large loop, which has not been focused on. The model extracted by our method has the potential to reveal the critical mechanisms of neural differentiation. The method is applicable to other biological events.
Collapse
|
8
|
Injury and stress responses of adult neural crest-derived cells. Dev Biol 2018; 444 Suppl 1:S356-S365. [DOI: 10.1016/j.ydbio.2018.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
9
|
Dupin E, Calloni GW, Coelho-Aguiar JM, Le Douarin NM. The issue of the multipotency of the neural crest cells. Dev Biol 2018; 444 Suppl 1:S47-S59. [DOI: 10.1016/j.ydbio.2018.03.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
|
10
|
Melanoblasts as Multipotent Cells in Murine Skin. Methods Mol Biol 2018. [PMID: 30006864 DOI: 10.1007/7651_2018_144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Melanoblasts (MBs) are melanocyte precursors that are derived from neural crest cells (NCCs). We recently demonstrated the multipotency of MBs; they differentiate not only into pigmented melanocytes but also other NCC derivatives. We herein describe methods for the isolation of MBs from mouse skin by flow cytometry. Methods to culture isolated MBs that retain their multipotency and isolation methods for MBs using gene-modified mouse are also described.
Collapse
|
11
|
Urtatiz O, Van Raamsdonk CD. Gnaq and Gna11 in the Endothelin Signaling Pathway and Melanoma. Front Genet 2016; 7:59. [PMID: 27148356 PMCID: PMC4837292 DOI: 10.3389/fgene.2016.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/01/2016] [Indexed: 12/21/2022] Open
Abstract
In this article, we first briefly outline the function of G protein coupled receptors in cancer, and then specifically examine the roles of the seven transmembrane G protein coupled Endothelin B receptor (Ednrb) and the G proteins, GNAQ and GNA11, in both melanocyte development and melanoma. Ednrb plays an essential role in melanocyte development. GNAQ and GNA11 are oncogenes when mutated in certain types of melanocytic lesions, being extremely frequent in uveal melanoma, which forms from melanocytes located in the eye. Previously, we reported that in mice, Schwann cell precursor derived melanocytes colonize the dermis and hair follicles, while the inter-follicular epidermis is populated by other melanocytes. A pattern has emerged whereby melanocytes whose activities are affected by gain-of-function mutations of the Endothelin 3 ligand and Gαq/11 are the same subset that arise from Schwann cell precursors. Furthermore, the forced expression of the constitutively active human GNAQQ209L oncogene in mouse melanocytes only causes hyper-proliferation in the subset that arise from Schwann cell precursors. This has led us to hypothesize that in Schwann cell precursor derived melanocytes, Ednrb signals through Gαq/11. Ednrb is promiscuous and may signal through other G protein alpha subunits in melanomas located in the inter-follicular epidermis.
Collapse
Affiliation(s)
- Oscar Urtatiz
- Department of Medical Genetics, University of British Columbia Vancouver, BC, Canada
| | | |
Collapse
|
12
|
Watanabe N, Motohashi T, Nishioka M, Kawamura N, Hirobe T, Kunisada T. Multipotency of melanoblasts isolated from murine skin depends on the Notch signal. Dev Dyn 2016; 245:460-71. [PMID: 26773337 DOI: 10.1002/dvdy.24385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/29/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Melanoblasts (MBs), derived from neural crest cells, only differentiate into melanocytes (Ms) in vivo. We previously showed that MBs isolated from mouse skin were multipotent, generating neurons (Ns) and glial cells (Gs) together with Ms. Using Sox10-IRES-Venus mice and mouse embryonic stem cells, we investigated how MBs expressed their multipotency. RESULTS MBs generated colonies containing Ns, Gs, and Ms in the presence of ST2 stromal cells, but they generated only M colonies when incubated with keratinocytes or ST2 culture supernatant, thus showing that MBs required contact with ST2 stromal cells for expression of their multipotency. Notch signaling was shown to be one of the important cues for the maintenance and differentiation of MBs through cell-cell contact. When Notch signaling was inhibited, MBs mainly generated colonies that contained just one type of cells, Ns, Gs, or Ms; the number of colonies containing two or three types of cells markedly decreased even on ST2 stromal cells, showing restriction of their differentiation potency. Whereas when Notch signaling was activated, the number of colonies containing two or three types of cells increased, indicating that their multipotency had been maintained. CONCLUSIONS Our results demonstrate that Notch signaling played novel roles in MB multipotency.
Collapse
Affiliation(s)
- Natsuki Watanabe
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masahiro Nishioka
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Norito Kawamura
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohisa Hirobe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Japan
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
13
|
Savkovic V, Flämig F, Schneider M, Sülflow K, Loth T, Lohrenz A, Hacker MC, Schulz-Siegmund M, Simon JC. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle. J Biomed Mater Res A 2015; 104:26-36. [DOI: 10.1002/jbm.a.35536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Vuk Savkovic
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Franziska Flämig
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Marie Schneider
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Katharina Sülflow
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Tina Loth
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Andrea Lohrenz
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Michael Christian Hacker
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Michaela Schulz-Siegmund
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Jan-Christoph Simon
- Clinic and Policlinic for Dermatology, Venereology, and Allergology, Leipzig University Clinic; Leipzig Germany
| |
Collapse
|
14
|
Luo C, Pietruska JR, Sheng J, Bronson RT, Hu MG, Cui R, Hinds PW. Expression of oncogenic BRAFV600E in melanocytes induces Schwannian differentiation in vivo. Pigment Cell Melanoma Res 2015; 28:603-6. [PMID: 26036358 DOI: 10.1111/pcmr.12384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chi Luo
- Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.,Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Jodie R Pietruska
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Jinghao Sheng
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.,Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Miaofen G Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Rutao Cui
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Philip W Hinds
- Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.,Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA.,Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Tlholoe MM, Khammissa RAG, Bouckaert M, Altini M, Lemmer J, Feller L. Oral mucosal melanoma: some pathobiological considerations and an illustrative report of a case. Head Neck Pathol 2015; 9:127-34. [PMID: 24496654 PMCID: PMC4382483 DOI: 10.1007/s12105-014-0526-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/28/2014] [Indexed: 12/17/2022]
Abstract
Oral mucosal melanoma is a relatively rare malignancy with an aggressive clinico-pathological behaviour. The mean 5-year survival rate is about 15 %. It arises primarily from melanocytes found in the basal cell layer of the epithelium, but may sometimes arise from melanocytes residing in the lamina propria. The pathogenesis is complex, and few of the molecular mechanisms underlying the development of oral mucosal melanoma have been defined. The extraneous risk factors associated with oral mucosal melanoma, if any, are unknown. Oral mucosal melanomas account for about 25 % of all mucosal melanomas of the head and neck, and exhibit a profile of cytogenetic alterations, and a pathobiological behaviour and clinical course different from that of cutaneous melanomas. As they are usually painless and grow quickly, as a rule, they are diagnosed late in the course of the disease when the lesions are already large and have metastasized to regional lymph nodes. In this paper we discuss some aspects of the pathobiology of oral mucosal melanoma, and present an illustrative case report.
Collapse
Affiliation(s)
- M. M. Tlholoe
- />Department of Maxillofacial Oral Surgery, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| | - R. A. G. Khammissa
- />Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| | - M. Bouckaert
- />Department of Maxillofacial Oral Surgery, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| | - M. Altini
- />Department of Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - J. Lemmer
- />Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| | - L. Feller
- />Department of Periodontology and Oral Medicine, University of Limpopo, Medunsa Campus, Pretoria, South Africa
| |
Collapse
|
16
|
Motohashi T, Kunisada T. Extended multipotency of neural crest cells and neural crest-derived cells. Curr Top Dev Biol 2015; 111:69-95. [PMID: 25662258 DOI: 10.1016/bs.ctdb.2014.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural crest cells (NCC) are migratory multipotent cells that give rise to diverse derivatives. They generate various cell types during embryonic development, including neurons and glial cells of the peripheral sensory and autonomic ganglia, Schwann cells, melanocytes, endocrine cells, smooth muscle, and skeletal and connective tissue cells of the craniofacial complex. The multipotency of NCC is thought to be transient at the early stage of NCC generation; once NCC emerge from the neural tube, they change into lineage-restricted precursors. Although many studies have described the clear segregation of NCC lineages right after their delamination from the neural tube, recent reports suggest that multipotent neural crest stem cells (NCSC) are present not only in migrating NCC in the embryo, but also in their target tissues in the fetus and adult. Furthermore, fully differentiated NCC-derived cells such as glial cells and melanocytes have been shown to dedifferentiate or transdifferentiate into other NCC derivatives. The multipotency of migratory and postmigratory NCC-derived cells was found to be similar to that of NCSC. Collectively, these findings support the multipotency or plasticity of NCC and NCC-derived cells.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan.
| | - Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| |
Collapse
|
17
|
Delaney SP, Julian LM, Stanford WL. The neural crest lineage as a driver of disease heterogeneity in Tuberous Sclerosis Complex and Lymphangioleiomyomatosis. Front Cell Dev Biol 2014; 2:69. [PMID: 25505789 PMCID: PMC4243694 DOI: 10.3389/fcell.2014.00069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare neoplastic disease, best characterized by the formation of proliferative nodules that express smooth muscle and melanocytic antigens within the lung parenchyma, leading to progressive destruction of lung tissue and function. The pathological basis of LAM is associated with Tuberous Sclerosis Complex (TSC), a multi-system disorder marked by low-grade tumors in the brain, kidneys, heart, eyes, lung and skin, arising from inherited or spontaneous germ-line mutations in either of the TSC1 or TSC2 genes. LAM can develop either in a patient with TSC (TSC-LAM) or spontaneously (S-LAM), and it is clear that the majority of LAM lesions of both forms are characterized by an inactivating mutation in either TSC1 or TSC2, as in TSC. Despite this genetic commonality, there is considerable heterogeneity in the tumor spectrum of TSC and LAM patients, the basis for which is currently unknown. There is extensive clinical evidence to suggest that the cell of origin for LAM, as well as many of the TSC-associated tumors, is a neural crest cell, a highly migratory cell type with extensive multi-lineage potential. Here we explore the hypothesis that the types of tumors that develop and the tissues that are affected in TSC and LAM are dictated by the developmental timing of TSC gene mutations, which determines the identities of the affected cell types and the size of downstream populations that acquire a mutation. We further discuss the evidence to support a neural crest origin for LAM and TSC tumors, and propose approaches for generating humanized models of TSC and LAM that will allow cell of origin theories to be experimentally tested. Identifying the cell of origin and developing appropriate humanized models is necessary to truly understand LAM and TSC pathology and to establish effective and long-lasting therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Sean P Delaney
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada
| | - William L Stanford
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute Ottawa, ON, Canada ; Faculty of Graduate and Postdoctoral Studies, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
18
|
Dupin E, Le Douarin NM. The neural crest, a multifaceted structure of the vertebrates. ACTA ACUST UNITED AC 2014; 102:187-209. [PMID: 25219958 DOI: 10.1002/bdrc.21080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals.
Collapse
Affiliation(s)
- Elisabeth Dupin
- INSERM, U968, Paris, F-75012, France; Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, F-75012, France; CNRS, UMR_7210, Paris, F-75012, France
| | | |
Collapse
|
19
|
Kunisada T, Tezulka KI, Aoki H, Motohashi T. The stemness of neural crest cells and their derivatives. ACTA ACUST UNITED AC 2014; 102:251-62. [DOI: 10.1002/bdrc.21079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/22/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Ken-Ichi Tezulka
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| |
Collapse
|
20
|
Greene CA, Green CR, Sherwin T. Transdifferentiation of chondrocytes into neuron-like cells induced by neuronal lineage specifying growth factors. Cell Biol Int 2014; 39:185-91. [PMID: 25183647 DOI: 10.1002/cbin.10358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/06/2014] [Indexed: 12/25/2022]
Abstract
We previously reported that neural-crest-derived stromal cells from adult human and rat corneas can differentiate into neuron-like cells when treated with neuronal lineage specifying growth factors. However, it remains unclear whether this level of cell plasticity is unique to the corneal stromal cell population present in the eye. In this study, non-neural-crest-derived chondrocytes from the xiphosternum of adult rats were subjected to the same differentiation protocol. Cells of the adult rat xiphosternum can also differentiate into neuron-like cells when treated with neurogenic differentiation specifying growth factors. After 1 week in neurogenic differentiation culture conditions, the chondrocytes changed from a round to a stellate morphology and started to express neuron-specific protein neurofilament-200 (NF-200), microtubule associated protein-2 (Map-2), and β-III tubulin. Lineage-specifying growth factors can affect changes in morphology and protein expression of adult cells in culture, findings that challenge the notion of a restricted differentiation potential of adult cell populations and questions the stability of the differentiated state of cells.
Collapse
Affiliation(s)
- Carol Ann Greene
- Department of Ophthalmology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland, New Zealand
| | | | | |
Collapse
|
21
|
Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys 2014; 563:13-21. [PMID: 25109840 DOI: 10.1016/j.abb.2014.07.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 12/25/2022]
Abstract
Cutaneous malignant melanomas originate primarily within epidermal melanocytic cells. Melanoma cells share many characteristics with melanocyte precursors, suggesting that melanoma cells utilize the developmental programs of their normal counterpart for their own progression. The pigmentation system provides an advantageous model to assess survival pathway interactions in the melanocytic lineage, as genetic alterations controlling melanocyte development can be easily detectable by coat color phenotype that do not affect the viability of an animal. By integrating combinatorial gene knockout approaches, cell-based assays and immunohistochemical observations, recent studies have illustrated several genes and pathways that play important roles both in melanocyte specification and maintenance and in melanoma formation and progression. We are reviewing those genes and pathways to understand the connection between normal and cancerous development and to reveal therapeutic potential of targeting developmental pathways for melanoma therapy.
Collapse
|
22
|
Kubanova AA, Volnukhin VA, Proshutinskaya DV, Zhilova MB, Chikin VV, Karamova AE, Saitburkhanov RR. Potential of regenerative medicine for treatment of vitiligo patients. VESTNIK DERMATOLOGII I VENEROLOGII 2014. [DOI: 10.25208/0042-4609-2014-90-3-43-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The article presents a review of publishes sources on the efficacy of methods such as tissue engineering and cellular transplantation of autologous melanocytes for treatment of vitiligo patients. The article describes general principles of treatment and particular features of current melanocyte transplantation methods.
Collapse
|
23
|
Bressan RB, Melo FR, Almeida PA, Bittencourt DA, Visoni S, Jeremias TS, Costa AP, Leal RB, Trentin AG. EGF-FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs). Exp Cell Res 2014; 327:37-47. [PMID: 24907656 DOI: 10.1016/j.yexcr.2014.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/04/2014] [Accepted: 05/26/2014] [Indexed: 12/18/2022]
Abstract
Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF2) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF2, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF-FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF-FGF2 in neuronal differentiation protocols.
Collapse
Affiliation(s)
- Raul Bardini Bressan
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis SC, Brazil
| | - Fernanda Rosene Melo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis SC, Brazil
| | - Patricia Alves Almeida
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis SC, Brazil
| | - Denise Avani Bittencourt
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis SC, Brazil
| | - Silvia Visoni
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis SC, Brazil
| | - Talita Silva Jeremias
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis SC, Brazil
| | - Ana Paula Costa
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis SC, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis SC, Brazil
| | - Andrea Gonçalves Trentin
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-900 Florianópolis SC, Brazil.
| |
Collapse
|
24
|
Motohashi T, Kitagawa D, Watanabe N, Wakaoka T, Kunisada T. Neural crest-derived cells sustain their multipotency even after entry into their target tissues. Dev Dyn 2013; 243:368-80. [PMID: 24273191 DOI: 10.1002/dvdy.24072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/29/2013] [Accepted: 10/01/2013] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Neural crest cells (NC cells) are highly migratory multipotent cells. Their multipotency is transient at the early stage of their generation; soon after emerging from the neural tube, these cells turn into lineage-restricted precursors. However, recent studies have disputed this conventionally believed paradigm. In this study, we analyzed the differentiation potency of NC-derived cells after their arrival at target tissues. RESULTS Using Sox10-IRES-Venus mice, we found that the NC-derived cells in the skin, DRG, and inner ear could be divided into two populations: Sox10-positive/Kit-negative cells (Sox10+/Kit- cells) and Sox10- and Kit-positive cells (Sox10+/Kit+ cells). Only the Sox10+/Kit- cells were detected in the intestines. Unexpectedly, the Sox10+/Kit+ cells differentiated into neurons, glial cells, and melanocytes, showing that they had maintained their multipotency even after having entered the target tissues. The Sox10+/Kit+ cells in the DRG maintained their multipotency for a restricted period during the earlier embryonic stages, whereas those in the skin and inner ear were multipotent yet even in later embryonic stages. CONCLUSIONS We showed that NC-derived Sox10+/Kit+ cells maintained their multipotency even after entry into the target tissues. This unexpected differentiation potency of these cells in tissues seems to have been strictly restricted by the tissue microenvironment.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan; Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST)
| | | | | | | | | |
Collapse
|
25
|
Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci U S A 2013; 110:12709-14. [PMID: 23858437 DOI: 10.1073/pnas.1306287110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Skin melanocytes arise from two sources: either directly from neural crest progenitors or indirectly from neural crest-derived Schwann cell precursors after colonization of peripheral nerves. The relationship between these two melanocyte populations and the factors controlling their specification remains poorly understood. Direct lineage tracing reveals that neural crest and Schwann cell progenitor-derived melanocytes are differentially restricted to the epaxial and hypaxial body domains, respectively. Furthermore, although both populations are initially part of the Foxd3 lineage, hypaxial melanocytes lose Foxd3 at late stages upon separation from the nerve, whereas we recently found that epaxial melanocytes segregate earlier from Foxd3-positive neural progenitors while still residing in the dorsal neural tube. Gain- and loss-of-function experiments in avians and mice, respectively, reveal that Foxd3 is both sufficient and necessary for regulating the balance between melanocyte and Schwann cell development. In addition, Foxd3 is also sufficient to regulate the switch between neuronal and glial fates in sensory ganglia. Together, we propose that differential fate acquisition of neural crest-derived cells depends on their progressive segregation from the Foxd3-positive lineage.
Collapse
|
26
|
Kulesa PM, Morrison JA, Bailey CM. The neural crest and cancer: a developmental spin on melanoma. Cells Tissues Organs 2013; 198:12-21. [PMID: 23774755 DOI: 10.1159/000348418] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2012] [Indexed: 12/19/2022] Open
Abstract
Neural crest (NC) cells undergo an epithelial to mesenchymal transition (EMT) in order to exit from the dorsal neural tube. Similarly, ancestrally related melanoma cells employ an EMT-like event during the initial stages of metastasis to dissociate from surrounding keratinocytes. Whether or not the molecular pathogenesis and cellular dynamics of melanoma metastasis resemble the embryonic NC invasion program is unclear. Here, we highlight advances in our understanding of tumor cell behaviors and plasticity, focusing on the relationship between melanoma and the NC invasion programs. We summarize recent discoveries of NC cell guidance and emerging in vivo imaging strategies that permit single cell resolution of fluorescently labeled tumor cells, with a focus on our recently developed in vivo chick embryo transplant model. Crucial to the molecular pathogenesis of metastasis, we highlight advances in gene profiling of small cell numbers, including our novel ability to gather gene expression information during distinct stages of melanoma invasion. Lastly, we present preliminary details of a comparison of specific genetic pathways associated with the early phases of melanoma invasion and known NC induction and migration signals. Our results suggest that malignant melanoma cells hijack portions of the NC program to promote plasticity and facilitate metastasis. In summary, there is considerable power in combining an in vivo model system with molecular analysis of gene expression, within the context of established developmental signaling pathways, to identify and study the molecular mechanisms of metastasis.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, Mo. 64110, USA.
| | | | | |
Collapse
|
27
|
Motohashi T, Kunisada T. Melanoblasts as multipotent cells in murine skin. Methods Mol Biol 2013; 989:183-92. [PMID: 23483396 DOI: 10.1007/978-1-62703-330-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Melanoblasts are melanocyte precursors that are derived from neural crest cells (NCCs). Recently we showed that melanoblasts differentiate into not only pigmented melanocytes but also into other NCCs derivatives. Here, we describe methods for the isolation of melanoblasts from mouse skin by flow-cytometry. Methods for culturing the isolated melanoblasts, allowing them to express their multipotentiality, are also described.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan
| | | |
Collapse
|
28
|
Dupin E, Sommer L. Neural crest progenitors and stem cells: from early development to adulthood. Dev Biol 2012; 366:83-95. [PMID: 22425619 DOI: 10.1016/j.ydbio.2012.02.035] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 02/29/2012] [Indexed: 01/09/2023]
Abstract
In the vertebrate embryo, the neural crest forms transiently in the dorsal neural primordium to yield migratory cells that will invade nearly all tissues and later, will differentiate into bones and cartilages, neurons and glia, endocrine cells, vascular smooth muscle cells and melanocytes. Due to the amazingly diversified array of cell types it produces, the neural crest is an attractive model system in the stem cell field. We present here in vivo and in vitro studies of single cell fate, which led to the discovery and the characterization of stem cells in the neural crest of avian and mammalian embryos. Some of the key issues in neural crest cell diversification are discussed, such as the time of segregation of mesenchymal vs. neural/melanocytic lineages, and the origin and close relationships between the glial and melanocytic lineages. An overview is also provided of the diverse types of neural crest-like stem cells and progenitors, recently identified in a growing number of adult tissues in animals and humans. Current and future work, in which in vivo lineage studies and the use of injury models will complement the in vitro culture analysis, should help in unraveling the properties and function of neural crest-derived progenitors in development and disease.
Collapse
Affiliation(s)
- Elisabeth Dupin
- INSERM U894 Equipe Plasticité Gliale, Centre de Psychiatrie et de Neuroscience, 2 ter Rue d'Alésia 75014 Paris, France.
| | | |
Collapse
|
29
|
Thompson JA, Ziman M. Pax genes during neural development and their potential role in neuroregeneration. Prog Neurobiol 2011; 95:334-51. [DOI: 10.1016/j.pneurobio.2011.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 12/18/2022]
|
30
|
Tanaka EM, Reddien PW. The cellular basis for animal regeneration. Dev Cell 2011; 21:172-85. [PMID: 21763617 DOI: 10.1016/j.devcel.2011.06.016] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/02/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
The ability of animals to regenerate missing parts is a dramatic and poorly understood aspect of biology. The sources of new cells for these regenerative phenomena have been sought for decades. Recent advances involving cell fate tracking in complex tissues have shed new light on the cellular underpinnings of regeneration in Hydra, planarians, zebrafish, Xenopus, and Axolotl. Planarians accomplish regeneration with use of adult pluripotent stem cells, whereas several vertebrates utilize a collection of lineage-restricted progenitors from different tissues. Together, an array of cellular strategies-from pluripotent stem cells to tissue-specific stem cells and dedifferentiation-are utilized for regeneration.
Collapse
Affiliation(s)
- Elly M Tanaka
- Technical University of Dresden, DFG Center for Regenerative Therapies Dresden, c/o Max Planck Institute of Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany.
| | | |
Collapse
|
31
|
|
32
|
Junier MP, Sharif A. [Instability of cell phenotype and tumor initiating cells in gliomas]. Biol Aujourdhui 2011; 205:63-74. [PMID: 21501577 DOI: 10.1051/jbio/2011002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Indexed: 05/30/2023]
Abstract
Gliomas, the most frequent primitive CNS tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. TGFα, an EGF family member, is frequently over-expressed in the early stages of glioma progression. We questioned whether prolonged TGFα exposure affects the stability of the normal mature astrocyte phenotype and, eventually, their propensity to cancerous transformation. Using mouse astrocyte cultures devoid of residual neural stem cells or progenitors, we demonstrate that several days of TGFα-treatment result in the functional conversion of a population of mature astrocytes into radial glial cells, a population of neural progenitors, without any accompanying sign of cancerous transformation. In contrast, when astrocytes de-differentiated with TGFα were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties, forming high-grade glioma-like tumors after brain grafting. Gamma irradiation was without effect on astrocytes which were not treated with TGFα. These results suggested that most gliomas should contain tumor cells with stem-like properties (TSCs). Our study of 55 pediatric brain tumors show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a majority of gliomas. Survival analysis showed an association between isolation of TSCs with extended self-renewal capabilities and a patient's higher mortality rate.
Collapse
Affiliation(s)
- Marie-Pierre Junier
- Inserm, UMR894, Équipe Plasticité gliale, Université Paris V, 75006 Paris, France.
| | | |
Collapse
|
33
|
Dupin E. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells]. Biol Aujourdhui 2011; 205:53-61. [PMID: 21501576 DOI: 10.1051/jbio/2011008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Indexed: 12/23/2022]
Abstract
Melanocytes, the pigmented cells of the skin, and the glial Schwann cells lining peripheral nerves are developmentally derived from an early and transient ectodermal structure of the vertebrate embryo, the neural crest, which is also at the origin of multiple neural and non-neural cell types. Besides melanocytes and neural cells of the peripheral nervous system, the neural crest cells give rise to mesenchymal cell types in the head, which form most of the craniofacial skeleton, dermis, fat tissue and vascular musculo-connective components. How such a wide diversity of differentiation fates is established during embryogenesis and is later maintained in adult tissues are among key questions in developmental and stem cell biology. The analysis of the developmental potentials of single neural crest cells cultured in vitro led to characterizing multipotent stem/progenitor cells as well as more restricted precursors in the early neural crest of avian and mammalian embryos. Data support a hierarchical model of the diversification of neural crest lineages through progressive restrictions of multipotent stem cell potentials driven by local environmental factors. In particular, melanocytes and glial Schwann cells were shown to arise from a common bipotent progenitor, which depends upon the peptide endothelin-3 for proliferation and self-renewal ability. In vivo, signaling by endothelin-3 and its receptor is also required for the early development of melanocytes and proper pigmentation of the vertebrate body. It is generally assumed that, after lineage specification and terminal differentiation, specialized cell types, like the melanocytes and Schwann cells, do not change their identity. However, this classic notion that somatic cell differentiation is a stable and irreversible process has been challenged by emerging evidence that dedifferentiation can occur in different biological systems through nuclear transfer, cell fusion, epigenetic modifications and ectopic gene expression. This review considers the issue of whether neural crest-derived lineages are endowed with some phenotypic plasticity. Emphasis is put on the ability of pigment cells and Schwann cells to dedifferentiate and reprogram their fate in vitro. To address this question, we have studied the clonal progeny of differentiated Schwann cells and melanocytes after their isolation from the sciatic nerve and the back skin of quail embryos, respectively. When stimulated to proliferate in vitro in the presence of endothelin-3, both cell types were able to dedifferentiate and produce alternative neural crest-derived cell lineages. Individual Schwann cells isolated by FACS, using a glial-specific surface marker, gave rise in culture to pigment cells and myofibroblasts/smooth muscle cells. Treatment of the cultures with endothelin-3 was required for Schwann cell conversion into melanocytes, which involved acquisition of multipotency. Moreover, Schwann cell plasticity could also be induced in vivo: following transplantation into the branchial arch of a young chick host embryo, dedifferentiating Schwann cells were able to integrate the forming head structures of the host and, specifically, to contribute smooth muscle cells to the wall of cranial blood vessels. We also analyzed the in vitro behavior of individual pigment cells obtained by microdissection and enzymatic treatment of quail epidermis at embryonic and hatching stages. In single cell cultures treated with endothelin-3, pigment cells strongly proliferated while rapidly dedifferentiating into unpigmented cells, leading to the formation of large colonies that comprised glial cells and myofibroblasts in addition to melanocytes. By serially subcloning these primary colonies, we could efficiently propagate a bipotent glial-melanocytic precursor that is generated in the progeny of the melanocytic founder. These data therefore suggest that pigment cells have the ability to revert back to the state of self-renewing neural crest-like progenitors. Altogether, these studies have shown that Schwann cells and pigment cells display an unstable status of differentiation, which can be disclosed if these differentiated cells are displaced out of their native tissue. When challenged with new environmental conditions in vitro, differentiated Schwann cells and pigment cells can reacquire stem cell properties of their neural crest ancestors. Notably, such reprogramming was achieved through the effect of a single exogenous factor and without the need of any induced genetic modification. Deciphering the cellular and molecular mechanisms that regulate the plasticity and maintenance of neural crest-derived differentiated cells is likely to be an important step towards the understanding of the neurocristopathies and cancers that target neural crest derivatives in humans.
Collapse
Affiliation(s)
- Elisabeth Dupin
- Inserm U894 Equipe Plasticité gliale, Centre Psychiatrie et Neurosciences, 2 ter rue d'Alésia, 75014 Paris, France.
| |
Collapse
|
34
|
Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, Seifert B, Moch H, Dummer R, van den Broek M, Sommer L. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res 2011; 71:3098-109. [PMID: 21393506 DOI: 10.1158/0008-5472.can-10-3997] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human melanoma is composed of distinct cell types reminiscent of neural crest derivatives and contains multipotent cells that express the neural crest stem cell markers CD271(p75(NTR)) and Sox10. When isolated from solid tumors by using a method that leaves intact cell surface epitopes, CD271-positive, but not CD271-negative, cells formed tumors on transplantation into nude or nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. These tumors fully mirrored the heterogeneity of the parental melanoma and could be passaged more than 5 times. In contrast, in more immunocompromised NOD/SCID/IL2rγ(null) mice, or in natural killer cell-depleted nude or NOD/SCID mice, both CD271-positive and CD271-negative tumor cell fractions established tumors. However, tumors resulting from either fraction did not phenocopy the parental tumors, and tumors derived from the CD271-negative cell fraction could not be passaged multiple times. Together, our findings identify CD271-positive cells as melanoma stem cells. Our observation that a relatively high frequency of CD271/Sox10-positive cells correlates with higher metastatic potential and worse prognosis further supports that CD271-positive cells within human melanoma represent genuine cancer stem cells.
Collapse
Affiliation(s)
- Gianluca Civenni
- Institute of Anatomy and Biostatistics Unit ISPM, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kormos B, Belso N, Bebes A, Szabad G, Bacsa S, Széll M, Kemény L, Bata-Csörgo Z. In vitro dedifferentiation of melanocytes from adult epidermis. PLoS One 2011; 6:e17197. [PMID: 21383848 PMCID: PMC3044174 DOI: 10.1371/journal.pone.0017197] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/23/2011] [Indexed: 12/02/2022] Open
Abstract
In previous work we described a novel culture technique using a cholera toxin and PMA-free medium (Mel-mix) for obtaining pure melanocyte cultures from human adult epidermis. In Mel-mix medium the cultured melanocytes are bipolar, unpigmented and highly proliferative. Further characterization of the cultured melanocytes revealed the disappearance of c-Kit and TRP-1 and induction of nestin expression, indicating that melanocytes dedifferentiated in this in vitro culture. Cholera toxin and PMA were able to induce c-Kit and TRP-1 protein expressions in the cells, reversing dedifferentiation. TRP-1 mRNA expression was induced in dedifferentiated melanocytes by UV-B irradiated keratinocyte supernatants, however direct UV-B irradiation of the cells resulted in further decrease of TRP-1 mRNA expression. These dedifferentiated, easily accessible cultured melanocytes provide a good model for studying melanocyte differentiation and possibly transdifferentiation. Because melanocytes in Mel-mix medium can be cultured with human serum as the only supplement, this culture system is also suitable for autologous cell transplantation.
Collapse
Affiliation(s)
- Bernadett Kormos
- Dermatological Research Group of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Thirant C, Bessette B, Varlet P, Puget S, Cadusseau J, Dos Reis Tavares S, Studler JM, Silvestre DC, Susini A, Villa C, Miquel C, Bogeas A, Surena AL, Dias-Morais A, Léonard N, Pflumio F, Bièche I, Boussin FD, Sainte-Rose C, Grill J, Daumas-Duport C, Chneiweiss H, Junier MP. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS One 2011; 6:e16375. [PMID: 21297991 PMCID: PMC3030582 DOI: 10.1371/journal.pone.0016375] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/19/2010] [Indexed: 11/19/2022] Open
Abstract
Background Primitive brain tumors are the leading cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs), thought to account for tumorigenesis and therapeutic resistance, have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined. Methodology/Principal Findings Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples, regardless of their histopathologies and grades of malignancy (57% of embryonal tumors, 57% of low-grade gliomas and neuro-glial tumors, 70% of ependymomas, 91% of high-grade gliomas). Most high-grade glioma-derived oncospheres (10/12) sustained long-term self-renewal akin to neural stem cells (>7 self-renewals), whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumors. Regardless of tumor entities, the young age group was associated with self-renewal properties akin to neural stem cells (P = 0.05, chi-square test). Survival analysis of the cohort showed an association between isolation of cells with long-term self-renewal abilities and a higher patient mortality rate (P = 0.013, log-rank test). Sampling of low- and high-grade glioma cultures showed that self-renewing cells forming oncospheres shared a molecular profile comprising embryonic and neural stem cell markers. Further characterization performed on subsets of high-grade gliomas and one low-grade glioma culture showed combination of this profile with mesenchymal markers, the radio-chemoresistance of the cells and the formation of aggressive tumors after intracerebral grafting. Conclusions/Significance In brain tumors affecting adult patients, TSCs have been isolated only from high-grade gliomas. In contrast, our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.
Collapse
Affiliation(s)
- Cécile Thirant
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Barbara Bessette
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Pascale Varlet
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Stéphanie Puget
- Pediatric Neurosurgical Department. Hospital Necker, University Paris Descartes, Paris, France
- CNRS UMR 8203, Vectorology and Anticancer Therapeutics, Gustave Roussy Cancer Institute, Villejuif, France
| | | | | | - Jeanne-Marie Studler
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Collège de France, Paris, France
| | - David Carlos Silvestre
- Laboratoire de Radiopathologie UMR 967, CEA-INSERM-Université Paris VII, Fontenay-aux-Roses, France
| | - Aurélie Susini
- Laboratoire d'Oncogénétique - INSERM U735, Institut Curie/Hôpital René Huguenin, St-Cloud, France
| | - Chiara Villa
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Catherine Miquel
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Alexandra Bogeas
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Anne-Laure Surena
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Amélia Dias-Morais
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Nadine Léonard
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Françoise Pflumio
- Laboratoire des Cellules Souches Hématopoïétiques et Leucémiques, UMR U967, CEA-INSERM-Université Paris VII, Fontenay-aux-Roses, France
| | - Ivan Bièche
- Laboratoire d'Oncogénétique - INSERM U735, Institut Curie/Hôpital René Huguenin, St-Cloud, France
| | - François D. Boussin
- Laboratoire de Radiopathologie UMR 967, CEA-INSERM-Université Paris VII, Fontenay-aux-Roses, France
| | - Christian Sainte-Rose
- Pediatric Neurosurgical Department. Hospital Necker, University Paris Descartes, Paris, France
| | - Jacques Grill
- CNRS UMR 8203, Vectorology and Anticancer Therapeutics, Gustave Roussy Cancer Institute, Villejuif, France
| | - Catherine Daumas-Duport
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Hervé Chneiweiss
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Marie-Pierre Junier
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
- * E-mail:
| |
Collapse
|
37
|
Kobayashi NR, Hawes SM, Crook JM, Pébay A. G-protein coupled receptors in stem cell self-renewal and differentiation. Stem Cell Rev Rep 2010; 6:351-66. [PMID: 20625855 DOI: 10.1007/s12015-010-9167-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells have great potential for understanding early development, treating human disease, tissue trauma and early phase drug discovery. The factors that control the regulation of stem cell survival, proliferation, migration and differentiation are still emerging. Some evidence now exists demonstrating the potent effects of various G-protein coupled receptor (GPCR) ligands on the biology of stem cells. This review aims to give an overview of the current knowledge of the regulation of embryonic and somatic stem cell maintenance and differentiation by GPCR ligands.
Collapse
|
38
|
Zhang Y, Li TS, Lee ST, Wawrowsky KA, Cheng K, Galang G, Malliaras K, Abraham MR, Wang C, Marbán E. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One 2010; 5:e12559. [PMID: 20838637 PMCID: PMC2933247 DOI: 10.1371/journal.pone.0012559] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/05/2010] [Indexed: 01/22/2023] Open
Abstract
Background It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle. Methodology/Principal Findings Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1) cardiomyocyte purification from rat hearts, and 2) genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs), while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP) continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit+. Conclusions/Significance Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness, including the expression of c-kit and the capacity for multipotency.
Collapse
Affiliation(s)
- Yiqiang Zhang
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Tao-Sheng Li
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Shuo-Tsan Lee
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Kolja A. Wawrowsky
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ke Cheng
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Giselle Galang
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Konstantinos Malliaras
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - M. Roselle Abraham
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Charles Wang
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Eduardo Marbán
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Adameyko I, Lallemend F. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes. Cell Mol Life Sci 2010; 67:3037-55. [PMID: 20454996 PMCID: PMC11115498 DOI: 10.1007/s00018-010-0390-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/20/2010] [Accepted: 04/26/2010] [Indexed: 12/12/2022]
Abstract
Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.
Collapse
Affiliation(s)
- Igor Adameyko
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| | - Francois Lallemend
- Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Scheeles väg 1-A1-plan2, 171 77 Stockholm, Sweden
| |
Collapse
|
40
|
Chimge NO, Bayarsaihan D. Generation of neural crest progenitors from human embryonic stem cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:95-103. [PMID: 19780036 DOI: 10.1002/jez.b.21321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neural crest (NC) is a transient population of multipotent progenitors arising at the lateral edge of the neural plate in vertebrate embryos, which then migrate throughout the body to generate diverse array of tissues such as the peripheral nervous system, skin melanocytes, and craniofacial cartilage, bone and teeth. The transient nature of neural crest stem cells make extremely challenging to study the biology of these important cells. In humans induction and differentiation of embryonic NC occurs very early, within a few weeks of fertilization giving rise to technical and ethical issues surrounding isolation of early embryonic tissues and therefore severely limiting the study of human NC cells. For that reason our current knowledge of the biology of NC mostly derives from the studies of lower organisms. Recent progress in human embryonic stem cell research provides a unique opportunity for generation of a useful source of cells for basic developmental studies. The development of cost-effective, time and labor efficient improved differentiation protocols for the production of human NC cells is a critical step toward a better understanding of NC biology.
Collapse
Affiliation(s)
- Nyam-Osor Chimge
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | |
Collapse
|
41
|
Abel EV, Aplin AE. FOXD3 is a mutant B-RAF-regulated inhibitor of G(1)-S progression in melanoma cells. Cancer Res 2010; 70:2891-900. [PMID: 20332228 DOI: 10.1158/0008-5472.can-09-3139] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The forkhead box transcription factor FOXD3 is a stemness factor that prevents the production of melanocyte progenitors from the developing neural crest; however, its role in human cancers is not known. Transformation of melanocytes gives rise to melanoma. In two thirds of melanomas, the serine/threonine kinase B-RAF is mutated to a constitutively active form. Here, we show that FOXD3 levels are upregulated following attenuation of B-RAF and mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK) signaling in mutant B-RAF harboring human melanoma cells. This effect was selective because FOXD3 was not upregulated following MEK inhibition in wild-type B-RAF melanoma cells and mutant B-RAF thyroid carcinoma cells. Ectopic FOXD3 expression potently inhibited melanoma cell growth without altering mutant B-RAF activation of ERK1/2. Inhibition of cell growth was due to a potent G(1) cell cycle arrest and was associated with p53-dependent upregulation of p21(Cip1). FOXD3-induced cell cycle arrest was prevented by p53 depletion and, to a lesser extent, p21(Cip1) depletion. These studies show that FOXD3 is suppressed by B-RAF, uncover a novel role and mechanism for FOXD3 as a negative cell cycle regulator, and have implications for the repression of melanocytic lineage cells.
Collapse
Affiliation(s)
- Ethan V Abel
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | |
Collapse
|
42
|
Saldana-Caboverde A, Kos L. Roles of endothelin signaling in melanocyte development and melanoma. Pigment Cell Melanoma Res 2010; 23:160-70. [PMID: 20128875 DOI: 10.1111/j.1755-148x.2010.00678.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endothelin (Edn) signaling via the G-coupled, Edn receptor type B (Ednrb) is essential for the development of melanocytes from the neural crest (NC) and has been associated with melanoma progression. Edn3 plays varying roles during melanocyte development, promoting the proliferation and self-renewal of NC-derived multi- and bi-potential precursors as well as the survival, proliferation, differentiation and migration of committed melanocyte precursors. Melanocyte differentiation is achieved via the interaction of Ednrb and Kit signaling, with Ednrb being specifically required in the final differentiation step, rather than in the initial specification of melanocytic fate. Ednrb has also been implicated in the de-differentiation of mature melanocytes, a process that takes place during the malignant transformation of these cells. Ednrb was found to be upregulated in melanoma metastases and was shown to alter tumor-host interactions leading to melanoma progression. Antagonists to this receptor were shown to inhibit melanoma cell growth and increase the apoptotic rate of these cells, and to lead to disease stabilization in melanoma patients. Thus, Edn signaling inhibition may prove useful in the treatment of certain types of melanoma.
Collapse
|
43
|
Leychkis Y, Munzer SR, Richardson JL. What is stemness? STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2009; 40:312-320. [PMID: 19917490 DOI: 10.1016/j.shpsc.2009.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This paper, addressed to both philosophers of science and stem cell biologists, aims to reduce the obscurity of and disagreements over the nature of stemness. The two most prominent current theories of stemness--the entity theory and the state theory--are both biologically and philosophically unsatisfactory. Improved versions of these theories are likely to converge. Philosophers of science can perform a much needed service in clarifying and formulating ways of testing entity and state theories of stemness. To do so, however, philosophers should acquaint themselves with the latest techniques and approaches employed by bench scientists, such as the use of proteomics, genome-wide association studies, and ChIP-on-chip arrays. An overarching theme of this paper is the desirability of bringing closer together the philosophy of science and the practice of scientific research.
Collapse
Affiliation(s)
- Yan Leychkis
- Morrison & Foerster LLP, 12531 High Bluff Road, Suite 100, San Diego, CA 92130-2040, USA.
| | | | | |
Collapse
|
44
|
Hunt DPJ, Jahoda C, Chandran S. Multipotent skin-derived precursors: from biology to clinical translation. Curr Opin Biotechnol 2009; 20:522-30. [PMID: 19896826 DOI: 10.1016/j.copbio.2009.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/09/2009] [Indexed: 01/17/2023]
Abstract
Skin-derived precursor cells (SKPs) are a novel population of neural crest-related precursor cells that can be isolated from embryonic and adult skin. SKPs are capable of generating neuronal, glial and mesodermal progeny. Fate mapping and microdissection experiments have demonstrated a neural crest origin of SKPs within defined niches in adult skin. The finding that SKP derivatives such as Schwann cells and neuronal cells have in vitro and in vivo function raises the possibility of SKPs being both an experimental and therapeutic resource for disease modelling and regenerative medicine. This review focuses on the increased understanding of the developmental and anatomical origins of SKPs and the biotechnological potential of these cells.
Collapse
Affiliation(s)
- David P J Hunt
- Euan MacDonald Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Chancellors Building, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom.
| | | | | |
Collapse
|
45
|
Motohashi T, Yamanaka K, Chiba K, Aoki H, Kunisada T. Unexpected multipotency of melanoblasts isolated from murine skin. Stem Cells 2009; 27:888-97. [PMID: 19350691 DOI: 10.1634/stemcells.2008-0678] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Melanoblasts, precursor of melanocytes, are generated from the neural crest and differentiate into melanocytes during their migration throughout the entire body. The melanoblasts are thought to be progenitor cells that differentiate only into melanocyte. Here, we show that melanoblasts, even after they have already migrated throughout the skin, are multipotent, being able to generate neurons, glial cells, and smooth muscle cells in addition to melanocytes. We isolated Kit-positive and CD45-negative (Kit+/CD45-) cells from both embryonic and neonate skin by flow cytometry and cultured them on stromal cells. The Kit+/CD45- cells formed colonies containing neurons, glial cells, and smooth muscle cells, together with melanocytes. The Kit+/CD45- cells expressed Mitf-M, Sox10, and Trp-2, which are genes known to be expressed in melanoblasts. Even a single Kit+/CD45- cell formed colonies that contained neurons, glial cells, and melanocytes, confirming their multipotential cell fate. The colonies formed from Kit+/CD45- cells retained Kit+/CD45- cells even after 21 days in culture and these retained cells also differentiated into neurons, glial cells, and melanocytes, confirming their self-renewal capability. When the Kit signal was inhibited by the antagonist ACK2, the Kit+/CD45- cells did not form colonies that contained multidifferentiated cells. These results indicate that melanoblasts isolated from skin have multipotency and self-renewal capabilities.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | |
Collapse
|
46
|
Sviderskaya EV, Easty DJ, Lawrence MA, Sánchez DP, Negulyaev YA, Patel RH, Anand P, Korchev YE, Bennett DC. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells. FASEB J 2009; 23:3179-92. [PMID: 19447881 PMCID: PMC2735356 DOI: 10.1096/fj.08-123596] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stem cells, that is, cells that can both reproduce themselves and differentiate into functional cell types, attract much interest as potential aids to healing and disease therapy. Embryonic neural crest is pluripotent and generates the peripheral nervous system, melanocytes, and some connective tissues. Neural-crest-related stem cells have been reported previously in postnatal skin: committed melanocytic stem cells in the hair follicle, and pluripotent cell types from the hair follicle and papilla that can produce various sets of lineages. Here we describe novel pluripotent neural crest-like stem cells from neonatal mouse epidermis, with different potencies, isolated as 3 independent immortal lines. Using alternative regulatory factors, they could be converted to large numbers of either Schwann precursor cells, pigmented melanocytes, chondrocytes, or functional sensory neurons showing voltage-gated sodium channels. Some of the neurons displayed abundant active TRPV1 and TRPA1 receptors. Such functional neurons have previously been obtained in culture only with difficulty, by explantation. The system was also used to generate comparative gene expression data for the stem cells, melanocytes, and melanoblasts that sufficiently explain the lack of pigment in melanoblasts and provide a rationale for some genes expressed apparently ectopically in melanomas, such as ephrin receptors.—Sviderskaya, E. V., Easty, D. J., Lawrence, M. A., Sánchez, D. P., Negulyaev, Y. A., Patel, R. H., Anand, P., Korchev, Y. E., Bennett, D. C. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells.
Collapse
Affiliation(s)
- Elena V Sviderskaya
- Centre for Molecular and Metabolic Signalling, Division of Basic Medical Sciences, St. George's, University of London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fuchs S, Herzog D, Sumara G, Büchmann-Møller S, Civenni G, Wu X, Chrostek-Grashoff A, Suter U, Ricci R, Relvas JB, Brakebusch C, Sommer L. Stage-specific control of neural crest stem cell proliferation by the small rho GTPases Cdc42 and Rac1. Cell Stem Cell 2009; 4:236-47. [PMID: 19265663 DOI: 10.1016/j.stem.2009.01.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 10/02/2008] [Accepted: 01/26/2009] [Indexed: 11/16/2022]
Abstract
The neural crest (NC) generates a variety of neural and non-neural tissues during vertebrate development. Both migratory NC cells and their target structures contain cells with stem cell features. Here we show that these populations of neural crest-derived stem cells (NCSCs) are differentially regulated by small Rho GTPases. Deletion of either Cdc42 or Rac1 in the NC results in size reduction of multiple NC target structures because of increased cell-cycle exit, while NC cells emigrating from the neural tube are not affected. Consistently, Cdc42 or Rac1 inactivation reduces self-renewal and proliferation of later stage, but not early migratory NCSCs. This stage-specific requirement for small Rho GTPases is due to changes in NCSCs that, during development, acquire responsiveness to mitogenic EGF acting upstream of both Cdc42 and Rac1. Thus, our data reveal distinct mechanisms for growth control of NCSCs from different developmental stages.
Collapse
Affiliation(s)
- Sebastian Fuchs
- Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fetal and Adult Leydig Cells Are of Common Orig. ADVANCES IN ANATOMY, EMBRYOLOGY AND CELL BIOLOGY 2009. [DOI: 10.1007/978-3-642-00513-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Thomas AJ, Erickson CA. The making of a melanocyte: the specification of melanoblasts from the neural crest. Pigment Cell Melanoma Res 2008; 21:598-610. [DOI: 10.1111/j.1755-148x.2008.00506.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Kasemeier-Kulesa JC, Teddy JM, Postovit LM, Seftor EA, Seftor REB, Hendrix MJC, Kulesa PM. Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Dev Dyn 2008; 237:2657-66. [PMID: 18629870 DOI: 10.1002/dvdy.21613] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The embryonic microenvironment is an important source of signals that program multipotent cells to adopt a particular fate and migratory path, yet its potential to reprogram and restrict multipotent tumor cell fate and invasion is unrealized. Aggressive tumor cells share many characteristics with multipotent, invasive embryonic progenitors, contributing to the paradigm of tumor cell plasticity. In the vertebrate embryo, multiple cell types originate from a highly invasive cell population called the neural crest. The neural crest and the embryonic microenvironments they migrate through represent an excellent model system to study cell diversification during embryogenesis and phenotype determination. Recent exciting studies of tumor cells transplanted into various embryo models, including the neural crest rich chick microenvironment, have revealed the potential to control and revert the metastatic phenotype, suggesting further work may help to identify new targets for therapeutic intervention derived from a convergence of tumorigenic and embryonic signals. In this mini-review, we summarize markers that are common to the neural crest and highly aggressive human melanoma cells. We highlight advances in our understanding of tumor cell behaviors and plasticity studied within the chick neural crest rich microenvironment. In so doing, we honor the tremendous contributions of Professor Elizabeth D. Hay toward this important interface of developmental and cancer biology.
Collapse
|