1
|
Hossain MT, Hossain MA. Targeting PI3K in cancer treatment: A comprehensive review with insights from clinical outcomes. Eur J Pharmacol 2025; 996:177432. [PMID: 40020984 DOI: 10.1016/j.ejphar.2025.177432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway plays a crucial role in cancer, including cell growth, survival, metabolism, and metastasis. Its major role in tumor growth makes it a key target for cancer therapeutics, offering significant potential to slow tumor progression and enhance patient outcomes. Gain-of-function mutations, gene amplifications, and the loss of regulatory proteins like PTEN are frequently observed in malignancies, contributing to tumor development and resistance to conventional treatments such as chemotherapy and hormone therapy. As a result, PI3K inhibitors have received a lot of interest in cancer research. Several kinds of small-molecule PI3K inhibitors have been developed, including pan-PI3K inhibitors, isoform-specific inhibitors, and dual PI3K/mTOR inhibitors, each targeting a distinct component of the pathway. Some PI3K inhibitors such as idelalisib, copanlisib, duvelisib, alpelisib, and umbralisib have received FDA-approval, and are effective in the treatment of breast cancer and hematologic malignancies. Despite promising results in preclinical and clinical trials, the overall clinical success of PI3K inhibitors has been mixed. While some patients may get substantial advantages, a considerable number of them acquire resistance as a result of feedback activation of alternative pathways, adaptive tumor responses, and treatment-emergent mutations. The resistance mechanisms provide barriers to the sustained efficacy of PI3K-targeted treatments. This study reviews recent advancements in PI3K inhibitors, covering their clinical status, mechanism of action, resistance mechanisms, and strategies to overcome resistance.
Collapse
Affiliation(s)
- Md Takdir Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| | - Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Qu F, Shen YY, Zhang XY, Wu YQ, Xu ZH, Zhai ZD, Zhong Q, Fan Z, Xu C. Ephrin-B2 acts as a positive regulator of osteogenesis-angiogenesis coupling. Int J Biol Macromol 2025; 302:140555. [PMID: 39894124 DOI: 10.1016/j.ijbiomac.2025.140555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/12/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
AIMS The aim of this study was to explore the role and potential mechanisms of Ephrin-B2 signaling in osteogenesis-angiogenesis coupling and to provide guidance for periodontal tissue engineering. MATERIALS AND METHODS Considering the close relationship between periodontitis and periodontal bone defects, single-cell transcriptomic data from periodontal tissues in published databases (GEO number: GSE171213) were analyzed to characterize Ephrin-B2 signaling between osteoblastic lineages and endothelial cells. To observe the effects and mechanisms of Ephrin-B2 in angiogenesis and periodontal bone regeneration, osteoblasts were constructed that overexpress Ephrin-B2 and were then co-cultured with human umbilical vein cells (HUVECs). RESULTS Single-cell sequencing revealed a deficiency in Ephrin-B2 signaling from osteoblastic lineages in periodontitis, resulting in impaired transduction of Ephrin-B2 signaling between osteoblasts and endothelial cells. In an osteoblast-endothelial cell co-culture system, Ephrin-B2 signaling from osteoblasts promoted angiogenesis. The downstream pathway might be related to VEGFR2-PI3K. The cotransplantation of osteoblasts overexpressing Ephrin-B2 and HUVECs facilitated angiogenesis and new bone generation in vivo. CONCLUSIONS This study confirmed that Ephrin-B2 signaling is an indispensable positive regulatory factor in the osteogenesis-angiogenesis coupling of periodontal tissue remodeling. These findings may help to optimize transplantation strategies and provide a new solution for the targeted treatment of periodontal bone defects. LAY SUMMARY Sufficient vascularization is a prerequisite for periodontal bone regeneration. The cotransplantation of angiogenic endothelial cells and bone-forming cells is a promising tissue engineering strategy. To facilitate the effect of the transplantation, we found evidence of Ephrin-B2 signaling deficiency in osteoblastic lineages and vascular endothelial cells of periodontitis patients from single-cell sequencing data. Moreover, by constructing a cotransplantation system with overexpression of Ephrin-B2, we found its positive role in promoting periodontal vascularized bone regeneration. The present study elucidates the positive role and potential mechanisms of Ephrin-B2 signaling in osteogenesis-angiogenesis coupling, which will help to promote the effect of periodontal tissue engineering.
Collapse
Affiliation(s)
- Fang Qu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ying-Yi Shen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Xin-Yu Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ya-Qin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Zi-Hang Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Zi-Di Zhai
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Qi Zhong
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Zhen Fan
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| |
Collapse
|
3
|
Chakraborty A, Patnaik J, Sinha A, Parida N, Parija T, Patnaik S. In silico analysis shows slc1a4 as a potential target of hsa-mir-133a for regulating glutamine metabolism in gastric cancer. Int J Biol Macromol 2024; 282:136974. [PMID: 39486714 DOI: 10.1016/j.ijbiomac.2024.136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Cutting-edge research has spotlighted glutamine metabolism as a promising therapeutic target in managing gastric cancer. This investigation highlights the upregulated glutamine transporters by leveraging clinical data from the TCGA Database and the expression analysis of the transcriptome profile of stomach adenocarcinoma (STAD) patients. Notably, it identifies SLC1A4 as a potential glutamine transporter in STAD. The screening of human miRNAs conducted using the TargetScan database, and the subsequent docking analysis present multiple miRNAs with the potential of being explored as therapeutic agents. By integrating transcriptome profiling, miRNA screening, and molecular docking, this study reveals, for the first time, the potential of hsa-mir-133a-1 in targeting slc1a4, along with its known target mTOR, in stomach cancer. The myriad interactions that can be regulated by this silencing mechanism are anticipated to ultimately reduce glutamine uptake in STAD. This study provides compelling evidence of glutamine transport via SLC1A4 in stomach cancer and delves into how it might impact mTOR and some of its pivotal downstream molecules. Considering these findings, novel therapeutic strategies can be devised to further enhance existing methods for combating gastric cancer.
Collapse
Affiliation(s)
- Averi Chakraborty
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, 751024, India
| | - Jayasree Patnaik
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, 751024, India
| | - Anupriya Sinha
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, 751024, India
| | - Nandita Parida
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, 751024, India
| | - Tithi Parija
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, 751024, India.
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, 751024, India.
| |
Collapse
|
4
|
Yi Y, Suo L, Ma H, Ma R, Zhao J, Zhai S, Wang H, Su Z. The role of MDM2 in angiogenesis: implications for endothelial tip cell formation. In Vitro Cell Dev Biol Anim 2024; 60:983-995. [PMID: 39134872 DOI: 10.1007/s11626-024-00946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/17/2024] [Indexed: 11/06/2024]
Abstract
In the present study, we examined the role of MDM2 in the angiogenesis process and its potential association with the sprouting of endothelial tip cells. To address this, we performed hypoxia-treated gastric cancer cells (HGC-27) to quantitative RT-PCR and Western blot analysis to measure the levels of MDM2 and VEGF-A mRNA and protein expression. Subsequently, we employed siRNA to disrupt MDM2 expression, followed by hypoxia treatment. The expression levels of MDM2 and VEGF-A mRNA and protein were subsequently reassessed. Additionally, ELISA was utilized to quantify the secretion levels of VEGF-A in each experimental group. A conditioned medium derived from HGC-27 cells treated with different agents was employed to assess its influence on the formation of EA.hy926 endothelial tip cells, using various techniques including Transwell plates migration assays, wound healing experiments, vascular formation assays, scanning electron microscopy, and immunofluorescence staining. These findings demonstrated that the in vitro knockdown of MDM2 in the conditioned medium exhibited significant inhibitory effects on endothelial cell migration, wound healing, and vascular formation. Additionally, the intervention led to a reduction in the presence of CD34+ tip cells and the formation of filopodia in endothelial cells, while partially restoring the integrity of tight junctions. Subsequent examination utilizing RNA-seq revealed that the suppression of MDM2 in HGC-27 cells resulted in the downregulation of the PI3K/AKT signaling pathway. Consequently, this downregulation led to an elevation in angiogenic effects induced by hypoxia.
Collapse
Affiliation(s)
- Yi Yi
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Lina Suo
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Haixiu Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Ronghua Ma
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Jing Zhao
- Research Center for High Altitude Medicine, Key Laboratory for High Altitude Medicine, Ministry of Education, Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Shaoqian Zhai
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China
| | - Haiyan Wang
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China.
| | - Zhanhai Su
- Department of Basic Medicine Science, Qinghai University Medical College, Xining, 810001, China.
| |
Collapse
|
5
|
Elvitigala KCML, Mubarok W, Sakai S. Hydrogels with Ultrasound-Treated Hyaluronic Acid Regulate CD44-Mediated Angiogenic Potential of Human Vascular Endothelial Cells In Vitro. Biomolecules 2024; 14:604. [PMID: 38786011 PMCID: PMC11118219 DOI: 10.3390/biom14050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
The development of hydrogels that allow vascular endothelial cells to form capillary-like networks is critical for advancing tissue engineering and drug discovery. In this study, we developed hydrogels composed of phenolated hyaluronic acid (HA-Ph) with an average molecular weight of 490-159 kDa via sonication in an aqueous solution. These hydrogels were synthesized by the horseradish peroxidase-catalyzed crosslinking of phenol moieties in the presence of hydrogen peroxide and phenolated gelatin. The sonication-degraded HA-Ph (198 kDa) significantly enhanced the migration ability of human umbilical vein endothelial cells (HUVECs) on cell culture plates when added to the medium compared to the original HA-Ph (490 kDa) and less-degraded HA-Ph (312-399 kDa). In addition, HUVECs cultured on these hydrogels formed networks that did not occur on hydrogels made from the original HA-Ph. CD44 expression and PI3K gene expression, both markers related to angiogenesis, were 3.5- and 1.8-fold higher, respectively, in cells cultured on sonication-degraded HA-Ph hydrogels than in those cultured on hydrogels comprising the original HA-Ph. These results highlight the potential of hydrogels containing sonication-degraded HA-Ph for tissue engineering and drug-screening applications involving human vascular endothelial cells.
Collapse
Affiliation(s)
| | | | - Shinji Sakai
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan; (K.C.M.L.E.); (W.M.)
| |
Collapse
|
6
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Al Tabosh T, Al Tarrass M, Tourvieilhe L, Guilhem A, Dupuis-Girod S, Bailly S. Hereditary hemorrhagic telangiectasia: from signaling insights to therapeutic advances. J Clin Invest 2024; 134:e176379. [PMID: 38357927 PMCID: PMC10866657 DOI: 10.1172/jci176379] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Hereditary hemorrhagic telangiectsia (HHT) is an inherited vascular disorder with highly variable expressivity, affecting up to 1 in 5,000 individuals. This disease is characterized by small arteriovenous malformations (AVMs) in mucocutaneous areas (telangiectases) and larger visceral AVMs in the lungs, liver, and brain. HHT is caused by loss-of-function mutations in the BMP9-10/ENG/ALK1/SMAD4 signaling pathway. This Review presents up-to-date insights on this mutated signaling pathway and its crosstalk with proangiogenic pathways, in particular the VEGF pathway, that has allowed the repurposing of new drugs for HHT treatment. However, despite the substantial benefits of these new treatments in terms of alleviating symptom severity, this not-so-uncommon bleeding disorder still currently lacks any FDA- or European Medicines Agency-approved (EMA-approved) therapies.
Collapse
Affiliation(s)
- Tala Al Tabosh
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Mohammad Al Tarrass
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| | - Laura Tourvieilhe
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Alexandre Guilhem
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
- TAI-IT Autoimmunité Unit RIGHT-UMR1098, Burgundy University, INSERM, EFS-BFC, Besancon, France
| | - Sophie Dupuis-Girod
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
- Hospices Civils de Lyon, National HHT Reference Center and Genetics Department, Femme-Mère-Enfants Hospital, Bron, France
| | - Sabine Bailly
- Biosanté Unit U1292, Grenoble Alpes University, INSERM, CEA, Grenoble, France
| |
Collapse
|
8
|
Wang L, Liu WQ, Broussy S, Han B, Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front Pharmacol 2024; 14:1307860. [PMID: 38239196 PMCID: PMC10794590 DOI: 10.3389/fphar.2023.1307860] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Vascular endothelial growth factors (VEGF), Vascular endothelial growth factor receptors (VEGFR) and their downstream signaling pathways are promising targets in anti-angiogenic therapy. They constitute a crucial system to regulate physiological and pathological angiogenesis. In the last 20 years, many anti-angiogenic drugs have been developed based on VEGF/VEGFR system to treat diverse cancers and retinopathies, and new drugs with improved properties continue to emerge at a fast rate. They consist of different molecular structures and characteristics, which enable them to inhibit the interaction of VEGF/VEGFR, to inhibit the activity of VEGFR tyrosine kinase (TK), or to inhibit VEGFR downstream signaling. In this paper, we reviewed the development of marketed anti-angiogenic drugs involved in the VEGF/VEGFR axis, as well as some important drug candidates in clinical trials. We discuss their mode of action, their clinical benefits, and the current challenges that will need to be addressed by the next-generation of anti-angiogenic drugs. We focus on the molecular structures and characteristics of each drug, including those approved only in China.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wang-Qing Liu
- CiTCoM, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | - Bingnan Han
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongming Fang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, China
| |
Collapse
|
9
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
10
|
Wang Y, Du X, Xin H, Xu R. Efficacy and Safety of Phosphatidylinositol 3-kinase Inhibitors for Patients with Breast Cancer: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr Cancer Drug Targets 2024; 24:941-951. [PMID: 38275057 DOI: 10.2174/0115680096266181231207110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K) inhibitors belong to the class of drugs that inhibit the activity of the PI3K protein, which is commonly overexpressed in breast cancer cells. However, there is a need to summarize the evidence to provide conclusive advice on the benefit of PI3K inhibitors in breast cancer patients. Therefore, this review assessed the effectiveness and safety of the PI3K inhibitors amongst breast cancer patients. METHODS Searches were made in PubMed Central, EMBASE, MEDLINE, SCOPUS, CENTRAL, WHO trial registry and Clinicaltrials.gov up to December 2022. Meta-analysis was executed using the random-effects model. Pooled hazard ratio (HR)/risk ratio (RR) was reported with 95% confidence intervals (CIs). RESULTS In total, 13 studies were included in the analysis. Most were multi-country studies and had a higher risk of bias. Regarding the efficacy parameters, pooled HR for progression-free survival was 0.79 (95%CI: 0.67-0.92), pooled RR for complete response was 1.54 [95%CI: 1.14 to 2.09], partial response was 1.18 [95%CI: 0.87-1.61], overall response was 1.20 [95%CI: 0.93-1.56], stable disease was 1.09 [95%CI: 0.78-1.53], progressive disease was 0.80 [95%CI: 0.74 to 0.87], and clinical benefit was 1.08 [95%CI: 0.80-1.49]. For safety parameters, pooled RR for hyperglycemia was 4.57 [95%CI: 3.15-6.62], and gastrointestinal toxicity was 1.82 [95%CI: 1.56 to 2.14]. CONCLUSION PI3K inhibitors had better efficacy than the present standard of concern for patients with breast cancer, especially among patients with PIK3CA mutations. Hence, clinicians and oncologists can provide this drug for the target population with extra caution for diabetes patients.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nail and Breast Surgery, Panzhihua Hospital of Integrated Traditional Chinese and Western Medicine (Affiliated Hospital of Panzhihua University, Panzhihua City, Sichuan Province, 617000, China
| | - Xianling Du
- Department of Oncology, The Central Hospital of Enshi Tujia Ang Miao Autonomous Prefecture (Enshi Clinical College of Wuhan University), Enshi City,Hubei Province, 445000, China
| | - Hongqiang Xin
- Department of two gland surgery, Qilu Hospital Huantai Branch, People's Hospital of Huantai County, Zibo city, Shandong Province, 256400, China
| | - Ruimin Xu
- Department of Anorectal, Shanghai Pudong New Area Hospital of Traditional Chinese Medicine, Shanghai City, 212000, China
| |
Collapse
|
11
|
Gao J, Tao L, Jiang Z. Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies. Redox Rep 2023; 28:2272386. [PMID: 38041593 PMCID: PMC11001280 DOI: 10.1080/13510002.2023.2272386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES This review outlines the function of oxidative stress in DR and discusses therapeutic strategies to treat DR with antioxidants. METHODS Published papers on oxidative stress in DR and therapeutic strategies to treat DR with antioxidants were collected and reviewed via database searching on PubMed. RESULTS The abnormal development of DR is a complicated process. The pathogenesis of DR has been reported to involve oxidative stress, despite the fact that the mechanisms underlying this are still not fully understood. Excessive reactive oxygen species (ROS) accumulation can damage retina, eventually leading to DR. Increasing evidence have demonstrated that antioxidant therapy can alleviate the degeneration of retinal capillaries in DR. CONCLUSION Oxidative stress can play an important contributor in the pathogenesis of DR. Furthermore, animal experiments have shown that antioxidants are a beneficial therapy for treating DR, but more clinical trial data is needed.
Collapse
Affiliation(s)
- Jie Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
12
|
Hassan AHE, Wang CY, Lee CJ, Jeon HR, Choi Y, Moon S, Lee CH, Kim YJ, Cho SB, Mahmoud K, El-Sayed SM, Lee SK, Lee YS. Repurposing Synthetic Congeners of a Natural Product Aurone Unveils a Lead Antitumor Agent Inhibiting Folded P-Loop Conformation of MET Receptor Tyrosine Kinase. Pharmaceuticals (Basel) 2023; 16:1597. [PMID: 38004462 PMCID: PMC10675456 DOI: 10.3390/ph16111597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A library of 24 congeners of the natural product sulfuretin were evaluated against nine panels representing nine cancer diseases. While sulfuretin elicited very weak activities at 10 µM concentration, congener 1t was identified as a potential compound triggering growth inhibition of diverse cell lines. Mechanistic studies in HCT116 colon cancer cells revealed that congener 1t dose-dependently increased levels of cleaved-caspases 8 and 9 and cleaved-PARP, while it concentration-dependently decreased levels of CDK4, CDK6, Cdc25A, and Cyclin D and E resulting in induction of cell cycle arrest and apoptosis in colon cancer HCT116 cells. Mechanistic study also presented MET receptor tyrosine kinase as the molecular target mediating the anticancer activity of compound 1t in HCT116 cells. In silico study predicted folded p-loop conformation as the form of MET receptor tyrosine kinase responsible for binding of compound 1t. Together, the current study presents compound 1t as an interesting anticancer lead for further development.
Collapse
Affiliation(s)
- Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Jung Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye Rim Jeon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kazem Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| | - Selwan M. El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
13
|
Yoo MJ, Choi J, Jang YJ, Park SY, Seol JW. Anti-cancer effect of palmatine through inhibition of the PI3K/AKT pathway in canine mammary gland tumor CMT-U27 cells. BMC Vet Res 2023; 19:223. [PMID: 37880653 PMCID: PMC10601335 DOI: 10.1186/s12917-023-03782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Canine mammary gland tumors (CMTs) are the most common and lethal cancers in female dogs. Dysregulated phosphoinositide 3-kinases (PI3K)/AKT pathway reportedly was involved in the growth and metastasis of CMTs. However, there are few studies on therapeutic strategies for targeting the PI3K pathway in CMTs. In this study, we aimed to determine whether palmatine, a natural isoquinoline alkaloid with anti-cancer properties, could inhibit the growth of CMTs and whether the inhibitory effect was mediated through the PI3K/AKT pathway. Our in vitro experiments on CMT-U27, a CMT cell line, showed that palmatine reduced cell proliferation and induced cell death. Western blotting results revealed that palmatine decreased the protein expression of PI3K, PTEN, AKT, and mechanistic target of rapamycin in the PI3K/AKT pathway, which was supported by the results of immunocytochemistry. Additionally, palmatine suppressed the migration and tube formation of canine aortic endothelial cells as well as the migration of CMT U27 cells. Our in vivo results showed that palmatine inhibited tumor growth in a CMT-U27 mouse xenograft model. We observed a decreased expression of proteins in the PI3K/AKT pathway in tumor tissues, similar to the in vitro results. Furthermore, palmatine significantly disrupted the tumor vasculature and inhibited metastasis to adjacent lymph nodes. In conclusion, our findings demonstrate that palmatine exerts anti-cancer effects against CMTs by inhibiting PI3K/AKT signaling pathway, suggesting that palmatine has potential as a canine-specific PI3K inhibitor for the treatment of CMTs.
Collapse
Affiliation(s)
- Min-Jae Yoo
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea
| | - Jawun Choi
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea
| | - Ye-Ji Jang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea
| | - Jae-Won Seol
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea.
| |
Collapse
|
14
|
McCracken IR, Baker AH, Smart N, De Val S. Transcriptional regulators of arterial and venous identity in the developing mammalian embryo. CURRENT OPINION IN PHYSIOLOGY 2023; 35:None. [PMID: 38328689 PMCID: PMC10844100 DOI: 10.1016/j.cophys.2023.100691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The complex and hierarchical vascular network of arteries, veins, and capillaries features considerable endothelial heterogeneity, yet the regulatory pathways directing arteriovenous specification, differentiation, and identity are still not fully understood. Recent advances in analysis of endothelial-specific gene-regulatory elements, single-cell RNA sequencing, and cell lineage tracing have both emphasized the importance of transcriptional regulation in this process and shed considerable light on the mechanism and regulation of specification within the endothelium. In this review, we discuss recent advances in our understanding of how endothelial cells acquire arterial and venous identity and the role different transcription factors play in this process.
Collapse
Affiliation(s)
- Ian R McCracken
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Nicola Smart
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| | - Sarah De Val
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX3 7TY, United Kingdom
| |
Collapse
|
15
|
Tian X, Si Q, Liu M, Shi J, Zhao R, Xiong Y, Yu L, Cui H, Guan H. Advance in vasculogenic mimicry in ovarian cancer (Review). Oncol Lett 2023; 26:456. [PMID: 37736556 PMCID: PMC10509778 DOI: 10.3892/ol.2023.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
Ovarian cancer (OC) is a common and highly prevalent malignant tumor in women, associated with a high mortality rate, easy recurrence and easy metastasis, which is predominantly at an advanced stage when detected in patients. This renders the cancer more difficult to treat, and consequently it is also associated with a low survival rate, being the malignancy with the highest mortality rate among the various gynecological tumors. As an important factor affecting the development and metastasis of OC, understanding the underlying mechanism(s) through which it is formed and developed is crucial in terms of its treatment. At present, the therapeutic methods of angiogenic mimicry for OC remain in the preliminary stages of exploration and have not been applied in actual clinical practice. In the present review, various signaling pathways and factors affecting angiogenic mimicry in OC were described, and the chemical synthetic drugs, natural compound extracts, small-molecule protein antibodies and their associated targets, and so on, that target angiogenic mimicry in the treatment of OC, were discussed. The purpose of this review was to provide new research ideas and potential theoretical support for the discovery of novel therapeutic targets for OC that may be applied in the clinic, with the aim of effectively reducing its metastasis and recurrence rates.
Collapse
Affiliation(s)
- Xinyuan Tian
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Qin Si
- Scientific Research Department, Inner Mongolia Cancer Hospital and Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Menghe Liu
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Jianping Shi
- School of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| | - Rongwei Zhao
- Department of Obstetrics and Gynecology, Inner Mongolia Medical University, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Yang Xiong
- Department of Hepatobiliary Surgery, General Surgery Department of Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region 017000, P.R. China
| | - Lei Yu
- Department of Pharmacy, Traditional Chinese Medicine Hospital of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010020, P.R. China
| | - Hongwei Cui
- Scientific Research Department, Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Haibin Guan
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010107, P.R. China
| |
Collapse
|
16
|
Petkova M, Kraft M, Stritt S, Martinez-Corral I, Ortsäter H, Vanlandewijck M, Jakic B, Baselga E, Castillo SD, Graupera M, Betsholtz C, Mäkinen T. Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation. J Exp Med 2023; 220:e20220741. [PMID: 36688917 PMCID: PMC9884640 DOI: 10.1084/jem.20220741] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type-specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit pro-lymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3caH1047R-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3caH1047R mice. Expression of pro-inflammatory genes, including monocyte/macrophage chemokine Ccl2, in Pik3caH1047R-iLECs was associated with recruitment of VEGF-C-producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3caH1047R-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes.
Collapse
Affiliation(s)
- Milena Petkova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marle Kraft
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Bojana Jakic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eulàlia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sandra D. Castillo
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Davies EM, Gurung R, Le KQ, Roan KT, Harvey RP, Mitchell GM, Schwarz Q, Mitchell CA. PI(4,5)P 2-dependent regulation of endothelial tip cell specification contributes to angiogenesis. SCIENCE ADVANCES 2023; 9:eadd6911. [PMID: 37000875 PMCID: PMC10065449 DOI: 10.1126/sciadv.add6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Dynamic positioning of endothelial tip and stalk cells, via the interplay between VEGFR2 and NOTCH signaling, is essential for angiogenesis. VEGFR2 activates PI3K, which phosphorylates PI(4,5)P2 to PI(3,4,5)P3, activating AKT; however, PI3K/AKT does not direct tip cell specification. We report that PI(4,5)P2 hydrolysis by the phosphoinositide-5-phosphatase, INPP5K, contributes to angiogenesis. INPP5K ablation disrupted tip cell specification and impaired embryonic angiogenesis associated with enhanced DLL4/NOTCH signaling. INPP5K degraded a pool of PI(4,5)P2 generated by PIP5K1C phosphorylation of PI(4)P in endothelial cells. INPP5K ablation increased PI(4,5)P2, thereby releasing β-catenin from the plasma membrane, and concurrently increased PI(3,4,5)P3-dependent AKT activation, conditions that licensed DLL4/NOTCH transcription. Suppression of PI(4,5)P2 in INPP5K-siRNA cells by PIP5K1C-siRNA, restored β-catenin membrane localization and normalized AKT signaling. Pharmacological NOTCH or AKT inhibition in vivo or genetic β-catenin attenuation rescued angiogenesis defects in INPP5K-null mice. Therefore, PI(4,5)P2 is critical for β-catenin/DLL4/NOTCH signaling, which governs tip cell specification during angiogenesis.
Collapse
Affiliation(s)
- Elizabeth M. Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Kai Qin Le
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Katherine T. T. Roan
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Clinical Medicine and School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Geraldine M. Mitchell
- O’Brien Institute Department of St Vincent’s Institute and University of Melbourne, Department of Surgery, St. Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
- Health Sciences Faculty, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5001, Australia
| | - Christina A. Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
18
|
Liu W, Luo Z, Zhang L, Wang Y, Yang J, You D, Cao X, Yang W. hsa-mir-(4328, 4422, 548z and -628-5p) in diabetic retinopathy: diagnosis, prediction and linking a new therapeutic target. Acta Diabetol 2023; 60:929-942. [PMID: 37002321 DOI: 10.1007/s00592-023-02077-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
AIMS Growing evidence suggests that microRNAs (miRNAs) are crucial in controlling how diabetic retinopathy (DR) develops. We intend to mine miRNAs with diagnostic and predictive value for DR and to investigate new drug therapeutic targets. METHODS After performing a differential analysis on the miRNA and mRNA datasets for DR and neovascularization (NEO), miRNA-mRNA networks were created. Combine the results of enrichment analysis, Protein-Protein Interaction Networks (PPI), and Cytoscape to identify key miRNAs. DrugBank was used to find drugs that interacted with transcription factors (TF) predicted by TransmiR. Finally, whole blood and clinical data were collected from 58 patients with type 2 diabetes mellitus (T2DM), and RT-qPCR, logistic analysis, and ROC were used to verify the value of key miRNAs. RESULTS Differential analysis indicated the presence of genes and miRNAs that co-regulate DR and NEO. Enrichment analysis showed that key genes are inextricably linked to neovascularization. Combining the results of PPI and Cytoscape identified four key miRNAs, namely hsa-mir-(4328, 4422, 548z and -628-5p). RT-qPCR, logistic, and ROC results showed that decreased expression levels of hsa-mir-(4328, 4422, 548z and -628-5p) signal the risk of evolution to DR in T2DM patients. Finally, we constructed a TF-miRNA network to find the 15 TFs and the 35 drugs that interact with these TFs. CONCLUSION hsa-mir-(4328, 4422, 548z and -628-5p) in whole blood are protective factors for DR as novel biomarkers for diagnosis and prediction. In addition, our research provides new drug directions for the treatment of DR, such as Diosmin, Atorvastatin, and so on.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
- The First Affiliated Hospital of Kunming Medical University, No.295 Xichang Road, Wuhua Districte, Kunming, 650500, Yunnan, China
| | - Zhanqing Luo
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Lihuan Zhang
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Yutao Wang
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiamei Yang
- School of Rehabilitation, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China
| | - Dingyun You
- Department of Epidemiology, School of Public Health, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
19
|
Wang CY, Qin F, Wang CG, Kim D, Li JJ, Chen XL, Wang HS, Lee SK. Novel lignans from Zanthoxylum nitidum and antiproliferation activity of sesaminone in osimertinib-resistant non-small cell lung cancer cells. Bioorg Chem 2023; 134:106445. [PMID: 36893545 DOI: 10.1016/j.bioorg.2023.106445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/14/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Seven previously undescribed tetrahydrofuran lignans with different configurations and unusual isopentenyl substitutions, nitidumlignans D-J (corresponding to compounds 1, 2, 4, 6, 7, 9 and 10), along with 14 known lignans, were isolated from Zanthoxylum nitidum. Notably, compound 4 is an uncommon naturally occurring furan-core lignan derived from tetrahydrofuran aromatization. The antiproliferation activity of the isolated compounds (1-21) was determined in various human cancer cell lines. The structure-activity study revealed that the steric positioning and chirality of the lignans exert important effects on their activity and selectivity. In particular, compound 3 (sesaminone) exhibited potent antiproliferative activity in cancer cells, including acquired osimertinib-resistant non-small-cell lung cancer (HCC827-osi) cells. Compound 3 also inhibited colony formation and induced the apoptotic death of HCC827-osi cells. The underlying molecular mechanisms revealed that 3 downregulated the activation of the c-Met/JAK1/STAT3 and PI3K/AKT/mTOR signaling pathways in the HCC827-osi cells. In addition, the combination of 3 and osimertinib exhibited synergistic effects on the antiproliferative activity against HCC827-osi cells. Overall, these findings inform the structure elucidation of novel lignans isolated from Z. nitidum, and sesaminone was identified as a potential compound for exerting antiproliferative effects on osimertinib-resistant lung cancer cells.
Collapse
Affiliation(s)
- Cai Yi Wang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Feng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Gu Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Donghwa Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Jun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xian-Lan Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
20
|
Mansur A, Radovanovic I. Vascular malformations: An overview of their molecular pathways, detection of mutational profiles and subsequent targets for drug therapy. Front Neurol 2023; 14:1099328. [PMID: 36846125 PMCID: PMC9950274 DOI: 10.3389/fneur.2023.1099328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Vascular malformations are anomalies in vascular development that portend a significant risk of hemorrhage, morbidity and mortality. Conventional treatments with surgery, radiosurgery and/or endovascular approaches are often insufficient for cure, thereby presenting an ongoing challenge for physicians and their patients. In the last two decades, we have learned that each type of vascular malformation harbors inherited germline and somatic mutations in two well-known cellular pathways that are also implicated in cancer biology: the PI3K/AKT/mTOR and RAS/RAF/MEK pathways. This knowledge has led to recent efforts in: (1) identifying reliable mechanisms to detect a patient's mutational burden in a minimally-invasive manner, and then (2) understand how cancer drugs that target these mutations can be repurposed for vascular malformation care. The idea of precision medicine for vascular pathologies is growing in potential and will be critical in expanding the clinician's therapeutic armamentarium.
Collapse
Affiliation(s)
- Ann Mansur
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
| | - Ivan Radovanovic
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
21
|
The VEGF/VEGFR Axis Revisited: Implications for Cancer Therapy. Int J Mol Sci 2022; 23:ijms232415585. [PMID: 36555234 PMCID: PMC9779738 DOI: 10.3390/ijms232415585] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) axis is indispensable in the process of angiogenesis and has been implicated as a key driver of tumor vascularization. Consequently, several strategies that target VEGF and its cognate receptors, VEGFR-1 and VEGFR-2, have been designed to treat cancer. While therapies targeting full-length VEGF have resulted in an improvement in both overall survival and progression-free survival in various cancers, these benefits have been modest. In addition, the inhibition of VEGFRs is associated with undesirable off-target effects. Moreover, VEGF splice variants that modulate sprouting and non-sprouting angiogenesis have been identified in recent years. Cues within the tumor microenvironment determine the expression patterns of these variants. Noteworthy is that the mechanisms of action of these variants challenge the established norm of VEGF signaling. Furthermore, the aberrant expression of some of these variants has been observed in several cancers. Herein, developments in the understanding of the VEGF/VEGFR axis and the splice products of these molecules, as well as the environmental cues that regulate these variants are reviewed. Furthermore, strategies that incorporate the targeting of VEGF variants to enhance the effectiveness of antiangiogenic therapies in the clinical setting are discussed.
Collapse
|
22
|
Drapé E, Anquetil T, Larrivée B, Dubrac A. Brain arteriovenous malformation in hereditary hemorrhagic telangiectasia: Recent advances in cellular and molecular mechanisms. Front Hum Neurosci 2022; 16:1006115. [PMID: 36504622 PMCID: PMC9729275 DOI: 10.3389/fnhum.2022.1006115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by vessel dilatation, such as telangiectasia in skin and mucosa and arteriovenous malformations (AVM) in internal organs such as the gastrointestinal tract, lungs, and brain. AVMs are fragile and tortuous vascular anomalies that directly connect arteries and veins, bypassing healthy capillaries. Mutations in transforming growth factor β (TGFβ) signaling pathway components, such as ENG (ENDOGLIN), ACVRL1 (ALK1), and SMAD4 (SMAD4) genes, account for most of HHT cases. 10-20% of HHT patients develop brain AVMs (bAVMs), which can lead to vessel wall rupture and intracranial hemorrhages. Though the main mutations are known, mechanisms leading to AVM formation are unclear, partially due to lack of animal models. Recent mouse models allowed significant advances in our understanding of AVMs. Endothelial-specific deletion of either Acvrl1, Eng or Smad4 is sufficient to induce AVMs, identifying endothelial cells (ECs) as primary targets of BMP signaling to promote vascular integrity. Loss of ALK1/ENG/SMAD4 signaling is associated with NOTCH signaling defects and abnormal arteriovenous EC differentiation. Moreover, cumulative evidence suggests that AVMs originate from venous ECs with defective flow-migration coupling and excessive proliferation. Mutant ECs show an increase of PI3K/AKT signaling and inhibitors of this signaling pathway rescue AVMs in HHT mouse models, revealing new therapeutic avenues. In this review, we will summarize recent advances and current knowledge of mechanisms controlling the pathogenesis of bAVMs, and discuss unresolved questions.
Collapse
Affiliation(s)
- Elise Drapé
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département de Pharmacologie et de Physiologie, Université de Montréal, Montréal, QC, Canada
| | - Typhaine Anquetil
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
| | - Bruno Larrivée
- Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Centre De Recherche, Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada,*Correspondence: Bruno Larrivée,
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, QC, Canada,Département De Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada,Département d’Ophtalmologie, Université de Montréal, Montréal, QC, Canada,Alexandre Dubrac,
| |
Collapse
|
23
|
Choi Y, Park NJY, Le TM, Lee E, Lee D, Nguyen HDT, Cho J, Park JY, Han HS, Chong GO. Immune Pathway and Gene Database (IMPAGT) Revealed the Immune Dysregulation Dynamics and Overactivation of the PI3K/Akt Pathway in Tumor Buddings of Cervical Cancer. Curr Issues Mol Biol 2022; 44:5139-5152. [PMID: 36354662 PMCID: PMC9688570 DOI: 10.3390/cimb44110350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 08/31/2023] Open
Abstract
Tumor budding (TB) is a small cluster of malignant cells at the invasive front of a tumor. Despite being an adverse prognosis marker, little research has been conducted on the tumor immune microenvironment of tumor buddings, especially in cervical cancer. Therefore, RNA sequencing was performed using 21 formalin-fixed, paraffin-embedded slides of cervical tissues, and differentially expressed genes (DEGs) were analyzed. Immune Pathway and Gene Database (IMPAGT) was generated for immune profiling. "Pathway in Cancer" was identified as the most enriched pathway for both up- and downregulated DEGs. Kyoto Encyclopedia of Genes and Genomes Mapper and Gene Ontology further revealed the activation of the PI3K/Akt signaling pathway. An IMPAGT analysis revealed immune dysregulation even at the tumor budding stage, especially in the PI3K/Akt/mTOR axis, with a high efficiency and integrity. These findings emphasized the clinical significance of tumor buddings and the necessity of blocking the overactivation of the PI3K/Akt/mTOR pathway to improve targeted therapy in cervical cancer.
Collapse
Affiliation(s)
- Yeseul Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Nora Jee-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
| | - Tan Minh Le
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Eunmi Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Donghyeon Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hong Duc Thi Nguyen
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
| | - Ji-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Hyung Soo Han
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Gun Oh Chong
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| |
Collapse
|
24
|
Tert-butylhydroquinone protects the retina from oxidative stress in STZ-induced diabetic rats via the PI3K/Akt/eNOS pathway. Eur J Pharmacol 2022; 935:175297. [PMID: 36174669 DOI: 10.1016/j.ejphar.2022.175297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 02/07/2023]
Abstract
This study aims to investigate whether tert-butylhydroquinone protects the retina from oxidative stress in STZ-induced experimental diabetic rats through the activation of phosphinositide 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) pathway.In vitro, NO, reactive oxygen species(ROS), eNOS, p-eNOS Ser1179, Akt, p-Akt Ser473 and L-NAME protein expression was analyzed within rMC-1 cells cultivated within normal control(NC), high glucose (HG) and HG-containing tert-butyl hydroquinone (tBHQ) (5 μM) medium. We confirmed tBHQ's protection through administering inhibitors of PI3K and Akt. In vivo, tBHQ was administered at a ratio of 1% (w/w) to diabetic rats was induced through an STZ injection (65 mg/kg) for a 3-month period, and the retinal expression of eNOS, p-eNOS Ser1179, Akt, and p-Akt Ser473 proteins was measured using Western blotting (WB) assay. We also utilized the TUNEL kit for detecting retinal cell apoptosis. The changes of retinal morphology and visual function were measured by performing hematoxylin-eosin staining (HE staining) and electroretinograms. In vitro, ROS levels were increased in the high glucose group, NO levels were decreased, and the relative expression of Akt/p-Akt Ser473 and eNOs/p-eNOS Ser1179 was reduced. tBHQ abolished these changes, and these effects were suppressed by specific inhibitors. In vivo, tBHQ upregulated retinal protein expression in STZ-induced diabetic rats, reduced retinal apoptotic cell numbers, and partially prevented abnormalities in retinal function and structure caused by diabetes. tBHQ alleviates oxidative stress during diabetic retinopathy by upregulating the PI3K/Akt/eNOS pathway and partially restoring the structure and function of the retina. It may play a role in delaying vision loss caused by diabetic retinopathy.
Collapse
|
25
|
Hu H, Ma T, Liu N, Hong H, Yu L, Lyu D, Meng X, Wang B, Jiang X. Immunotherapy checkpoints in ovarian cancer vasculogenic mimicry: Tumor immune microenvironments, and drugs. Int Immunopharmacol 2022; 111:109116. [PMID: 35969899 DOI: 10.1016/j.intimp.2022.109116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/09/2023]
Abstract
Vasculogenic mimicry (VM), a vessel-like structure independent of endothelial cells, commonly exists in solid tumors which requires blood vessels to grow. As a special source of blood supply for tumor progression to a more aggressive state, VM has been observed in a variety of human malignant tumors and is tightly associated with tumor proliferation, invasion, metastasis, and poor patient prognosis. So far, various factors, including immune cells and cytokines, were reported to regulate ovarian cancer progression by influencing VM formation. Herein, we review the mechanisms that regulate VM formation in ovarian cancer and the effect of cells, cytokines, and signaling molecules in the tumor microenvironment on VM formation, Furthermore, we summarize the current clinical application of drugs targeting VM formation.
Collapse
Affiliation(s)
- Haitao Hu
- Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, PR China.
| | - Ting Ma
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Nanqi Liu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Hong Hong
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, PR China.
| | - Lujiao Yu
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, PR China.
| | - Dantong Lyu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang 110122, Liaoning Province, PR China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, PR China.
| | - Xuefeng Jiang
- Department of Immunology, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
26
|
Kobialka P, Sabata H, Vilalta O, Gouveia L, Angulo-Urarte A, Muixí L, Zanoncello J, Muñoz-Aznar O, Olaciregui NG, Fanlo L, Esteve-Codina A, Lavarino C, Javierre BM, Celis V, Rovira C, López-Fernández S, Baselga E, Mora J, Castillo SD, Graupera M. The onset of PI3K-related vascular malformations occurs during angiogenesis and is prevented by the AKT inhibitor miransertib. EMBO Mol Med 2022; 14:e15619. [PMID: 35695059 PMCID: PMC9260211 DOI: 10.15252/emmm.202115619] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022] Open
Abstract
Low‐flow vascular malformations are congenital overgrowths composed of abnormal blood vessels potentially causing pain, bleeding and obstruction of different organs. These diseases are caused by oncogenic mutations in the endothelium, which result in overactivation of the PI3K/AKT pathway. Lack of robust in vivo preclinical data has prevented the development and translation into clinical trials of specific molecular therapies for these diseases. Here, we demonstrate that the Pik3caH1047R activating mutation in endothelial cells triggers a transcriptome rewiring that leads to enhanced cell proliferation. We describe a new reproducible preclinical in vivo model of PI3K‐driven vascular malformations using the postnatal mouse retina. We show that active angiogenesis is required for the pathogenesis of vascular malformations caused by activating Pik3ca mutations. Using this model, we demonstrate that the AKT inhibitor miransertib both prevents and induces the regression of PI3K‐driven vascular malformations. We confirmed the efficacy of miransertib in isolated human endothelial cells with genotypes spanning most of human low‐flow vascular malformations.
Collapse
Affiliation(s)
- Piotr Kobialka
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Helena Sabata
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Odena Vilalta
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Leonor Gouveia
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Laia Muixí
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Jasmina Zanoncello
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Oscar Muñoz-Aznar
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Nagore G Olaciregui
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Lucia Fanlo
- 3D Chromatin Organization, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Veronica Celis
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Carlota Rovira
- Department of Pathology, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Susana López-Fernández
- Department of Plastic Surgery, Hospital de la Santa Creu i de Sant Pau, Barcelona, Spain
| | - Eulàlia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
27
|
Lange M, Ohnesorge N, Hoffmann D, Rocha SF, Benedito R, Siekmann AF. Zebrafish mutants in vegfab can affect endothelial cell proliferation without altering ERK phosphorylation and are phenocopied by loss of PI3K signaling. Dev Biol 2022; 486:26-43. [PMID: 35337795 PMCID: PMC11238767 DOI: 10.1016/j.ydbio.2022.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/23/2022]
Abstract
The formation of appropriately patterned blood vessel networks requires endothelial cell migration and proliferation. Signaling through the Vascular Endothelial Growth Factor A (VEGFA) pathway is instrumental in coordinating these processes. mRNA splicing generates short (diffusible) and long (extracellular matrix bound) Vegfa isoforms. The differences between these isoforms in controlling cellular functions are not understood. In zebrafish, vegfaa generates short and long isoforms, while vegfab only generates long isoforms. We found that mutations in vegfaa had an impact on endothelial cell (EC) migration and proliferation. Surprisingly, mutations in vegfab more strongly affected EC proliferation in distinct blood vessels, such as intersegmental blood vessels in the zebrafish trunk and central arteries in the head. Analysis of downstream signaling pathways revealed no change in MAPK (ERK) activation, while inhibiting PI3 kinase signaling phenocopied vegfab mutant phenotypes in affected blood vessels. Together, these results suggest that extracellular matrix bound Vegfa might act through PI3K signaling to control EC proliferation in a distinct set of blood vessels during angiogenesis.
Collapse
Affiliation(s)
- Martin Lange
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Nils Ohnesorge
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Dennis Hoffmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Susana F Rocha
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Rui Benedito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany; Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Eguchi R, Kawabe JI, Wakabayashi I. VEGF-Independent Angiogenic Factors: Beyond VEGF/VEGFR2 Signaling. J Vasc Res 2022; 59:78-89. [DOI: 10.1159/000521584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Tumors induce angiogenesis to acquire oxygen and nutrition from their adjacent microenvironment. Tumor angiogenesis has been believed to be induced primarily by the secretion of vascular endothelial growth factor-A (VEGF-A) from various tumors. VEGF-A binds to VEGF receptor 2 (VEGFR2), resulting in subsequent activation of cellular substances regulating cell proliferation, survival, and angiogenesis. Antiangiogenic therapies targeting the VEGF-A/VEGFR2 axis, including bevacizumab and ramucirumab, humanized monoclonal antibodies against VEGF-A and VEGFR2, respectively, have been proposed as a promising strategy aimed at preventing tumor growth, invasion, and metastasis. Phase III clinical trials using bevacizumab and ramucirumab have shown that not all tumor patients benefit from such antiangiogenic agents, and that some patients who initially benefit subsequently become less responsive to these antibodies, suggesting the possible existence of VEGF-independent angiogenic factors. In this review, we focus on VEGF-independent and VEGFR2-dependent tumor angiogenesis, as well as VEGFR2-independent tumor angiogenesis. Additionally, we discuss VEGF-independent angiogenic factors which have been reported in previous studies. Various molecular targeting drugs are currently being evaluated as potential antitumor therapies. We expect that precision medicine will permit the development of innovative antiangiogenic therapies targeting individual angiogenic factors selected on the basis of the genetic screening of tumors.
Collapse
|
29
|
Medina-Jover F, Riera-Mestre A, Viñals F. Rethinking growth factors: the case of BMP9 during vessel maturation. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R1-R14. [PMID: 35350597 PMCID: PMC8942324 DOI: 10.1530/vb-21-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Angiogenesis is an essential process for correct development and physiology. This mechanism is tightly regulated by many signals that activate several pathways, which are constantly interacting with each other. There is mounting evidence that BMP9/ALK1 pathway is essential for a correct vessel maturation. Alterations in this pathway lead to the development of hereditary haemorrhagic telangiectasias. However, little was known about the BMP9 signalling cascade until the last years. Recent reports have shown that while BMP9 arrests cell cycle, it promotes the activation of anabolic pathways to enhance endothelial maturation. In light of this evidence, a new criterion for the classification of cytokines is proposed here, based on the physiological objective of the activation of anabolic routes. Whether this activation by a growth factor is needed to sustain mitosis or to promote a specific function such as matrix formation is a critical characteristic that needs to be considered to classify growth factors. Hence, the state-of-the-art of BMP9/ALK1 signalling is reviewed here, as well as its implications in normal and pathogenic angiogenesis.
Collapse
Affiliation(s)
- Ferran Medina-Jover
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Riera-Mestre
- Hereditary Hemorrhagic Telangiectasia Unit, Internal Medicine Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance (ProCURE), Institut Català d’Oncologia, Hospital Duran i Reynals, L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut (Campus de Bellvitge), Universitat de Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
30
|
Abstract
Brain arteriovenous malformation (bAVM) is the most common cause of intracranial hemorrhage (ICH), particularly in young patients. However, the exact cause of bAVM bleeding and rupture is not yet fully understood. In bAVMs, blood bypasses the entire capillary bed and directly flows from arteries to veins. The vessel walls in bAVMs have structural defects, which impair vascular integrity. Mural cells are essential structural and functional components of blood vessels and play a critical role in maintaining vascular integrity. Changes in mural cell number and coverage have been implicated in bAVMs. In this review, we discussed the roles of mural cells in bAVM pathogenesis. We focused on 1) the recent advances in human and animal studies of bAVMs; 2) the importance of mural cells in vascular integrity; 3) the regulatory signaling pathways that regulate mural cell function. More specifically, the platelet-derived growth factor-B (PDGF-B)/PDGF receptor-β (PDGFR-β), EphrinB2/EphB4, and angiopoietins/tie2 signaling pathways that regulate mural cell-recruitment during vascular remodeling were discussed in detail.
Collapse
|
31
|
Miricescu D, Balan DG, Tulin A, Stiru O, Vacaroiu IA, Mihai DA, Popa CC, Papacocea RI, Enyedi M, Sorin NA, Vatachki G, Georgescu DE, Nica AE, Stefani C. PI3K/AKT/mTOR signalling pathway involvement in renal cell carcinoma pathogenesis (Review). Exp Ther Med 2021; 21:540. [PMID: 33815613 PMCID: PMC8014975 DOI: 10.3892/etm.2021.9972] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Renal cell carcinoma (RCC) accounts for over 90% of all renal malignancies, and mainly affects the male population. Obesity and smoking are involved in the pathogenesis of several systemic cancers including RCC. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway regulates cell growth, differentiation, migration, survival, angiogenesis, and metabolism. Growth factors, hormones, cytokine and many extracellular cues activate PI3K/AKT/mTOR. Dysregulation of this molecular pathway is frequently reported in human cancers including RCC and is associated with aggressive development and poor survival rate. mTOR is the master regulator of cell metabolism and growth, and is activated in many pathological processes such as tumour formation, insulin resistance and angiogenesis. mTOR inhibitors are used at present as drug therapy for RCC to inhibit cell proliferation, growth, survival, and the cell cycle. Temsirolimus and everolimus are two mTOR inhibitors that are currently used for the treatment of RCC. Drugs targeting the PI3K/AKT/mTOR signalling pathway may be one of the best therapeutic options for RCC.
Collapse
Affiliation(s)
- Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Gabriela Balan
- Discipline of Physiology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adrian Tulin
- Department of Anatomy, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of General Surgery, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania
| | - Ovidiu Stiru
- Department of Cardiovascular Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Cardiovascular Surgery, ‘Prof. Dr. C. C. Iliescu’ Emergency Institute for Cardiovascular Diseases, 022322 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology and Dialysis, ‘Sf. Ioan’ Emergency Clinical Hospital, 042122 Bucharest, Romania
- Department of Nephrology, Nutrition and Metabolic Diseases, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Doina Andrada Mihai
- Discipline of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department II of Diabetes, ‘Prof. N. Paulescu’ Nutrition and Metabolic Diseases National Institute of Diabetes, 020474 Bucharest, Romania
| | - Cristian Constantin Popa
- Department of Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Surgery, Emergency University Hospital, 050098 Bucharest, Romania
| | - Raluca Ioana Papacocea
- Discipline of Physiology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mihaly Enyedi
- Department of Anatomy, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Radiology, ‘Victor Babes’ Private Medical Clinic, 030303 Bucharest, Romania
| | - Nedelea Andrei Sorin
- Division of Urology, ‘Prof. Dr. Agrippa Ionescu’ Clinical Emergency Hospital, 011356 Bucharest, Romania
| | - Guenadiy Vatachki
- Department of General Surgery, ‘Fundeni’ Clinical Institute 022328 Bucharest, Romania
| | - Dragoș Eugen Georgescu
- Department of Surgery, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adriana Elena Nica
- Department of Orthopedics, Anesthesia Intensive Care Unit, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| |
Collapse
|
32
|
Dallinga MG, Habani YI, Schimmel AWM, Dallinga-Thie GM, van Noorden CJF, Klaassen I, Schlingemann RO. The Role of Heparan Sulfate and Neuropilin 2 in VEGFA Signaling in Human Endothelial Tip Cells and Non-Tip Cells during Angiogenesis In Vitro. Cells 2021; 10:cells10040926. [PMID: 33923753 PMCID: PMC8073389 DOI: 10.3390/cells10040926] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
During angiogenesis, vascular endothelial growth factor A (VEGFA) regulates endothelial cell (EC) survival, tip cell formation, and stalk cell proliferation via VEGF receptor 2 (VEGFR2). VEGFR2 can interact with VEGFR2 co-receptors such as heparan sulfate proteoglycans (HSPGs) and neuropilin 2 (NRP2), but the exact roles of these co-receptors, or of sulfatase 2 (SULF2), an enzyme that removes sulfate groups from HSPGs and inhibits HSPG-mediated uptake of very low density lipoprotein (VLDL), in angiogenesis and tip cell biology are unknown. In the present study, we investigated whether the modulation of binding of VEGFA to VEGFR2 by knockdown of SULF2 or NRP2 affects sprouting angiogenesis, tip cell formation, proliferation of non-tip cells, and EC survival, or uptake of VLDL. To this end, we employed VEGFA splice variant 121, which lacks an HSPG binding domain, and VEGFA splice variant 165, which does have this domain, in in vitro models of angiogenic tip cells and vascular sprouting. We conclude that VEGFA165 and VEGFA121 have similar inducing effects on tip cells and sprouting in vitro, and that the binding of VEGFA165 to HSPGs in the extracellular matrix does not seem to play a role, as knockdown of SULF2 did not alter these effects. Co-binding of NRP2 appears to regulate VEGFA–VEGFR2-induced sprout initiation, but not tip cell formation. Finally, as the addition of VLDL increased sprout formation but not tip cell formation, and as VLDL uptake was limited to non-tip cells, our findings suggest that VLDL plays a role in sprout formation by providing biomass for stalk cell proliferation.
Collapse
Affiliation(s)
- Marchien G. Dallinga
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
| | - Yasmin I. Habani
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
| | - Alinda W. M. Schimmel
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (A.W.M.S.); (G.M.D.-T.)
| | - Geesje M. Dallinga-Thie
- Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (A.W.M.S.); (G.M.D.-T.)
| | - Cornelis J. F. van Noorden
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
- Correspondence:
| | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands; (M.G.D.); (Y.I.H.); (C.J.F.v.N.); (R.O.S.)
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile des Aveugles, Avenue de France 15, 1004 Lausanne, Switzerland
| |
Collapse
|
33
|
Wang T, Guo Y, Liu S, Zhang C, Cui T, Ding K, Wang P, Wang X, Wang Z. KLF4, a Key Regulator of a Transitive Triplet, Acts on the TGF-β Signaling Pathway and Contributes to High-Altitude Adaptation of Tibetan Pigs. Front Genet 2021; 12:628192. [PMID: 33936161 PMCID: PMC8082500 DOI: 10.3389/fgene.2021.628192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Tibetan pigs are native mammalian species on the Tibetan Plateau that have evolved distinct physiological traits that allow them to tolerate high-altitude hypoxic environments. However, the genetic mechanism underlying this adaptation remains elusive. Here, based on multitissue transcriptional data from high-altitude Tibetan pigs and low-altitude Rongchang pigs, we performed a weighted correlation network analysis (WGCNA) and identified key modules related to these tissues. Complex network analysis and bioinformatics analysis were integrated to identify key genes and three-node network motifs. We found that among the six tissues (muscle, liver, heart, spleen, kidneys, and lungs), lung tissue may be the key organs for Tibetan pigs to adapt to hypoxic environment. In the lung tissue of Tibetan pigs, we identified KLF4, BCL6B, EGR1, EPAS1, SMAD6, SMAD7, KDR, ATOH8, and CCN1 genes as potential regulators of hypoxia adaption. We found that KLF4 and EGR1 genes might simultaneously regulate the BCL6B gene, forming a KLF4-EGR1-BCL6B complex. This complex, dominated by KLF4, may enhance the hypoxia tolerance of Tibetan pigs by mediating the TGF-β signaling pathway. The complex may also affect the PI3K-Akt signaling pathway, which plays an important role in angiogenesis caused by hypoxia. Therefore, we postulate that the KLF4-EGR1-BCL6B complex may be beneficial for Tibetan pigs to survive better in the hypoxia environments. Although further molecular experiments and independent large-scale studies are needed to verify our findings, these findings may provide new details of the regulatory architecture of hypoxia-adaptive genes and are valuable for understanding the genetic mechanism of hypoxic adaptation in mammals.
Collapse
Affiliation(s)
- Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Shengwei Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Chaoxin Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Tongyan Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Kun Ding
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Peng Wang
- HeiLongJiang Provincial Husbandry Department, Harbin, China
| | - Xibiao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Bioinformatics Center, Northeast Agricultural University, Harbin, China
| |
Collapse
|
34
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
35
|
Patel RR, Ramkissoon SH, Ross J, Weintraub L. Tumor mutational burden and driver mutations: Characterizing the genomic landscape of pediatric brain tumors. Pediatr Blood Cancer 2020; 67:e28338. [PMID: 32386112 DOI: 10.1002/pbc.28338] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tumor mutational burden (TMB) and driver mutations are potential biomarkers to guide targeted therapy selection. Malignant gliomas with high TMB in children may preferentially benefit from treatment with immune checkpoint inhibitors (ICPIs). Higher TMB may relate to lower incidence of driver mutations, but this relationship has not been studied in pediatric brain tumors. PROCEDURE Comprehensive genomic profiling was performed on 723 pediatric (≤21 years) brain tumor samples using DNA extracted from formalin-fixed paraffin-embedded tissue. TMB was calculated as mutations per megabase and categorized as low (0-6), intermediate (6-20), or high (>20). Analysis included 80 clinically relevant driver mutations; genomic alterations known to confer a selective growth advantage. RESULTS Of 723 brain tumors, TMB was low in 91.8%, intermediate in 6.1%, and high in 2.1%. In the high TMB cohort, 93% of tumors harbored a driver mutation; 70% and 63% in the intermediate and low TMB cohorts, respectively (P < 0.05). However, when excluding tumor suppressor genes, high TMB tumors had a decreased incidence of driver mutations (P < 0.001). BRAF alterations were not identified in high TMB tumors, but were enriched in low TMB tumors (P < 0.01). Conversely, there was an association between high TMB tumors and TP53 mutations (P < 10-13 ). Of the 15 tumors with high TMB, 14 were high-grade gliomas and 13 had alterations in TP53. Three homozygous mismatch repair deletions identified were associated with a higher TMB (P < 0.01). CONCLUSIONS Specific driver mutations appear to have a relationship with TMB. These represent populations in which ICPIs may be more or less effective.
Collapse
Affiliation(s)
- Roshal R Patel
- Department of Pediatric Hematology/Oncology, Albany Medical College, Albany Medical Center, Albany, New York
| | - Shakti H Ramkissoon
- Pathology and Diagnostic Medicine, Foundation Medicine, Inc., Morrisville, North Carolina.,Department of Pathology, Wake Forest School of Medicine, Wake Forest Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Jeffrey Ross
- Pathology and Diagnostic Medicine, Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Lauren Weintraub
- Department of Pediatric Hematology/Oncology, Albany Medical Center, Albany, New York
| |
Collapse
|
36
|
Le Cras TD, Goines J, Lakes N, Pastura P, Hammill AM, Adams DM, Boscolo E. Constitutively active PIK3CA mutations are expressed by lymphatic and vascular endothelial cells in capillary lymphatic venous malformation. Angiogenesis 2020; 23:425-442. [PMID: 32350708 PMCID: PMC7311380 DOI: 10.1007/s10456-020-09722-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Capillary lymphatic venous malformations (CLVM) are complex vascular anomalies characterized by aberrant and enlarged lymphatic and blood vessels. CLVM appear during fetal development and enlarge after birth, causing life-long complications such as coagulopathy, pulmonary embolism, chronic pain, and disfigurement. Treatment includes surgical debulking, amputation, and recurrent sclerotherapy. Somatic, mosaic mutations in the 110-kD catalytic α-subunit of phosphoinositide-3-kinase (PIK3CA) gene have been previously identified in affected tissues from CLVM patients; however, the cell population harboring the mutation is still unknown. In this study, we hypothesized that endothelial cells (EC) carry the PIK3CA mutations and play a major role in the cellular origin of CLVM. We isolated EC from the lesions of seven patients with CLVM and identified PIK3CA hotspot mutations. The CLVM EC exhibited constitutive phosphorylation of the PI3K effector AKT as well as hyperproliferation and increased resistance to cell death compared to normal EC. Inhibitors of PIK3CA (BYL719) and AKT (ARQ092) attenuated the proliferation of CLVM EC in a dose-dependent manner. A xenograft model of CLVM was developed by injecting patient-derived EC into the flanks of immunocompromised mice. CLVM EC formed lesions with enlarged lymphatic and vascular channels, recapitulating the patient histology. EC subpopulations were further obtained by both immunomagnetic separation into lymphatic EC (LEC) and vascular EC (VEC) and generation of clonal populations. By sequencing these subpopulations, we determined that both LEC and VEC from the same patient express the PIK3CA mutation, exhibit increased AKT activation and can form lymphatic or vascular lesions in mouse.
Collapse
Affiliation(s)
- Timothy D Le Cras
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Jillian Goines
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Nora Lakes
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Patricia Pastura
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229-3039, USA
| | - Adrienne M Hammill
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Cancer and Blood Diseases Institute, Division of Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Denise M Adams
- Boston Children's Hospital Division of Hematology/Oncology Harvard Medical School, Boston, MA, USA
| | - Elisa Boscolo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
37
|
Vinayak M, Maurya AK. Quercetin Loaded Nanoparticles in Targeting Cancer: Recent Development. Anticancer Agents Med Chem 2020; 19:1560-1576. [PMID: 31284873 DOI: 10.2174/1871520619666190705150214] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/27/2022]
Abstract
The spread of metastatic cancer cell is the main cause of death worldwide. Cellular and molecular basis of the action of phytochemicals in the modulation of metastatic cancer highlights the importance of fruits and vegetables. Quercetin is a natural bioflavonoid present in fruits, vegetables, seeds, berries, and tea. The cancer-preventive activity of quercetin is well documented due to its anti-inflammatory, anti-proliferative and anti-angiogenic activities. However, poor water solubility and delivery, chemical instability, short half-life, and low-bioavailability of quercetin limit its clinical application in cancer chemoprevention. A better understanding of the molecular mechanism of controlled and regulated drug delivery is essential for the development of novel and effective therapies. To overcome the limitations of accessibility by quercetin, it can be delivered as nanoconjugated quercetin. Nanoconjugated quercetin has attracted much attention due to its controlled drug release, long retention in tumor, enhanced anticancer potential, and promising clinical application. The pharmacological effect of quercetin conjugated nanoparticles typically depends on drug carriers used such as liposomes, silver nanoparticles, silica nanoparticles, PLGA (Poly lactic-co-glycolic acid), PLA (poly(D,L-lactic acid)) nanoparticles, polymeric micelles, chitosan nanoparticles, etc. In this review, we described various delivery systems of nanoconjugated quercetin like liposomes, silver nanoparticles, PLGA (Poly lactic-co-glycolic acid), and polymeric micelles including DOX conjugated micelles, metal conjugated micelles, nucleic acid conjugated micelles, and antibody-conjugated micelles on in vitro and in vivo tumor models; as well as validated their potential as promising onco-therapeutic agents in light of recent updates.
Collapse
Affiliation(s)
- Manjula Vinayak
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Akhilendra K Maurya
- Biochemistry & Molecular Biology Laboratory, Centre for Advanced Study in Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, India.,Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
38
|
Wu W, Zhou G, Han H, Huang X, Jiang H, Mukai S, Kazlauskas A, Cui J, Matsubara JA, Vanhaesebroeck B, Xia X, Wang J, Lei H. PI3Kδ as a Novel Therapeutic Target in Pathological Angiogenesis. Diabetes 2020; 69:736-748. [PMID: 31915155 PMCID: PMC7085248 DOI: 10.2337/db19-0713] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy is the most common microvascular complication of diabetes, and in the advanced diabetic retinopathy appear vitreal fibrovascular membranes that consist of a variety of cells, including vascular endothelial cells (ECs). New therapeutic approaches for this diabetic complication are urgently needed. Here, we report that in cultured human retinal microvascular ECs, high glucose induced expression of p110δ, which was also expressed in ECs of fibrovascular membranes from patients with diabetes. This catalytic subunit of a receptor-regulated PI3K isoform δ is known to be highly enriched in leukocytes. Using genetic and pharmacological approaches, we show that p110δ activity in cultured ECs controls Akt activation, cell proliferation, migration, and tube formation induced by vascular endothelial growth factor, basic fibroblast growth factor, and epidermal growth factor. Using a mouse model of oxygen-induced retinopathy, p110δ inactivation was found to attenuate pathological retinal angiogenesis. p110δ inhibitors have been approved for use in human B-cell malignancies. Our data suggest that antagonizing p110δ constitutes a previously unappreciated therapeutic opportunity for diabetic retinopathy.
Collapse
Affiliation(s)
- Wenyi Wu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- Schepens Eye Research Institute of Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Guohong Zhou
- Schepens Eye Research Institute of Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA
- Shanxi Eye Hospital, Taiyuan, China
| | - Haote Han
- Schepens Eye Research Institute of Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Xionggao Huang
- Schepens Eye Research Institute of Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA
- Department of Ophthalmology, the First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Heng Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shizuo Mukai
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences and Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL
| | - Jing Cui
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen, China
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Shenzhen, China
| |
Collapse
|
39
|
Hu L, Huang W, Ding Y, Liu M, Wang M, Wang Y, Zhang W, Li Y, Ye W, Li M, Liu Z. PHMH, a diarylheptanoid from Alpinia officinarum attenuates VEGF-induced angiogenesis via inhibition of the VEGFR-2 signaling pathway. Food Funct 2020; 10:2605-2617. [PMID: 31020299 DOI: 10.1039/c8fo01809j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rhizome of Alpinia officinarum Hance, a popular spice used as a condiment in China and Europe, has various reported bioactivities, including anticancer, anti-inflammatory and antioxidant effects. However, its anti-angiogenic activity has not previously been reported. In this study, a diarylheptanoid was isolated from Alpinia officinarum and identified as 1-phenyl-7-(4-hydroxy-3-methoxyphenyl)-4E-en-3-heptanone (PHMH). We demonstrated that PHMH exerts anti-angiogenic activity both in vitro and in vivo. PHMH inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro, and also suppressed VEGF-induced sprout formation of rat aorta ex vivo. Furthermore, PHMH was found to block VEGF-induced vessel formation in mice and suppress angiogenesis in both zebrafish and chorioallantoic membrane models. Mechanistic studies indicated that PHMH inhibited VEGF-induced VEGF receptor-2 (VEGFR-2) auto-phosphorylation and resulted in the blockage of VEGFR-2-mediated signaling cascades in HUVECs, including the Akt/mTOR, ERK1/2, and FAK pathways. Our findings provide new insights into the potential application of PHMH as a therapeutic agent for anti-angiogenesis.
Collapse
Affiliation(s)
- Liubing Hu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Heller M, Bauer H, Schwab R, Blatt S, Peters K, Nezi‐Cahn S, Unger RE, Hasenburg A, Brenner W. The impact of intercellular communication for the generation of complex multicellular prevascularized tissue equivalents. J Biomed Mater Res A 2019; 108:734-748. [DOI: 10.1002/jbm.a.36853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Martin Heller
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Heide‐Katharina Bauer
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Roxana Schwab
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Sebastian Blatt
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- Department of Maxillofacial Surgery University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Katharina Peters
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Sandra Nezi‐Cahn
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Ronald E. Unger
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- Institute for Pathology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Annette Hasenburg
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| | - Walburgis Brenner
- Department of Gynecology University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
- BiomaTiCS—Biomaterials, Tissues and Cells in Science University Medical Center of the Johannes Gutenberg University Mainz Mainz Germany
| |
Collapse
|
41
|
Kobialka P, Graupera M. Revisiting PI3-kinase signalling in angiogenesis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:H125-H134. [PMID: 32923964 PMCID: PMC7439845 DOI: 10.1530/vb-19-0025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
PI3Ks belong to a family of lipid kinases that comprises eight isoforms. They phosphorylate the third position of the inositol ring present in phosphatidylinositol lipids and, in turn, activate a broad range of proteins. The PI3K pathway regulates primal cellular responses, including proliferation, migration, metabolism and vesicular traffic. These processes are fundamental for endothelial cell function during sprouting angiogenesis, the most common type of blood vessel formation. Research in animal models has revealed key functions of PI3K family members and downstream effectors in angiogenesis. In addition, perturbations in PI3K signalling have been associated with aberrant vascular growth including tumour angiogenesis and vascular malformations. Together, this highlights that endothelial cells are uniquely sensitive to fluctuations in PI3K signalling. Here, we aim to update the current view on this important signalling cue in physiological and pathological blood vessel growth.
Collapse
Affiliation(s)
- Piotr Kobialka
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Graupera
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Iriarte A, Figueras A, Cerdà P, Mora JM, Jucglà A, Penín R, Viñals F, Riera-Mestre A. PI3K (Phosphatidylinositol 3-Kinase) Activation and Endothelial Cell Proliferation in Patients with Hemorrhagic Hereditary Telangiectasia Type 1. Cells 2019; 8:cells8090971. [PMID: 31450639 PMCID: PMC6770684 DOI: 10.3390/cells8090971] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Hemorrhagic hereditary telangiectasia (HHT) type 2 patients have increased activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in telangiectasia. The main objective is to evaluate the activation of the PI3K pathway in cutaneous telangiectasia of HHT1 patients. A cutaneous biopsy of a digital hand telangiectasia was performed in seven HHT1 and eight HHT2 patients and compared with six controls. The study was approved by the Clinical Research Ethics Committee of our center. A histopathological pattern with more dilated and superficial vessels that pushed up the epidermis was identified in HHT patients regardless of the type of mutation and was associated with older age, as opposed to the common telangiectasia pattern. The mean proliferation index (Ki-67) was statistically higher in endothelial cells (EC) from HHT1 than in controls. The percentage of positive EC for pNDRG1, pAKT, and pS6 in HHT1 patients versus controls resulted in higher values, statistically significant for pNDRG1 and pS6. In conclusion, we detected an increase in EC proliferation linked to overactivation of the PI3K pathway in cutaneous telangiectasia biopsies from HHT1 patients. Our results suggest that PI3K inhibitors could be used as novel therapeutic agents for HHT.
Collapse
Affiliation(s)
- Adriana Iriarte
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Agnes Figueras
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Pau Cerdà
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - José María Mora
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Jucglà
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Dermatology Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Rosa Penín
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Pathological Anatomy Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Physiological Sciences Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Antoni Riera-Mestre
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain.
- Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
43
|
Wang C, Li L, Fu D, Qin T, Ran Y, Xu F, Du X, Gao H, Sun S, Yang T, Zhang X, Huo J, Zhao W, Zhang Z, Shi X. Discovery of chalcone-modified estradiol analogs as antitumour agents that Inhibit tumour angiogenesis and epithelial to mesenchymal transition. Eur J Med Chem 2019; 176:135-148. [PMID: 31102934 DOI: 10.1016/j.ejmech.2019.04.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Angiogenesis plays an essential role in tumourigenesis and tumour progression, and anti-angiogenesis therapies have shown promising antitumour effects in solid tumours. 2-Methoxyestradiol (2ME2), an endogenous metabolite of estradiol, has been regarded as a potential antitumour agent mainly targeting angiogenesis. Here we synthesized a novel series of chalcones based on 2-methoxyestradiol and evaluated their potential activities against tumours. Compound 11e was demonstrated to have potent antiangiogenic activity. Further studies showed that 11e suppressed tumour growth in human breast cancer (MCF-7) xenograft models without obvious side effects. Evaluation of the mechanism revealed that 11e targeted the epithelial to mesenchymal transition (EMT) process in MCF-7 cells and inhibited HUVEC migration and then contributed to hindrance of angiogenesis. Thus, 11e may be a promising antitumour agent with excellent efficacy and low toxicity.
Collapse
Affiliation(s)
- Cong Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Leilei Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Dongyang Fu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Tiantian Qin
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yange Ran
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Feng Xu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xinrui Du
- Department of Clinical Medicine, Zhengzhou University, 40 Daxue Road, Zhengzhou, Henan, 450052, China
| | - Haiying Gao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Department of Pharmacy, People's Hospital of Daqing, 241 Jianshe Road, Development District, Daqing, 163316, Heilongjiang, China
| | - Shuaijun Sun
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, 195 Tongbai Road, Zhengzhou, 450053, Henan, China
| | - Tengjiao Yang
- HeNan No.3 Provincial People's Hospital, Funiu Road, Zhongyuan District, Zhengzhoum, 450000, Henan, China
| | - Xueyan Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Junfeng Huo
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Wen Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhenzhong Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xiufang Shi
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
44
|
Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X. Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep 2019; 19:4529-4535. [PMID: 30942405 PMCID: PMC6522820 DOI: 10.3892/mmr.2019.10121] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is involved in the regulation of multiple cellular physiological processes by activating downstream corresponding effector molecules, which serve an important role in the cell cycle, growth and proliferation. This is a common phenomenon; overactivation of the pathway is present in human malignancies and has been implicated in cancer progression, hence one of the important approaches to the treatment of tumors is rational drug design using molecular targets in the PI3K/AKT signaling pathway. In brief, the present review analyzed the effects of the PI3K/AKT signaling pathway on certain gynecological cancer types.
Collapse
Affiliation(s)
- Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Jingjing Wang
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Yu Lei
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Caofan Cong
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Dailin Tan
- Department of Clinical Laboratory, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xianrong Zhou
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
45
|
Dual functions of STAT3 in LPS-induced angiogenesis of hepatocellular carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:566-574. [DOI: 10.1016/j.bbamcr.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
|
46
|
MiR-140-5p suppresses retinoblastoma cell growth via inhibiting c-Met/AKT/mTOR pathway. Biosci Rep 2018; 38:BSR20180776. [PMID: 30291212 PMCID: PMC6265618 DOI: 10.1042/bsr20180776] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
MiR-140-5p is low expression and acts as a tumor suppressor in various types of human cancers. However, the potential role of miR-140-5p in retinoblastoma (RB) remains unknown. In the present study, we performed the miRNA microarray analysis to investigate whether miRNAs expression are associated with RB tumorigenesis in RB tissues. We found that a large set of miRNAs were ectopic expressions and miR-140-5p is most significantly down-regulated in human RB tissues compared with normal retinas. In addition, low miR-140-5p expression is associated with clinicopathological features (differentiation, invasion, T classification, N classification, cTNM stage, and largest tumor base) and poor survival in RB patients. Furthermore, our results showed that overexpression of miR-140-5p suppresses proliferation and induces apoptosis and cell cycle arrest in RB cell. Meanwhile, we confirmed that c-Met is the functional target of miR-140-5p in RB cell, and miR-140-5p expression is negatively correlated with c-Met in RB tissues. We also found that inhibition of c-Met also suppresses proliferation and induces apoptosis and cell cycle arrest in RB cell. Interestingly, c-Met can rescue the suppressive effects of miR-140-5p on RB cell growth and cell cycle arrest. More importantly, our findings indicated that miR-140-5p may inhibit cell growth via blocking c-Met/AKT/mTOR signaling pathway. Collectively, these results suggested that miR-140-5p might be a potential biomarker and target in the diagnosis and treatment of RB.
Collapse
|
47
|
Effective angiogenesis requires regulation of phosphoinositide signaling. Adv Biol Regul 2018; 71:69-78. [PMID: 30503054 DOI: 10.1016/j.jbior.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
Phosphoinositide signaling regulates numerous downstream effectors that mediate cellular processes which influence cell cycle progression, migration, proliferation, growth, survival, metabolism and vesicular trafficking. A prominent role for phosphoinositide 3-kinase, which generates phosphatidylinositol 3,4,5-trisphosphate, a phospholipid that activates a plethora of effectors including AKT and FOXO during embryonic and postnatal angiogenesis, has been described. In addition, phosphatidylinositol 3-phosphate signaling is required for endosomal trafficking, which contributes to vascular remodeling. This review will examine the role phosphoinositide signaling plays in the endothelium and its contribution to sprouting angiogenesis.
Collapse
|
48
|
Angulo-Urarte A, Casado P, Castillo SD, Kobialka P, Kotini MP, Figueiredo AM, Castel P, Rajeeve V, Milà-Guasch M, Millan J, Wiesner C, Serra H, Muixi L, Casanovas O, Viñals F, Affolter M, Gerhardt H, Huveneers S, Belting HG, Cutillas PR, Graupera M. Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nat Commun 2018; 9:4826. [PMID: 30446640 PMCID: PMC6240100 DOI: 10.1038/s41467-018-07172-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is a dynamic process relying on endothelial cell rearrangements within vascular tubes, yet the underlying mechanisms and functional relevance are poorly understood. Here we show that PI3Kα regulates endothelial cell rearrangements using a combination of a PI3Kα-selective inhibitor and endothelial-specific genetic deletion to abrogate PI3Kα activity during vessel development. Quantitative phosphoproteomics together with detailed cell biology analyses in vivo and in vitro reveal that PI3K signalling prevents NUAK1-dependent phosphorylation of the myosin phosphatase targeting-1 (MYPT1) protein, thereby allowing myosin light chain phosphatase (MLCP) activity and ultimately downregulating actomyosin contractility. Decreased PI3K activity enhances actomyosin contractility and impairs junctional remodelling and stabilization. This leads to overstretched endothelial cells that fail to anastomose properly and form aberrant superimposed layers within the vasculature. Our findings define the PI3K/NUAK1/MYPT1/MLCP axis as a critical pathway to regulate actomyosin contractility in endothelial cells, supporting vascular patterning and expansion through the control of cell rearrangement. Angiogenesis requires dynamic endothelial rearrangements and relative position changes within the vascular tubes. Here the authors show that a PI3K/NUAK1/MYPT1/MLCP pathway regulates actomyosin contractility in endothelial cells and cellular rearrangement during vascular patterning.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pedro Casado
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sandra D Castillo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Piotr Kobialka
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ana M Figueiredo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Vinothini Rajeeve
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Maria Milà-Guasch
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Jaime Millan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Calle Nicolás Cabrera, 28049, Madrid, Spain
| | - Cora Wiesner
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Helena Serra
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Laia Muixi
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Oriol Casanovas
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain.,Departament de Ciències Fisiològiques II, Universitat de Barcelona, Carrer de la Feixa Llarga, 08907, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Holger Gerhardt
- Max-Delbrueck Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany.,The German Center for Cardiovascular Research (DZHK), Oudenarder Str. 16, 13347, Berlin, Germany.,The Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mariona Graupera
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain. .,CIBERONC, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain.
| |
Collapse
|
49
|
Kolibabka M, Dietrich N, Klein T, Hammes HP. Anti-angiogenic effects of the DPP-4 inhibitor linagliptin via inhibition of VEGFR signalling in the mouse model of oxygen-induced retinopathy. Diabetologia 2018; 61:2412-2421. [PMID: 30097694 DOI: 10.1007/s00125-018-4701-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Linagliptin has protective effects on the retinal neurovascular unit but, in proliferative retinopathy, dipeptidyl peptidase 4 (DPP-4) inhibition could be detrimental. The aim of this study was to assess the effect of linagliptin on ischaemia-induced neovascularisation of the retina. METHODS C57BL/6J and glucagon-like peptide 1 (GLP-1) receptor (Glp1r)-/- mice were subjected to a model of oxygen-induced retinopathy (OIR). Both strains were subcutaneously treated with linagliptin from postnatal days 12 to 16. Non-injected OIR and non-exposed mice served as controls. Capillary proliferations and systemic levels of active GLP-1 were quantified. The effects of linagliptin on vascular endothelial growth factor (VEGF)-induced downstream signalling were assessed in human umbilical vein endothelial cells (HUVECs) using western blot for retinal phosphorylated extracellular signal-regulated kinase (ERK)1/2 and retinal gene expression analyses. RESULTS Linagliptin treatment led to an increase in active GLP-1 and a decreased number of neovascular nuclei in OIR mice vs controls (-30%, p < 0.05). As the reduction in neovascularisation was similar in both C57BL/6J and Glp1r-/- mice, the anti-angiogenic effects of linagliptin were independent of GLP-1R status. The expression of Vegf (also known as Vegfa) and Hif1a was increased in C57BL/6J OIR mice upon linagliptin treatment (three- vs 1.5-fold, p < 0.05, p < 0.01, respectively). In HUVECs, linagliptin inhibited VEGF-induced increases in mitogen-activated protein kinase (MAPK)/ERK (-67%, p < 0.001) and MAPK/c-Jun N-terminal kinase (JNK) (-13%, p < 0.05) pathway activities. In the retinas of C57BL/6J mice, p-ERK1/2 levels were significantly reduced upon linagliptin treatment (-47%, p < 0.05). CONCLUSIONS/INTERPRETATION Systemic treatment with linagliptin demonstrated GLP-1R-independent anti-angiogenic effects mediated by an inhibition of VEGF receptor downstream signalling. The specific effects of linagliptin on diabetic retinopathy are of potential benefit for individuals with diabetes, independent of metabolic effects.
Collapse
Affiliation(s)
- Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Nadine Dietrich
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Thomas Klein
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma, Biberach, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
50
|
Namatame N, Tamaki N, Yoshizawa Y, Okamura M, Nishimura Y, Yamazaki K, Tanaka M, Nakamura T, Semba K, Yamori T, Yaguchi SI, Dan S. Antitumor profile of the PI3K inhibitor ZSTK474 in human sarcoma cell lines. Oncotarget 2018; 9:35141-35161. [PMID: 30416685 PMCID: PMC6205545 DOI: 10.18632/oncotarget.26216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/26/2018] [Indexed: 11/25/2022] Open
Abstract
Treatment of patients with advanced sarcoma remains challenging due to lack of effective medicine, with the development of novel drugs being of keen interest. A pan-PI3K inhibitor, ZSTK474, has been evaluated in clinical trials against a range of advanced solid tumors, with clinical benefit shown in sarcoma patients. In the present study, we developed a panel of 14 human sarcoma cell lines and investigated the antitumor effect of 24 anticancer agents including ZSTK474, other PI3K inhibitors, and those clinically used for sarcoma treatment. ZSTK474 exhibited a similar antiproliferative profile to other PI3K inhibitors but was clearly different from the other drugs examined. Indeed, ZSTK474 inhibited PI3K-downstream pathways, in parallel to growth inhibition, in all cell lines examined, showing proof-of-concept of PI3K inhibition. In addition, ZSTK474 induced apoptosis selectively in Ewing's sarcoma (RD-ES and A673), alveolar rhabdomyosarcoma (SJCRH30) and synovial sarcoma (SYO-1, Aska-SS and Yamato-SS) cell lines, all of which harbor chromosomal translocation and resulting oncogenic fusion genes, EWSR1-FLI1, PAX3-FOXO1 and SS18-SSX, respectively. Finally, animal experiments confirmed the antitumor activity of ZSTK474 in vivo, with superior efficacy observed in translocation-positive cells. These results suggest that ZSTK474 could be a promising drug candidate for treating sarcomas, especially those harboring chromosomal translocation.
Collapse
Affiliation(s)
- Nachi Namatame
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,R&D Center, Zenyaku Kogyo Co. Ltd, Tokyo, Japan
| | - Naomi Tamaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuya Yoshizawa
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mutsumi Okamura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yumiko Nishimura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Miwa Tanaka
- Division of Carcinogenesis, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Present address: Center for Product Evaluation, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Shin-Ichi Yaguchi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,R&D Center, Zenyaku Kogyo Co. Ltd, Tokyo, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|