1
|
Knudsen C, Moriya A, Nakato E, Gulati R, Akiyama T, Nakato H. Chondroitin sulfate regulates proliferation of Drosophila intestinal stem cells. PLoS Genet 2025; 21:e1011686. [PMID: 40343906 PMCID: PMC12063844 DOI: 10.1371/journal.pgen.1011686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
The basement membrane (BM) plays critical roles in stem cell maintenance and activity control. Here we show that chondroitin sulfate (CS), a major component of the Drosophila midgut BM, is required for proper control of intestinal stem cells (ISCs). Loss of Chsy, a critical CS biosynthetic gene, resulted in elevated levels of ISC proliferation during homeostasis, leading to midgut hyperplasia. Regeneration assays demonstrated that Chsy mutant ISCs failed to properly downregulate mitotic activity at the end of regeneration. We also found that CS is essential for the barrier integrity to prevent leakage of the midgut epithelium. CS is known to be polymerized by the action of the complex of Chsy and another critical protein, Chondroitin polymerizing factor (Chpf). We found that Chpf mutants show increased ISC division during midgut homeostasis and regeneration, similar to Chsy mutants. As Chpf is induced by a tissue damage during regeneration, our data suggest that Chpf functions with Chsy to facilitate CS remodeling and stimulate tissue repair. We propose that the completion of the repair of CS-containing BM acts as a prerequisite to properly terminate the regeneration process.
Collapse
Affiliation(s)
- Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ayano Moriya
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rishi Gulati
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Takuya Akiyama
- Department of Biology, The Porter Cancer Research Center, Indiana State University, Terre Haute, Indiana, United States of America
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Xue Y, Zhao Y, Yan S, Du R, Zhang H, Yao W, Bao T, Pan F, Bao S, Li X, Song Y. IL-1β Induced Intestinal Inflammation Pathogenesis in East Friesian Sheep: Insights from Organoid Modeling. Animals (Basel) 2025; 15:1097. [PMID: 40281931 PMCID: PMC12024061 DOI: 10.3390/ani15081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Establishing an appropriate model of intestinal inflammation in vitro is crucial for studying the pathogenesis of inflammatory bowel disease (IBD). While immortalized cell lines have long been employed to investigate intestinal cell functions and host-pathogen interactions in sheep, they inadequately mimic the physiological characteristics of ovine intestinal inflammation and may lose critical genetic features. The emergence of organoids has revolutionized in vitro intestinal inflammation modeling by offering superior structural and functional fidelity to native tissues. In this study, we developed an IL-1β-induced intestinal inflammation organoid model derived from East Friesian sheep ileal crypts. Our data demonstrate that treatment with 30 ng/mL IL-1β significantly increased inflammatory factor secretion, the apoptosis of intermediate cells, and disrupted barrier integrity while simultaneously reducing bud formation capacity, organoid area, and stem cell proliferation. RNA-seq analysis revealed that IL-1β activated the NF-κB/TNF/IL-17 signaling pathway in intestinal organoids, thereby orchestrating the inflammatory response. This study establishes a novel sheep-derived intestinal inflammation organoid model, providing a physiologically relevant platform to investigate intestinal inflammation pathogenesis. These findings offer a translational tool for advancing drug development and pharmacological mechanism exploration in ovine intestinal inflammation research.
Collapse
Affiliation(s)
- Yue Xue
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
- National Center of Technology Innovation for Dairy Industry, Hohhot 010020, China
| | - Yulong Zhao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shuo Yan
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Ruilin Du
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Huiming Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Wenna Yao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Teligun Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Fei Pan
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
- National Center of Technology Innovation for Dairy Industry, Hohhot 010020, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; (Y.X.); (Y.Z.); (S.Y.); (R.D.); (H.Z.); (W.Y.); (T.B.); (F.P.); (S.B.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
3
|
Eldridge-Thomas BL, Bohere JG, Roubinet C, Barthelemy A, Samuels TJ, Teixeira FK, Kolahgar G. The transmembrane protein Syndecan is required for stem cell survival and maintenance of their nuclear properties. PLoS Genet 2025; 21:e1011586. [PMID: 39913561 PMCID: PMC11819509 DOI: 10.1371/journal.pgen.1011586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 02/12/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Tissue maintenance is underpinned by resident stem cells whose activity is modulated by microenvironmental cues. Using Drosophila as a simple model to identify regulators of stem cell behaviour and survival in vivo, we have identified novel connections between the conserved transmembrane proteoglycan Syndecan, nuclear properties and stem cell function. In the Drosophila midgut, Syndecan depletion in intestinal stem cells results in their loss from the tissue, impairing tissue renewal. At the cellular level, Syndecan depletion alters cell and nuclear shape, and causes nuclear lamina invaginations and DNA damage. In a second tissue, the developing Drosophila brain, live imaging revealed that Syndecan depletion in neural stem cells results in nuclear envelope remodelling defects which arise upon cell division. Our findings reveal a new role for Syndecan in the maintenance of nuclear properties in diverse stem cell types.
Collapse
Affiliation(s)
- Buffy L. Eldridge-Thomas
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Jerome G. Bohere
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Chantal Roubinet
- Université de Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, ERL U1305, Rennes, France
| | - Alexandre Barthelemy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Tamsin J. Samuels
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Felipe Karam Teixeira
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Golnar Kolahgar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Trubin S, Patel DB, Tian A. Regulation of the Intestinal Stem Cell Pool and Proliferation in Drosophila. Cells 2024; 13:1856. [PMID: 39594605 PMCID: PMC11592481 DOI: 10.3390/cells13221856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Understanding the regulation of somatic stem cells, both during homeostasis and in response to environmental challenges like injury, infection, chemical exposure, and nutritional changes, is critical because their dysregulation can result in tissue degeneration or tumorigenesis. The use of models such as the Drosophila and mammalian adult intestines offers valuable insights into tissue homeostasis and regeneration, advancing our knowledge of stem cell biology and cancer development. This review highlights significant findings from recent studies, unveiling the molecular mechanisms that govern self-renewal, proliferation, differentiation, and regeneration of intestinal stem cells (ISCs). These insights not only enhance our understanding of normal tissue maintenance but also provide critical perspectives on how ISC dysfunction can lead to pathological conditions such as colorectal cancer (CRC).
Collapse
Affiliation(s)
- Simona Trubin
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Dhruv B. Patel
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
| | - Aiguo Tian
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, New Orleans, LA 70112, USA
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Nishiyama NC, Silverstein S, Darlington K, Kennedy Ng MM, Clough KM, Bauer M, Beasley C, Bharadwaj A, Ganesan R, Kapadia MR, Lau G, Lian G, Rahbar R, Sadiq TS, Schaner MR, Stem J, Friton J, Faubion WA, Sheikh SZ, Furey TS. eQTL in diseased colon tissue identifies novel target genes associated with IBD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618229. [PMID: 39464142 PMCID: PMC11507739 DOI: 10.1101/2024.10.14.618229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Genome-wide association studies (GWAS) have identified over 300 loci associated with the inflammatory bowel diseases (IBD), but putative causal genes for most are unknown. We conducted the largest disease-focused expression quantitative trait loci (eQTL) analysis using colon tissue from 252 IBD patients to determine genetic effects on gene expression and potential contribution to IBD. Combined with two non-IBD colon eQTL studies, we identified 194 potential target genes for 108 GWAS loci. eQTL in IBD tissue were enriched for IBD GWAS loci colocalizations, provided novel evidence for IBD-associated genes such as ABO and TNFRSF14, and identified additional target genes compared to non-IBD tissue eQTL. IBD-associated eQTL unique to diseased tissue had distinct regulatory and functional characteristics with increased effect sizes. Together, these highlight the importance of eQTL studies in diseased tissue for understanding functional consequences of genetic variants, and elucidating molecular mechanisms and regulation of key genes involved in IBD.
Collapse
Affiliation(s)
- Nina C. Nishiyama
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sophie Silverstein
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kimberly Darlington
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meaghan M. Kennedy Ng
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katelyn M. Clough
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mikaela Bauer
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caroline Beasley
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Akshatha Bharadwaj
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rajee Ganesan
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Muneera R. Kapadia
- Department of Surgery, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gwen Lau
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Reza Rahbar
- Department of Surgery, REX Healthcare of Wakefield, Raleigh, North Carolina, USA
| | - Timothy S. Sadiq
- Department of Surgery, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew R. Schaner
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan Stem
- Department of Surgery, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica Friton
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - William A. Faubion
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Terrence S. Furey
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Mattila J, Viitanen A, Fabris G, Strutynska T, Korzelius J, Hietakangas V. Stem cell mTOR signaling directs region-specific cell fate decisions during intestinal nutrient adaptation. SCIENCE ADVANCES 2024; 10:eadi2671. [PMID: 38335286 PMCID: PMC10857434 DOI: 10.1126/sciadv.adi2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
The adult intestine is a regionalized organ, whose size and cellular composition are adjusted in response to nutrient status. This involves dynamic regulation of intestinal stem cell (ISC) proliferation and differentiation. How nutrient signaling controls cell fate decisions to drive regional changes in cell-type composition remains unclear. Here, we show that intestinal nutrient adaptation involves region-specific control of cell size, cell number, and differentiation. We uncovered that activation of mTOR complex 1 (mTORC1) increases ISC size in a region-specific manner. mTORC1 activity promotes Delta expression to direct cell fate toward the absorptive enteroblast lineage while inhibiting secretory enteroendocrine cell differentiation. In aged flies, the ISC mTORC1 signaling is deregulated, being constitutively high and unresponsive to diet, which can be mitigated through lifelong intermittent fasting. In conclusion, mTORC1 signaling contributes to the ISC fate decision, enabling regional control of intestinal cell differentiation in response to nutrition.
Collapse
Affiliation(s)
- Jaakko Mattila
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Arto Viitanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Gaia Fabris
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Tetiana Strutynska
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Jerome Korzelius
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| |
Collapse
|
7
|
Catterson JH, Minkley L, Aspe S, Judd-Mole S, Moura S, Dyson MC, Rajasingam A, Woodling NS, Atilano ML, Ahmad M, Durrant CS, Spires-Jones TL, Partridge L. Protein retention in the endoplasmic reticulum rescues Aβ toxicity in Drosophila. Neurobiol Aging 2023; 132:154-174. [PMID: 37837732 PMCID: PMC10940166 DOI: 10.1016/j.neurobiolaging.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Amyloid β (Aβ) accumulation is a hallmark of Alzheimer's disease. In adult Drosophila brains, human Aβ overexpression harms climbing and lifespan. It's uncertain whether Aβ is intrinsically toxic or activates downstream neurodegeneration pathways. Our study uncovers a novel protective role against Aβ toxicity: intra-endoplasmic reticulum (ER) protein accumulation with a focus on laminin and collagen subunits. Despite high Aβ, laminin B1 (LanB1) overexpression robustly counters toxicity, suggesting a potential Aβ resistance mechanism. Other laminin subunits and collagen IV also alleviate Aβ toxicity; combining them with LanB1 augments the effect. Imaging reveals ER retention of LanB1 without altering Aβ secretion. LanB1's rescue function operates independently of the IRE1α/XBP1 ER stress response. ER-targeted GFP overexpression also mitigates Aβ toxicity, highlighting broader ER protein retention advantages. Proof-of-principle tests in murine hippocampal slices using mouse Lamb1 demonstrate ER retention in transduced cells, indicating a conserved mechanism. Though ER protein retention generally harms, it could paradoxically counter neuronal Aβ toxicity, offering a new therapeutic avenue for Alzheimer's disease.
Collapse
Affiliation(s)
- James H Catterson
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Lucy Minkley
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Salomé Aspe
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Sebastian Judd-Mole
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Sofia Moura
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Miranda C Dyson
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Arjunan Rajasingam
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Nathaniel S Woodling
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Mumtaz Ahmad
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.
| |
Collapse
|
8
|
Martínez-Abarca Millán A, Martín-Bermudo MD. Integrins Can Act as Suppressors of Ras-Mediated Oncogenesis in the Drosophila Wing Disc Epithelium. Cancers (Basel) 2023; 15:5432. [PMID: 38001693 PMCID: PMC10670217 DOI: 10.3390/cancers15225432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Key to cancer initiation and progression is the crosstalk between cancer cells and their microenvironment. The extracellular matrix (ECM) is a major component of the tumour microenvironment and integrins, main cell-ECM adhesion receptors, are involved in every step of cancer progression. However, accumulating evidence has shown that integrins can act as tumour promoters but also as tumour suppressor factors, revealing that the biological roles of integrins in cancer are complex. This incites a better understating of integrin function in cancer progression. To achieve this goal, simple model organisms, such as Drosophila, offer great potential to unravel underlying conceptual principles. Here, we find that in the Drosophila wing disc epithelium the βPS integrins act as suppressors of tumours induced by a gain of function of the oncogenic form of Ras, RasV12. We show that βPS integrin depletion enhances the growth, delamination and invasive behaviour of RasV12 tumour cells, as well as their ability to affect the tumour microenvironment. These results strongly suggest that integrin function as tumour suppressors might be evolutionarily conserved. Drosophila can be used to understand the complex tumour modulating activities conferred by integrins, thus facilitating drug development.
Collapse
Affiliation(s)
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
9
|
McIntyre DC, Nance J. Niche cells regulate primordial germ cell quiescence in response to basement membrane signaling. Development 2023; 150:dev201640. [PMID: 37497562 PMCID: PMC10445801 DOI: 10.1242/dev.201640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Stem cell quiescence, proliferation and differentiation are controlled by interactions with niche cells and a specialized extracellular matrix called basement membrane (BM). Direct interactions with adjacent BM are known to regulate stem cell quiescence; however, it is less clear how niche BM relays signals to stem cells that it does not contact. Here, we examine how niche BM regulates Caenorhabditis elegans primordial germ cells (PGCs). BM regulates PGC quiescence even though PGCs are enwrapped by somatic niche cells and do not contact the BM; this can be demonstrated by depleting laminin, which causes normally quiescent embryonic PGCs to proliferate. We show that following laminin depletion, niche cells relay proliferation-inducing signals from the gonadal BM to PGCs via integrin receptors. Disrupting the BM proteoglycan perlecan blocks PGC proliferation when laminin is depleted, indicating that laminin functions to inhibit a proliferation-inducing signal originating from perlecan. Reducing perlecan levels in fed larvae hampers germline growth, suggesting that BM signals regulate germ cell proliferation under physiological conditions. Our results reveal how BM signals can regulate stem cell quiescence indirectly, by activating niche cell integrin receptors.
Collapse
Affiliation(s)
- Daniel C. McIntyre
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- University of Virginia, Department of Biology, 90 Geldard Drive, Physical Life Science Building Room 318, Charlottesville, VA 22904, USA
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
10
|
Häfliger J, Schwarzfischer M, Atrott K, Stanzel C, Morsy Y, Wawrzyniak M, Lang S, Valenta T, Basler K, Rogler G, Scharl M, Spalinger MR. Glycoprotein (GP)96 Is Essential for Maintaining Intestinal Epithelial Architecture by Supporting Its Self-Renewal Capacity. Cell Mol Gastroenterol Hepatol 2023; 15:717-739. [PMID: 36516930 PMCID: PMC9879791 DOI: 10.1016/j.jcmgh.2022.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Glycoprotein (GP)96 is an endoplasmic reticulum-resident master chaperone for cell surface receptors including the Wnt co-receptors low-density lipoprotein-receptor-related protein 5/6. Intestinal epithelial cell (IEC)-specific deletion of Gp96 is embryonically lethal. However, the role of GP96 in adult intestinal tissue and especially within the intestinal stem cell (ISC) niche is unknown. Here, we investigated how GP96 loss interferes with intestinal homeostasis by compromising viability, proliferation, and differentiation of IECs. METHODS Tamoxifen was used to induce Cre-mediated deletion of Gp96 in GP96-VillincreERT2 (Cre recombinase-Estrogen-Receptor Transgene 2) mice and intestinal organoids. With H&E and immunofluorescence staining we assessed alterations in intestinal morphology and the presence and localization of IEC types. Real-time polymerase chain reaction and Western blot analysis were performed to explore the molecular mechanisms underlying the severe phenotype of Gp96 KO mice and organoids. RESULTS IEC-specific deletion of Gp96 in adult mice resulted in a rapid degeneration of the stem cell niche, followed by complete eradication of the epithelial layer and death within a few days. These effects were owing to severe defects in ISC renewal and premature ISC differentiation, which resulted from defective Wnt and Notch signaling. Furthermore, depletion of GP96 led to massive induction of endoplasmic reticulum stress. Although effects on ISC renewal and adequate differentiation were partly reversed upon activation of Wnt/Notch signaling, viability could not be restored, indicating that reduced viability was mediated by other mechanisms. CONCLUSIONS Our work shows that GP96 plays a fundamental role in regulating ISC fate and epithelial regeneration and therefore is indispensable for maintaining intestinal epithelial homeostasis.
Collapse
Affiliation(s)
- Janine Häfliger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Claudia Stanzel
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Bohere J, Eldridge-Thomas BL, Kolahgar G. Vinculin recruitment to α-catenin halts the differentiation and maturation of enterocyte progenitors to maintain homeostasis of the Drosophila intestine. eLife 2022; 11:e72836. [PMID: 36269226 PMCID: PMC9586559 DOI: 10.7554/elife.72836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Mechanisms communicating changes in tissue stiffness and size are particularly relevant in the intestine because it is subject to constant mechanical stresses caused by peristalsis of its variable content. Using the Drosophila intestinal epithelium, we investigate the role of vinculin, one of the best characterised mechanoeffectors, which functions in both cadherin and integrin adhesion complexes. We discovered that vinculin regulates cell fate decisions, by preventing precocious activation and differentiation of intestinal progenitors into absorptive cells. It achieves this in concert with α-catenin at sites of cadherin adhesion, rather than as part of integrin function. Following asymmetric division of the stem cell into a stem cell and an enteroblast (EB), the two cells initially remain connected by adherens junctions, where vinculin is required, only on the EB side, to maintain the EB in a quiescent state and inhibit further divisions of the stem cell. By manipulating cell tension, we show that vinculin recruitment to adherens junction regulates EB activation and numbers. Consequently, removing vinculin results in an enlarged gut with improved resistance to starvation. Thus, mechanical regulation at the contact between stem cells and their progeny is used to control tissue cell number.
Collapse
Affiliation(s)
- Jerome Bohere
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Buffy L Eldridge-Thomas
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| | - Golnar Kolahgar
- Department of Physiology, Development and Neuroscience, Downing St, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
12
|
Tian A, Morejon V, Kohoutek S, Huang Y, Deng W, Jiang J. Damage-induced regeneration of the intestinal stem cell pool through enteroblast mitosis in the Drosophila midgut. EMBO J 2022; 41:e110834. [PMID: 35950466 PMCID: PMC9531297 DOI: 10.15252/embj.2022110834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Many adult tissues and organs including the intestine rely on resident stem cells to maintain homeostasis and regeneration. In mammals, the progenies of intestinal stem cells (ISCs) can dedifferentiate to generate ISCs upon ablation of resident stem cells. However, whether and how mature tissue cells generate ISCs under physiological conditions remains unknown. Here, we show that infection of the Drosophila melanogaster intestine with pathogenic bacteria induces entry of enteroblasts (EBs), which are ISC progenies, into the mitotic cycle through upregulation of epidermal growth factor receptor (EGFR)-Ras signaling. We also show that ectopic activation of EGFR-Ras signaling in EBs is sufficient to drive enteroblast mitosis cell autonomously. Furthermore, we find that the dividing enteroblasts do not gain ISC identity as a prerequisite to divide, and the regenerative ISCs are produced through EB mitosis. Taken together, our work uncovers a new role for EGFR-Ras signaling in driving EB mitosis and replenishing the ISC pool during fly intestinal regeneration, which may have important implications for tissue homeostasis and tumorigenesis in vertebrates.
Collapse
Affiliation(s)
- Aiguo Tian
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
- Tulane Aging CenterTulane University School of MedicineNew OrleansLAUSA
| | - Virginia Morejon
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Sarah Kohoutek
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Yi‐Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Wu‐Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of MedicineLouisiana Cancer Research CenterNew OrleansLAUSA
| | - Jin Jiang
- Department of Molecular Biology and Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
13
|
Rajarapu SP, Ben-Mahmoud S, Benoit JB, Ullman DE, Whitfield AE, Rotenberg D. Sex-biased proteomic response to tomato spotted wilt virus infection of the salivary glands of Frankliniella occidentalis, the western flower thrips. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 149:103843. [PMID: 36113709 DOI: 10.1016/j.ibmb.2022.103843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Successful transmission of tomato spotted wilt virus (TSWV) by Frankliniella occidentalis requires robust infection of the salivary glands (SGs) and virus delivery to plants during salivation. Feeding behavior and transmission efficiency are sexually-dimorphic traits of this thrips vector species. Proteins secreted from male and female SG tissues, and the effect of TSWV infection on the thrips SG proteome are unknown. To begin to discern thrips factors that facilitate virus infection of SGs and transmission by F. occidentalis, we used gel- and label-free quantitative and qualitative proteomics to address two hypotheses: (i) TSWV infection modifies the composition and/or abundance of SG-expressed proteins in adults; and (ii) TSWV has a differential effect on the male and female SG proteome and secreted saliva. Our study revealed a sex-biased SG proteome for F. occidentalis, and TSWV infection modulated the SG proteome in a sex-dependent manner as evident by the number, differential abundance, identities and generalized roles of the proteins. Male SGs exhibited a larger proteomic response to the virus than female SGs. Intracellular processes modulated by TSWV in males indicated perturbation of SG cytoskeletal networks and cell-cell interactions, i.e., basement membrane (BM) and extracellular matrix (ECM) proteins, and subcellular processes consistent with a metabolic slow-down under infection. Several differentially-abundant proteins in infected male SGs play critical roles in viral life cycles of other host-virus pathosystems. In females, TSWV modulated processes consistent with tissue integrity and active translational and transcriptional regulation. A core set of proteins known for their roles in plant cell-wall degradation and protein metabolism were identified in saliva of both sexes, regardless of virus infection status. Saliva proteins secreted by TSWV-infected adults indicated energy generation, consumption and protein turnover, with an enrichment of cytoskeletal/BM/ECM proteins and tricarboxylic acid cycle proteins in male and female saliva, respectively. The nonstructural TSWV protein NSs - a multifunctional viral effector protein reported to target plant defenses against TSWV and thrips - was identified in female saliva. This study represents the first description of the SG proteome and secretome of a thysanopteran and provides many candidate proteins to further unravel the complex interplay between the virus, insect vector, and plant host.
Collapse
Affiliation(s)
- Swapna Priya Rajarapu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sulley Ben-Mahmoud
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
14
|
Zhai J, Li W, Liu X, Wang D, Zhang D, Liu Y, Liang X, Chen Z. Tiny Drosophila intestinal stem cells, big power. Cell Biol Int 2022; 47:3-14. [PMID: 36177490 DOI: 10.1002/cbin.11911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
The signaling pathways are highly conserved between Drosophila and mammals concerning intestinal development, regeneration, and disease. The powerful genetic tools of Drosophila make it a valuable and convenient alternative to answer basic biological questions that can not be addressed using mammalian models. In this review, we discuss recent advances in how we use fly midgut to answer the following key questions: (1) How intestine stem cell niches are established; (2) which factors control asymmetric division of stem cells; (3) how intestinal cells interact with environmental factors, such as tissue damage, microbiota, and diet; (4) how to screen aging/cancer-related factors or drugs by fly intestine stem cells.
Collapse
Affiliation(s)
- Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Wanyang Li
- Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Xin Liu
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Di Wang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Dongli Zhang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yanli Liu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Xiuwen Liang
- Hulunbuir City People's Hospital, Hulunbuir City, China
| | - Zeliang Chen
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
15
|
Tensin Regulates Fundamental Biological Processes by Interacting with Integrins of Tonsil-Derived Mesenchymal Stem Cells. Cells 2022; 11:cells11152333. [PMID: 35954177 PMCID: PMC9367440 DOI: 10.3390/cells11152333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Human tonsil-derived mesenchymal stem cells (TMSCs) have a superior proliferation rate and differentiation potential compared to adipose-tissue-derived MSCs (AMSCs) or bone-marrow-derived MSCs (BMSCs). TMSCs exhibit a significantly higher expression of the tensin3 gene (TNS3) than AMSCs or BMSCs. TNS is involved in cell adhesion and migration by binding to integrin beta-1 (ITG β1) in focal adhesion. Here, we investigated the roles of four TNS isoforms, including TNS3 and their relationship with integrin in various biological processes of TMSCs. Suppressing TNS1 and TNS3 significantly decreased the cell count. The knockdown of TNS1 and TNS3 increased the gene and protein expression levels of p16, p19, and p21. TNS1 and TNS3 also have a significant effect on cell migration. Transfecting with siRNA TNS3 significantly reduced Oct4, Nanog, and Sox-2 levels. Conversely, when TNS4 was silenced, Oct4 and Sox-2 levels significantly increase. TNS1 and TNS3 promote osteogenic and adipogenic differentiation, whereas TNS4 inhibits adipogenic differentiation of TMSCs. TNS3 is involved in the control of focal adhesions by regulating integrin. Thus, TNS enables TMSCs to possess a higher proliferative capacity and differentiation potential than other MSCs. Notably, TNS3 plays a vital role in TMSC biology by regulating ITGβ1 activity.
Collapse
|
16
|
Chen J, St Johnston D. Epithelial Cell Polarity During Drosophila Midgut Development. Front Cell Dev Biol 2022; 10:886773. [PMID: 35846367 PMCID: PMC9281564 DOI: 10.3389/fcell.2022.886773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
The adult Drosophila midgut epithelium is derived from a group of stem cells called adult midgut precursors (AMPs) that are specified during the migration of the endoderm in early embryogenesis. AMPs are maintained and expanded in AMP nests that lie on the basal side of the larval midgut throughout the larval development. During metamorphosis, the larval midgut undergoes histolysis and programmed cell death, while the central cells in the AMP nests form the future adult midgut and the peripheral cells form the transient pupal midgut. Here we review what is known about how cells polarise in the embryonic, larval, pupal and adult midgut, and discuss the open questions about the mechanisms that control the changes in cell arrangements, cell shape and cell polarity during midgut development.
Collapse
Affiliation(s)
| | - Daniel St Johnston
- Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Ariyapala IS, Buddika K, Hundley HA, Calvi BR, Sokol NS. The RNA binding protein Swm is critical for Drosophila melanogaster intestinal progenitor cell maintenance. Genetics 2022; 222:6619166. [PMID: 35762963 DOI: 10.1093/genetics/iyac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of stem cell survival, self-renewal, and differentiation is critical for the maintenance of tissue homeostasis. Although the involvement of signaling pathways and transcriptional control mechanisms in stem cell regulation have been extensively investigated, the role of post-transcriptional control is still poorly understood. Here we show that the nuclear activity of the RNA-binding protein Second Mitotic Wave Missing (Swm) is critical for Drosophila melanogaster intestinal stem cells (ISCs) and their daughter cells, enteroblasts (EBs), to maintain their progenitor cell properties and functions. Loss of swm causes ISCs and EBs to stop dividing and instead detach from the basement membrane, resulting in severe progenitor cell loss. swm loss is further characterized by nuclear accumulation of poly(A)+ RNA in progenitor cells. Swm associates with transcripts involved in epithelial cell maintenance and adhesion, and the loss of swm, while not generally affecting the levels of these Swm-bound mRNAs, leads to elevated expression of proteins encoded by some of them, including the fly ortholog of Filamin. Taken together, this study indicates a nuclear role for Swm in adult stem cell maintenance, raising the possibility that nuclear post-transcriptional regulation of mRNAs encoding cell adhesion proteins ensures proper attachment of progenitor cells.
Collapse
Affiliation(s)
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
18
|
Mlih M, Karpac J. Integrin-ECM interactions and membrane-associated Catalase cooperate to promote resilience of the Drosophila intestinal epithelium. PLoS Biol 2022; 20:e3001635. [PMID: 35522719 PMCID: PMC9116668 DOI: 10.1371/journal.pbio.3001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Balancing cellular demise and survival constitutes a key feature of resilience mechanisms that underlie the control of epithelial tissue damage. These resilience mechanisms often limit the burden of adaptive cellular stress responses to internal or external threats. We recently identified Diedel, a secreted protein/cytokine, as a potent antagonist of apoptosis-induced regulated cell death in the Drosophila intestinal midgut epithelium during aging. Here, we show that Diedel is a ligand for RGD-binding Integrins and is thus required for maintaining midgut epithelial cell attachment to the extracellular matrix (ECM)-derived basement membrane. Exploiting this function of Diedel, we uncovered a resilience mechanism of epithelial tissues, mediated by Integrin-ECM interactions, which shapes cell death spreading through the regulation of cell detachment and thus cell survival. Moreover, we found that resilient epithelial cells, enriched for Diedel-Integrin-ECM interactions, are characterized by membrane association of Catalase, thus preserving extracellular reactive oxygen species (ROS) balance to maintain epithelial integrity. Intracellular Catalase can relocalize to the extracellular membrane to limit cell death spreading and repair Integrin-ECM interactions induced by the amplification of extracellular ROS, which is a critical adaptive stress response. Membrane-associated Catalase, synergized with Integrin-ECM interactions, likely constitutes a resilience mechanism that helps balance cellular demise and survival within epithelial tissues.
Collapse
Affiliation(s)
- Mohamed Mlih
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, Texas, United States of America
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, Texas, United States of America
| |
Collapse
|
19
|
Ferraces-Riegas P, Galbraith AC, Doupé DP. Epithelial Stem Cells: Making, Shaping and Breaking the Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1387:1-12. [DOI: 10.1007/5584_2021_686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEpithelial stem cells maintain tissues throughout adult life and are tightly regulated by their microenvironmental niche to balance cell production and loss. These stem cells have been studied extensively as signal-receiving cells, responding to cues from other cell types and mechanical stimuli that comprise the niche. However, studies from a wide range of systems have identified epithelial stem cells as major contributors to their own microenvironment either through producing niche cells, acting directly as niche cells or regulating niche cells. The importance of stem cell contributions to the niche is particularly clear in cancer, where tumour cells extensively remodel their microenvironment to promote their survival and proliferation.
Collapse
|
20
|
Goggins BJ, Minahan K, Sherwin S, Soh WS, Pryor J, Bruce J, Liu G, Mathe A, Knight D, Horvat JC, Walker MM, Keely S. Pharmacological HIF-1 stabilization promotes intestinal epithelial healing through regulation of α-integrin expression and function. Am J Physiol Gastrointest Liver Physiol 2021; 320:G420-G438. [PMID: 33470153 DOI: 10.1152/ajpgi.00192.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
Intestinal epithelia are critical for maintaining gastrointestinal homeostasis. Epithelial barrier injury, causing inflammation and vascular damage, results in inflammatory hypoxia, and thus, healing occurs in an oxygen-restricted environment. The transcription factor hypoxia-inducible factor (HIF)-1 regulates genes important for cell survival and repair, including the cell adhesion protein β1-integrin. Integrins function as αβ-dimers, and α-integrin-matrix binding is critical for cell migration. We hypothesized that HIF-1 stabilization accelerates epithelial migration through integrin-dependent pathways. We aimed to examine functional and posttranslational activity of α-integrins during HIF-1-mediated intestinal epithelial healing. Wound healing was assessed in T84 monolayers over 24 h with/without prolyl-hydroxylase inhibitor (PHDi) (GB-004), which stabilizes HIF-1. Gene and protein expression were measured by RT-PCR and immunoblot, and α-integrin localization was assessed by immunofluorescence. α-integrin function was assessed by antibody-mediated blockade, and integrin α6 regulation was determined by HIF-1α chromatin immunoprecipitation. Models of mucosal wounding and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis were used to examine integrin expression and localization in vivo. PHDi treatment accelerated wound closure and migration within 12 h, associated with increased integrin α2 and α6 protein, but not α3. Functional blockade of integrins α2 and α6 inhibited PHDi-mediated accelerated wound closure. HIF-1 bound directly to the integrin α6 promoter. PHDi treatment accelerated mucosal healing, which was associated with increased α6 immunohistochemical staining in wound-associated epithelium and wound-adjacent tissue. PHDi treatment increased α6 protein levels in colonocytes of TNBS mice and induced α6 staining in regenerating crypts and reepithelialized inflammatory lesions. Together, these data demonstrate a role for HIF-1 in regulating both integrin α2 and α6 responses during intestinal epithelial healing.NEW & NOTEWORTHY HIF-1 plays an important role in epithelial restitution, selectively inducing integrins α6 and α2 to promote migration and proliferation, respectively. HIF-stabilizing prolyl-hydroxylase inhibitors accelerate intestinal mucosal healing by inducing epithelial integrin expression.
Collapse
Affiliation(s)
- Bridie J Goggins
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Kyra Minahan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Simonne Sherwin
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Wai S Soh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Jennifer Pryor
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Jessica Bruce
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Gang Liu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrea Mathe
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Marjorie M Walker
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Gastrointestinal Research Group, University of Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
21
|
Ferguson M, Petkau K, Shin M, Galenza A, Fast D, Foley E. Differential effects of commensal bacteria on progenitor cell adhesion, division symmetry and tumorigenesis in the Drosophila intestine. Development 2021; 148:dev.186106. [DOI: 10.1242/dev.186106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT
Microbial factors influence homeostatic and oncogenic growth in the intestinal epithelium. However, we know little about immediate effects of commensal bacteria on stem cell division programs. In this study, we examined the effects of commensal Lactobacillus species on homeostatic and tumorigenic stem cell proliferation in the female Drosophila intestine. We identified Lactobacillus brevis as a potent stimulator of stem cell divisions. In a wild-type midgut, L.brevis activates growth regulatory pathways that drive stem cell divisions. In a Notch-deficient background, L.brevis-mediated proliferation causes rapid expansion of mutant progenitors, leading to accumulation of large, multi-layered tumors throughout the midgut. Mechanistically, we showed that L.brevis disrupts expression and subcellular distribution of progenitor cell integrins, supporting symmetric divisions that expand intestinal stem cell populations. Collectively, our data emphasize the impact of commensal microbes on division and maintenance of the intestinal progenitor compartment.
Collapse
Affiliation(s)
- Meghan Ferguson
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Kristina Petkau
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Minjeong Shin
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Anthony Galenza
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David Fast
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
22
|
Chen F, Su R, Ni S, Liu Y, Huang J, Li G, Wang Q, Zhang X, Yang Y. Context-dependent responses of Drosophila intestinal stem cells to intracellular reactive oxygen species. Redox Biol 2020; 39:101835. [PMID: 33360688 PMCID: PMC7772796 DOI: 10.1016/j.redox.2020.101835] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species (ROS) contribute to cellular redox environment and serve as signaling molecules. Excessive ROS can lead to oxidative stress that are involved in a broad spectrum of physiological and pathological conditions. Stem cells have unique ROS regulation while cancer cells frequently show a constitutive oxidative stress that is associated with the invasive phenotype. Antioxidants have been proposed to forestall tumor progression while targeted oxidants have been used to destroy tumor cells. However, the delicate beneficial range of ROS levels for stem cells and tumor cells under distinct contexts remains elusive. Here, we used Drosophila midgut intestinal stem cell (ISCs) as an in vivo model system to tackle this question. The ROS levels of ISCs remained low in comparison to that of differentiated cells and increased with ageing, which was accompanied by elevated proliferation of ISCs in aged Drosophila. Neither upregulation nor downregulation of ROS levels significantly affected ISCs, implicating an intrinsic homeostatic range of ROS in ISCs. Interestingly, we observed similar moderately elevated ROS levels in both tumor-like ISCs induced by Notch (N) depletion and extracellular matrix (ECM)-deprived ISCs induced by β-integrin (mys) depletion. Elevated ROS levels further promoted the proliferation of tumor-like ISCs while reduced ROS levels suppressed the hyperproliferation phenotype; on the other hand, further increased ROS facilitated the survival of ECM-deprived ISCs while reduced ROS exacerbated the loss of ECM-deprived ISCs. However, N- and mys-depleted ISCs, which resembled metastatic tumor cells, harbored even higher ROS levels and were subjected to more severe cell loss, which could be partially prevented by ectopic supply of antioxidant enzymes, implicating a delicate pro-surviving and proliferating range of ROS levels for ISCs. Taken together, our results revealed stem cells can differentially respond to distinct ROS levels under various conditions and suggested that the antioxidant-based intervention of stem cells and tumors should be formulated with caution according to the specific situations.
Collapse
Affiliation(s)
- Fei Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Run Su
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Shiwei Ni
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Yan Liu
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Jiexiang Huang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Gege Li
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Qun Wang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Xi Zhang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China.
| |
Collapse
|
23
|
Joly A, Rousset R. Tissue Adaptation to Environmental Cues by Symmetric and Asymmetric Division Modes of Intestinal Stem Cells. Int J Mol Sci 2020; 21:ijms21176362. [PMID: 32887329 PMCID: PMC7504256 DOI: 10.3390/ijms21176362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/20/2022] Open
Abstract
Tissues must adapt to the different external stimuli so that organisms can survive in their environments. The intestine is a vital organ involved in food processing and absorption, as well as in innate immune response. Its adaptation to environmental cues such as diet and biotic/abiotic stress involves regulation of the proliferative rate and a switch of division mode (asymmetric versus symmetric) of intestinal stem cells (ISC). In this review, we outline the current comprehension of the physiological and molecular mechanisms implicated in stem cell division modes in the adult Drosophila midgut. We present the signaling pathways and polarity cues that control the mitotic spindle orientation, which is the terminal determinant ensuring execution of the division mode. We review these events during gut homeostasis, as well as during its response to nutrient availability, bacterial infection, chemical damage, and aging. JNK signaling acts as a central player, being involved in each of these conditions as a direct regulator of spindle orientation. The studies of the mechanisms regulating ISC divisions allow a better understanding of how adult stem cells integrate different signals to control tissue plasticity, and of how various diseases, notably cancers, arise from their alterations.
Collapse
|
24
|
Bajpai A, Quazi TA, Tang HW, Manzar N, Singh V, Thakur A, Ateeq B, Perrimon N, Sinha P. A Drosophila model of oral peptide therapeutics for adult intestinal stem cell tumors. Dis Model Mech 2020; 13:dmm044420. [PMID: 32540914 PMCID: PMC7390633 DOI: 10.1242/dmm.044420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 11/20/2022] Open
Abstract
Peptide therapeutics, unlike small-molecule drugs, display crucial advantages of target specificity and the ability to block large interacting interfaces, such as those of transcription factors. The transcription co-factor of the Hippo pathway, YAP/Yorkie (Yki), has been implicated in many cancers, and is dependent on its interaction with the DNA-binding TEAD/Sd proteins via a large Ω-loop. In addition, the mammalian vestigial-like (VGLL) proteins, specifically their TONDU domain, competitively inhibit YAP-TEAD interaction, resulting in arrest of tumor growth. Here, we show that overexpression of the TONDU peptide or its oral uptake leads to suppression of Yki-driven intestinal stem cell tumors in the adult Drosophila midgut. In addition, comparative proteomic analyses of peptide-treated and untreated tumors, together with chromatin immunoprecipitation analysis, reveal that integrin pathway members are part of the Yki-oncogenic network. Collectively, our findings establish Drosophila as a reliable in vivo platform to screen for cancer oral therapeutic peptides and reveal a tumor suppressive role for integrins in Yki-driven tumors.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anjali Bajpai
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Taushif Ahmad Quazi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Hong-Wen Tang
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nishat Manzar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Virender Singh
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ashwani Thakur
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Bushra Ateeq
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
25
|
Loganathan R, Little CD, Rongish BJ. Extracellular matrix dynamics in tubulogenesis. Cell Signal 2020; 72:109619. [PMID: 32247774 DOI: 10.1016/j.cellsig.2020.109619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/28/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Biological tubes form in a variety of shapes and sizes. Tubular topology of cells and tissues is a widely recognizable histological feature of multicellular life. Fluid secretion, storage, transport, absorption, exchange, and elimination-processes central to metazoans-hinge on the exquisite tubular architectures of cells, tissues, and organs. In general, the apparent structural and functional complexity of tubular tissues and organs parallels the architectural and biophysical properties of their constitution, i.e., cells and the extracellular matrix (ECM). Together, cellular and ECM dynamics determine the developmental trajectory, topological characteristics, and functional efficacy of biological tubes. In this review of tubulogenesis, we highlight the multifarious roles of ECM dynamics-the less recognized and poorly understood morphogenetic counterpart of cellular dynamics. The ECM is a dynamic, tripartite composite spanning the luminal, abluminal, and interstitial space within the tubulogenic realm. The critical role of ECM dynamics in the determination of shape, size, and function of tubes is evinced by developmental studies across multiple levels-from morphological through molecular-in model tubular organs.
Collapse
Affiliation(s)
| | - Charles D Little
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Brenda J Rongish
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
26
|
Takahashi T, Shiraishi A. Stem Cell Signaling Pathways in the Small Intestine. Int J Mol Sci 2020; 21:ijms21062032. [PMID: 32188141 PMCID: PMC7139586 DOI: 10.3390/ijms21062032] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
The ability of stem cells to divide and differentiate is necessary for tissue repair and homeostasis. Appropriate spatial and temporal mechanisms are needed. Local intercellular signaling increases expression of specific genes that mediate and maintain differentiation. Diffusible signaling molecules provide concentration-dependent induction of specific patterns of cell types or regions. Differentiation of adjacent cells, on the other hand, requires cell–cell contact and subsequent signaling. These two types of signals work together to allow stem cells to provide what organisms require. The ability to grow organoids has increased our understanding of the cellular and molecular features of small “niches” that modulate stem cell function in various organs, including the small intestine.
Collapse
|
27
|
Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, Tattikota SG, Li F, Song W, Ho Sui S, Perrimon N. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A 2020; 117:1514-1523. [PMID: 31915294 PMCID: PMC6983450 DOI: 10.1073/pnas.1916820117] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the adult Drosophila midgut have led to many insights in our understanding of cell-type diversity, stem cell regeneration, tissue homeostasis, and cell fate decision. Advances in single-cell RNA sequencing provide opportunities to identify new cell types and molecular features. We used single-cell RNA sequencing to characterize the transcriptome of midgut epithelial cells and identified 22 distinct clusters representing intestinal stem cells, enteroblasts, enteroendocrine cells (EEs), and enterocytes. This unbiased approach recovered most of the known intestinal stem cells/enteroblast and EE markers, highlighting the high quality of the dataset, and led to insights on intestinal stem cell biology, cell type-specific organelle features, the roles of new transcription factors in progenitors and regional variation along the gut, 5 additional EE gut hormones, EE hormonal expression diversity, and paracrine function of EEs. To facilitate mining of this rich dataset, we provide a web-based resource for visualization of gene expression in single cells. Altogether, our study provides a comprehensive resource for addressing functions of genes in the midgut epithelium.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
| | - Yanhui Hu
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Rory Kirchner
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Chiwei Xu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Aram Comjean
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Fangge Li
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
28
|
An in vivo RNAi screen uncovers the role of AdoR signaling and adenosine deaminase in controlling intestinal stem cell activity. Proc Natl Acad Sci U S A 2019; 117:464-471. [PMID: 31852821 DOI: 10.1073/pnas.1900103117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metabolites are increasingly appreciated for their roles as signaling molecules. To dissect the roles of metabolites, it is essential to understand their signaling pathways and their enzymatic regulations. From an RNA interference (RNAi) screen for regulators of intestinal stem cell (ISC) activity in the Drosophila midgut, we identified adenosine receptor (AdoR) as a top candidate gene required for ISC proliferation. We demonstrate that Ras/MAPK and Protein Kinase A (PKA) signaling act downstream of AdoR and that Ras/MAPK mediates the major effect of AdoR on ISC proliferation. Extracellular adenosine, the ligand for AdoR, is a small metabolite that can be released by various cell types and degraded in the extracellular space by secreted adenosine deaminase. Interestingly, down-regulation of adenosine deaminase-related growth factor A (Adgf-A) from enterocytes is necessary for extracellular adenosine to activate AdoR and induce ISC overproliferation. As Adgf-A expression and its enzymatic activity decrease following tissue damage, our study provides important insights into how the enzymatic regulation of extracellular adenosine levels under tissue-damage conditions facilitates ISC proliferation.
Collapse
|
29
|
Tiwari MD, Zeitler DM, Meister G, Wodarz A. Molecular profiling of stem cell-like female germ line cells in Drosophila delineates networks important for stemness and differentiation. Biol Open 2019; 8:bio.046789. [PMID: 31649115 PMCID: PMC6899027 DOI: 10.1242/bio.046789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Stem cells can self-renew and produce daughter cells destined for differentiation. The precise control of the balance between these two outcomes is essential to ensure tissue homeostasis and to prevent uncontrolled proliferation resulting in tumor formation. As self-renewal and differentiation are likely to be controlled by different gene expression programs, unraveling the underlying gene regulatory networks is crucial for understanding the molecular logic of this system. In this study, we have characterized by next generation RNA sequencing (RNA-seq) the transcriptome of germline stem cell (GSC)-like cells isolated from bag of marbles (bam) mutant Drosophila ovaries and compared it to the transcriptome of germ line cells isolated from wild-type ovaries. We have complemented this dataset by utilizing an RNA-immunoprecipitation strategy to identify transcripts bound to the master differentiation factor Bam. Protein complex enrichment analysis on these combined datasets allows us to delineate known and novel networks essential for GSC maintenance and differentiation. Further comparative transcriptomics illustrates similarities between GSCs and primordial germ cells and provides a molecular footprint of the stem cell state. Our study represents a useful resource for functional studies on stem cell maintenance and differentiation. Summary: Fruit fly germline stem cell differentiation is accompanied by major changes of the transcriptome that may be regulated at the post-transcriptional level.
Collapse
Affiliation(s)
- Manu D Tiwari
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Kerpener Str. 62, 50937 Köln, Germany .,Cluster of Excellence - Cellular stress response in aging-associated diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Daniela M Zeitler
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Andreas Wodarz
- Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Kerpener Str. 62, 50937 Köln, Germany .,Cluster of Excellence - Cellular stress response in aging-associated diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany.,Stem Cell Biology, Institute for Anatomy and Cell Biology, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| |
Collapse
|
30
|
Xu C, Tang HW, Hung RJ, Hu Y, Ni X, Housden BE, Perrimon N. The Septate Junction Protein Tsp2A Restricts Intestinal Stem Cell Activity via Endocytic Regulation of aPKC and Hippo Signaling. Cell Rep 2019; 26:670-688.e6. [PMID: 30650359 PMCID: PMC6394833 DOI: 10.1016/j.celrep.2018.12.079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/24/2018] [Accepted: 12/17/2018] [Indexed: 01/23/2023] Open
Abstract
Hippo signaling and the activity of its transcriptional coactivator, Yorkie (Yki), are conserved and crucial regulators of tissue homeostasis. In the Drosophila midgut, after tissue damage, Yki activity increases to stimulate stem cell proliferation, but how Yki activity is turned off once the tissue is repaired is unknown. From an RNAi screen, we identified the septate junction (SJ) protein tetraspanin 2A (Tsp2A) as a tumor suppressor. Tsp2A undergoes internalization to facilitate the endocytic degradation of atypical protein kinase C (aPKC), a negative regulator of Hippo signaling. In the Drosophila midgut epithelium, adherens junctions (AJs) and SJs are prominent in intestinal stem cells or enteroblasts (ISCs or EBs) and enterocytes (ECs), respectively. We show that when ISCs differentiate toward ECs, Tsp2A is produced, participates in SJ assembly, and turns off aPKC and Yki-JAK-Stat activity. Altogether, our study uncovers a mechanism allowing the midgut to restore Hippo signaling and restrict proliferation once tissue repair is accomplished.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Hong-Wen Tang
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xiaochun Ni
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Resende LP, Monteiro A, Brás R, Lopes T, Sunkel CE. Aneuploidy in intestinal stem cells promotes gut dysplasia in Drosophila. J Cell Biol 2018; 217:3930-3946. [PMID: 30282810 PMCID: PMC6219720 DOI: 10.1083/jcb.201804205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
Aneuploidy is associated with different human diseases including cancer. However, different cell types appear to respond differently to aneuploidy, either by promoting tumorigenesis or causing cell death. We set out to study the behavior of adult Drosophila melanogaster intestinal stem cells (ISCs) after induction of chromosome missegregation either by abrogation of the spindle assembly checkpoint or through kinetochore disruption or centrosome amplification. These conditions induce moderate levels of aneuploidy in ISCs, and we find no evidence of apoptosis. Instead, we observe a significant accumulation of ISCs associated with increased stem cell proliferation and an excess of enteroendocrine cells. Moreover, aneuploidy causes up-regulation of the JNK pathway throughout the posterior midgut, and specific inhibition of JNK signaling in ISCs is sufficient to prevent dysplasia. Our findings highlight the importance of understanding the behavior of different stem cell populations to aneuploidy and how these can act as reservoirs for genomic alterations that can lead to tissue pathologies.
Collapse
Affiliation(s)
- Luís Pedro Resende
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Augusta Monteiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Rita Brás
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tatiana Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E Sunkel
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
32
|
Mouse Intestinal Krt15+ Crypt Cells Are Radio-Resistant and Tumor Initiating. Stem Cell Reports 2018; 10:1947-1958. [PMID: 29805107 PMCID: PMC5993649 DOI: 10.1016/j.stemcr.2018.04.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022] Open
Abstract
Two principal stem cell pools orchestrate the rapid cell turnover in the intestinal epithelium. Rapidly cycling Lgr5+ stem cells are intercalated between the Paneth cells at the crypt base (CBCs) and injury-resistant reserve stem cells reside above the crypt base. The intermediate filament Keratin 15 (Krt15) marks either stem cells or long-lived progenitor cells that contribute to tissue repair in the hair follicle or the esophageal epithelium. Herein, we demonstrate that Krt15 labels long-lived and multipotent cells in the small intestinal crypt by lineage tracing. Krt15+ crypt cells display self-renewal potential in vivo and in 3D organoid cultures. Krt15+ crypt cells are resistant to high-dose radiation and contribute to epithelial regeneration following injury. Notably, loss of the tumor suppressor Apc in Krt15+ cells leads to adenoma and adenocarcinoma formation. These results indicate that Krt15 marks long-lived, multipotent, and injury-resistant crypt cells that may function as a cell of origin in intestinal cancer. Krt15 marks multipotent and self-renewing crypt cells in the mouse small intestine Krt15+ crypt cells are radio-resistant and contribute to regeneration following injury Apc loss in Krt15+ cells leads to intestinal adenoma and adenocarcinoma formation Krt15+ cells may function as a cell of origin in intestinal cancer
Collapse
|
33
|
Tsoumas D, Nikou S, Giannopoulou E, Champeris Tsaniras S, Sirinian C, Maroulis I, Taraviras S, Zolota V, Kalofonos HP, Bravou V. ILK Expression in Colorectal Cancer Is Associated with EMT, Cancer Stem Cell Markers and Chemoresistance. Cancer Genomics Proteomics 2018; 15:127-141. [PMID: 29496692 PMCID: PMC5892607 DOI: 10.21873/cgp.20071] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIM Epithelial-mesenchymal transition (EMT) and cancer stem cells (CSC) are critically implicated in cancer metastasis and chemoresistance. Herein, we investigated integrin-linked kinase (ILK)'s role in human colon cancer (CRC) progression and chemoresistance in relation to EMT and CSC markers. PATIENTS AND METHODS Expression of ILK, EMT and CSC markers were evaluated by immunohistochemistry in 149 CRC samples. We also generated colon cancer cells resistant to 5-FU and oxaliplatin and studied the effect of ILK inhibition on drug response by MTT assay and on EMT and CSC markers' expression. RESULTS ILK expression in human CRC correlates with EMT and CSC markers and is associated with metastasis and chemoresistance. ILK inhibition increases sensitivity of resistant cells to 5-FU and oxaliplatin and reduces the levels of EMT and CSC markers in 5-FU resistant cells. CONCLUSION ILK overexpression in human CRC associates with EMT and CSC traits, contributing to tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Dimitrios Tsoumas
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece
| | | | | | - Chaido Sirinian
- Clinical Oncology Laboratory, University of Patras Medical School, Patras, Greece
| | - Ioannis Maroulis
- Department of Surgery, University of Patras Medical School, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Vassiliki Zolota
- Department of Pathology, University of Patras Medical School, Patras, Greece
| | | | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
34
|
Wang Y, Kim R, Hinman SS, Zwarycz B, Magness ST, Allbritton NL. Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche. Cell Mol Gastroenterol Hepatol 2018; 5:440-453.e1. [PMID: 29675459 PMCID: PMC5904029 DOI: 10.1016/j.jcmgh.2018.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
The relationship between intestinal stem cells (ISCs) and the surrounding niche environment is complex and dynamic. Key factors localized at the base of the crypt are necessary to promote ISC self-renewal and proliferation, to ultimately provide a constant stream of differentiated cells to maintain the epithelial barrier. These factors diminish as epithelial cells divide, migrate away from the crypt base, differentiate into the postmitotic lineages, and end their life span in approximately 7 days when they are sloughed into the intestinal lumen. To facilitate the rapid and complex physiology of ISC-driven epithelial renewal, in vivo gradients of growth factors, extracellular matrix, bacterial products, gases, and stiffness are formed along the crypt-villus axis. New bioengineered tools and platforms are available to recapitulate various gradients and support the stereotypical cellular responses associated with these gradients. Many of these technologies have been paired with primary small intestinal and colonic epithelial cells to re-create select aspects of normal physiology or disease states. These biomimetic platforms are becoming increasingly sophisticated with the rapid discovery of new niche factors and gradients. These advancements are contributing to the development of high-fidelity tissue constructs for basic science applications, drug screening, and personalized medicine applications. Here, we discuss the direct and indirect evidence for many of the important gradients found in vivo and their successful application to date in bioengineered in vitro models, including organ-on-chip and microfluidic culture devices.
Collapse
Key Words
- 3D, 3-dimensional
- BMP, Bone morphogenetic protein
- Bioengineering
- ECM, extracellular matrix
- Eph, erythropoietin-producing human hepatocellular receptor
- Ephrin, Eph family receptor interacting proteins
- Gradients
- IFN-γ, interferon-γ
- ISC, intestinal stem cell
- Intestinal Epithelial Cells
- NO, nitric oxide
- SFCA, short-chain fatty acids
- Stem Cell Niche
- TA, transit amplifying
- Wnt, wingless-related integration site
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Raehyun Kim
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina
| | - Samuel S. Hinman
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Bailey Zwarycz
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott T. Magness
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina,Department of Medicine, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Scott T. Magness, PhD, Department of Biomedical Engineering, 111 Mason Farm Road, Room 4337 Medical Biomolecular Research Building, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 966-2284.
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, North Carolina,Correspondence Address correspondence to: Nancy L. Allbritton, MD, PhD, Department of Biomedical Engineering, Chapman Hall, Room 241, University of North Carolina, Chapel Hill, North Carolina 27599. fax: (919) 966-2963.
| |
Collapse
|
35
|
Takeda K, Okumura T, Taniguchi K, Adachi-Yamada T. Adult Intestine Aging Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:11-23. [PMID: 29951812 DOI: 10.1007/978-981-13-0529-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The Drosophila adult has an intestine composed of a series of differentiated cells and tissue stem cells, all of which are similar to the mammalian intestinal cells. The aged adult intestine shows apparent characteristics such as multilayering of absorptive cells, misexpression of cell type-specific genes, and hyperproliferation of stem cells. Recent studies have revealed various gene networks responsible for progression of these aged phenotypes. The molecular mechanism for senescence of the Drosophila adult midgut and its relation with the corresponding mechanism in mammals are overviewed. In addition, a basic method for observing aged phenotypes of the midgut is described.
Collapse
Affiliation(s)
- Koji Takeda
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Okumura
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Kiichiro Taniguchi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | | |
Collapse
|
36
|
Zhang K, Tan J, Su J, Liang H, Shen L, Li C, Pan G, Yang L, Cui H. Integrin β3 plays a novel role in innate immunity in silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:307-317. [PMID: 28826989 DOI: 10.1016/j.dci.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Integrins are transmembrane receptors that play essential roles in many physiological and pathological processes through cell-to-cell and cell-to-extracellular matrix (ECM) interactions. In the current study, a 2653-bp full-length cDNA of a novel integrin β subunit (designated Bmintegrin β3) was obtained from silkworm hemocytes. Bmintegrin β3 has the typical conserved structure of the integrin β family. The qRT-PCR results showed that Bmintegrin β3 was specifically expressed in the hematological system and that its expression was significantly increased after challenge with different types of PAMPs and bacteria. The recombinant Bmintegrin β3 protein displayed increased aggregation with S. aureus, suggesting that Bmintegrin β3 might directly bind to PAMPs. Interestingly, Bmintegrin β3 knockdown promoted PPO1, PPO2, BAEE, SPH78, SPH125, and SPH127 expression and accelerated the melanization process. Unexpectedly, the expression of genes related to phagocytosis, the Toll pathway, and the IMD pathway was also up-regulated after Bmintegrin β3 knockdown. Thus, Bmintegrin β3 might be a pattern recognition protein (PRP) for PAMPs and might directly bind to bacteria and enhance the phagocytosis activity of hemocytes. Moreover, Bmintegrin β3 and its ligand might negatively regulate the expression of immune-related genes through an unknown mechanism. In summary, our studies provide new insights into the immune functions of Bmintegrin β3 from the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Juan Tan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Jingjing Su
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Li Shen
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, The Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400716, China.
| |
Collapse
|
37
|
Gervais L, Bardin AJ. Tissue homeostasis and aging: new insight from the fly intestine. Curr Opin Cell Biol 2017; 48:97-105. [DOI: 10.1016/j.ceb.2017.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/29/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022]
|
38
|
Liu Q, Jin LH. Tissue-resident stem cell activity: a view from the adult Drosophila gastrointestinal tract. Cell Commun Signal 2017; 15:33. [PMID: 28923062 PMCID: PMC5604405 DOI: 10.1186/s12964-017-0184-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract serves as a fast-renewing model for unraveling the multifaceted molecular mechanisms underlying remarkably rapid cell renewal, which is exclusively fueled by a small number of long-lived stem cells and their progeny. Stem cell activity is the best-characterized aspect of mucosal homeostasis in mitotically active tissues, and the dysregulation of regenerative capacity is a hallmark of epithelial immune defects. This dysregulation is frequently associated with pathologies ranging from chronic enteritis to malignancies in humans. Application of the adult Drosophila gastrointestinal tract model in current and future studies to analyze the immuno-physiological aspects of epithelial defense strategies, including stem cell behavior and re-epithelialization, will be necessary to improve our general understanding of stem cell participation in epithelial turnover. In this review, which describes exciting observations obtained from the adult Drosophila gastrointestinal tract, we summarize a remarkable series of recent findings in the literature to decipher the molecular mechanisms through which stem cells respond to nonsterile environments.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin, 150040, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin, 150040, China.
| |
Collapse
|
39
|
Perea D, Guiu J, Hudry B, Konstantinidou C, Milona A, Hadjieconomou D, Carroll T, Hoyer N, Natarajan D, Kallijärvi J, Walker JA, Soba P, Thapar N, Burns AJ, Jensen KB, Miguel-Aliaga I. Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia. EMBO J 2017; 36:3029-3045. [PMID: 28899900 PMCID: PMC5641678 DOI: 10.15252/embj.201696247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 01/25/2023] Open
Abstract
Expression of the Ret receptor tyrosine kinase is a defining feature of enteric neurons. Its importance is underscored by the effects of its mutation in Hirschsprung disease, leading to absence of gut innervation and severe gastrointestinal symptoms. We report a new and physiologically significant site of Ret expression in the intestine: the intestinal epithelium. Experiments in Drosophila indicate that Ret is expressed both by enteric neurons and adult intestinal epithelial progenitors, which require Ret to sustain their proliferation. Mechanistically, Ret is engaged in a positive feedback loop with Wnt/Wingless signalling, modulated by Src and Fak kinases. We find that Ret is also expressed by the developing intestinal epithelium of mice, where its expression is maintained into the adult stage in a subset of enteroendocrine/enterochromaffin cells. Mouse organoid experiments point to an intrinsic role for Ret in promoting epithelial maturation and regulating Wnt signalling. Our findings reveal evolutionary conservation of the positive Ret/Wnt signalling feedback in both developmental and homeostatic contexts. They also suggest an epithelial contribution to Ret loss‐of‐function disorders such as Hirschsprung disease.
Collapse
Affiliation(s)
- Daniel Perea
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Jordi Guiu
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Bruno Hudry
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | | | - Alexandra Milona
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Dafni Hadjieconomou
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Thomas Carroll
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Nina Hoyer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, Hamburg, Germany
| | - Dipa Natarajan
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Jukka Kallijärvi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - James A Walker
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Soba
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), University of Hamburg, Hamburg, Germany
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Institute of Child Health, London, UK
| | - Kim B Jensen
- BRIC-Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark.,The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
40
|
Redondo PA, Pavlou M, Loizidou M, Cheema U. Elements of the niche for adult stem cell expansion. J Tissue Eng 2017; 8:2041731417725464. [PMID: 28890779 PMCID: PMC5574483 DOI: 10.1177/2041731417725464] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells are crucial for tissue homeostasis. These cells reside within exclusive locations in tissues, termed niches, which protect adult stem cell fidelity and regulate their many functions through biophysical-, biochemical- and cellular-mediated mechanisms. There is a growing understanding of how these mechanisms and their components contribute towards maintaining stem cell quiescence, self-renewal, expansion and differentiation patterns. In vitro expansion of adult stem cells is a powerful tool for understanding stem cell biology, and for tissue engineering and regenerative medicine applications. However, it is technically challenging, since adult stem cell removal from their native microenvironment has negative repercussions on their sustainability. In this review, we overview specific elements of the biomimetic niche and how recreating such elements can help in vitro propagation of adult stem cells.
Collapse
Affiliation(s)
- Patricia A Redondo
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Marina Pavlou
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| | - Marilena Loizidou
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Umber Cheema
- Institute of Orthopaedics & Musculoskeletal Science, University College London, London, UK
| |
Collapse
|
41
|
Intestinal Stem Cell Niche: The Extracellular Matrix and Cellular Components. Stem Cells Int 2017; 2017:7970385. [PMID: 28835755 PMCID: PMC5556610 DOI: 10.1155/2017/7970385] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
The intestinal epithelium comprises a monolayer of polarised columnar cells organised along the crypt-villus axis. Intestinal stem cells reside at the base of crypts and are constantly nourished by their surrounding niche for maintenance, self-renewal, and differentiation. The cellular microenvironment including the adjacent Paneth cells, stromal cells, smooth muscle cells, and neural cells as well as the extracellular matrix together constitute the intestinal stem cell niche. A dynamic regulatory network exists among the epithelium, stromal cells, and the matrix via complex signal transduction to maintain tissue homeostasis. Dysregulation of these biological or mechanical signals could potentially lead to intestinal injury and disease. In this review, we discuss the role of different intestinal stem cell niche components and dissect the interaction between dynamic matrix factors and regulatory signalling during intestinal stem cell homeostasis.
Collapse
|
42
|
Pan L, Zhao Y, Yuan Z, Farouk MH, Zhang S, Bao N, Qin G. The Integrins Involved in Soybean Agglutinin-Induced Cell Cycle Alterations in IPEC-J2. Mol Cells 2017; 40:109-116. [PMID: 28222496 PMCID: PMC5339501 DOI: 10.14348/molcells.2017.2207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/09/2016] [Accepted: 01/06/2017] [Indexed: 12/26/2022] Open
Abstract
Soybean agglutinin (SBA) is an anti-nutritional factor of soybean, affecting cell proliferation and inducing cytotoxicity. Integrins are transmembrane receptors, mediating a variety of cell biological processes. This research aims to study the effects of SBA on cell proliferation and cell cycle progression of the intestinal epithelial cell line from piglets (IPEC-J2), to identify the integrin subunits especially expressed in IPEC-J2s, and to analyze the functions of these integrins on IPEC-J2 cell cycle progression and SBA-induced IPEC-J2 cell cycle alteration. The results showed that SBA lowered cell proliferation rate as the cell cycle progression from G0/G1 to S phase (P < 0.05) was inhibited. Moreover, SBA lowered mRNA expression of cell cycle-related gene CDK4, Cyclin E and Cyclin D1 (P < 0.05). We successfully identified integrins α2, α3, α6, β1, and β4 in IPEC-J2s. These five subunits were crucial to maintain normal cell proliferation and cell cycle progression in IPEC-J2s. Restrain of either these five subunits by their inhibitors, lowered cell proliferation rate, and arrested the cells at G0/G1 phase of cell cycle (P < 0.05). Further analysis indicated that integrin α2, α6, and β1 were involved in the blocking of G0/G1 phase induced by SBA. In conclusion, these results suggested that SBA lowered the IPEC-J2 cell proliferation rate through the perturbation of cell cycle progression. Furthermore, integrins were important for IPEC-J2 cell cycle progression, and they were involved in the process of SBA-induced cell cycle progression alteration, which provide a basis for further revealing SBA anti-proliferation and anti-nutritional mechanism.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Zhijie Yuan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Mohammed Hamdy Farouk
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
- Animal production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo,
Egypt
| | - Shiyao Zhang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun,
P. R. China
| |
Collapse
|
43
|
Jiang H, Tian A, Jiang J. Intestinal stem cell response to injury: lessons from Drosophila. Cell Mol Life Sci 2016; 73:3337-49. [PMID: 27137186 PMCID: PMC4998060 DOI: 10.1007/s00018-016-2235-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022]
Abstract
Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration. Here we review the current understanding of the mechanisms that control ISC self-renewal, proliferation, and lineage differentiation in Drosophila adult midgut with a focus on the niche signaling network that governs ISC activity in response to injury.
Collapse
Affiliation(s)
- Huaqi Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Aiguo Tian
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
44
|
Research advances on structure and biological functions of integrins. SPRINGERPLUS 2016; 5:1094. [PMID: 27468395 PMCID: PMC4947080 DOI: 10.1186/s40064-016-2502-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
Abstract
Integrins are an important family of adhesion molecules that were first discovered two decades ago. Integrins are transmembrane heterodimeric glycoprotein receptors consisting of α and β subunits, and are comprised of an extracellular domain, a transmembrane domain, and a cytoplasmic tail. Therein, integrin cytoplasmic domains may associate directly with numerous cytoskeletal proteins and intracellular signaling molecules, which are crucial for modulating fundamental cell processes and functions including cell adhesion, proliferation, migration, and survival. The purpose of this review is to describe the unique structure of each integrin subunit, primary cytoplasmic association proteins, and transduction signaling pathway of integrins, with an emphasis on their biological functions.
Collapse
|
45
|
Elbediwy A, Vincent-Mistiaen ZI, Spencer-Dene B, Stone RK, Boeing S, Wculek SK, Cordero J, Tan EH, Ridgway R, Brunton VG, Sahai E, Gerhardt H, Behrens A, Malanchi I, Sansom OJ, Thompson BJ. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development 2016; 143:1674-87. [PMID: 26989177 PMCID: PMC4874484 DOI: 10.1242/dev.133728] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022]
Abstract
The skin is a squamous epithelium that is continuously renewed by a population of basal layer stem/progenitor cells and can heal wounds. Here, we show that the transcription regulators YAP and TAZ localise to the nucleus in the basal layer of skin and are elevated upon wound healing. Skin-specific deletion of both YAP and TAZ in adult mice slows proliferation of basal layer cells, leads to hair loss and impairs regeneration after wounding. Contact with the basal extracellular matrix and consequent integrin-Src signalling is a key determinant of the nuclear localisation of YAP/TAZ in basal layer cells and in skin tumours. Contact with the basement membrane is lost in differentiating daughter cells, where YAP and TAZ become mostly cytoplasmic. In other types of squamous epithelia and squamous cell carcinomas, a similar control mechanism is present. By contrast, columnar epithelia differentiate an apical domain that recruits CRB3, Merlin (also known as NF2), KIBRA (also known as WWC1) and SAV1 to induce Hippo signalling and retain YAP/TAZ in the cytoplasm despite contact with the basal layer extracellular matrix. When columnar epithelial tumours lose their apical domain and become invasive, YAP/TAZ becomes nuclear and tumour growth becomes sensitive to the Src inhibitor Dasatinib.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | - Richard K Stone
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Stefan Boeing
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Stefanie K Wculek
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Julia Cordero
- The Beatson Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | - Ee H Tan
- The Beatson Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | - Rachel Ridgway
- Edinburgh Cancer Research Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Val G Brunton
- Edinburgh Cancer Research Centre, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Erik Sahai
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Holger Gerhardt
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Axel Behrens
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ilaria Malanchi
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Owen J Sansom
- The Beatson Institute, Switchback Rd, Bearsden, Glasgow G61 1BD, UK
| | - Barry J Thompson
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
46
|
Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage. Bioessays 2016; 38:644-53. [PMID: 27173018 PMCID: PMC5031209 DOI: 10.1002/bies.201600037] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The YAP/TAZ family of transcriptional co‐activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB‐Hippo/MST‐Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST‐LATS or Src family kinase activity to modulate YAP/TAZ activity.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Barry J Thompson
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
47
|
Mu D, Zhang XL, Xie J, Yuan HH, Wang K, Huang W, Li GN, Lu JR, Mao LJ, Wang L, Cheng L, Mai XL, Yang J, Tian CS, Kang LN, Gu R, Zhu B, Xu B. Intracoronary Transplantation of Mesenchymal Stem Cells with Overexpressed Integrin-Linked Kinase Improves Cardiac Function in Porcine Myocardial Infarction. Sci Rep 2016; 6:19155. [PMID: 26750752 PMCID: PMC4707493 DOI: 10.1038/srep19155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
The effect of mesenchymal stem cell (MSCs)-based therapy on treating acute myocardial infarction (MI) is limited due to poor engraftment and limited regenerative potential. Here we engineered MSCs with integrin-linked kinase (ILK), a pleiotropic protein critically regulating cell survival, proliferation, differentiation, and angiogenesis. We firstly combined ferumoxytol with poly-L-lysine (PLL), and found this combination promisingly enabled MRI visualization of MSCs in vitro and in vivo with good safety. We provided visually direct evidence that intracoronary ILK-MSCs had substantially enhanced homing capacity to infarct myocardium in porcine following cardiac catheterization induced MI. Intracoronary transplantation of allogeneic ILK-MSCs, but not vector-MSCs, significantly enhanced global left ventricular ejection fraction (LVEF) by 7.8% compared with baseline, by 10.3% compared with vehicles, and inhibited myocardial remodeling compared with vehicles at 15-day follow-up. Compared with vector-MSCs, ILK-MSCs significantly improved regional LV contractile function, reduced scar size, fibrosis, cell apoptosis, and increased regional myocardial perfusion and cell proliferation. This preclinical study indicates that ILK-engineered MSCs might promote the clinical translation of MSC-based therapy in post-MI patients, and provides evidence that ferumoxytol labeling of cells combined with PLL is feasible in in vivo cell tracking.
Collapse
Affiliation(s)
- Dan Mu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China.,Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xin-Lin Zhang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jun Xie
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hui-Hua Yuan
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Kun Wang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wei Huang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Guan-Nan Li
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jian-Rong Lu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Li-Juan Mao
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lian Wang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Le Cheng
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiao-Li Mai
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jun Yang
- Department of Pathology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chuan-Shuai Tian
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Li-Na Kang
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Rong Gu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Bin Zhu
- Department of Radiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Biao Xu
- Department of Cardiology, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
48
|
Patel PH, Dutta D, Edgar BA. Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol 2015; 17:1182-92. [PMID: 26237646 PMCID: PMC4709566 DOI: 10.1038/ncb3214] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/01/2015] [Indexed: 12/11/2022]
Abstract
Mutations that inhibit differentiation in stem cell lineages are a common early step in cancer development, but precisely how a loss of differentiation initiates tumorigenesis is unclear. We investigated Drosophila intestinal stem cell (ISC) tumours generated by suppressing Notch (N) signalling, which blocks differentiation. Notch-defective ISCs require stress-induced divisions for tumour initiation and an autocrine EGFR ligand, Spitz, during early tumour growth. On achieving a critical mass these tumours displace surrounding enterocytes, competing with them for basement membrane space and causing their detachment, extrusion and apoptosis. This loss of epithelial integrity induces JNK and Yki/YAP activity in enterocytes and, consequently, their expression of stress-dependent cytokines (Upd2, Upd3). These paracrine signals, normally used within the stem cell niche to trigger regeneration, propel tumour growth without the need for secondary mutations in growth signalling pathways. The appropriation of niche signalling by differentiation-defective stem cells may be a common mechanism of early tumorigenesis.
Collapse
Affiliation(s)
- Parthive H. Patel
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
- German Cancer Research Center (DKFZ)- Center for Molecular Biology, University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Devanjali Dutta
- German Cancer Research Center (DKFZ)- Center for Molecular Biology, University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bruce A. Edgar
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA
- German Cancer Research Center (DKFZ)- Center for Molecular Biology, University of Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Bogatan S, Cevik D, Demidov V, Vanderploeg J, Panchbhaya A, Vitkin A, Jacobs JR. Talin Is Required Continuously for Cardiomyocyte Remodeling during Heart Growth in Drosophila. PLoS One 2015; 10:e0131238. [PMID: 26110760 PMCID: PMC4482443 DOI: 10.1371/journal.pone.0131238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 05/30/2015] [Indexed: 12/26/2022] Open
Abstract
Mechanotransduction of tension can govern the remodeling of cardiomyocytes during growth or cardiomyopathy. Tension is signaled through the integrin adhesion complexes found at muscle insertions and costameres but the relative importance of signalling during cardiomyocyte growth versus remodelling has not been assessed. Employing the Drosophila cardiomyocyte as a genetically amenable model, we depleted the levels of Talin, a central component of the integrin adhesion complex, at different stages of heart growth and remodeling. We demonstrate a continuous requirement for Talin during heart growth to maintain the one-to-one apposition of myofibril ends between cardiomyocytes. Retracted myofibrils cannot regenerate appositions to adjacent cells after restoration of normal Talin expression, and the resulting deficit reduces heart contraction and lifespan. Reduction of Talin during heart remodeling after hatching or during metamorphosis results in pervasive degeneration of cell contacts, myofibril length and number, for which restored Talin expression is insufficient for regeneration. Resultant dilated cardiomyopathy results in a fibrillating heart with poor rhythmicity. Cardiomyocytes have poor capacity to regenerate deficits in myofibril orientation and insertion, despite an ongoing capacity to remodel integrin based adhesions.
Collapse
Affiliation(s)
- Simina Bogatan
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Duygu Cevik
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Valentin Demidov
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jessica Vanderploeg
- Department of Biology, Taylor University, Euler Science Complex, 236 W. Reade Ave, Upland, IN, 46989, United States of America
| | | | - Alex Vitkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - J. Roger Jacobs
- Department of Biology, McMaster University, Hamilton, ON, Canada
- * E-mail:
| |
Collapse
|
50
|
Maartens AP, Brown NH. Anchors and signals: the diverse roles of integrins in development. Curr Top Dev Biol 2015; 112:233-72. [PMID: 25733142 DOI: 10.1016/bs.ctdb.2014.11.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Integrins mediate cell adhesion by providing a link between the actin cytoskeleton and the extracellular matrix. As well as acting to anchor cells, integrin adhesions provide sensory input via mechanotransduction and synergism with signaling pathways, and provide the cell with the conditions necessary for differentiation in a permissive manner. In this review, we explore how integrins contribute to development, and what this tells us about how they work. From a signaling perspective, the influence of integrins on cell viability and fate is muted in a developmental context as compared to cell culture. Integrin phenotypes tend to arise from a failure of normally specified cells to create tissues properly, due to defective adhesion. The diversity of integrin functions in development shows how cell adhesion is continuously adjusted, both within and between animals, to fit developmental purpose.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|