1
|
Ging K, Frick L, Schlachetzki J, Armani A, Zhu Y, Gilormini PA, Dhingra A, Böck D, Marques A, Deen M, Chen X, Serdiuk T, Trevisan C, Sellitto S, Pisano C, Glass CK, Heutink P, Yin JA, Vocadlo DJ, Aguzzi A. Direct and indirect regulation of β-glucocerebrosidase by the transcription factors USF2 and ONECUT2. NPJ Parkinsons Dis 2024; 10:192. [PMID: 39438499 PMCID: PMC11496744 DOI: 10.1038/s41531-024-00819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Mutations in GBA1 encoding the lysosomal enzyme β-glucocerebrosidase (GCase) are among the most prevalent genetic susceptibility factors for Parkinson's disease (PD), with 10-30% of carriers developing the disease. To identify genetic modifiers contributing to the incomplete penetrance, we examined the effect of 1634 human transcription factors (TFs) on GCase activity in lysates of an engineered human glioblastoma line homozygous for the pathogenic GBA1 L444P variant. Using an arrayed CRISPR activation library, we uncovered 11 TFs as regulators of GCase activity. Among these, activation of MITF and TFEC increased lysosomal GCase activity in live cells, while activation of ONECUT2 and USF2 decreased it. While MITF, TFEC, and USF2 affected GBA1 transcription, ONECUT2 might control GCase trafficking. The effects of MITF, TFEC, and USF2 on lysosomal GCase activity were reproducible in iPSC-derived neurons from PD patients. Our study provides a systematic approach to identifying modulators of GCase activity and deepens our understanding of the mechanisms regulating GCase.
Collapse
Affiliation(s)
- Kathi Ging
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Lukas Frick
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Johannes Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrea Armani
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Yanping Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | - Desirée Böck
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ana Marques
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Matthew Deen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Xi Chen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Tetiana Serdiuk
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Stefano Sellitto
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Claudio Pisano
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Jiang-An Yin
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Zupančič M, Keimpema E, Tretiakov EO, Eder SJ, Lev I, Englmaier L, Bhandari P, Fietz SA, Härtig W, Renaux E, Villunger A, Hökfelt T, Zimmer M, Clotman F, Harkany T. Concerted transcriptional regulation of the morphogenesis of hypothalamic neurons by ONECUT3. Nat Commun 2024; 15:8631. [PMID: 39366958 PMCID: PMC11452682 DOI: 10.1038/s41467-024-52762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Acquisition of specialized cellular features is controlled by the ordered expression of transcription factors (TFs) along differentiation trajectories. Here, we find a member of the Onecut TF family, ONECUT3, expressed in postmitotic neurons that leave their Ascl1+/Onecut1/2+ proliferative domain in the vertebrate hypothalamus to instruct neuronal differentiation. We combined single-cell RNA-seq and gain-of-function experiments for gene network reconstruction to show that ONECUT3 affects the polarization and morphogenesis of both hypothalamic GABA-derived dopamine and thyrotropin-releasing hormone (TRH)+ glutamate neurons through neuron navigator-2 (NAV2). In vivo, siRNA-mediated knockdown of ONECUT3 in neonatal mice reduced NAV2 mRNA, as well as neurite complexity in Onecut3-containing neurons, while genetic deletion of Onecut3/ceh-48 in C. elegans impaired neurocircuit wiring, and sensory discrimination-based behaviors. Thus, ONECUT3, conserved across neuronal subtypes and many species, underpins the polarization and morphological plasticity of phenotypically distinct neurons that descend from a common pool of Ascl1+ progenitors in the hypothalamus.
Collapse
Affiliation(s)
- Maja Zupančič
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stephanie J Eder
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
- Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Itamar Lev
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Lukas Englmaier
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Pradeep Bhandari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, University of Leipzig, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Estelle Renaux
- Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Manuel Zimmer
- Department of Neuroscience and Developmental Biology, Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Frédéric Clotman
- Animal Molecular and Cellular Biology, Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
3
|
Kaplan SJ, Wong W, Yan J, Pulecio J, Cho HS, Li Q, Zhao J, Leslie-Iyer J, Kazakov J, Murphy D, Luo R, Dey KK, Apostolou E, Leslie CS, Huangfu D. CRISPR screening uncovers a long-range enhancer for ONECUT1 in pancreatic differentiation and links a diabetes risk variant. Cell Rep 2024; 43:114640. [PMID: 39163202 PMCID: PMC11406439 DOI: 10.1016/j.celrep.2024.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers identified, we focused on an enhancer we named ONECUT1e-664kb, ∼664 kb from the ONECUT1 promoter. Previous studies have linked ONECUT1 coding mutations to pancreatic hypoplasia and neonatal diabetes. We found that homozygous deletion of ONECUT1e-664kb in hPSCs leads to a near-complete loss of ONECUT1 expression and impaired pancreatic differentiation. ONECUT1e-664kb contains a type 2 diabetes-associated variant (rs528350911) disrupting a GATA motif. Introducing the risk variant into hPSCs reduced binding of key pancreatic transcription factors (GATA4, GATA6, and FOXA2), supporting its causal role in diabetes. This work highlights the utility of unbiased enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.
Collapse
Affiliation(s)
- Samuel Joseph Kaplan
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wilfred Wong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qianzi Li
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiahui Zhao
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jayanti Leslie-Iyer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Kazakov
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dylan Murphy
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kushal K Dey
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
4
|
Ibrahim H, Balboa D, Saarimäki-Vire J, Montaser H, Dyachok O, Lund PE, Omar-Hmeadi M, Kvist J, Dwivedi OP, Lithovius V, Barsby T, Chandra V, Eurola S, Ustinov J, Tuomi T, Miettinen PJ, Barg S, Tengholm A, Otonkoski T. RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell function. Diabetologia 2024; 67:1642-1662. [PMID: 38743124 PMCID: PMC11343796 DOI: 10.1007/s00125-024-06163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
AIMS/HYPOTHESIS Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).
Collapse
Affiliation(s)
- Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Finland
- Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Päivi J Miettinen
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
5
|
Zhang L, Li C, Song X, Guo R, Zhao W, Liu C, Chen X, Song Q, Wu B, Deng N. Targeting ONECUT2 inhibits tumor angiogenesis via down-regulating ZKSCAN3/VEGFA. Biochem Pharmacol 2024; 225:116315. [PMID: 38797268 DOI: 10.1016/j.bcp.2024.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
OC-2 plays a vital role in tumor growth, metastasis and angiogenesis, but molecular mechanism how OC-2 regulates angiogenic factors is unclear. We found that OC-2 was highly expressed in HepG2, COLO, MCF-7, SKOV3 cells and rectum carcinoma tissues, and angiogenic factors levels were positively related to OC-2. Then OC-2 KD inhibited the tumor growth, metastasis and angiogenesis process in vitro and vivo. ChIP-Seq showed that 228 target genes of OC-2 were identified and they were associated with tumor growth, metastasis, angiogenesis and signal transduction; OC-2 bound to ZKSCAN3 at promoter region. Luciferase assays showed that ZKSCAN3 was identified as target gene of OC-2 and VEGFA was identified as target gene of ZKSCAN3; OC-2 promoted VEGFA expression via activating ZKSCAN3 transcriptional program. Importantly, OC-2 KD down-regulated VEGFA secretion to suppress tumor angiogenesis of HUVECs. Besides VEGFA, OC-2 was positively correlated with other angiogenic factors HIF-1α, FGF2, EGFL6 and HGF. Meanwhile, ERK1/2 and Smad1 signaling pathways might be related to function of OC-2 driving tumor aggressiveness. We revealed that OC-2 might regulate tumor growth, metastasis, angiogenesis via ERK1/2, Smad1 signaling pathways and regulate VEGFA expression for tumor angiogenesis via activating ZKSCAN3 transcriptional program, indicating that OC-2 was a convincing target to develop novel anti-tumor drugs based on angiogenesis.
Collapse
Affiliation(s)
- Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China; School of Medicine, Foshan University, Foshan 528225, China.
| | - Cunjie Li
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Xinran Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Raoqing Guo
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Wenli Zhao
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Chunyan Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Xi Chen
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Qifang Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Binhua Wu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Kaplan SJ, Wong W, Yan J, Pulecio J, Cho HS, Li Q, Zhao J, Leslie-Iyer J, Kazakov J, Murphy D, Luo R, Dey KK, Apostolou E, Leslie CS, Huangfu D. CRISPR Screening Uncovers a Long-Range Enhancer for ONECUT1 in Pancreatic Differentiation and Links a Diabetes Risk Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591412. [PMID: 38746154 PMCID: PMC11092487 DOI: 10.1101/2024.04.26.591412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Functional enhancer annotation is a valuable first step for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants for investigation. However, unbiased enhancer discovery in physiologically relevant contexts remains a major challenge. To discover regulatory elements pertinent to diabetes, we conducted a CRISPR interference screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers uncovered, we focused on a long-range enhancer ∼664 kb from the ONECUT1 promoter, since coding mutations in ONECUT1 cause pancreatic hypoplasia and neonatal diabetes. Homozygous enhancer deletion in hPSCs was associated with a near-complete loss of ONECUT1 gene expression and compromised pancreatic differentiation. This enhancer contains a confidently fine-mapped type 2 diabetes associated variant (rs528350911) which disrupts a GATA motif. Introduction of the risk variant into hPSCs revealed substantially reduced binding of key pancreatic transcription factors (GATA4, GATA6 and FOXA2) on the edited allele, accompanied by a slight reduction of ONECUT1 transcription, supporting a causal role for this risk variant in metabolic disease. This work expands our knowledge about transcriptional regulation in pancreatic development through the characterization of a long-range enhancer and highlights the utility of enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.
Collapse
|
7
|
Sun J, Wang Y, Fu H, Kang F, Song J, Xu M, Ning G, Wang J, Wang W, Wang Q. Mettl3-Mediated m6A Methylation Controls Pancreatic Bipotent Progenitor Fate and Islet Formation. Diabetes 2024; 73:237-249. [PMID: 37963393 DOI: 10.2337/db23-0360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
The important role of m6A RNA modification in β-cell function has been established; however, how it regulates pancreatic development and endocrine differentiation remains unknown. Here, we generated transgenic mice lacking RNA methyltransferase-like 3 (Mettl3) specifically in Pdx1+ pancreatic progenitor cells and found the mice with the mutation developed hyperglycemia and hypoinsulinemia at age 2 weeks, along with an atrophic pancreas, reduced islet mass, and abnormal increase in ductal formation. At embryonic day 15.5, Mettl3 deletion had caused a significant loss of Ngn3+ endocrine progenitor cells, which was accompanied by increased Sox9+ ductal precursor cells. We identified histone deacetylase 1 (Hdac1) as the critical direct m6A target in bipotent progenitors, the degeneration of which caused abnormal activation of the Wnt/Notch signaling pathway and blocked endocrine differentiation. This transformation could be manipulated in embryonic pancreatic culture in vitro through regulation of the Mettl3-Hdac1-Wnt/Notch signaling axis. Our finding that Mettl3 determines endocrine lineage by modulating Hdac1 activity during the transition of bipotent progenitors might help in the development of targeted endocrine cell protocols for diabetes treatment. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jiajun Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuyun Kang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaxi Song
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the People's Republic of China, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Shi H, Tsang Y, Yang Y, Chin HL. Identification of ONECUT3 as a stemness-related transcription factor regulating NK cell-mediated immune evasion in pancreatic cancer. Sci Rep 2023; 13:18133. [PMID: 37875589 PMCID: PMC10598193 DOI: 10.1038/s41598-023-45560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal response to the current T cell-based immunotherapies, which is attributed to intratumoral heterogeneity caused by PDAC stem cells and lack of major histocompatibility complex class I required for neoantigen presentation. Although this scenario makes natural killer (NK) cells attractive candidates for immunotherapeutic agents targeting MHC-I-deficient cancer stem cells in heterogeneous PDACs, little is known about PDAC stem cell immunology. In our study, PDAC-specific datasets from public databases were collected for in-depth bioinformatic analysis. We found that the abundance of PDAC stemness negatively influenced the infiltration of NK cells and identified the transcription factor ONECUT3 enriched in PDACs with high stemness index scores and Pan-cancer Stemness Signature levels. A series of NK cell-targeted inhibitory immune checkpoints were highly expressed in ONECUT3high PDACs. The patient group with high levels of ONECUT3 expression had a high risk of poor overall survival, even if accompanied by high infiltration of NK cells. Furthermore, the prostanoid metabolic process was enriched in ONECUT3high PDACs with high levels of NK cell-targeted inhibitory immune checkpoints. ONECUT3 enriched in high-stemness PDACs possessed the potential to transcriptionally regulate the prostanoid metabolism-related genes. Our study reveals ONECUT3 as a candidate stemness-related transcription factor regulating NK cell-targeted inhibitory immune checkpoints in PDAC. ONECUT3-mediated prostanoid metabolism may regulate cancer stemness and immune evasion in PDAC. Synergistic inhibition of prostanoid metabolism may improve the efficacy of NK cell-based immunotherapies targeting intratumoral heterogeneity caused by PDAC stem cells.
Collapse
Affiliation(s)
- Haojun Shi
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yiusing Tsang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisi Yang
- Graduate School of Asia-Pacific Studies, Waseda University, Tokyo, Japan
| | - Hok Leong Chin
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Leyva-Díaz E. CUT homeobox genes: transcriptional regulation of neuronal specification and beyond. Front Cell Neurosci 2023; 17:1233830. [PMID: 37744879 PMCID: PMC10515288 DOI: 10.3389/fncel.2023.1233830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
CUT homeobox genes represent a captivating gene class fulfilling critical functions in the development and maintenance of multiple cell types across a wide range of organisms. They belong to the larger group of homeobox genes, which encode transcription factors responsible for regulating gene expression patterns during development. CUT homeobox genes exhibit two distinct and conserved DNA binding domains, a homeodomain accompanied by one or more CUT domains. Numerous studies have shown the involvement of CUT homeobox genes in diverse developmental processes such as body axis formation, organogenesis, tissue patterning and neuronal specification. They govern these processes by exerting control over gene expression through their transcriptional regulatory activities, which they accomplish by a combination of classic and unconventional interactions with the DNA. Intriguingly, apart from their roles as transcriptional regulators, they also serve as accessory factors in DNA repair pathways through protein-protein interactions. They are highly conserved across species, highlighting their fundamental importance in developmental biology. Remarkably, evolutionary analysis has revealed that CUT homeobox genes have experienced an extraordinary degree of rearrangements and diversification compared to other classes of homeobox genes, including the emergence of a novel gene family in vertebrates. Investigating the functions and regulatory networks of CUT homeobox genes provides significant understanding into the molecular mechanisms underlying embryonic development and tissue homeostasis. Furthermore, aberrant expression or mutations in CUT homeobox genes have been associated with various human diseases, highlighting their relevance beyond developmental processes. This review will overview the well known roles of CUT homeobox genes in nervous system development, as well as their functions in other tissues across phylogeny.
Collapse
|
10
|
Zupančič M, Tretiakov E, Máté Z, Erdélyi F, Szabó G, Clotman F, Hökfelt T, Harkany T, Keimpema E. Brain-wide mapping of efferent projections of glutamatergic (Onecut3 + ) neurons in the lateral mouse hypothalamus. Acta Physiol (Oxf) 2023; 238:e13973. [PMID: 37029761 PMCID: PMC10909463 DOI: 10.1111/apha.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
AIM This study mapped the spatiotemporal positions and connectivity of Onecut3+ neuronal populations in the developing and adult mouse brain. METHODS We generated fluorescent reporter mice to chart Onecut3+ neurons for brain-wide analysis. Moreover, we crossed Onecut3-iCre and Mapt-mGFP (Tau-mGFP) mice to visualize axonal projections. A dual Cre/Flp-dependent AAV construct in Onecut3-iCre cross-bred with Slc17a6-FLPo mice was used in an intersectional strategy to map the connectivity of glutamatergic lateral hypothalamic neurons in the adult mouse. RESULTS We first found that Onecut3 marks a hitherto undescribed Slc17a6+ /Vglut2+ neuronal cohort in the lateral hypothalamus, with the majority expressing thyrotropin-releasing hormone. In the adult, Onecut3+ /Vglut2+ neurons of the lateral hypothalamus had both intra- and extrahypothalamic efferents, particularly to the septal complex and habenula, where they targeted other cohorts of Onecut3+ neurons and additionally to the neocortex and hippocampus. This arrangement suggests that intrinsic reinforcement loops could exist for Onecut3+ neurons to coordinate their activity along the brain's midline axis. CONCLUSION We present both a toolbox to manipulate novel subtypes of hypothalamic neurons and an anatomical arrangement by which extrahypothalamic targets can be simultaneously entrained.
Collapse
Affiliation(s)
- Maja Zupančič
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Evgenii Tretiakov
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Zoltán Máté
- Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | - Ferenc Erdélyi
- Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
| | - Frédéric Clotman
- Animal Molecular and Cellular Biology Group, Louvain Institute of Biomolecular Science and TechnologyUniversité Catholique de LouvainLouvain‐la‐NeuveBelgium
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7DKarolinska InstitutetSolnaSweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
- Department of Neuroscience, Biomedicum 7DKarolinska InstitutetSolnaSweden
| | - Erik Keimpema
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
11
|
Ito R, Kimura A, Hirose Y, Hatano Y, Mima A, Mae SI, Keidai Y, Nakamura T, Fujikura J, Nishi Y, Ohta A, Toyoda T, Inagaki N, Osafune K. Elucidation of HHEX in pancreatic endoderm differentiation using a human iPSC differentiation model. Sci Rep 2023; 13:8659. [PMID: 37248264 DOI: 10.1038/s41598-023-35875-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
For pluripotent stem cell (PSC)-based regenerative therapy against diabetes, the differentiation efficiency to pancreatic lineage cells needs to be improved based on the mechanistic understanding of pancreatic differentiation. Here, we aimed to elucidate the molecular mechanisms underlying pancreatic endoderm differentiation by searching for factors that regulate a crucial pancreatic endoderm marker gene, NKX6.1. Unbiasedly screening an siRNA knockdown library, we identified a candidate transcription factor, HHEX. HHEX knockdown suppressed the expression of another pancreatic endoderm marker gene, PTF1A, as well as NKX6.1, independently of PDX1, a known regulator of NKX6.1 expression. In contrast, the overexpression of HHEX upregulated the expressions of NKX6.1 and PTF1A. RNA-seq analysis showed decreased expressions of several genes related to pancreatic development, such as NKX6.1, PTF1A, ONECUT1 and ONECUT3, in HHEX knockdown pancreatic endoderm. These results suggest that HHEX plays a key role in pancreatic endoderm differentiation.
Collapse
Affiliation(s)
- Ryo Ito
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Azuma Kimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yurie Hirose
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yu Hatano
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Mima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shin-Ichi Mae
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yamato Keidai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshihiro Nakamura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Junji Fujikura
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yohei Nishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Ohta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taro Toyoda
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kenji Osafune
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
12
|
Drobek M. Paralogous Genes Involved in Embryonic Development: Lessons from the Eye and Other Tissues. Genes (Basel) 2022; 13:2082. [PMID: 36360318 PMCID: PMC9690401 DOI: 10.3390/genes13112082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/23/2022] [Accepted: 11/05/2022] [Indexed: 07/09/2024] Open
Abstract
During evolution, gene duplications lead to a naturally increased gene dosage. Duplicated genes can be further retained or eliminated over time by purifying selection pressure. The retention probability is increased by functional diversification and by the acquisition of novel functions. Interestingly, functionally diverged paralogous genes can maintain a certain level of functional redundancy and at least a partial ability to replace each other. In such cases, diversification probably occurred at the level of transcriptional regulation. Nevertheless, some duplicated genes can maintain functional redundancy after duplication and the ability to functionally compensate for the loss of each other. Many of them are involved in proper embryonic development. The development of particular tissues/organs and developmental processes can be more or less sensitive to the overall gene dosage. Alterations in the gene dosage or a decrease below a threshold level may have dramatic phenotypic consequences or even lead to embryonic lethality. The number of functional alleles of particular paralogous genes and their mutual cooperation and interactions influence the gene dosage, and therefore, these factors play a crucial role in development. This review will discuss individual interactions between paralogous genes and gene dosage sensitivity during development. The eye was used as a model system, but other tissues are also included.
Collapse
Affiliation(s)
- Michaela Drobek
- Laboratory of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Praha 4, Czech Republic
- Laboratory of RNA Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Praha 4, Czech Republic
| |
Collapse
|
13
|
Di Giorgio C, Marchianò S, Marino E, Biagioli M, Roselli R, Bordoni M, Bellini R, Urbani G, Zampella A, Distrutti E, Donini A, Graziosi L, Fiorucci S. Next-Generation Sequencing Analysis of Gastric Cancer Identifies the Leukemia Inhibitory Factor Receptor as a Driving Factor in Gastric Cancer Progression and as a Predictor of Poor Prognosis. Front Oncol 2022; 12:939969. [PMID: 35847866 PMCID: PMC9280277 DOI: 10.3389/fonc.2022.939969] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third cause of cancer-related mortality worldwide. Nevertheless, because GC screening programs are not cost-effective, most patients receive diagnosis in the advanced stages, when surgical options are limited. Peritoneal dissemination occurs in approximately one-third of patients with GC at the diagnosis and is a strong predictor of poor outcome. Despite the clinical relevance, biological and molecular mechanisms underlying the development of peritoneal metastasis in GC remain poorly defined. Here, we report results of a high-throughput sequencing of transcriptome expression in paired samples of non-neoplastic and neoplastic gastric samples from 31 patients with GC with or without peritoneal carcinomatosis. The RNA-seq analysis led to the discovery of a group of highly upregulated or downregulated genes, including the leukemia inhibitory factor receptor (LIFR) and one cut domain family member 2 (ONECUT2) that were differentially modulated in patients with peritoneal disease in comparison with patients without peritoneal involvement. Both LIFR and ONECUT2 predicted survival at univariate statistical analysis. LIFR and its major ligand LIF belong to the interleukin-6 (IL-6) cytokine family and have a central role in immune system regulation, carcinogenesis, and dissemination in several human cancers. To confirm the mechanistic role of the LIF/LIFR pathway in promoting GC progression, GC cell lines were challenged in vitro with LIF and a LIFR inhibitor. Among several GC cell lines, MKN45 cells displayed the higher expression of the receptor, and their exposure to LIF promotes a concentration-dependent proliferation and epithelial-mesenchymal transition (EMT), as shown by modulation of relative expression of E-cadherin/vimentin along with JAK and STAT3 phosphorylation and acquisition of a migratory phenotype. Furthermore, exposure to LIF promoted the adhesion of MKN45 cells to the peritoneum in an ex vivo assay. These effects were reversed by the pharmacological blockade of LIFR signaling. Together, these data suggest that LIFR might have a major role in promoting disease progression and peritoneal dissemination in patients with GC and that development of LIF/LIFR inhibitors might have a role in the treatment of GC.
Collapse
Affiliation(s)
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ginevra Urbani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- Azienda Ospedaliera Santa Maria della Misericordia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
14
|
Heller S, Li Z, Lin Q, Geusz R, Breunig M, Hohwieler M, Zhang X, Nair GG, Seufferlein T, Hebrok M, Sander M, Julier C, Kleger A, Costa IG. Transcriptional changes and the role of ONECUT1 in hPSC pancreatic differentiation. Commun Biol 2021; 4:1298. [PMID: 34789845 PMCID: PMC8599846 DOI: 10.1038/s42003-021-02818-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cell type specification during pancreatic development is tightly controlled by a transcriptional and epigenetic network. The precise role of most transcription factors, however, has been only described in mice. To convey such concepts to human pancreatic development, alternative model systems such as pancreatic in vitro differentiation of human pluripotent stem cells can be employed. Here, we analyzed stage-specific RNA-, ChIP-, and ATAC-sequencing data to dissect transcriptional and regulatory mechanisms during pancreatic development. Transcriptome and open chromatin maps of pancreatic differentiation from human pluripotent stem cells provide a stage-specific pattern of known pancreatic transcription factors and indicate ONECUT1 as a crucial fate regulator in pancreas progenitors. Moreover, our data suggest that ONECUT1 is also involved in preparing pancreatic progenitors for later endocrine specification. The dissection of the transcriptional and regulatory circuitry revealed an important role for ONECUT1 within such network and will serve as resource to study human development and disease.
Collapse
Affiliation(s)
- Sandra Heller
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Zhijian Li
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| | - Qiong Lin
- grid.420044.60000 0004 0374 4101Bayer AG, Research & Development, Pharmaceuticals, Bioinformatics, Berlin, Germany
| | - Ryan Geusz
- grid.266100.30000 0001 2107 4242Pediatric Diabetes Research Center (PDRC) at the University of California, San Diego, USA
| | - Markus Breunig
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Meike Hohwieler
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Xi Zhang
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Gopika G. Nair
- grid.266102.10000 0001 2297 6811Diabetes Center at the University of California, San Francisco, USA
| | - Thomas Seufferlein
- grid.410712.1Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Matthias Hebrok
- grid.266102.10000 0001 2297 6811Diabetes Center at the University of California, San Francisco, USA
| | - Maike Sander
- grid.266100.30000 0001 2107 4242Pediatric Diabetes Research Center (PDRC) at the University of California, San Diego, USA
| | - Cécile Julier
- grid.4444.00000 0001 2112 9282Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany.
| | - Ivan G. Costa
- grid.1957.a0000 0001 0728 696XInstitute for Computational Genomics, RWTH Aachen University Medical School, Aachen, Germany
| |
Collapse
|
15
|
Research Trends in the Efficacy of Stem Cell Therapy for Hepatic Diseases Based on MicroRNA Profiling. Int J Mol Sci 2020; 22:ijms22010239. [PMID: 33383629 PMCID: PMC7795580 DOI: 10.3390/ijms22010239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Liver diseases, despite the organ’s high regenerative capacity, are caused by several environmental factors and persistent injuries. Their optimal treatment is a liver transplantation. However, this option is limited by donor shortages and immune response issues. Therefore, many researchers have been interested in identifying the therapeutic potential in treating irreversible liver damage based on stem cells and developing suitable therapeutic agents. Mesenchymal stem cells (MSCs), which are representative multipotent stem cells, are known to be highly potential stem cell therapy compared to other stem cells in the clinical trial worldwide. MSCs have therapeutic potentials for several hepatic diseases such as anti-fibrosis, proliferation of hepatocytes injured, anti-inflammation, autophagic mechanism, and inactivation of hepatic stellate cells. There are much data regarding clinical treatments, however, the data for examining the efficacy of stem cell treatment and the correlation between the stem cell engraftment and the efficacy in liver diseases is limited due to the lack of monitoring system for treatment effectiveness. Therefore, this paper introduces the characteristics of microRNAs (miRNAs) and liver disease-specific miRNA profiles, and the possibility of a biomarker that miRNA can monitor stem cell treatment efficacy by comparing miRNAs changed in liver diseases following stem cell treatment. Additionally, we also discuss the miRNA profiling in liver diseases when treated with stem cell therapy and suggest the candidate miRNAs that can be used as a biomarker that can monitor treatment efficacy in liver diseases based on MSCs therapy.
Collapse
|
16
|
Dose-dependent regulation of horizontal cell fate by Onecut family of transcription factors. PLoS One 2020; 15:e0237403. [PMID: 32790713 PMCID: PMC7425962 DOI: 10.1371/journal.pone.0237403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022] Open
Abstract
Genome duplication leads to an emergence of gene paralogs that are essentially free to undergo the process of neofunctionalization, subfunctionalization or degeneration (gene loss). Onecut1 (Oc1) and Onecut2 (Oc2) transcription factors, encoded by paralogous genes in mammals, are expressed in precursors of horizontal cells (HCs), retinal ganglion cells and cone photoreceptors. Previous studies have shown that ablation of either Oc1 or Oc2 gene in the mouse retina results in a decreased number of HCs, while simultaneous deletion of Oc1 and Oc2 leads to a complete loss of HCs. Here we study the genetic redundancy between Oc1 and Oc2 paralogs and focus on how the dose of Onecut transcription factors influences abundance of individual retinal cell types and overall retina physiology. Our data show that reducing the number of functional Oc alleles in the developing retina leads to a gradual decrease in the number of HCs, progressive thinning of the outer plexiform layer and diminished electrophysiology responses. Taken together, these observations indicate that in the context of HC population, the alleles of Oc1/Oc2 paralogous genes are mutually interchangeable, function additively to support proper retinal function and their molecular evolution does not follow one of the typical routes after gene duplication.
Collapse
|
17
|
Chen J, Chen J, Sun B, Wu J, Du C. ONECUT2 Accelerates Tumor Proliferation Through Activating ROCK1 Expression in Gastric Cancer. Cancer Manag Res 2020; 12:6113-6121. [PMID: 32801861 PMCID: PMC7398892 DOI: 10.2147/cmar.s256316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 01/01/2023] Open
Abstract
Background Transcription factors (TFs) are key regulators which control gene expression during cancer initiation and progression. In the current study, we aimed to explore the proliferative function and clinical significance of TFs in gastric cancer (GC). Methods Differential analysis was used to investigate the overall expression difference between normal and tumor tissues of each TF in TCGA-STAD cohort. The quantitative real-time polymerase chain reaction (qRT-PCR) was performed to confirm the mRNA expression of one cut homeobox 2 (ONECUT2) in GC tissues. Western blot analysis was conducted to confirm the protein knockdown efficiency. Cell counting, colony formation, and GC xenograft model assays were performed to confirm the proliferative function of ONECUT2 in GC cells. Gene set enrichment analysis (GESA) and qRT-PCR were conducted to confirm the affected signaling pathways and downstream targets of ONECUT2. Results Our data indicated that a TF named ONECUT2 was highly expressed in GC and correlated with patients’ poor prognosis. Importantly, knockdown of ONECUT2 dramatically decreased GC cells proliferation, whereas overexpression of ONECUT2 promoted carcinogenesis in GC. Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that the upregulating ONECUT2 induced the activation of Wnt signaling pathway and cell cycle regulation pathway. We further identified that ONECUT2 boosted gastric cancer cell proliferation through enhancing ROCK1 (Rho associated coiled-coil containing protein kinase 1) mRNA expression. High level of ROCK1 expression rescued proliferative behavior of ONECUT2-deficient GC cells. Conclusion Our findings demonstrated that ONECUT2 promoted GC cells proliferation through activating ROCK1 expression at the DNA level, suggesting that ONECUT2-ROCK1 axis might be a potential therapeutic target in GC.
Collapse
Affiliation(s)
- Jie Chen
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Jinggui Chen
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Bo Sun
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Jianghong Wu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Chunyan Du
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
18
|
Malladi VS, Nagari A, Franco HL, Kraus WL. Total Functional Score of Enhancer Elements Identifies Lineage-Specific Enhancers That Drive Differentiation of Pancreatic Cells. Bioinform Biol Insights 2020; 14:1177932220938063. [PMID: 32655276 PMCID: PMC7331761 DOI: 10.1177/1177932220938063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
The differentiation of embryonic stem cells into various lineages is highly dependent on the chromatin state of the genome and patterns of gene expression. To identify lineage-specific enhancers driving the differentiation of progenitors into pancreatic cells, we used a previously described computational framework called Total Functional Score of Enhancer Elements (TFSEE), which integrates multiple genomic assays that probe both transcriptional and epigenomic states. First, we evaluated and compared TFSEE as an enhancer-calling algorithm with enhancers called using GRO-seq-defined enhancer transcripts (method 1) versus enhancers called using histone modification ChIP-seq data (method 2). Second, we used TFSEE to define the enhancer landscape and identify transcription factors (TFs) that maintain the multipotency of a subpopulation of endodermal stem cells during differentiation into pancreatic lineages. Collectively, our results demonstrate that TFSEE is a robust enhancer-calling algorithm that can be used to perform multilayer genomic data integration to uncover cell type-specific TFs that control lineage-specific enhancers.
Collapse
Affiliation(s)
- Venkat S Malladi
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anusha Nagari
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hector L Franco
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Genetics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Seo EH, Kim HJ, Kim JH, Lim B, Park JL, Kim SY, Lee SI, Jeong HY, Song KS, Kim YS. ONECUT2 upregulation is associated with CpG hypomethylation at promoter-proximal DNA in gastric cancer and triggers ACSL5. Int J Cancer 2020; 146:3354-3368. [PMID: 32129880 PMCID: PMC7217064 DOI: 10.1002/ijc.32946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/14/2022]
Abstract
Many studies have focused on global hypomethylation or hypermethylation of tumor suppressor genes, but less is known about the impact of promoter hypomethylation of oncogenes. We previously showed that promoter methylation may gradually increase or decrease during the transition from gastric mucosa (GM) to intestinal metaplasia (IM) to gastric cancer (GC). In our study, we focused on regional CpG hypomethylation of the promoter‐proximal DNA of the transcription factor ONECUT2 (OC2) in IM and GC cells. We validated the hypomethylation of promoter‐proximal DNA of OC2 in 160 primary GCs, in which methylation level correlated negatively with OC2 mRNA level. IM and GC cells stained positively for OC2, whereas GM cells did not. Stable transfection of OC2 in GC cells promoted colony formation, cell migration, invasion and proliferation. Moreover, OC2 knockdown with a short hairpin RNA suppressed tumorigenesis in nude mice. In addition, chromatin immunoprecipitation coupled with DNA sequencing and RNA‐seq analyses revealed that OC2 triggered ACSL5, which is strongly expressed in IM of the stomach but not in GM, indicating that OC2 and ACSL5 are early‐stage biomarkers for GC. We also observed a high correlation between the levels of OC2 and ACSL5 mRNAs in the GENT database These results suggest that epigenetic alteration of OC2 upregulates its expression, which then activates ACSL5; thus, OC2 is induced in IM by epigenetic alteration and triggers ACSL5 expression, and thus OC2 and ACSL5 may cooperatively promote intestinal differentiation and GC progression. What's new? DNA hypomethylation can promote cancer development through activation of genes with oncogenic potential. Here, the authors found that CpGs in the promoter‐proximal DNA of ONECUT2 were hypomethylated in intestinal metaplasia and gastric cancers, and that hypomethylation was associated with ONECUT2 upregulation. Functional analysis demonstrated that ONECUT2 has oncogenic potential and could activate ACSL5, which is also expressed in intestinal metaplasia, suggesting that ONECUT2 and ACSL5 may cooperate to promote intestinal differentiation or development of gastric cancer. Taken together, the findings suggest that ONECUT2 and its downstream target ACSL5 could be used to develop early detection biomarkers and prevent gastric carcinogenesis.
Collapse
Affiliation(s)
- Eun-Hye Seo
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Hee-Jin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Byungho Lim
- Division of Drug Discovery Research, Research Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jong-Lyul Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.,Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang-Il Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Yong Jeong
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu-Sang Song
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Sung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
20
|
ONECUT2 overexpression promotes RAS-driven lung adenocarcinoma progression. Sci Rep 2019; 9:20021. [PMID: 31882655 PMCID: PMC6934839 DOI: 10.1038/s41598-019-56277-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Aberrant differentiation, driven by activation of normally silent tissue-specific genes, results in a switch of cell identity and often leads to cancer progression. The underlying genetic and epigenetic events are largely unexplored. Here, we report ectopic activation of the hepatobiliary-, intestinal- and neural-specific gene one cut homeobox 2 (ONECUT2) in various subtypes of lung cancer. ONECUT2 expression was associated with poor prognosis of RAS-driven lung adenocarcinoma. ONECUT2 overexpression promoted the malignant growth and invasion of A549 lung cancer cells in vitro, as well as xenograft tumorigenesis and bone metastases of these cells in vivo. Integrative transcriptomics and epigenomics analyses suggested that ONECUT2 promoted the trans-differentiation of lung cancer cells by preferentially targeting and regulating the activity of bivalent chromatin domains through modulating Polycomb Repressive Complex 2 (PRC2) occupancy. Our findings demonstrate that ONECUT2 is a lineage-specific and context-dependent oncogene in lung adenocarcinoma and suggest that ONECUT2 is a potential therapeutic target for these tumors.
Collapse
|
21
|
Janeckova L, Kostovcikova K, Svec J, Stastna M, Strnad H, Kolar M, Hudcovic T, Stancikova J, Tureckova J, Baloghova N, Sloncova E, Galuskova K, Tlaskalova-Hogenova H, Korinek V. Unique Gene Expression Signatures in the Intestinal Mucosa and Organoids Derived from Germ-Free and Monoassociated Mice. Int J Mol Sci 2019; 20:ijms20071581. [PMID: 30934845 PMCID: PMC6480644 DOI: 10.3390/ijms20071581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022] Open
Abstract
Commensal microbiota contribute to gut homeostasis by inducing transcription of mucosal genes. Analysis of the impact of various microbiota on intestinal tissue provides an important insight into the function of this organ. We used cDNA microarrays to determine the gene expression signature of mucosa isolated from the small intestine and colon of germ-free (GF) mice and animals monoassociated with two E. coli strains. The results were compared to the expression data obtained in conventionally reared (CR) mice. In addition, we analyzed gene expression in colon organoids derived from CR, GF, and monoassociated animals. The analysis revealed that the complete absence of intestinal microbiota mainly affected the mucosal immune system, which was not restored upon monoassociation. The most important expression changes observed in the colon mucosa indicated alterations in adipose tissue and lipid metabolism. In the comparison of differentially expressed genes in the mucosa or organoids obtained from GF and CR mice, only six genes were common for both types of samples. The results show that the increased expression of the angiopoietin-like 4 (Angptl4) gene encoding a secreted regulator of lipid metabolism indicates the GF status.
Collapse
Affiliation(s)
- Lucie Janeckova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Klara Kostovcikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Jiri Svec
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
- Department of Radiotherapy and Oncology, Third Faculty of Medicine, Charles University, Prague, Srobarova 50, 100 34 Prague 10, Czech Republic.
| | - Monika Stastna
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Michal Kolar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Tomas Hudcovic
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Jitka Stancikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Jolana Tureckova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Nikol Baloghova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Eva Sloncova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Katerina Galuskova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Helena Tlaskalova-Hogenova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| | - Vladimir Korinek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
22
|
ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat Med 2018; 24:1887-1898. [PMID: 30478421 DOI: 10.1038/s41591-018-0241-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 09/04/2018] [Indexed: 01/06/2023]
Abstract
Treatment of prostate cancer (PC) by androgen suppression promotes the emergence of aggressive variants that are androgen receptor (AR) independent. Here we identify the transcription factor ONECUT2 (OC2) as a master regulator of AR networks in metastatic castration-resistant prostate cancer (mCRPC). OC2 acts as a survival factor in mCRPC models, suppresses the AR transcriptional program by direct regulation of AR target genes and the AR licensing factor FOXA1, and activates genes associated with neural differentiation and progression to lethal disease. OC2 appears active in a substantial subset of human prostate adenocarcinoma and neuroendocrine tumors. Inhibition of OC2 by a newly identified small molecule suppresses metastasis in mice. These findings suggest that OC2 displaces AR-dependent growth and survival mechanisms in many cases where AR remains expressed, but where its activity is bypassed. OC2 is also a potential drug target in the metastatic phase of aggressive PC.
Collapse
|
23
|
Ghurburrun E, Borbath I, Lemaigre FP, Jacquemin P. Liver and Pancreas: Do Similar Embryonic Development and Tissue Organization Lead to Similar Mechanisms of Tumorigenesis? Gene Expr 2018; 18:149-155. [PMID: 29580319 PMCID: PMC6190115 DOI: 10.3727/105221618x15216414278706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The liver and pancreas are closely associated organs that share a common embryological origin. They display amphicrine properties and have similar exocrine organization with parenchymal cells, namely, hepatocytes and acinar cells, secreting bile and pancreatic juice into the duodenum via a converging network of bile ducts and pancreatic ducts. Here we compare and highlight the similarities of molecular mechanisms leading to liver and pancreatic cancer development. We suggest that unraveling tumor development in an organ may provide insight into our understanding of carcinogenesis in the other organ.
Collapse
Affiliation(s)
- Elsa Ghurburrun
- *Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Ivan Borbath
- †Université catholique de Louvain, Department of Hepato-Gastro-Enterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Patrick Jacquemin
- *Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
24
|
Mitkin NA, Muratova AM, Korneev KV, Pavshintsev VV, Rumyantsev KA, Vagida MS, Uvarova AN, Afanasyeva MA, Schwartz AM, Kuprash DV. Protective C allele of the single-nucleotide polymorphism rs1335532 is associated with strong binding of Ascl2 transcription factor and elevated CD58 expression in B-cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3211-3220. [PMID: 30006149 DOI: 10.1016/j.bbadis.2018.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/23/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022]
Abstract
CD58 is expressed on the surface of antigen-presenting cells, including B-cells, and provides co-stimulation to regulatory T-cells (Treg) through CD2 receptor binding. Tregs appear to be essential suppressors of tissue-specific autoimmune responses. Thereby, CD58 plays protective role in multiple sclerosis (MS) and CD58 was identified among several loci associated with MS susceptibility. Minor (C) variant of the single-nucleotide polymorphism (SNP) rs1335532 is associated with lower MS risk according to genome-wide association studies (GWAS) and its presence correlates with higher CD58 mRNA levels in MS patients. We found that genomic region containing rs1335532 has enhancer properties and can significantly boost the CD58 promoter activity in lymphoblast cells. Using bioinformatics and pull-down assay we found that the protective (C) rs1335532 allele created functional binding site for ASCL2 transcription factor, a target of the Wnt signaling pathway. Both in B-lymphoblastoid cell lines and in primary B-cells, as well as in a monocytic cell line, activation of Wnt signaling resulted in an increased CD58 promoter activity in the presence of the protective but not the risk allele of rs1335532, whereas ASCL2 knockdown abrogated this effect. In summary, our results suggest that ASCL2 mediates the protective function of rs1335532 minor (C) allele in MS.
Collapse
Affiliation(s)
- Nikita A Mitkin
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alisa M Muratova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Korneev
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | - Aksinya N Uvarova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Marina A Afanasyeva
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anton M Schwartz
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
25
|
The molecular functions of hepatocyte nuclear factors - In and beyond the liver. J Hepatol 2018; 68:1033-1048. [PMID: 29175243 DOI: 10.1016/j.jhep.2017.11.026] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The hepatocyte nuclear factors (HNFs) namely HNF1α/β, FOXA1/2/3, HNF4α/γ and ONECUT1/2 are expressed in a variety of tissues and organs, including the liver, pancreas and kidney. The spatial and temporal manner of HNF expression regulates embryonic development and subsequently the development of multiple tissues during adulthood. Though the HNFs were initially identified individually based on their roles in the liver, numerous studies have now revealed that the HNFs cross-regulate one another and exhibit synergistic relationships in the regulation of tissue development and function. The complex HNF transcriptional regulatory networks have largely been elucidated in rodent models, but less so in human biological systems. Several heterozygous mutations in these HNFs were found to cause diseases in humans but not in rodents, suggesting clear species-specific differences in mutational mechanisms that remain to be uncovered. In this review, we compare and contrast the expression patterns of the HNFs, the HNF cross-regulatory networks and how these liver-enriched transcription factors serve multiple functions in the liver and beyond, extending our focus to the pancreas and kidney. We also summarise the insights gained from both human and rodent studies of mutations in several HNFs that are known to lead to different disease conditions.
Collapse
|
26
|
Augereau C, Collet L, Vargiu P, Guerra C, Ortega S, Lemaigre FP, Jacquemin P. Chronic pancreatitis and lipomatosis are associated with defective function of ciliary genes in pancreatic ductal cells. Hum Mol Genet 2018; 25:5017-5026. [PMID: 28159992 DOI: 10.1093/hmg/ddw332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/23/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic diseases associated with defects in primary cilia are classified as ciliopathies. Pancreatic lesions and ductal cysts are found in patients with ciliopathic polycystic kidney diseases suggesting a close connection between pancreatic defects and primary cilia. Here we investigate the role of two genes whose deletion is known to cause primary cilium defects, namely Hnf6 and Lkb1, in pancreatic ductal homeostasis. We find that mice with postnatal duct-specific deletion of Hnf6 or Lkb1 show duct dilations. Cells lining dilated ducts present shorter cilia with swollen tips, suggesting defective intraciliary transport. This is associated with signs of chronic pancreatitis, namely acinar-to-ductal metaplasia, acinar proliferation and apoptosis, presence of inflammatory infiltrates, fibrosis and lipomatosis. Our data reveal a tight association between ductal ciliary defects and pancreatitis with perturbed acinar homeostasis and differentiation. Such injuries can account for the increased risk to develop pancreatic cancer in Peutz-Jeghers patients who carry LKB1 loss-of-function mutations.
Collapse
Affiliation(s)
- Cécile Augereau
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Louis Collet
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Pierfrancesco Vargiu
- Transgenic Mice Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Carmen Guerra
- Molecular Oncology, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Sagrario Ortega
- Transgenic Mice Core Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
27
|
Culturing and transcriptome profiling of progenitor-like colonies derived from adult mouse pancreas. Stem Cell Res Ther 2017; 8:172. [PMID: 28747214 PMCID: PMC5530554 DOI: 10.1186/s13287-017-0626-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Background Transplantation of insulin-producing cells is considered an important diabetes therapy. Many research studies have shown that insulin-producing cells can be derived from the in-vitro cultured pancreatic colonies with self-renewal ability and multilineage potential. Even though these progenitor-like colonies have been prepared from adult pancreas cells, the efficient culture method is hardly established and regulation of the colonies is rarely known. We confirmed previously that single cells acquired from adult mouse pancreas could form cyst-like colonies in a 3D semi-solid system containing Matrigel and methylcellulose. These colonies could be passaged continuously without losing progenitor-like capacity. In the previous culturing system, however, conditioned medium from murine embryonic-stem-cell-derived pancreatic-like cells was used. This unregulated ingredient may reduce repeatability and affect following study. Thus, a new culturing system with certain components needs to be developed. Methods Single cell suspension was acquired from adult mouse pancreas and cultured in a Matrigel-based 3D system with epidermal growth factor, Nicotinamide, B27, and Noggin to form ring colonies. Serial-passage assay was performed to evaluate self-renewal ability. Real-time polymerase chain reaction and immunostaining were used to detect the expression of progenitor-related genes. A 2D differentiation method was used to testify the multilineage potency of the colonies. High-throughput sequencing (HTS) of the colonies was performed to profile the differentially expressed genes. Results We developed a 3D culturing system deprived of conditioned medium to propagate those colonies with high proliferative efficiency. HTS of the transcriptome of mRNAs, microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) showed differentially expressed genes compared to the whole pancreas (as control). In mRNAs, several surface marker genes were identified in the colonies. Moreover in noncoding RNAs, miR-21a, miR-31 and miR-155 were upregulated and miR-217, miR-802 and miR-375 were downregulated in colonies along with a number of other miRNAs and lncRNAs. Conclusions Our results offer an efficient culture system for pancreatic progenitor-like colonies and HTS of the colonies serves as a target resource for following study of in-vitro cultured pancreatic progenitors. These findings should also contribute to our understanding of the transcriptional regulation of these progenitor-like colonies and the mechanisms behind their functions. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0626-y) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Lemaire LA, Goulley J, Kim YH, Carat S, Jacquemin P, Rougemont J, Constam DB, Grapin-Botton A. Bicaudal C1 promotes pancreatic NEUROG3+ endocrine progenitor differentiation and ductal morphogenesis. Development 2015; 142:858-70. [PMID: 25715394 DOI: 10.1242/dev.114611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In human, mutations in bicaudal C1 (BICC1), an RNA binding protein, have been identified in patients with kidney dysplasia. Deletion of Bicc1 in mouse leads to left-right asymmetry randomization and renal cysts. Here, we show that BICC1 is also expressed in both the pancreatic progenitor cells that line the ducts during development, and in the ducts after birth, but not in differentiated endocrine or acinar cells. Genetic inactivation of Bicc1 leads to ductal cell over-proliferation and cyst formation. Transcriptome comparison between WT and Bicc1 KO pancreata, before the phenotype onset, reveals that PKD2 functions downstream of BICC1 in preventing cyst formation in the pancreas. Moreover, the analysis highlights immune cell infiltration and stromal reaction developing early in the pancreas of Bicc1 knockout mice. In addition to these functions in duct morphogenesis, BICC1 regulates NEUROG3(+) endocrine progenitor production. Its deletion leads to a late but sustained endocrine progenitor decrease, resulting in a 50% reduction of endocrine cells. We show that BICC1 functions downstream of ONECUT1 in the pathway controlling both NEUROG3(+) endocrine cell production and ductal morphogenesis, and suggest a new candidate gene for syndromes associating kidney dysplasia with pancreatic disorders, including diabetes.
Collapse
Affiliation(s)
- Laurence A Lemaire
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Joan Goulley
- ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Yung Hae Kim
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Solenne Carat
- BBCF, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Patrick Jacquemin
- de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Jacques Rougemont
- BBCF, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Daniel B Constam
- ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
29
|
Onecut1 and Onecut2 transcription factors operate downstream of Pax6 to regulate horizontal cell development. Dev Biol 2015; 402:48-60. [PMID: 25794677 DOI: 10.1016/j.ydbio.2015.02.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 11/22/2022]
Abstract
Genetic studies of the last decades strongly indicated that generation of particular retinal cell types is governed by gene regulatory networks of transcription factors and their target genes. The paired and homeodomain transcription factor Pax6 plays a pivotal role in retinal development as its inactivation in the retinal progenitor cell population leads to abolished differentiation of all retinal cell types. However, until now, only a few transcription factors operating downstream of Pax6 responsible for generation of individual retinal cell types have been identified. In this study, we identified two transcription factors of the Onecut family, Onecut1 and Onecut2, as Pax6 downstream-acting factors. Onecut1 and Onecut2 were previously shown to be expressed in developing horizontal cells, retinal ganglion cells and cone photoreceptors; however, their role in differentiation of these cell types is poorly understood. In this study, we show that the horizontal cell genesis is severely disturbed in Onecut-deficient retinae. In single Onecut1 and Onecut2 mutants, the number of horizontal cells is dramatically reduced while horizontal cells are completely missing in the Onecut1/Onecut2 compound mutant. Analysis of genes involved in the horizontal cell genesis such as Foxn4, Ptf1a, Prox1 and Lim1 showed that although horizontal cells are initially formed, they are not maintained in Onecut-deficient retinae. Taken together, this study suggests the model in which Pax6 regulates the maintenance of horizontal cells through the activation of Onecut1 and Onecut2 transcription factors.
Collapse
|
30
|
Farr RJ, Joglekar MV, Hardikar AA. Circulating microRNAs in Diabetes Progression: Discovery, Validation, and Research Translation. EXPERIENTIA SUPPLEMENTUM (2012) 2015; 106:215-244. [PMID: 26608206 DOI: 10.1007/978-3-0348-0955-9_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Diabetes, in all of its forms, is a disease state that demonstrates wide ranging pathological effects throughout the body. Until now, the only method of diagnosing and monitoring the progression of diabetes was through the measurement of blood glucose. Unfortunately, beta cell dysfunction initiates well before the clinical onset of diabetes, and so the development of an effective biomarker signature is of paramount importance to predict and monitor the progression of this disease. MicroRNAs (miRNAs/miRs) are small (18-22 nucleotide) noncoding (nc)RNAs that post-transcriptionally regulate endogenous gene expression by targeted inhibition or degradation of messenger (m)RNA. Recently, miRNAs have shown great promise as biomarkers as some exhibit differential expression in multiple disease states, including type 1 and type 2 diabetes (T1D/T2D). Furthermore, miRNAs are quite stable in circulation, resistant to freeze-thaw and pH-mediated degradation, and are relatively easy to detect using quantitative (q)PCR. Here, we discuss microRNAs that may form a diabetes biomarker signature. To identify these transcripts we outline miRNAs that play a central role in pancreas development and diabetes, as well as previously identified miRNAs with differential expression in individuals with T1D and T2D. Validation and refinement of a miRNA biomarker signature for diabetes would allow identification and intervention of individuals at risk of this disease, as well as stratification and monitoring of patients with established diabetes.
Collapse
Affiliation(s)
- Ryan J Farr
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Sydney Medical School, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW, 2050, Australia
| | - Mugdha V Joglekar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Sydney Medical School, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW, 2050, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Sydney Medical School, The University of Sydney, Level 6, Medical Foundation Building, 92-94 Parramatta Road, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
31
|
Chen Y, Verfaillie CM. MicroRNAs: the fine modulators of liver development and function. Liver Int 2014; 34:976-90. [PMID: 24517588 DOI: 10.1111/liv.12496] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
MicroRNAs are a class of small non-coding RNAs involved in the transcriptional and post-transcriptional regulation of gene expression. The function of miRNAs in liver disease including hepatocellular carcinoma (HCC), hepatitis, and alcoholic liver disease, have been widely studied and extensively reviewed. Increasing evidence demonstrates that miRNAs also play a critical role in normal liver development and in the fine-tuning of fundamental biological liver processes. In this review, we highlight the most recent findings on the role of miRNAs in liver specification and differentiation, liver cell development, as well as in the many metabolic functions of the liver, including glucose, lipid, iron and drug metabolism. These findings demonstrate an important role of miRNAs in normal liver development and function. Further researches will be needed to fully understand how miRNAs regulate liver generation and metabolic function, which should then lead to greater insights in liver biology and perhaps open up the possibility to correct errors that cause liver diseases or metabolic disorders.
Collapse
Affiliation(s)
- Yemiao Chen
- Southwest Hospital, and Key Laboratory of Tumor Immunopathology of the Ministry of Education of China, Institute of Pathology and Southwest Cancer Center, Third Military Medical University, Chongqing, China; Department of Development and Regeneration, Stem Cell Institute Leuven, Cluster Stem Cell Biology and Embryology, KU Leuven Medical School, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
32
|
Loss of HNF6 expression correlates with human pancreatic cancer progression. J Transl Med 2014; 94:517-27. [PMID: 24638272 PMCID: PMC4068339 DOI: 10.1038/labinvest.2014.47] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/28/2013] [Accepted: 02/10/2014] [Indexed: 01/27/2023] Open
Abstract
Normal pancreatic epithelium progresses through various stages of pancreatic intraepithelial neoplasms (PanINs) in the development of pancreatic ductal adenocarcinoma (PDAC). Transcriptional regulation of this progression is poorly understood. In mouse, the hepatic nuclear factor 6 (Hnf6) transcription factor is expressed in ductal cells and at lower levels in acinar cells of the adult pancreas, but not in mature endocrine cells. Hnf6 is critical for terminal differentiation of the ductal epithelium during embryonic development and for pancreatic endocrine cell specification. We previously showed that, in mice, loss of Hnf6 from the pancreatic epithelium during organogenesis results in increased duct proliferation and altered duct architecture, increased periductal fibrosis and acinar-to-ductal metaplasia. Here we show that decreased expression of HNF6 is strongly correlated with increased severity of PanIN lesions in samples of human pancreata and is absent from >90% of PDAC. Mouse models in which cancer progression can be analyzed from the earliest stages that are seldom accessible in humans support a role for Hnf6 loss in progression from early- to late-stage PanIN and PDAC. In addition, gene expression analyses of human pancreatic cancer reveal decreased expression of HNF6 and its direct and indirect target genes compared with normal tissue and upregulation of genes that act in opposition to HNF6 and its targets. The negative correlation between HNF6 expression and pancreatic cancer progression suggests that HNF6 maintains pancreatic epithelial homeostasis in humans, and that its loss contributes to the progression from PanIN to ductal adenocarcinoma. Insight on the role of HNF6 in pancreatic cancer development could lead to its use as a biomarker for early detection and prognosis.
Collapse
|
33
|
Francius C, Clotman F. Generating spinal motor neuron diversity: a long quest for neuronal identity. Cell Mol Life Sci 2014; 71:813-29. [PMID: 23765105 PMCID: PMC11113339 DOI: 10.1007/s00018-013-1398-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 03/26/2023]
Abstract
Understanding how thousands of different neuronal types are generated in the CNS constitutes a major challenge for developmental neurobiologists and is a prerequisite before considering cell or gene therapies of nervous lesions or pathologies. During embryonic development, spinal motor neurons (MNs) segregate into distinct subpopulations that display specific characteristics and properties including molecular identity, migration pattern, allocation to specific motor columns, and innervation of defined target. Because of the facility to correlate these different characteristics, the diversification of spinal MNs has become the model of choice for studying the molecular and cellular mechanisms underlying the generation of multiple neuronal populations in the developing CNS. Therefore, how spinal motor neuron subpopulations are produced during development has been extensively studied during the last two decades. In this review article, we will provide a comprehensive overview of the genetic and molecular mechanisms that contribute to the diversification of spinal MNs.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 55 Avenue Hippocrate, Box (B1.55.11), 1200 Brussels, Belgium
| |
Collapse
|
34
|
Yuan XW, Wang DM, Hu Y, Tang YN, Shi WW, Guo XJ, Song JG. Hepatocyte nuclear factor 6 suppresses the migration and invasive growth of lung cancer cells through p53 and the inhibition of epithelial-mesenchymal transition. J Biol Chem 2013; 288:31206-16. [PMID: 24022481 DOI: 10.1074/jbc.m113.480285] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Epithelial-mesenchymal transition plays an important role in many patho-physiological processes, including cancer invasion and metastatic progression. Hepatocyte nuclear factor 6 (HNF6) has been known to be an important factor for both physiological and pathological functions in liver and pancreas. However, its role in EMT and lung cancer progression remains unidentified. We observed that HNF6 level can be down-regulated by TGF-β1 in human lung cancer cells. Knockdown of HNF6 induced EMT and increased cell migration. In contrast, ectopically expression of HNF6 inhibited cell migration and attenuated TGF-β1-induced EMT. The data suggest that HNF6 plays a role in maintaining epithelial phenotype, which suppresses EMT. HNF6 also inhibits both colony formation and proliferation of lung cancer cells. It pronouncedly reduced the formation of tumor xenografts in nude mice. In addition, HNF6 can activate the promoter activity of p53 by directly binding to a specific region of its promoter and therefore increase the protein level of tumor suppressor p53. p53 knockdown induced EMT and increased cell migration, whereas the opposite effect was generated by p53 overexpression. p53 knockdown also inhibited the effect of HNF6 on EMT and cell migration, indicating that p53 is required for the functions of HNF6 herein. Moreover, there is a high positive correlation among the expression levels of HNF6, p53, and E-cadherin in human lung cancer cells and tissues. The data suggest that HNF6 inhibits EMT, cell migration, and invasive growth through a mechanism involving the transcriptional activation of p53.
Collapse
Affiliation(s)
- Xin-Wang Yuan
- From the Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Gubelmann C, Waszak SM, Isakova A, Holcombe W, Hens K, Iagovitina A, Feuz JD, Raghav SK, Simicevic J, Deplancke B. A yeast one-hybrid and microfluidics-based pipeline to map mammalian gene regulatory networks. Mol Syst Biol 2013; 9:682. [PMID: 23917988 PMCID: PMC3779800 DOI: 10.1038/msb.2013.38] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
The comprehensive mapping of gene promoters and enhancers has significantly improved our understanding of how the mammalian regulatory genome is organized. An important challenge is to elucidate how these regulatory elements contribute to gene expression by identifying their trans-regulatory inputs. Here, we present the generation of a mouse-specific transcription factor (TF) open-reading frame clone library and its implementation in yeast one-hybrid assays to enable large-scale protein-DNA interaction detection with mouse regulatory elements. Once specific interactions are identified, we then use a microfluidics-based method to validate and precisely map them within the respective DNA sequences. Using well-described regulatory elements as well as orphan enhancers, we show that this cross-platform pipeline characterizes known and uncovers many novel TF-DNA interactions. In addition, we provide evidence that several of these novel interactions are relevant in vivo and aid in elucidating the regulatory architecture of enhancers.
Collapse
Affiliation(s)
- Carine Gubelmann
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
37
|
Freeman TC, Ivens A, Baillie JK, Beraldi D, Barnett MW, Dorward D, Downing A, Fairbairn L, Kapetanovic R, Raza S, Tomoiu A, Alberio R, Wu C, Su AI, Summers KM, Tuggle CK, Archibald AL, Hume DA. A gene expression atlas of the domestic pig. BMC Biol 2012; 10:90. [PMID: 23153189 PMCID: PMC3814290 DOI: 10.1186/1741-7007-10-90] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/23/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This work describes the first genome-wide analysis of the transcriptional landscape of the pig. A new porcine Affymetrix expression array was designed in order to provide comprehensive coverage of the known pig transcriptome. The new array was used to generate a genome-wide expression atlas of pig tissues derived from 62 tissue/cell types. These data were subjected to network correlation analysis and clustering. RESULTS The analysis presented here provides a detailed functional clustering of the pig transcriptome where transcripts are grouped according to their expression pattern, so one can infer the function of an uncharacterized gene from the company it keeps and the locations in which it is expressed. We describe the overall transcriptional signatures present in the tissue atlas, where possible assigning those signatures to specific cell populations or pathways. In particular, we discuss the expression signatures associated with the gastrointestinal tract, an organ that was sampled at 15 sites along its length and whose biology in the pig is similar to human. We identify sets of genes that define specialized cellular compartments and region-specific digestive functions. Finally, we performed a network analysis of the transcription factors expressed in the gastrointestinal tract and demonstrate how they sub-divide into functional groups that may control cellular gastrointestinal development. CONCLUSIONS As an important livestock animal with a physiology that is more similar than mouse to man, we provide a major new resource for understanding gene expression with respect to the known physiology of mammalian tissues and cells. The data and analyses are available on the websites http://biogps.org and http://www.macrophages.com/pig-atlas.
Collapse
Affiliation(s)
- Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Alasdair Ivens
- Fios Genomics Ltd, ETTC, King's Buildings, Edinburgh EH9 3JL UK,Centre for Immunity, Infection and Evolution, University of Edinburgh Ashworth
Labs, King's Buildings, West Mains Road, Edinburgh EH9 3JT
| | - J Kenneth Baillie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Dario Beraldi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK,Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson
way, Cambridge, CB2 0RE, UK
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - David Dorward
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Alison Downing
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Lynsey Fairbairn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Ronan Kapetanovic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Sobia Raza
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Andru Tomoiu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - Ramiro Alberio
- Division of Animal Sciences, School of Biosciences, University of Nottingham,
Sutton Bonington, Leicestershire LE12 5RD UK
| | - Chunlei Wu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute,
MEM-216, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, The Scripps Research Institute,
MEM-216, 10550 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Kim M Summers
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | | | - Alan L Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of
Edinburgh, Easter Bush, EH25 9PS, UK
| |
Collapse
|
38
|
Espana A, Clotman F. Onecut transcription factors are required for the second phase of development of the A13 dopaminergic nucleus in the mouse. J Comp Neurol 2012; 520:1424-41. [PMID: 22102297 DOI: 10.1002/cne.22803] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The A13 dopaminergic nucleus belongs to the incerto-hypothalamic area. It is thought to exert autonomous roles by integrating sensory input to autonomic, neuroendocrine, and motor output. Although its early development has been well characterized, the factors that contribute to later steps of its formation remain unknown. Transcription factors of the Onecut family have been detected in the A13 nucleus, raising the question of possible roles of these factors during A13 development. Using a combination of immunofluorescence analyses on sections and after whole-mount labeling followed by 3D reconstructions, we further characterized the second phase of development of the A13 nucleus in the mouse, described the distribution of the Onecut proteins throughout A13 development, and analyzed the phenotype of this nucleus in single or compound mutant embryos for the Onecut factors. Here we show that A13 development can be divided into two successive phases. First, during radial migration toward the pial surface the A13 cells differentiate into dopaminergic neurons. Second, these cells gather in the vicinity of the third ventricle. Onecut factors are dynamically and differentially expressed in the A13 nucleus during these two phases of development. In Onecut mutant embryos, the A13 neurons differentiate normally but scatter in the diencephalon and fail to properly gather close to the third ventricle. Hence, Onecut factors are markers of the A13 nucleus throughout embryonic development. They are dispensable for the first phase of A13 development but are required for the second phase of development and for maintenance of this nucleus.
Collapse
Affiliation(s)
- Agnès Espana
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, B-1200, Belgium
| | | |
Collapse
|
39
|
Roy A, Francius C, Rousso DL, Seuntjens E, Debruyn J, Luxenhofer G, Huber AB, Huylebroeck D, Novitch BG, Clotman F. Onecut transcription factors act upstream of Isl1 to regulate spinal motoneuron diversification. Development 2012; 139:3109-19. [PMID: 22833130 DOI: 10.1242/dev.078501] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During development, spinal motoneurons (MNs) diversify into a variety of subtypes that are specifically dedicated to the motor control of particular sets of skeletal muscles or visceral organs. MN diversification depends on the coordinated action of several transcriptional regulators including the LIM-HD factor Isl1, which is crucial for MN survival and fate determination. However, how these regulators cooperate to establish each MN subtype remains poorly understood. Here, using phenotypic analyses of single or compound mutant mouse embryos combined with gain-of-function experiments in chick embryonic spinal cord, we demonstrate that the transcriptional activators of the Onecut family critically regulate MN subtype diversification during spinal cord development. We provide evidence that Onecut factors directly stimulate Isl1 expression in specific MN subtypes and are therefore required to maintain Isl1 production at the time of MN diversification. In the absence of Onecut factors, we observed major alterations in MN fate decision characterized by the conversion of somatic to visceral MNs at the thoracic levels of the spinal cord and of medial to lateral MNs in the motor columns that innervate the limbs. Furthermore, we identify Sip1 (Zeb2) as a novel developmental regulator of visceral MN differentiation. Taken together, these data elucidate a comprehensive model wherein Onecut factors control multiple aspects of MN subtype diversification. They also shed light on the late roles of Isl1 in MN fate decision.
Collapse
Affiliation(s)
- Agnès Roy
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, 1200 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mishra PK, Teale JM. Transcriptome analysis of the ependymal barrier during murine neurocysticercosis. J Neuroinflammation 2012; 9:141. [PMID: 22731103 PMCID: PMC3527296 DOI: 10.1186/1742-2094-9-141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/23/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) barriers play a pivotal role in the protection and homeostasis of the CNS by enabling the exchange of metabolites while restricting the entry of xenobiotics, blood cells and blood-borne macromolecules. While the blood-brain barrier and blood-cerebrospinal fluid barrier (CSF) control the interface between the blood and CNS, the ependyma acts as a barrier between the CSF and parenchyma, and regulates hydrocephalic pressure and metabolic toxicity. Neurocysticercosis (NCC) is an infection of the CNS caused by the metacestode (larva) of Taenia solium and a major cause of acquired epilepsy worldwide. The common clinical manifestations of NCC are seizures, hydrocephalus and symptoms due to increased intracranial pressure. The majority of the associated pathogenesis is attributed to the immune response against the parasite. The properties of the CNS barriers, including the ependyma, are affected during infection, resulting in disrupted homeostasis and infiltration of leukocytes, which correlates with the pathology and disease symptoms of NCC patients. RESULTS In order to characterize the role of the ependymal barrier in the immunopathogenesis of NCC, we isolated ependymal cells using laser capture microdissection from mice infected or mock-infected with the closely related parasite Mesocestoides corti, and analyzed the genes that were differentially expressed using microarray analysis. The expression of 382 genes was altered. Immune response-related genes were verified by real-time RT-PCR. Ingenuity Pathway Analysis (IPA) software was used to analyze the biological significance of the differentially expressed genes, and revealed that genes known to participate in innate immune responses, antigen presentation and leukocyte infiltration were affected along with the genes involved in carbohydrate, lipid and small molecule biochemistry. Further, MHC class II molecules and chemokines, including CCL12, were found to be upregulated at the protein level using immunofluorescence microscopy. This is important, because these molecules are members of the most significant pathways by IPA analyses. CONCLUSION Thus, our study indicates that ependymal cells actively express immune mediators and likely contribute to the observed immunopathogenesis during infection. Of particular interest is the major upregulation of antigen presentation pathway-related genes and chemokines/cytokines. This could explain how the ependyma is a prominent source of leukocyte infiltration into ventricles through the disrupted ependymal lining by way of pial vessels present in the internal leptomeninges in murine NCC.
Collapse
Affiliation(s)
- Pramod Kumar Mishra
- Department of Microbiology and Immunology, University of Texas Health Science Center, San Antonio, TX, USA
| | | |
Collapse
|
41
|
Espana A, Clotman F. Onecut factors control development of the Locus Coeruleus and of the mesencephalic trigeminal nucleus. Mol Cell Neurosci 2012; 50:93-102. [PMID: 22534286 DOI: 10.1016/j.mcn.2012.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 03/22/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022] Open
Abstract
The Locus Coeruleus (LC), the main noradrenergic nucleus in the vertebrate CNS, contributes to the regulation of several processes including arousal, sleep, adaptative behaviors and stress. Regulators controlling the formation of the LC have been identified but factors involved in its maintenance remain unknown. Here, we show that members of the Onecut (OC) family of transcription factors, namely HNF-6, OC-2 and OC-3, are required for maintenance of the LC phenotype. Indeed, in embryos lacking any OC proteins, LC neurons properly differentiate but abnormally migrate and eventually lose their noradrenergic characteristics. Surprisingly, the expression of Oc genes in these neurons is restricted to the earliest differentiation stages, suggesting that OC factors may regulate maintenance of the LC in a non cell-autonomous manner. Accordingly, the OC factors are present throughout development in a population directly adjacent to the LC, the rhombencephalic portion of the mesencephalic trigeminal nucleus (MTN). In the absence of OC factors, rhombencephalic MTN neurons fail to be generated, suggesting that OC proteins cell-autonomously control their production. Hence, we propose that OC factors are required at early developmental stages for differentiation of the MTN neurons that are in turn necessary for maintenance of the LC.
Collapse
Affiliation(s)
- A Espana
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, avenue Hippocrate 55 box B1.55.11, Brussels B-1200, Belgium.
| | | |
Collapse
|
42
|
Wu F, Sapkota D, Li R, Mu X. Onecut 1 and Onecut 2 are potential regulators of mouse retinal development. J Comp Neurol 2012; 520:952-69. [PMID: 21830221 PMCID: PMC3898336 DOI: 10.1002/cne.22741] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Our current study focuses on the expression of two members of the onecut transcription factor family, Onecut1 (Oc1) and Onecut2 (Oc2), in the developing mouse retina. By immunofluorescence staining, we found that Oc1 and Oc2 had very similar expression patterns throughout retinal development. Both factors started to be expressed in the retina at around embryonic day (E) 11.5. At early stages (E11.5 and E12.5), they were expressed in both the neuroblast layer (NBL) and ganglion cell layer (GCL). As development progressed (from E14.5 to postnatal day [P] 0), expression diminished in the retinal progenitor cells and became more restricted to the GCL. By P5, Oc1 and Oc2 were expressed at very low levels in the GCL. By co-labeling with transcription factors known to be involved in retinal ganglion cell (RGC) development, we found that Oc1 and Oc2 had extensive overlap with Math5 in the NBL, and that they completely overlapped with Pou4f2 and Isl1 in the GCL, but only partially in the NBL. Co-labeling of Oc1 with cell cycle markers confirmed that Oc1 was expressed in both proliferating retinal progenitors and postmitotic retinal cells. In addition, we demonstrated that expression of Oc1 and Oc2 did not require Math5, Isl1, or Pou4f2. Thus, Oc1 and Oc2 may regulate the formation of RGCs in a pathway independent of Math5, Pou4f2, and Isl1. Furthermore, we showed that Oc1 and Oc2 were expressed in both developing and mature horizontal cells (HCs). Therefore the two factors may also function in the genesis and maintenance of HCs.
Collapse
Affiliation(s)
- Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
| | - Renzhong Li
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Developmental Genomics Group, University at Buffalo, Buffalo, New York 14203
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14203
- State University of New York (SUNY) Eye Institute, University at Buffalo, Buffalo, New York 14203
- Cancer Center Support Grant (CCSG) Molecular Epidemiology and Functional Genomics (MEFG) Program, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
43
|
Negi S, Jetha A, Aikin R, Hasilo C, Sladek R, Paraskevas S. Analysis of beta-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One 2012; 7:e30415. [PMID: 22299040 PMCID: PMC3267725 DOI: 10.1371/journal.pone.0030415] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/15/2011] [Indexed: 12/20/2022] Open
Abstract
The stresses encountered during islet isolation and culture may have deleterious effects on beta-cell physiology. However, the biological response of human islet cells to isolation remains poorly characterized. A better understanding of the network of signaling pathways induced by islet isolation and culturing may lead to strategies aimed at improving islet graft survival and function. Laser capture microdissection (LCM) was used to extract beta-cell RNA from 1) intact pancreatic islets, 2) freshly isolated islets, 3) islets cultured for 3 days, and changes in gene expression were examined by microarray analysis. We identified a strong inflammatory response induced by islet isolation that continues during in-vitro culture manifested by upregulation of several cytokines and cytokine-receptors. The most highly upregulated gene, interleukin-8 (IL-8), was induced by 3.6-fold following islet isolation and 56-fold after 3 days in culture. Immunofluorescence studies showed that the majority of IL-8 was produced by beta-cells themselves. We also observed that several pancreas-specific transcription factors were down-regulated in cultured islets. Concordantly, several pancreatic progenitor cell-specific transcription factors like SOX4, SOX9, and ID2 were upregulated in cultured islets, suggesting progressive transformation of mature beta-cell phenotype toward an immature endocrine cell phenotype. Our findings suggest islet isolation and culture induces an inflammatory response and loss of the mature endocrine cell phenotype. A better understanding of the signals required to maintain a mature beta-cell phenotype may help improve the efficacy of islet transplantation.
Collapse
Affiliation(s)
- Sarita Negi
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Arif Jetha
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Reid Aikin
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Craig Hasilo
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Rob Sladek
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Steven Paraskevas
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
44
|
McKenna LB, Schug J, Friedman JR, McKenna JB, Kaestner KH, Friedman JR, Kaestner KH. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology 2010; 139:1654-64, 1664.e1. [PMID: 20659473 PMCID: PMC3156097 DOI: 10.1053/j.gastro.2010.07.040] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 07/06/2010] [Accepted: 07/21/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Whereas the importance of microRNA (miRNA) for the development of several tissues is well established, its role in the intestine is unknown. We aimed to quantify the complete miRNA expression profile of the mammalian intestinal mucosa and to determine the contribution of miRNAs to intestinal homeostasis using genetic means. METHODS We determined the miRNA transcriptome of the mouse intestinal mucosa using ultrahigh throughput sequencing. Using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP), we identified miRNA-messenger RNA target relationships in the jejunum. We employed gene ablation of the obligatory miRNA-processing enzyme Dicer1 to derive mice deficient for all miRNAs in intestinal epithelia. RESULTS miRNA abundance varies dramatically in the intestinal mucosa, from 1 read per million to 250,000. Of the 453 miRNA families identified, mmu-miR-192 is the most highly expressed in both the small and large intestinal mucosa, and there is a 53% overlap in the top 15 expressed miRNAs between the 2 tissues. The intestinal epithelium of Dicer1(loxP/loxP);Villin-Cre mutant mice is disorganized, with a decrease in goblet cells, a dramatic increase in apoptosis in crypts of both jejunum and colon, and accelerated jejunal cell migration. Furthermore, intestinal barrier function is impaired in Dicer1-deficient mice, resulting in intestinal inflammation with lymphocyte and neutrophil infiltration. Our list of miRNA-messenger RNA targeting relationships in the small intestinal mucosa provides insight into the molecular mechanisms behind the phenotype of Dicer1 mutant mice. CONCLUSIONS We have identified all intestinal miRNAs and shown using gene ablation of Dicer1 that miRNAs play a vital role in the differentiation and function of the intestinal epithelium.
Collapse
Affiliation(s)
- Lindsay B. McKenna
- Department of Genetics, University of Pennsylvania School of Medicine,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine
| | - Jonathan Schug
- Department of Genetics, University of Pennsylvania School of Medicine,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine
| | - Joshua R. Friedman
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Pennsylvania School of Medicine, Children’s Hospital of Philadelphia
| | - Jaime B McKenna
- Department of Genetics, University of Pennsylvania School of Medicine,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine,Corresponding author: , Phone: 215-898-8759
| | | | | |
Collapse
|
45
|
Dusing MR, Maier EA, Aronow BJ, Wiginton DA. Onecut-2 knockout mice fail to thrive during early postnatal period and have altered patterns of gene expression in small intestine. Physiol Genomics 2010; 42:115-25. [PMID: 20354101 DOI: 10.1152/physiolgenomics.00017.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ablation of the mouse genes for Onecut-2 and Onecut-3 was reported previously, but characterization of the resulting knockout mice was focused on in utero development, principally embryonic development of liver and pancreas. Here we examined postnatal development of these Onecut knockout mice, especially the critical period before weaning. Onecut-3 knockout mice develop normally during this period. However, Onecut-2 knockout mice fail to thrive, lagging behind their littermates in size and weight. By postnatal day (d)19, they are consistently 25-30% smaller. Onecut-2 knockout mice also have a much higher level of mortality before weaning, with only approximately 70% survival. Interestingly, Onecut-2 knockout mice that are heterozygous for the Onecut-3 knockout allele are diminished even further in their ability to thrive. They are approximately 50-60% as large as their normal-sized littermates at d19, and less than half of these mice survive to weaning. As reported previously, the Onecut-2/Onecut-3 double knockout is a perinatal lethal. Microarray technology was used to determine the effect of Onecut-2 ablation on gene expression in duodenum, whose epithelium has among the highest levels of Onecut-2. A subset of intestinally expressed genes showed dramatically altered patterns of expression. Many of these genes encode proteins associated with the epithelial membrane, including many involved in transport and metabolism. Previously, we reported that Onecut-2 was critical to temporal regulation of the adenosine deaminase gene in duodenum. Many of the genes with altered patterns of expression in Onecut-2 knockout mouse duodenum displayed changes in the timing of gene expression.
Collapse
Affiliation(s)
- Mary R Dusing
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
46
|
Francius C, Clotman F. Dynamic expression of the Onecut transcription factors HNF-6, OC-2 and OC-3 during spinal motor neuron development. Neuroscience 2010; 165:116-29. [DOI: 10.1016/j.neuroscience.2009.09.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/01/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
|
47
|
Simion A, Laudadio I, Prévot PP, Raynaud P, Lemaigre FP, Jacquemin P. MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2. Biochem Biophys Res Commun 2009; 391:293-8. [PMID: 19913497 DOI: 10.1016/j.bbrc.2009.11.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 11/07/2009] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small, non-coding RNAs that posttranscriptionally regulate gene expression mainly by binding to the 3'UTR of their target mRNAs. Recent data revealed that microRNAs have an important role in pancreas and liver development and physiology. Using cloning and microarray profiling approaches, we show that a unique repertoire of microRNAs is expressed at the onset of liver and pancreas organogenesis, and in pancreas and liver at key stages of cell fate determination. Among the microRNAs that are expressed at these stages, miR-495 and miR-218 were predicted to, respectively, target the Onecut (OC) transcription factors Hepatocyte Nuclear Factor-6 (HNF-6/OC-1) and OC-2, two important regulators of liver and pancreas development. MiR-495 and miR-218 are dynamically expressed in developing liver and pancreas, and by transient transfection, we show that they target HNF-6 and OC-2 3'UTRs. Moreover, when overexpressed in cultured cells, miR-495 and miR-218 decrease the endogenous levels of HNF-6 and OC-2 mRNA. These results indicate that the expression of regulators of liver and pancreas development is modulated by microRNAs. They also suggest a developmental role for miR-495 and miR-218.
Collapse
Affiliation(s)
- Alexandru Simion
- Université catholique de Louvain, de Duve Institute, 75 Avenue Hippocrate 7529, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progression of epithelial tumors. BIOCHEMISTRY (MOSCOW) 2008; 73:573-91. [PMID: 18605982 DOI: 10.1134/s0006297908050106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dedifferentiation and epithelial-mesenchymal transition are important steps in epithelial tumor progression. A central role in the control of functional and morphological properties of different cell types is attributed to tissue-specific transcription factors which form regulatory cascades that define specification and differentiation of epithelial cells during embryonic development. The main principles of the action of such regulatory systems are reviewed on an example of a network of hepatocyte nuclear factors (HNFs) which play a key role in establishment and maintenance of hepatocytes--the major functional type of liver cells. HNFs, described as proteins binding to promoters of most hepatospecific genes, not only control expression of functional liver genes, but are also involved in regulation of proliferation, morphogenesis, and detoxification processes. One of the central components of the hepatospecific regulatory network is nuclear receptor HNF4alpha. Derangement of the expression of this gene is associated with progression of rodent and human hepatocellular carcinomas (HCCs) and contributes to increase of proliferation, loss of epithelial morphology, and dedifferentiation. Dysfunction of HNF4alpha during HCC progression can be either caused by structural changes of this gene or occurs due to modification of up-stream regulatory signaling pathways. Investigations preformed on a model system of the mouse one-step HCC progression have shown that the restoration of HNF4alpha function in dedifferentiated cells causes partial reversion of malignant phenotype both in vitro and in vivo. Derangement of HNFs function was also described in other tumors of epithelial origin. We suppose that tissue-specific factors that underlie the key steps in differentiation programs of certain tissues and are able to receive or modulate signals from the cell environment might be considered as promising candidates for the role of tumor suppressors in the tissue types where they normally play the most significant role.
Collapse
Affiliation(s)
- N L Lazarevich
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| | | |
Collapse
|
49
|
Onecut transcription factor OC2 is a direct target of T-bet in type-1 T-helper cells. Genes Immun 2008; 9:302-8. [DOI: 10.1038/gene.2008.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|