1
|
Marinaro G, Bruno L, Pirillo N, Coluccio ML, Nanni M, Malara N, Battista E, Bruno G, De Angelis F, Cancedda L, Di Mascolo D, Gentile F. The role of elasticity on adhesion and clustering of neurons on soft surfaces. Commun Biol 2024; 7:617. [PMID: 38778159 PMCID: PMC11111731 DOI: 10.1038/s42003-024-06329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The question of whether material stiffness enhances cell adhesion and clustering is still open to debate. Results from the literature are seemingly contradictory, with some reports illustrating that adhesion increases with surface stiffness and others suggesting that the performance of a system of cells is curbed by high values of elasticity. To address the role of elasticity as a regulator in neuronal cell adhesion and clustering, we investigated the topological characteristics of networks of neurons on polydimethylsiloxane (PDMS) surfaces - with values of elasticity (E) varying in the 0.55-2.65 MPa range. Results illustrate that, as elasticity increases, the number of neurons adhering on the surface decreases. Notably, the small-world coefficient - a topological measure of networks - also decreases. Numerical simulations and functional multi-calcium imaging experiments further indicated that the activity of neuronal cells on soft surfaces improves for decreasing E. Experimental findings are supported by a mathematical model, that explains adhesion and clustering of cells on soft materials as a function of few parameters - including the Young's modulus and roughness of the material. Overall, results indicate that - in the considered elasticity interval - increasing the compliance of a material improves adhesion, improves clustering, and enhances communication of neurons.
Collapse
Affiliation(s)
- Giovanni Marinaro
- Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Quartier Hôpital, 4000, Liège, Belgium
| | - Luigi Bruno
- Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036, Rende, Italy
| | - Noemi Pirillo
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Maria Laura Coluccio
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Marina Nanni
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Natalia Malara
- Department of Health Science, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Edmondo Battista
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Giulia Bruno
- Plasmon Nanotechnologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Francesco De Angelis
- Plasmon Nanotechnologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Via Morego 30, 16163, Genoa, Italy
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, 16163, Genoa, Italy.
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70126, Bari, Italy.
| | - Francesco Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
2
|
Lan D, Wu B, Zhang H, Chen X, Li Z, Dai F. Novel Bioinspired Nerve Scaffold with High Synchrony between Biodegradation and Nerve Regeneration for Repair of Peripheral Nerve Injury. Biomacromolecules 2023; 24:5451-5466. [PMID: 37917398 DOI: 10.1021/acs.biomac.3c00920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The morphological structure reconstruction and functional recovery of long-distance peripheral nerve injury (PNI) are global medical challenges. Biodegradable nerve scaffolds that provide mechanical support for the growth and extension of neurites are a desired way to repair long-distance PNI. However, the synchrony of scaffold degradation and nerve regeneration is still challenging. Here, a novel bioinspired multichannel nerve guide conduit (MNGC) with topographical cues based on silk fibroin and ε-polylysine modification was constructed. This conduit (SF(A) + PLL MNGC) exhibited sufficient mechanical strength, excellent degradability, and favorable promotion of cell growth. Peripheral nerve repairing was evaluated by an in vivo 10 mm rat sciatic model. In vivo evidence demonstrated that SF(A) + PLL MNGC was completely biodegraded in the body within 4 weeks after providing sufficient physical support and guide for neurite extension, and a 10 mm sciatic nerve defect was effectively repaired without scar formation, indicating a high synchronous effect of scaffold biodegradation and nerve regeneration. More importantly, the regenerated nerve of the SF(A) + PLL MNGC group showed comparable morphological reconstruction and functional recovery to that of autologous nerve transplantation. This work proved that the designed SF(A) + PLL MNGC has potential for application in long-distance PNI repair in the clinic.
Collapse
Affiliation(s)
- Dongwei Lan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Baiqing Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Haiqiang Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Xiang Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Zhi Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Allahyari Z, Gaborski TR. Engineering cell-substrate interactions on porous membranes for microphysiological systems. LAB ON A CHIP 2022; 22:2080-2089. [PMID: 35593461 DOI: 10.1039/d2lc00114d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microphysiological systems are now widely used to recapitulate physiological and pathological microenvironments in order to study and understand a variety of cellular processes as well as drug delivery and stem cell differentiation. Central to many of these systems are porous membranes that enable tissue barrier formation as well as compartmentalization while still facilitating small molecule diffusion, cellular transmigration and cell-cell communication. The role or impact of porous membranes on the cells cultured upon them has not been widely studied or reviewed. Although many chemical and physical substrate characteristics have been shown to be effective in controlling and directing cellular behavior, the influence of pore characteristics and the ability to engineer porous membranes to influence these responses is not fully understood. In this mini-review, we show that many studies point to a multiphasic cell-substrate response, where increasing pore sizes and pore-pore spacing generally leads to improved cell-substrate interactions. However, the smallest pores in the nano-scale sometimes promote the strongest cell-substrate interactions, while the very largest micron-scale pores hinder cell-substrate interactions. This synopsis provides an insight into the importance of membrane pores in controlling cellular responses, and may help with the design and utilization of porous membranes for induction of desired cell processes in the development of biomimetic platforms.
Collapse
Affiliation(s)
- Zahra Allahyari
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA.
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Thomas R Gaborski
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA.
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| |
Collapse
|
4
|
Allahyari Z, Casillo SM, Perry SJ, Peredo AP, Gholizadeh S, Gaborski TR. Disrupted Surfaces of Porous Membranes Reduce Nuclear YAP Localization and Enhance Adipogenesis through Morphological Changes. ACS Biomater Sci Eng 2022; 8:1791-1798. [PMID: 35363465 DOI: 10.1021/acsbiomaterials.1c01472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The disrupted surface of porous membranes, commonly used in tissue-chip and cellular coculture systems, is known to weaken cell-substrate interactions. Here, we investigated whether disrupted surfaces of membranes with micron and submicron scale pores affect yes-associated protein (YAP) localization and differentiation of adipose-derived stem cells. We found that these substrates reduce YAP nuclear localization through decreased cell spreading, consistent with reduced cell-substrate interactions, and in turn enhance adipogenesis while decreasing osteogenesis.
Collapse
Affiliation(s)
- Zahra Allahyari
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States.,Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Stephanie M Casillo
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Spencer J Perry
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Ana P Peredo
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Shayan Gholizadeh
- Department of Microsystems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States.,Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Thomas R Gaborski
- Department of Biomedical Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| |
Collapse
|
5
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Yang L, Pijuan-Galito S, Rho HS, Vasilevich AS, Eren AD, Ge L, Habibović P, Alexander MR, de Boer J, Carlier A, van Rijn P, Zhou Q. High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chem Rev 2021; 121:4561-4677. [PMID: 33705116 PMCID: PMC8154331 DOI: 10.1021/acs.chemrev.0c00752] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 02/07/2023]
Abstract
The complex interaction of cells with biomaterials (i.e., materiobiology) plays an increasingly pivotal role in the development of novel implants, biomedical devices, and tissue engineering scaffolds to treat diseases, aid in the restoration of bodily functions, construct healthy tissues, or regenerate diseased ones. However, the conventional approaches are incapable of screening the huge amount of potential material parameter combinations to identify the optimal cell responses and involve a combination of serendipity and many series of trial-and-error experiments. For advanced tissue engineering and regenerative medicine, highly efficient and complex bioanalysis platforms are expected to explore the complex interaction of cells with biomaterials using combinatorial approaches that offer desired complex microenvironments during healing, development, and homeostasis. In this review, we first introduce materiobiology and its high-throughput screening (HTS). Then we present an in-depth of the recent progress of 2D/3D HTS platforms (i.e., gradient and microarray) in the principle, preparation, screening for materiobiology, and combination with other advanced technologies. The Compendium for Biomaterial Transcriptomics and high content imaging, computational simulations, and their translation toward commercial and clinical uses are highlighted. In the final section, current challenges and future perspectives are discussed. High-throughput experimentation within the field of materiobiology enables the elucidation of the relationships between biomaterial properties and biological behavior and thereby serves as a potential tool for accelerating the development of high-performance biomaterials.
Collapse
Affiliation(s)
- Liangliang Yang
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sara Pijuan-Galito
- School
of Pharmacy, Biodiscovery Institute, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hoon Suk Rho
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Aliaksei S. Vasilevich
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aysegul Dede Eren
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Lu Ge
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pamela Habibović
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Morgan R. Alexander
- School
of Pharmacy, Boots Science Building, University
of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jan de Boer
- Department
of Biomedical Engineering, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Aurélie Carlier
- Department
of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, W. J. Kolff Institute for Biomedical Engineering and
Materials Science, Department of Biomedical Engineering, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Qihui Zhou
- Institute
for Translational Medicine, Department of Stomatology, The Affiliated
Hospital of Qingdao University, Qingdao
University, Qingdao 266003, China
| |
Collapse
|
7
|
Tang SW, Yuen W, Kaur I, Pang SW, Voelcker NH, Lam YW. Capturing instructive cues of tissue microenvironment by silica bioreplication. Acta Biomater 2020; 102:114-126. [PMID: 31756551 DOI: 10.1016/j.actbio.2019.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/03/2023]
Abstract
Cells in tissues are enveloped by an instructive niche made of the extracellular matrix. These instructive niches contain three general types of information: topographical, biochemical and mechanical. While the combined effects of these three factors are widely studied, the functions of each individual one has not been systematically characterised, because it is impossible to alter a single factor in a tissue microenvironment without simultaneously affecting the other two. Silica BioReplication (SBR) is a process that converts biological samples into silica, faithfully preserving the original topography at the nano-scale. We explored the use of this technique to generate inorganic replicas of intact mammalian tissues, including tendon, cartilage, skeletal muscle and spinal cord. Scanning electron and atomic force microscopy showed that the resulting replicas accurately preserved the three-dimensional ultrastructure of each tissue, while all biochemical components were eradicated by calcination. Such properties allowed the uncoupling the topographical information of a tissue microenvironment from its biochemical and mechanical components. Here, we showed that human mesenchymal stem cells (MSC) cultured on the replicas of different tissues displayed vastly different morphology and focal adhesions, suggesting that the topography of the tissue microenvironment captured by SBR could profoundly affect MSC biology. MSC cultured on tendon replica elongated and expressed tenocytes marker, while MSC on the spinal cord replica developed into spheroids that resembled neurospheres, in morphology and in the expression of neurosphere markers, and could be further differentiated into neuron-like cells. This study reveals the significance of topographical cues in a cell niche, as tissue-specific topography was sufficient in initiating and directing differentiation of MSC, despite the absence of any biochemical signals. SBR is a convenient and versatile method for capturing this topographical information, facilitating the functional characterisation of cell niches. STATEMENT OF SIGNIFICANCE: Various studies have shown that three major factors, topographical, biochemical and mechanical, in a tissue microenvironment (TME) are essential for cellular homeostasis and functions. Current experimental models are too simplistic to represent the complexity of the TME, hindering the detailed understanding of its functions. In particular, the importance each factor in a tissue microenvironment have not been individually characterised, because it is challenging to alter one of these factors without simultaneously affecting the other two. Silica bioreplication (SBR) is a process that converts biological samples into silica replicas with high structural fidelity. SBR is a convenient and versatile method for capturing this topographical information on to a biologically inert material, allowing the functional characterisation of the architecture of a TME.
Collapse
Affiliation(s)
- Sze Wing Tang
- Department of Chemistry, City University of Hong Kong, Hong Kong
| | - Wai Yuen
- HealthBaby Biotech (Hong Kong) Co., Ltd, Hong Kong
| | - Ishdeep Kaur
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Stella W Pang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong
| | - Nicolas H Voelcker
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Australia
| | - Yun Wah Lam
- Department of Chemistry, City University of Hong Kong, Hong Kong.
| |
Collapse
|
8
|
Soussi I, Mazouz Z, Collart-Dutilleul PY, Echabaane M, Martin M, Cloitre T, M'ghaieth R, Cuisinier FJG, Cunin F, Gergely C, Othmane A. Electrochemical and optical investigation of dental pulp stem cell adhesion on modified porous silicon scaffolds. Colloids Surf B Biointerfaces 2019; 181:489-497. [PMID: 31176121 DOI: 10.1016/j.colsurfb.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Extensive use of porous silicon (PSi) for tissue engineering is due to its convenient properties as it is both nontoxic and bioresorbable. Moreover, PSi surface modification is an important step to enhance cell adhesion and proliferation. In this work, a combination of optical and electrochemical studies is performed to elaborate a suitable PSi multilayer substrate for cell culture. For this study, we modified PSi surface by silanization and antibody grafting (APTES-anti STRO1), the 12-mer specific peptide to silicon p + type coating and the peptide modified with the antibody recognition sequence. Electrochemical characterization of PSi multilayers is performed to investigate its electrical behavior, determine the optimal measuring conditions and reveal the most stable PSi surfaces. Then, the behavior of dental pulp stem cells (DPSC) was investigated on various modified PSi surfaces. An electrochemical method was applied for the first time monitoring the electrical behavior of stem cell adhesion. The cells electrochemical behavior depends on the nature of the surface coating and the peptide-anti STRO1 improved adhesion and cell spreading onto the PSi surface compared to bare surface and the one coated with the peptide. Fluorescent microscopy revealed that all surface modification methods enhance cell adhesion compared to the bare PSi surface. An increased cell number is observed on APTES-anti STRO1, peptide and peptide-anti STRO1 coated PSi. The peptide-anti STRO1 provided the best cell proliferation results suggesting the improved accessibility of the recognition fragment of the antibody anti-STRO1.
Collapse
Affiliation(s)
- Ines Soussi
- Université de Monastir, Faculté de Médecine de Monastir, Laboratoire des Interfaces et Matériaux Avancés, LR11ES55, 5000, Monastir, Tunisia.
| | - Zouhour Mazouz
- Institut National de Recherche et d'Analyse Physico-chimique (INRAP), Laboratoire Matériaux, Traitement et Analyse (LMTA), BiotechPole, Sidi-Thabet, 2032, Ariana, Tunisia
| | | | - Mosaab Echabaane
- NANOMISENE Lab, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse, Technopark of Sousse, B.P. 334, Sahloul, 4034, Sousse, Tunisia
| | - Marta Martin
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Thierry Cloitre
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Ridha M'ghaieth
- Laboratoire de Micro-Optoélectronique et Nanostructures, Faculté des Sciences de Monastir, Université de Monastir, LR99ES29, 5000, Monastir, Tunisia
| | | | - Frédérique Cunin
- Institut Charles Gerhardt Montpellier (ICGM), UMR 5253, Université de Montpellier 2, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Csilla Gergely
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Ali Othmane
- Université de Monastir, Faculté de Médecine de Monastir, Laboratoire des Interfaces et Matériaux Avancés, LR11ES55, 5000, Monastir, Tunisia
| |
Collapse
|
9
|
Tang SW, Uddin MH, Tong WY, Pasic P, Yuen W, Thissen H, Lam YW, Voelcker NH. Replication of a Tissue Microenvironment by Thermal Scanning Probe Lithography. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18988-18994. [PMID: 31051073 DOI: 10.1021/acsami.9b05553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Thermal scanning probe lithography (t-SPL) is a nanofabrication technique in which an immobilized thermolabile resist, such as polyphthalaldehyde (PPA), is locally vaporized by a heated atomic force microscope tip. Compared with other nanofabrication techniques, such as soft lithography and nanoimprinting lithography, t-SPL is more efficient and convenient as it does not involve time-consuming mask productions or complicated etching procedures, making it a promising candidate technique for the fast prototyping of nanoscale topographies for biological studies. Here, we established the direct use of PPA-coated surfaces as a cell culture substrate. We showed that PPA is biocompatible and that the deposition of allylamine by plasma polymerization on a silicon wafer before PPA coating can stabilize the immobilization of PPA in aqueous solutions. When seeded on PPA-coated surfaces, human mesenchymal stem cells (MSC) adhered, spread, and proliferated in a manner indistinguishable from cells cultured on glass surfaces. This allowed us to subsequently use t-SPL to generate nanotopographies for cell culture experiments. As a proof of concept, we analyzed the surface topography of bovine tendon sections, previously shown to induce morphogenesis and differentiation of MSC, by means of atomic force microscopy, and then "wrote" topographical data on PPA by means of t-SPL. The resulting substrate, matching the native tissue topography on the nanoscale, was directly used for MSC culture. The t-SPL substrate induced similar changes in cell morphology and focal adhesion formation in the MSC compared to native tendon sections, suggesting that t-SPL can rapidly generate cell culture substrates with complex and spatially accurate topographical signals. This technique may greatly accelerate the prototyping of models for the study of cell-matrix interactions.
Collapse
Affiliation(s)
- Sze Wing Tang
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong SAR
| | - Md Hemayet Uddin
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| | - Wing Yin Tong
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , Victoria 3168 , Australia
| | - Paul Pasic
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| | - Wai Yuen
- HealthBaby Biotech (Hong Kong) Company, Limited , Lakeside 2 West Wing, No. 10 Science Park West Avenue , Sha Tin , Hong Kong SAR
| | - Helmut Thissen
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| | - Yun Wah Lam
- Department of Chemistry , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong SAR
| | - Nicolas H Voelcker
- Drug Delivery Disposition & Dynamics, Monash Institute of Pharmaceutical Science , Monash University , 381 Royal Parade , Parkville , Victoria 3052 , Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) , Clayton , Victoria 3168 , Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , 151 Wellington Road , Clayton , Victoria 3168 , Australia
| |
Collapse
|
10
|
XPS Analysis of 2- and 3-Aminothiophenol Grafted on Silicon (111) Hydride Surfaces. MOLECULES (BASEL, SWITZERLAND) 2018; 23:molecules23102712. [PMID: 30347868 PMCID: PMC6222732 DOI: 10.3390/molecules23102712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022]
Abstract
Following on from our previous study on the resonance/inductive structures of ethynylaniline, this report examines similar effects arising from resonance structures with aromatic aminothiophenol with dual electron-donating substituents. In brief, 2- and 3-aminothiophenol were thermally grafted on silicon (111) hydride substrate at 130 °C under nonpolar aprotic mesitylene. From the examination of high resolution XPS Si2p, N1s, and S2p spectrum, it was noticed that there was a strong preference of NH₂ over SH to form Si⁻N linkage on the silicon hydride surface for 2-aminothiophenol. However, for 3-aminothiophenol, there was a switch in reactivity of the silicon hydride toward SH group. This was attributed to the antagonistic and cooperative resonance effects for 2- and 3-aminothiophenol, respectively. The data strongly suggested that the net resonance of the benzylic-based compound could have played an important role in the net distribution of negative charge along the benzylic framework and subsequently influenced the outcome of the surface reaction. To the best of the authors' knowledge, this correlation between dual electron-donating substituents and the outcome of the nucleophilic addition toward silicon hydride surfaces has not been described before in literature.
Collapse
|
11
|
Formentín P, Catalán Ú, Pol L, Fernández-Castillejo S, Solà R, Marsal LF. Collagen and fibronectin surface modification of nanoporous anodic alumina and macroporous silicon for endothelial cell cultures. J Biol Eng 2018; 12:21. [PMID: 30305842 PMCID: PMC6166296 DOI: 10.1186/s13036-018-0111-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ability to direct the cellular response by means of biomaterial surface topography is important for biomedical applications. Substrate surface topography has been shown to be an effective cue for the regulation of cellular response. Here, the response of human aortic endothelial cells to nanoporous anodic alumina and macroporous silicon with collagen and fibronectin functionalization has been studied. METHODS Confocal microscopy and scanning electron microscopy were employed to analyse the effects of the material and the porosity on the adhesion, morphology, and proliferation of the cells. Cell spreading and filopodia formation on macro- and nanoporous material was characterized by atomic force microscopy. We have also studied the influence of the protein on the adhesion. RESULTS It was obtained the best results when the material is functionalized with fibronectin, regarding cells adhesion, morphology, and proliferation. CONCLUSION These results permit to obtain chemical modified 3D structures for several biotechnology applications such as tissue engineering, organ-on-chip or regenerative medicine.
Collapse
Affiliation(s)
- P. Formentín
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - Ú. Catalán
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Hospital Universitari Sant Joan (HUSJR), Institut d’Investigació Sanitaria Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| | - L. Pol
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
| | - S. Fernández-Castillejo
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Hospital Universitari Sant Joan (HUSJR), Institut d’Investigació Sanitaria Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| | - R. Solà
- Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), Hospital Universitari Sant Joan (HUSJR), Institut d’Investigació Sanitaria Pere Virgili (IISPV), Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, Sant Llorenç, 21, 43201 Reus, Spain
| | - L. F. Marsal
- Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain
| |
Collapse
|
12
|
Marrella A, Lee TY, Lee DH, Karuthedom S, Syla D, Chawla A, Khademhosseini A, Jang HL. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:362-376. [PMID: 30100812 PMCID: PMC6082025 DOI: 10.1016/j.mattod.2017.10.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Blood vessels and nerve fibers are distributed throughout the entirety of skeletal tissue, and play important roles during bone development and fracture healing by supplying oxygen, nutrients, and cells. However, despite the successful development of bone mimetic materials that can replace damaged bone from a structural point of view, most of the available bone biomaterials often do not induce sufficient formation of blood vessels and nerves. In part, this is due to the difficulty of integrating and regulating multiple tissue types within artificial materials, which causes a gap between native skeletal tissue. Therefore, understanding the anatomy and underlying interaction mechanisms of blood vessels and nerve fibers in skeletal tissue is important to develop biomaterials that can recapitulate its complex microenvironment. In this perspective, we highlight the structure and osteogenic functions of the vascular and nervous system in bone, in a coupled manner. In addition, we discuss important design criteria for engineering vascularized, innervated, and neurovascularized bone implant materials, as well as recent advances in the development of such biomaterials. We expect that bone implant materials with neurovascularized networks can more accurately mimic native skeletal tissue and improve the regeneration of bone tissue.
Collapse
Affiliation(s)
- Alessandra Marrella
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Tae Yong Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dong Hoon Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Sobha Karuthedom
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Denata Syla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
13
|
Bachhuka A, Delalat B, Ghaemi SR, Gronthos S, Voelcker NH, Vasilev K. Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells. NANOSCALE 2017; 9:14248-14258. [PMID: 28914948 DOI: 10.1039/c7nr03131a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Advanced medical devices, treatments and therapies demand an understanding of the role of interfacial properties on the cellular response. This is particularly important in the emerging fields of cell therapies and tissue regeneration. In this study, we evaluate the role of surface nanotopography on the fate of human dental pulp derived stem cells (hDPSC). These stem cells have attracted interest because of their capacity to differentiate to a range of useful lineages but are relatively easy to isolate. We generated and utilized density gradients of gold nanoparticles which allowed us to examine, on a single substrate, the influence of nanofeature density and size on stem cell behavior. We found that hDPSC adhered in greater numbers and proliferated faster on the sections of the gradients with higher density of nanotopography features. Furthermore, greater surface nanotopography density directed the differentiation of hDPSC to osteogenic lineages. This study demonstrates that carefully tuned surface nanotopography can be used to manipulate and guide the proliferation and differentiation of these cells. The outcomes of this study can be important in the rational design of culture substrates and vehicles for cell therapies, tissue engineering constructs and the next generation of biomedical devices where control over the growth of different tissues is required.
Collapse
Affiliation(s)
- Akash Bachhuka
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia. and ARC Centre of Excellence for Nanoscale Bio Photonics, Institute for Photonics and Advanced Sensing, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Bahman Delalat
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia.
| | - Soraya Rasi Ghaemi
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia.
| | - Stan Gronthos
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Nicolas H Voelcker
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia. and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Krasimir Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia. and School of Engineering, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
14
|
Zhou Q, Castañeda Ocampo O, Guimarães CF, Kühn PT, van Kooten TG, van Rijn P. Screening Platform for Cell Contact Guidance Based on Inorganic Biomaterial Micro/nanotopographical Gradients. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31433-31445. [PMID: 28825457 PMCID: PMC5609122 DOI: 10.1021/acsami.7b08237] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/21/2017] [Indexed: 05/19/2023]
Abstract
High-throughput screening (HTS) methods based on topography gradients or arrays have been extensively used to investigate cell-material interactions. However, it is a huge technological challenge to cost efficiently prepare topographical gradients of inorganic biomaterials due to their inherent material properties. Here, we developed a novel strategy translating PDMS-based wrinkled topography gradients with amplitudes from 49 to 2561 nm and wavelengths between 464 and 7121 nm to inorganic biomaterials (SiO2, Ti/TiO2, Cr/CrO3, and Al2O3) which are frequently used clinical materials. Optimal substratum conditions promoted human bone-marrow derived mesenchymal stem cell alignment, elongation, cytoskeleton arrangement, filopodia development as well as cell adhesion in vitro, which depended both on topography and interface material. This study displays a positive correlation between cell alignment and the orientation of cytoskeleton, filopodia, and focal adhesions. This platform vastly minimizes the experimental efforts both for inorganic material interface engineering and cell biological assessments in a facile and effective approach. The practical application of the HTS technology is expected to aid in the acceleration of developments of inorganic clinical biomaterials.
Collapse
Affiliation(s)
- Qihui Zhou
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff
Institute for Biomedical Engineering and Materials Science—FB41, University of Groningen, University Medical Center
Groningen, Groningen,
A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Olga Castañeda Ocampo
- Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Stratingh Institute for Chemistry, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Carlos F. Guimarães
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Philipp T. Kühn
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff
Institute for Biomedical Engineering and Materials Science—FB41, University of Groningen, University Medical Center
Groningen, Groningen,
A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Theo G. van Kooten
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff
Institute for Biomedical Engineering and Materials Science—FB41, University of Groningen, University Medical Center
Groningen, Groningen,
A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- Department of Biomedical
Engineering—FB40, University of Groningen,
University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff
Institute for Biomedical Engineering and Materials Science—FB41, University of Groningen, University Medical Center
Groningen, Groningen,
A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
15
|
Onesto V, Cancedda L, Coluccio ML, Nanni M, Pesce M, Malara N, Cesarelli M, Di Fabrizio E, Amato F, Gentile F. Nano-topography Enhances Communication in Neural Cells Networks. Sci Rep 2017; 7:9841. [PMID: 28851984 PMCID: PMC5575309 DOI: 10.1038/s41598-017-09741-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness S a affects networks topology. In the low nano-meter range, S a = 0-30 nm, information increases with S a . Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.
Collapse
Affiliation(s)
- V Onesto
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - L Cancedda
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - M L Coluccio
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - M Nanni
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - M Pesce
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - N Malara
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - M Cesarelli
- Department of Electrical Engineering and Information Technology, University of Naples, 80125, Naples, Italy
| | - E Di Fabrizio
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
- King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - F Amato
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100, Catanzaro, Italy
| | - F Gentile
- Department of Electrical Engineering and Information Technology, University of Naples, 80125, Naples, Italy.
| |
Collapse
|
16
|
Criscenti G, Vasilevich A, Longoni A, De Maria C, van Blitterswijk CA, Truckenmuller R, Vozzi G, De Boer J, Moroni L. 3D screening device for the evaluation of cell response to different electrospun microtopographies. Acta Biomater 2017; 55:310-322. [PMID: 28373083 DOI: 10.1016/j.actbio.2017.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/04/2017] [Accepted: 03/27/2017] [Indexed: 12/28/2022]
Abstract
Micro- and nano-topographies of scaffold surfaces play a pivotal role in tissue engineering applications, influencing cell behavior such as adhesion, orientation, alignment, morphology and proliferation. In this study, a novel microfabrication method based on the combination of soft-lithography and electrospinning for the production of micro-patterned electrospun scaffolds was proposed. Subsequently, a 3D screening device for electrospun meshes with different micro-topographies was designed, fabricated and biologically validated. Results indicated that the use of defined patterns could induce specific morphological variations in human mesenchymal stem cell cytoskeletal organization, which could be related to differential activity of signaling pathways. STATEMENT OF SIGNIFICANCE We introduce a novel and time saving method to fabricate 3D micropatterns with controlled micro-architectures on electrospun meshes using a custom made collector and a PDMS mold with the desired topography. A possible application of this fabrication technique is represented by a 3D screening system for patterned electrospun meshes that allows the screening of different scaffold/electrospun parameters on cell activity. In addition, what we have developed in this study could be modularly applied to existing platforms. Considering the different patterned geometries, the cell morphological data indicated a change in the cytoskeletal organization with a close correspondence to the patterns, as shown by phenoplot and boxplot analysis, and might hint at the differential activity of cell signaling. The 3D screening system proposed in this study could be used to evaluate topographies favoring cell alignment, proliferation and functional performance, and has the potential to be upscaled for high-throughput.
Collapse
Affiliation(s)
- G Criscenti
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Research Center "E. Piaggio", Faculty of Engineering, University of Pisa, Pisa, Italy
| | - A Vasilevich
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - A Longoni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - C De Maria
- Research Center "E. Piaggio", Faculty of Engineering, University of Pisa, Pisa, Italy
| | - C A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - R Truckenmuller
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - G Vozzi
- Research Center "E. Piaggio", Faculty of Engineering, University of Pisa, Pisa, Italy
| | - J De Boer
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Cell Biology Inspired Tissue Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - L Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands; Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
18
|
Nasrollahi S, Banerjee S, Qayum B, Banerjee P, Pathak A. Nanoscale Matrix Topography Influences Microscale Cell Motility through Adhesions, Actin Organization, and Cell Shape. ACS Biomater Sci Eng 2016; 3:2980-2986. [DOI: 10.1021/acsbiomaterials.6b00554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samila Nasrollahi
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Sriya Banerjee
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Beenish Qayum
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Parag Banerjee
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Amit Pathak
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
19
|
Dalilottojari A, Delalat B, Harding FJ, Cockshell MP, Bonder CS, Voelcker NH. Porous Silicon-Based Cell Microarrays: Optimizing Human Endothelial Cell-Material Surface Interactions and Bioactive Release. Biomacromolecules 2016; 17:3724-3731. [PMID: 27744681 DOI: 10.1021/acs.biomac.6b01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Porous silicon (pSi) substrates are a promising platform for cell expansion, since pore size and chemistry can be tuned to control cell behavior. In addition, a variety of bioactives can be loaded into the pores and subsequently released to act on cells adherent to the substrate. Here, we construct a cell microarray on a plasma polymer coated pSi substrate that enables the simultaneous culture of human endothelial cells on printed immobilized protein factors, while a second soluble growth factor is released from the same substrate. This allows three elements of candidate pSi scaffold materials-topography, surface functionalization, and controlled factor release-to be assessed simultaneously in high throughput. We show that protein conjugation within printed microarray spots is more uniform on the pSi substrate than on flat glass or silicon surfaces. Active growth factors are released from the pSi surface over a period of several days. Using an endothelial progenitor cell line, we investigate changes in cell behavior in response to the microenvironment. This platform facilitates the design of advanced functional biomaterials, including scaffolds, and carriers for regenerative medicine and cell therapy.
Collapse
Affiliation(s)
- Adel Dalilottojari
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide South Australia 5001, Australia
| | - Bahman Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide South Australia 5001, Australia
| | - Frances J Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide South Australia 5001, Australia
| | - Michaelia P Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide South Australia 5001, South Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology , Adelaide South Australia 5001, South Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , GPO Box 2471, Adelaide South Australia 5001, Australia
| |
Collapse
|
20
|
Wang PY, Thissen H, Kingshott P. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater 2016; 45:31-59. [PMID: 27596488 DOI: 10.1016/j.actbio.2016.08.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/30/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
Abstract
The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. STATEMENT OF SIGNIFICANCE This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials.
Collapse
|
21
|
Huang TH, Pei Y, Zhang D, Li Y, Kilian KA. Patterned porous silicon photonic crystals with modular surface chemistry for spatial control of neural stem cell differentiation. NANOSCALE 2016; 8:10891-10895. [PMID: 27173986 DOI: 10.1039/c5nr08327c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a strategy to spatially define regions of gold and nanostructured silicon photonics, each with materials-specific surface chemistry, for azide-alkyne cycloaddition of different bioactive peptides. Neural stem cells are spatially directed to undergo neurogenesis and astrogenesis as a function of both surface properties and peptide identity.
Collapse
Affiliation(s)
- Tiffany H Huang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61874, USA.
| | | | | | | | | |
Collapse
|
22
|
Fabrication of Radially Symmetric Graded Porous Silicon using a Novel Cell Design. Sci Rep 2016; 6:24864. [PMID: 27103508 PMCID: PMC4840451 DOI: 10.1038/srep24864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/06/2016] [Indexed: 11/08/2022] Open
Abstract
A contactless method using a novel design of the experimental cell for formation of porous silicon with morphological gradient is reported. Fabricated porous silicon layers show a large distribution in porosity, pore size and depth along the radius of the samples. Symmetrical arrangements of morphology gradient were successfully formulated radially on porous films and the formation was attributed to decreasing current density radially inward on the silicon surface exposed to Triton(®) X-100 containing HF based etchant solution. Increasing the surfactant concentration increases the pore depth gradient but has a reverse effect on the pore size distribution. Interestingly, when dimethyl sulfoxide was used instead of Triton(®) X-100 in the etchant solution, no such morphological gradients were observed and a homogeneous porous film was formed.
Collapse
|
23
|
Hook AL, Scurr DJ. ToF-SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C 6 derivative pendant groups. SURF INTERFACE ANAL 2016; 48:226-236. [PMID: 27134321 PMCID: PMC4832844 DOI: 10.1002/sia.5959] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information‐rich nature of ToF‐SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono‐functional from multi‐functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure–function relationships based upon ToF‐SIMS data of polymer libraries. © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Andrew L Hook
- Laboratory of Biophysics and Surface Analysis University of Nottingham Nottingham NG7 2RD UK
| | - David J Scurr
- Laboratory of Biophysics and Surface Analysis University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
24
|
Cozzi C, Polito G, Strambini LM, Barillaro G. Electrochemical Preparation of In-Silicon Hierarchical Networks of Regular Out-Of-Plane Macropores Interconnected by Secondary In-Plane Pores Through Controlled Inhibition of Breakdown Effects. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Zhou Q, Kühn PT, Huisman T, Nieboer E, van Zwol C, van Kooten TG, van Rijn P. Directional nanotopographic gradients: a high-throughput screening platform for cell contact guidance. Sci Rep 2015; 5:16240. [PMID: 26572879 PMCID: PMC4647116 DOI: 10.1038/srep16240] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023] Open
Abstract
A novel approach was developed using PDMS-substrates with surface-aligned nanotopography gradients, varying unidirectional in amplitude and wavelength, for studying cell behavior with regard to adhesion and alignment. The gradients target more surface feature parameters simultaneously and provide more information with fewer experiments and are therefore vastly superior with respect to individual topography substrates. Cellular adhesion experiments on non-gradient aligned nanowrinkled surfaces displayed a linear relationship of osteoblast cell adhesion with respect to topography aspect ratio. Additionally, an aspect ratio of 0.25 was found to be most efficient for cell alignment. Modification of the surface preparation method allowed us to develop an approach for creating surface nanotopography gradients which innovatively provided a superior data collection with fewer experiments showing that 1) low amplitude with small wavenumber is best for osteoblast cell adhesion 2) indeed higher aspect ratios are favorable for alignment however only with features between 80-180 nm in amplitude and 450-750 nm in wavelength with a clear transition between adhesion and alignment efficiency and 3) disproved a linear relationship of cell adhesion towards aspect ratio as was found for single feature substrate analysis.
Collapse
Affiliation(s)
- Qihui Zhou
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, Netherlands
| | - Philipp T. Kühn
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, Netherlands
| | - Thirsa Huisman
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Elsje Nieboer
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Charlotte van Zwol
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Theo G. van Kooten
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, Netherlands
| | - Patrick van Rijn
- Biomedical Engineering Department-FB40, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| |
Collapse
|
26
|
In situ electrochemical study of the interaction of cells with thermally treated titanium. Biointerphases 2015; 10:021006. [PMID: 25947388 DOI: 10.1116/1.4919778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Micromotion and fretting wear between bone and Ti-based alloys in stem and dental implants breaks the passive film and exposes the metal to the action of the complex surrounding medium, generating substantial amounts of debris and continuous Ti ion release. In this work, oxidation treatments at low temperatures (277 °C, 5 h) have been used to promote the formation of wear-corrosion resistant titanium oxide on the Ti surface. The objective of this paper has been the study of the influence of live cells on the protectiveness of the oxide formed at these low temperatures. The interaction of cells with the modified surface has been studied by scanning electron microscopy, electrochemical impedance spectroscopy, polarization curves, and x-ray photoelectron spectroscopy (XPS). The chemical composition of the thermally treated Ti surface is mainly TiO2 as anatase-rich titanium dioxide with a low concentration of hydroxyl groups and a low mean nanoroughness that could promote good cell adhesion. The electrochemical results indicate that the cells alter the overall resistance of the thermally treated Ti surfaces by decreasing the oxide resistance with time. At the same time, the anodic current increases, which is associated with cathodic control, and is probably due to the difficulty of access of oxygen to the Ti substrate. XPS reveals the presence of proteins on the surface of the treated specimens in contact with the cells and a decrease in the Ti signal associated with the extracellular matrix on the surface and the reduction of the oxide thickness.
Collapse
|
27
|
Formentín P, Catalán Ú, Fernández-Castillejo S, Alba M, Baranowska M, Solà R, Pallarès J, Marsal LF. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates. J Biomater Appl 2015; 30:398-408. [PMID: 26017716 DOI: 10.1177/0885328215588414] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research.
Collapse
Affiliation(s)
- Pilar Formentín
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Úrsula Catalán
- Unit of Lipids and Atherosclerosis Research, Department of Medicine and Surgery, Universitat Rovira i Virgili, Tarragona, Spain
| | - Sara Fernández-Castillejo
- Unit of Lipids and Atherosclerosis Research, Department of Medicine and Surgery, Universitat Rovira i Virgili, Tarragona, Spain
| | - Maria Alba
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Malgorzata Baranowska
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Rosa Solà
- Unit of Lipids and Atherosclerosis Research, Department of Medicine and Surgery, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Pallarès
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluís F Marsal
- Nano-electronic and Photonic Systems, Departament d'Enginyeria Electrònica, Elèctrica i Automàtica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
28
|
Hernández-Montelongo J, Muñoz-Noval A, García-Ruíz JP, Torres-Costa V, Martín-Palma RJ, Manso-Silván M. Nanostructured porous silicon: the winding road from photonics to cell scaffolds - a review. Front Bioeng Biotechnol 2015; 3:60. [PMID: 26029688 PMCID: PMC4426817 DOI: 10.3389/fbioe.2015.00060] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/17/2015] [Indexed: 11/21/2022] Open
Abstract
For over 20 years, nanostructured porous silicon (nanoPS) has found a vast number of applications in the broad fields of photonics and optoelectronics, triggered by the discovery of its photoluminescent behavior in 1990. Besides, its biocompatibility, biodegradability, and bioresorbability make porous silicon (PSi) an appealing biomaterial. These properties are largely a consequence of its particular susceptibility to oxidation, leading to the formation of silicon oxide, which is readily dissolved by body fluids. This paper reviews the evolution of the applications of PSi and nanoPS from photonics through biophotonics, to their use as cell scaffolds, whether as an implantable substitute biomaterial, mainly for bony and ophthalmological tissues, or as an in vitro cell conditioning support, especially for pluripotent cells. For any of these applications, PSi/nanoPS can be used directly after synthesis from Si wafers, upon appropriate surface modification processes, or as a composite biomaterial. Unedited studies of fluorescently active PSi structures for cell culture are brought to evidence the margin for new developments.
Collapse
Affiliation(s)
- Jacobo Hernández-Montelongo
- Departamento de Física Aplicada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alvaro Muñoz-Noval
- Instituto de Ciencia de Materiales de Madrid-CSIC, Spanish CRG Beamline at ESRF, Grenoble, France
| | | | - Vicente Torres-Costa
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Micro-Análisis de Materiales, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Miguel Manso-Silván
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
29
|
Hulsman M, Hulshof F, Unadkat H, Papenburg BJ, Stamatialis DF, Truckenmüller R, van Blitterswijk C, de Boer J, Reinders MJ. Analysis of high-throughput screening reveals the effect of surface topographies on cellular morphology. Acta Biomater 2015; 15:29-38. [PMID: 25554402 DOI: 10.1016/j.actbio.2014.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 11/27/2022]
Abstract
Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces.
Collapse
|
30
|
Cheng D, Cao X, Gao H, Hou J, Li W, Hao L, Wang Y. Engineering poly(lactic-co-glycolic acid)/hydroxyapatite microspheres with diverse macropores patterns and the cellular responses. RSC Adv 2015. [DOI: 10.1039/c4ra15561k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Design macroporous topography on spherical substrates via a straightforward approach and investigate the corresponding cell responses.
Collapse
Affiliation(s)
- D. Cheng
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - X. Cao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - H. Gao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - J. Hou
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - W. Li
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - L. Hao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Y. Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
31
|
McInnes SJP, Turner CT, Al-Bataineh SA, Airaghi Leccardi MJI, Irani Y, Williams KA, Cowin AJ, Voelcker NH. Surface engineering of porous silicon to optimise therapeutic antibody loading and release. J Mater Chem B 2015; 3:4123-4133. [DOI: 10.1039/c5tb00397k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infliximab antibodies released from porous silicon microparticles can sequester the proinflammatory cytokine, tumor necrosis factor-α (TNF-α), which is elevated in uveitis and non-healing chronic wounds.
Collapse
Affiliation(s)
- Steven J. P. McInnes
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide
- Australia
| | - Chris T. Turner
- Mawson Institute
- University of South Australia
- Adelaide
- Australia
| | | | - Marta J. I. Airaghi Leccardi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide
- Australia
| | - Yazad Irani
- Department of Ophthalmology
- Flinders University
- Bedford Park
- Australia
| | | | | | - Nicolas H. Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide
- Australia
| |
Collapse
|
32
|
Wang PY, Clements LR, Thissen H, Tsai WB, Voelcker NH. Screening rat mesenchymal stem cell attachment and differentiation on surface chemistries using plasma polymer gradients. Acta Biomater 2015; 11:58-67. [PMID: 25246312 DOI: 10.1016/j.actbio.2014.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
Abstract
It is well known that the surface chemistry of biomaterials is important for both initial cell attachment and the downstream cell response. Surface chemistry gradients are a new format that allows the screening of the subtleties of cell-surface interactions in high throughput. In this study, two surface chemical gradients were fabricated using diffusion control during plasma polymerization via a tilted mask. Acrylic acid (AA) plasma polymer gradients were coated on a uniform 1,7-octadiene (OD) plasma polymer layer to generate OD-AA plasma polymer gradients, whilst diethylene glycol dimethyl ether (DG) plasma polymer gradients were coated on a uniform AA plasma polymer layer to generate AA-DG plasma polymer gradients. Gradient surfaces were characterized by X-ray photoelectron spectroscopy, infrared microscopy mapping, profilometry, water contact angle (WCA) goniometry and atomic force microscopy. Cell attachment density and differentiation into osteo- and adipo-lineages of rat-bone-marrow mesenchymal stem cells (rBMSCs) was studied on gradients. Cell adhesion after 24 h culture was sensitive to the chemical gradients, resulting in a cell density gradient along the substrate. The slope of the cell density gradient changed between 24 and 6 days due to cell migration and growth. Induction of rBMSCs into osteoblast- and adipocyte-like cells on the two plasma polymer gradients suggested that osteogenic differentiation was sensitive to local cell density, but adipogenic differentiation was not. Using mixed induction medium (50% osteogenic and 50% adipogenic medium), thick AA plasma polymer coating (>40 nm thickness with ∼11% COOH component and 35° WCA) robustly supported osteogenic differentiation as determined by colony formation and calcium deposition. This study establishes a simple but powerful approach to the formation of plasma polymer based gradients, and demonstrates that MSC behavior can be influenced by small changes in surface chemistry.
Collapse
|
33
|
McInnes SJP, Lowe RD. Biomedical Uses of Porous Silicon. ELECTROCHEMICALLY ENGINEERED NANOPOROUS MATERIALS 2015. [DOI: 10.1007/978-3-319-20346-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Marinaro G, La Rocca R, Toma A, Barberio M, Cancedda L, Di Fabrizio E, Decuzzi P, Gentile F. Networks of neuroblastoma cells on porous silicon substrates reveal a small world topology. Integr Biol (Camb) 2015; 7:184-97. [DOI: 10.1039/c4ib00216d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
N2A cells on porous substrates create highly clustered, small world topology patterns.
Collapse
Affiliation(s)
- Giovanni Marinaro
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- European Synchrotron Radiation Facility
- 38043 Grenoble Cedex 9
| | | | - Andrea Toma
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
| | | | | | - Enzo Di Fabrizio
- King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Saudi Arabia
- Department of Experimental and Clinical Medicine
- University of Magna Graecia
| | - Paolo Decuzzi
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- Department of Experimental and Clinical Medicine
- University of Magna Graecia
| | - Francesco Gentile
- Istituto Italiano di Tecnologia
- 16163 Genova
- Italy
- Department of Experimental and Clinical Medicine
- University of Magna Graecia
| |
Collapse
|
35
|
Ynsa MD, Dang ZY, Manso-Silvan M, Song J, Azimi S, Wu JF, Liang HD, Torres-Costa V, Punzon-Quijorna E, Breese MBH, Garcia-Ruiz JP. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns. Biomed Microdevices 2014; 16:229-36. [PMID: 24305875 DOI: 10.1007/s10544-013-9826-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.
Collapse
Affiliation(s)
- M D Ynsa
- Department of Applied Physics, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Antunez EE, Campos J, Basurto MA, Agarwal V. Controlled morphology and optical properties of n-type porous silicon: effect of magnetic field and electrode-assisted LEF. NANOSCALE RESEARCH LETTERS 2014; 9:512. [PMID: 25313298 PMCID: PMC4193913 DOI: 10.1186/1556-276x-9-512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
Fabrication of photoluminescent n-type porous silicon (nPS), using electrode-assisted lateral electric field accompanied with a perpendicular magnetic field, is reported. The results have been compared with the porous structures fabricated by means of conventional anodization and electrode-assisted lateral electric field without magnetic field. The lateral electric field (LEF) applied across the silicon substrate leads to the formation of structural gradient in terms of density, dimension, and depth of the etched pores. Apart from the pore shape tunability, the simultaneous application of LEF and magnetic field (MF) contributes to a reduction of the dimension of the pores and promotes relatively more defined pore tips as well as a decreased side-branching in the pore walls of the macroporous structure. Additionally, when using magnetic field-assisted etching, within a certain range of LEF, an enhancement of the photoluminescence (PL) response was obtained.
Collapse
Affiliation(s)
- Edgar E Antunez
- Center for Research in Engineering and Applied Sciences, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - Jose Campos
- Institute for Renewable Energy, UNAM, Priv. Xochicalco S/N, Temixco, Morelos CP 62580, México
| | - Miguel A Basurto
- Center for Research in Engineering and Applied Sciences, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - Vivechana Agarwal
- Center for Research in Engineering and Applied Sciences, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
37
|
Hernandez-Montelongo J, Naveas N, Degoutin S, Tabary N, Chai F, Spampinato V, Ceccone G, Rossi F, Torres-Costa V, Manso-Silvan M, Martel B. Porous silicon-cyclodextrin based polymer composites for drug delivery applications. Carbohydr Polym 2014; 110:238-52. [DOI: 10.1016/j.carbpol.2014.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
38
|
Formentín P, Alba M, Catalán Ú, Fernández-Castillejo S, Pallarès J, Solà R, Marsal LF. Effects of macro- versus nanoporous silicon substrates on human aortic endothelial cell behavior. NANOSCALE RESEARCH LETTERS 2014; 9:421. [PMID: 25246859 PMCID: PMC4158340 DOI: 10.1186/1556-276x-9-421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 05/28/2023]
Abstract
Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation.
Collapse
Affiliation(s)
- Pilar Formentín
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica I Autómatica, Universitat Rovira i Virgili, Països Catalans 26, Tarragona 43007, Spain
| | - María Alba
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica I Autómatica, Universitat Rovira i Virgili, Països Catalans 26, Tarragona 43007, Spain
| | - Úrsula Catalán
- Unit of Lipids and Atherosclerosis Research, Facultat de Medicina I Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Tarragona 43201, Spain
| | - Sara Fernández-Castillejo
- Unit of Lipids and Atherosclerosis Research, Facultat de Medicina I Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Tarragona 43201, Spain
| | - Josep Pallarès
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica I Autómatica, Universitat Rovira i Virgili, Països Catalans 26, Tarragona 43007, Spain
| | - Rosà Solà
- Unit of Lipids and Atherosclerosis Research, Facultat de Medicina I Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, Reus, Tarragona 43201, Spain
| | - Lluís F Marsal
- Nano-electronic and Photonic Systems, Departament d’Enginyeria Electrònica, Elèctrica I Autómatica, Universitat Rovira i Virgili, Països Catalans 26, Tarragona 43007, Spain
| |
Collapse
|
39
|
|
40
|
Krabbenborg SO, Huskens J. Electrochemically Generated Gradients. Angew Chem Int Ed Engl 2014; 53:9152-67. [DOI: 10.1002/anie.201310349] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Indexed: 01/06/2023]
|
41
|
Delalat B, Goreham RV, Vasilev K, Harding FJ, Voelcker NH. Subtle Changes in Surface Chemistry Affect Embryoid Body Cell Differentiation: Lessons Learnt from Surface-Bound Amine Density Gradients. Tissue Eng Part A 2014; 20:1715-25. [DOI: 10.1089/ten.tea.2013.0350] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Bahman Delalat
- Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | - Renee V. Goreham
- Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | - Krasimir Vasilev
- Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | - Frances J. Harding
- Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | | |
Collapse
|
42
|
Collart-Dutilleul PY, Secret E, Panayotov I, Deville de Périère D, Martín-Palma RJ, Torres-Costa V, Martin M, Gergely C, Durand JO, Cunin F, Cuisinier FJ. Adhesion and proliferation of human mesenchymal stem cells from dental pulp on porous silicon scaffolds. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1719-1728. [PMID: 24428409 DOI: 10.1021/am4046316] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In regenerative medicine, stem-cell-based therapy often requires a scaffold to deliver cells and/or growth factors to the injured site. Porous silicon (pSi) is a promising biomaterial for tissue engineering as it is both nontoxic and bioresorbable. Moreover, surface modification can offer control over the degradation rate of pSi and can also promote cell adhesion. Dental pulp stem cells (DPSC) are pluripotent mesenchymal stem cells found within the teeth and constitute a readily source of stem cells. Thus, coupling the good proliferation and differentiation capacities of DPSC with the textural and chemical properties of the pSi substrates provides an interesting approach for therapeutic use. In this study, the behavior of human DPSC is analyzed on pSi substrates presenting pores of various sizes, 10 ± 2 nm, 36 ± 4 nm, and 1.0 ± 0.1 μm, and undergoing different chemical treatments, thermal oxidation, silanization with aminopropyltriethoxysilane (APTES), and hydrosilylation with undecenoic acid or semicarbazide. DPSC adhesion and proliferation were followed for up to 72 h by fluorescence microscopy, scanning electron microscopy (SEM), enzymatic activity assay, and BrdU assay for mitotic activity. Porous silicon with 36 nm pore size was found to offer the best adhesion and the fastest growth rate for DPSC compared to pSi comporting smaller pore size (10 nm) or larger pore size (1 μm), especially after silanization with APTES. Hydrosilylation with semicarbazide favored cell adhesion and proliferation, especially mitosis after cell adhesion, but such chemical modification has been found to led to a scaffold that is stable for only 24-48 h in culture medium. Thus, semicarbazide-treated pSi appeared to be an appropriate scaffold for stem cell adhesion and immediate in vivo transplantation, whereas APTES-treated pSi was found to be more suitable for long-term in vitro culture, for stem cell proliferation and differentiation.
Collapse
|
43
|
Piret G, Perez MT, Prinz CN. Substrate porosity induces phenotypic alterations in retinal cells cultured on silicon nanowires. RSC Adv 2014. [DOI: 10.1039/c4ra04121f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Limitations of silicon nanowire arrays produced using chemical etching for drug delivery.
Collapse
Affiliation(s)
- Gaëlle Piret
- Division of Solid State Physics
- Lund University
- SE-221 00 Lund, Sweden
- Neuronano Research Center
- Lund University
| | - Maria-Thereza Perez
- Department of Clinical Sciences
- Division of Ophthalmology
- Lund University
- SE-221 84 Lund, Sweden
- The Nanometer Structure Consortium
| | - Christelle N. Prinz
- Division of Solid State Physics
- Lund University
- SE-221 00 Lund, Sweden
- Neuronano Research Center
- Lund University
| |
Collapse
|
44
|
Abstract
Porous silicon (pSi) is a nanomaterial with salient properties for optical biosensor applications.
Collapse
Affiliation(s)
| | - Tim Kuchel
- South Australian Health and Medical Research Institute
- Gilles Plains, Australia
| | | |
Collapse
|
45
|
Kim MH, Park M, Kang K, Choi IS. Neurons on nanometric topographies: insights into neuronal behaviors in vitro. Biomater Sci 2013; 2:148-155. [PMID: 32481875 DOI: 10.1039/c3bm60255a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Topography, the physical characteristics of an environment, is one of the most prominent stimuli neurons can encounter in the body. Many aspects of neurons and neuronal behavior are affected by the size, shape, and pattern of the physical features of the environment. A recent increase in the use of nanometric topographies, due to improved fabrication techniques, has resulted in new findings on neuronal behavior and development. Factors such as neuron adhesion, neurite alignment, and even the rate of neurite formation have all been highlighted through nanotopographies as complex phenomena that are driven by intricate intracellular mechanisms. Nanotopographies are suitable platforms, not only for fundamental studies on neuronal development, but also in practical applications, including multielectrode array devices and neuro-regenerative medicine. We reviewed recent publications that address the effects of nanotopography on neurons and categorized the observed behaviors as adherence, directional guidance, or accelerated outgrowth. We also discussed possible biological mechanisms of the molecular and cellular responses to topography, and suggested future perspectives for this field.
Collapse
Affiliation(s)
- Mi-Hee Kim
- Center for Cell-Encapsulation Research and Molecular-Level Interface Research Center, Department of Chemistry, KAIST, Daejeon 305-701, Korea
| | | | | | | |
Collapse
|
46
|
Li M, Hu M, Yan W, Ma S, Zeng P, Qin Y. NO2 sensing performance of p-type intermediate size porous silicon by a galvanostatic electrochemical etching method. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.09.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Jain S, Sharma A, Basu B. Vertical electric field stimulated neural cell functionality on porous amorphous carbon electrodes. Biomaterials 2013; 34:9252-63. [DOI: 10.1016/j.biomaterials.2013.08.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 08/19/2013] [Indexed: 01/11/2023]
|
48
|
Rasi Ghaemi S, Harding FJ, Delalat B, Gronthos S, Voelcker NH. Exploring the mesenchymal stem cell niche using high throughput screening. Biomaterials 2013; 34:7601-15. [DOI: 10.1016/j.biomaterials.2013.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022]
|
49
|
Harding F, Goreham R, Short R, Vasilev K, Voelcker NH. Surface bound amine functional group density influences embryonic stem cell maintenance. Adv Healthc Mater 2013. [PMID: 23184606 DOI: 10.1002/adhm.201200119] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gradient surfaces are highly effective tools to screen and optimize cell- surface interactions. Here, the response of embryonic stem (ES) cell colonies to plasma polymer gradient surfaces is investigated. Surface chemistry ranged from pure allylamine (AA) plasma polymer on one end of the gradient to pure octadiene (OD) plasma polymer on the other end. Optimal surface chemistry conditions for retention of pluripotency were identified. Expression of the stem cell markers alkaline phosphatase (AP) and Oct4 varied with the position of the ES cell colonies across the OD-AA plasma polymer gradient. Both markers were more strongly retained on the OD plasma polymer rich regions of the gradients. The observed variation of expression across the plasma polymer gradient increased with duration of stem cell culture. While maximum cell adhesion to the gradient substrate occurred at a nitrogen- to-carbon (N/C ratio) of approximately 0.1, Oct4 and AP expression was best retained at an N/C ratio < 0.04. Stem cell marker expression correlated with colony size and morphology: more compact, multilayered colonies with prominent F-actin staining arose as the N/C ratio decreased. Disruption of actin polymerization using Y-27632 ROCK inhibitor resulted in a collapse of the multilayer colony structure into monolayers with limited cell-cell contact. A corresponding decrease in expression of AP and Oct4 was observed. Oct4 expression along with 3D colony morphology was partially rescued on the OD plasma polymer rich regions of the gradient.
Collapse
|
50
|
Kreppenhofer K, Li J, Segura R, Popp L, Rossi M, Tzvetkova P, Luy B, Kähler CJ, Guber AE, Levkin PA. Formation of a polymer surface with a gradient of pore size using a microfluidic chip. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3797-3804. [PMID: 23427850 DOI: 10.1021/la304997a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we demonstrate the generation of polymer monolithic surfaces possessing a gradient of pore and polymer globule sizes from ~0.1 to ~0.5 μm defined by the composition of two polymerization mixtures injected into a microfluidic chip. To generate the gradient, we used a PDMS microfluidic chip with a cascade micromixer with a subsequent reaction chamber for the formation of a continuous gradient film. The micromixer has zigzag channels of 400 × 680 μm(2) cross section and six cascades. The chip was used with a reversible bonding connection, realized by curing agent coating. After polymerization in the microfluidic chip the reversible bond was opened, resulting in a 450 μm thick polymer film possessing the pore size gradient. The gradient formation in the microfluidic reaction chamber was studied using microscopic laser-induced fluorescence (μLIF) and different model fluids. Formation of linear gradients was shown using the fluids of the same density by both diffusive mixing at flow rates of 0.001 mL/min and in a convective mixing regime at flow rates of 20 mL/min. By using different density fluids, formation of a two-dimensional wedge-like gradient controlled by the density difference and orientation of the microfluidic chip was observed.
Collapse
Affiliation(s)
- Kristina Kreppenhofer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|