1
|
Schmidt KE, Höving AL, Kiani Zahrani S, Trevlopoulou K, Kaltschmidt B, Knabbe C, Kaltschmidt C. Serum-Induced Proliferation of Human Cardiac Stem Cells Is Modulated via TGFβRI/II and SMAD2/3. Int J Mol Sci 2024; 25:959. [PMID: 38256034 PMCID: PMC10815425 DOI: 10.3390/ijms25020959] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The ageing phenotype is strongly driven by the exhaustion of adult stem cells (ASCs) and the accumulation of senescent cells. Cardiovascular diseases (CVDs) and heart failure (HF) are strongly linked to the ageing phenotype and are the leading cause of death. As the human heart is considered as an organ with low regenerative capacity, treatments targeting the rejuvenation of human cardiac stem cells (hCSCs) are of great interest. In this study, the beneficial effects of human blood serum on proliferation and senescence of hCSCs have been investigated at the molecular level. We show the induction of a proliferation-related gene expression response by human blood serum at the mRNA level. The concurrent differential expression of the TGFβ target and inhibitor genes indicates the participation of TGFβ signalling in this context. Surprisingly, the application of TGFβ1 as well as the inhibition of TGFβ type I and type II receptor (TGFβRI/II) signalling strongly increased the proliferation of hCSCs. Likewise, both human blood serum and TGFβ1 reduced the senescence in hCSCs. The protective effect of serum on senescence in hCSCs was enhanced by simultaneous TGFβRI/II inhibition. These results strongly indicate a dual role of TGFβ signalling in terms of the serum-mediated effects on hCSCs. Further analysis via RNA sequencing (RNA-Seq) revealed the participation of Ras-inactivating genes wherefore a prevention of hyperproliferation upon serum-treatment in hCSCs via TGFβ signalling and Ras-induced senescence is suggested. These insights may improve treatments of heart failure in the future.
Collapse
Affiliation(s)
- Kazuko E. Schmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (S.K.Z.); (K.T.); (B.K.); (C.K.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Medical Faculty OWL, University of Bielefeld, 33615 Bielefeld, Germany
| | - Anna L. Höving
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (S.K.Z.); (K.T.); (B.K.); (C.K.)
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Medical Faculty OWL, University of Bielefeld, 33615 Bielefeld, Germany
| | - Sina Kiani Zahrani
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (S.K.Z.); (K.T.); (B.K.); (C.K.)
| | - Katerina Trevlopoulou
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (S.K.Z.); (K.T.); (B.K.); (C.K.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (S.K.Z.); (K.T.); (B.K.); (C.K.)
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Medical Faculty OWL, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (S.K.Z.); (K.T.); (B.K.); (C.K.)
| |
Collapse
|
2
|
Xiao L, Zhao Y, Yang M, Luan G, Du T, Deng S, Jia X. A promising nucleic acid therapy drug: DNAzymes and its delivery system. Front Mol Biosci 2023; 10:1270101. [PMID: 37753371 PMCID: PMC10518456 DOI: 10.3389/fmolb.2023.1270101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Based on the development of nucleic acid therapeutic drugs, DNAzymes obtained through in vitro selection technology in 1994 are gradually being sought. DNAzymes are single-stranded DNA molecules with catalytic function, which specifically cleave RNA under the action of metal ions. Various in vivo and in vitro models have recently demonstrated that DNAzymes can target related genes in cancer, cardiovascular disease, bacterial and viral infection, and central nervous system disease. Compared with other nucleic acid therapy drugs, DNAzymes have gained more attention due to their excellent cutting efficiency, high stability, and low cost. Here, We first briefly reviewed the development and characteristics of DNAzymes, then discussed disease-targeting inhibition model of DNAzymes, hoping to provide new insights and ways for disease treatment. Finally, DNAzymes were still subject to some restrictions in practical applications, including low cell uptake efficiency, nuclease degradation and interference from other biological matrices. We discussed the latest delivery strategy of DNAzymes, among which lipid nanoparticles have recently received widespread attention due to the successful delivery of the COVID-19 mRNA vaccine, which provides the possibility for the subsequent clinical application of DNAzymes. In addition, the future development of DNAzymes was prospected.
Collapse
Affiliation(s)
- Lang Xiao
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yan Zhao
- Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Meng Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Guangxin Luan
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ting Du
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Deng
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xu Jia
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Sichuan Key Laboratory of Noncoding RNA and Drugs, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Li Y, Wu B, Hossain MJ, Quagliata L, O'Meara C, Wilkins MR, Corley S, Khachigian LM. Flubendazole inhibits PD-1 and suppresses melanoma growth in immunocompetent mice. J Transl Med 2023; 21:467. [PMID: 37452307 PMCID: PMC10349441 DOI: 10.1186/s12967-023-04289-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor therapy has revolutionized the clinical management of a diverse range of cancer types, including advanced cutaneous melanoma. While immunotherapy targeting the PD-1/PD-L1 system has become standard of care, overall response rates remain unsatisfactory for most patients and there are no approved small molecule inhibitors of the PD-1/PD-L1 system. Flubendazole (FLU) is an anthelmintic that has been used to treat worm infections in humans and animals for decades. METHODS Here we tested the anti-cancer activity of systemically delivered FLU with suppression of PD-1 in immunocompetent mice. RESULTS In C57BL/6J mice bearing subcutaneous B16F10 melanoma, FLU reduced both tumor growth and PD-1 protein levels without affecting levels of PD-L1. FLU's suppression of PD-1 was accompanied by increased CD3+ T cell infiltration. Western blotting with extracts from human Jurkat T cells showed that FLU inhibited PD-1 protein expression, findings confirmed by flow cytometry. To gain mechanistic insights on FLU's ability to suppress PD-1 protein levels, we performed bulk RNA sequencing on extracts of Jurkat T cells exposed to the benzimidazole for 4 h. From a pool of 14,475 genes there were 1218 differentially-expressed genes; 687 with increased expression and 531 with decreased expression. Among the genes induced by FLU was the AP-1 family member, JUN and surprisingly, pdcd1. KEGG pathway analysis showed FLU up-regulated genes over-represented in multiple pathways (p < 0.01), the top hit being amoebiasis. FLU also affected the expression of genes in cancer-associated pathways, both through down-regulation and up-regulation. Gene set enrichment analysis revealed a large number of immunological signature gene sets correlated with FLU treatment, including gene sets associated with T cell differentiation, proliferation and function. The AP-1 inhibitor T5224 rescued PD-1 protein expression from inhibition by FLU. CONCLUSION This study is the first to show that FLU can inhibit melanoma growth with PD-1 suppression in immunocompetent mice.
Collapse
Affiliation(s)
- Yue Li
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ben Wu
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Md Jakir Hossain
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lily Quagliata
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Connor O'Meara
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Otorhinolaryngology, Head & Neck Surgery, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, Ramaciotti Centre for Genomics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Susan Corley
- Systems Biology Initiative, Ramaciotti Centre for Genomics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
4
|
Billah M, Naz A, Noor R, Bhindi R, Khachigian LM. Early Growth Response-1: Friend or Foe in the Heart? Heart Lung Circ 2023; 32:e23-e35. [PMID: 37024319 DOI: 10.1016/j.hlc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023]
Abstract
Cardiovascular disease is a major cause of mortality and morbidity worldwide. Early growth response-1 (Egr-1) plays a critical regulatory role in a range of experimental models of cardiovascular diseases. Egr-1 is an immediate-early gene and is upregulated by various stimuli including shear stress, oxygen deprivation, oxidative stress and nutrient deprivation. However, recent research suggests a new, underexplored cardioprotective side of Egr-1. The main purpose of this review is to explore and summarise the dual nature of Egr-1 in cardiovascular pathobiology.
Collapse
Affiliation(s)
- Muntasir Billah
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.
| | - Adiba Naz
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Rashed Noor
- School of Environmental and Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh
| | - Ravinay Bhindi
- Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, Sydney, NSW, Australia; Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Rosenbach H, Borggräfe J, Victor J, Wuebben C, Schiemann O, Hoyer W, Steger G, Etzkorn M, Span I. Influence of monovalent metal ions on metal binding and catalytic activity of the 10-23 DNAzyme. Biol Chem 2020; 402:99-111. [PMID: 33544488 DOI: 10.1515/hsz-2020-0207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/13/2020] [Indexed: 11/15/2022]
Abstract
Deoxyribozymes (DNAzymes) are single-stranded DNA molecules that catalyze a broad range of chemical reactions. The 10-23 DNAzyme catalyzes the cleavage of RNA strands and can be designed to cleave essentially any target RNA, which makes it particularly interesting for therapeutic and biosensing applications. The activity of this DNAzyme in vitro is considerably higher than in cells, which was suggested to be a result of the low intracellular concentration of bioavailable divalent cations. While the interaction of the 10-23 DNAzyme with divalent metal ions was studied extensively, the influence of monovalent metal ions on its activity remains poorly understood. Here, we characterize the influence of monovalent and divalent cations on the 10-23 DNAzyme utilizing functional and biophysical techniques. Our results show that Na+ and K+ affect the binding of divalent metal ions to the DNAzyme:RNA complex and considerably modulate the reaction rates of RNA cleavage. We observe an opposite effect of high levels of Na+ and K+ concentrations on Mg2+- and Mn2+-induced reactions, revealing a different interplay of these metals in catalysis. Based on these findings, we propose a model for the interaction of metal ions with the DNAzyme:RNA complex.
Collapse
Affiliation(s)
- Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany
| | - Jan Borggräfe
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany.,Institute for Biological Information Processing: Structural Biochemistry (IBI-7), Research Center Jülich, Wilhelm-Johnen-Str., D-52428Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany
| | - Christine Wuebben
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, D-53115Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, D-53115Bonn, Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany.,Institute for Biological Information Processing: Structural Biochemistry (IBI-7), Research Center Jülich, Wilhelm-Johnen-Str., D-52428Jülich, Germany
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany.,Institute for Biological Information Processing: Structural Biochemistry (IBI-7), Research Center Jülich, Wilhelm-Johnen-Str., D-52428Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425Jülich, Germany
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, D-40225Düsseldorf, Germany
| |
Collapse
|
6
|
Wang LF, Liu YS, Yang B, Li P, Cheng XS, Xiao CX, Liu JJ, Li S, Ren JL, Guleng B. The extracellular matrix protein mindin attenuates colon cancer progression by blocking angiogenesis via Egr-1-mediated regulation. Oncogene 2017; 37:601-615. [PMID: 28991232 DOI: 10.1038/onc.2017.359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/15/2017] [Accepted: 08/19/2017] [Indexed: 12/13/2022]
Abstract
Mindin, a secreted, highly conserved extracellular matrix (ECM) protein, exerts a broad spectrum of effects on the innate immune system. However, its function in colorectal cancer (CRC) progression is not well established, and its upstream regulation mechanisms remain unclear. Contrary to previous reports, this study used two different enzyme-linked immunosorbent assay (ELISA) kits to show that the serum level of mindin was significantly decreased in CRC patients and that this decreased level is more significantly associated with the early stages of the disease. To explore the regulation of mindin, we used a bioinformatics approach to predict potential transcription factors and determined that early growth response factor (Egr)-1 directly regulates mindin expression at the transcriptional level using dual luciferase, chromatin immunoprecipitation (ChIP) DNA and electrophoretic mobility shift assay (EMSA) methods. Egr-1 regulates mindin mRNA and protein expression in CRC cells, and the protein expression of both Egr-1 and mindin was significantly decreased in tumor lesions of patients compared with adjacent control tissues. Mindin is essential for Egr-1-mediated inhibition of endothelial cell tube formation, and mindin inhibits endotheliocyte proliferation, migration and angiogenic sprouts in vitro. Overexpression of mindin suppressed xenograft tumor growth by blocking angiogenesis instead of directly suppressing CRC cell proliferation. Mechanically, mindin inhibits the hypoxia-induced HIF-1a and VEGFA protein expression in CRC cells and the phosphorylation of VEGFR-2 in endothelial cells. The results suggest that the serum level of mindin can be used as a novel biomarker for early detection of CRC and that the Egr-1/mindin axis is a potential therapeutic target for the inhibition of angiogenesis in CRC development.
Collapse
Affiliation(s)
- L-F Wang
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Y-S Liu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - B Yang
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - P Li
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China.,Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - X-S Cheng
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - C-X Xiao
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - J-J Liu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - S Li
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
| | - J-L Ren
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - B Guleng
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China.,Faculty of Clinical Medicine, Medical College of Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Li Y, McRobb LS, Khachigian LM. Inhibition of intimal thickening after vascular injury with a cocktail of vascular endothelial growth factor and cyclic Arg-Gly-Asp peptide. Int J Cardiol 2016; 220:185-91. [PMID: 27379921 DOI: 10.1016/j.ijcard.2016.06.300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/10/2016] [Accepted: 06/28/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Percutaneous coronary intervention is widely used for the treatment of coronary artery disease; however, significant challenges such as restenosis remain. Key to solving these problems is to inhibit smooth muscle cell activation while enhancing re-endothelialization. Early growth response-1 (Egr-1) is a transcription factor that regulates vascular smooth muscle cell (SMC) proliferation and migration through its control of an array of downstream genes. METHODS A "cocktail" of vascular endothelial growth factor (VEGF)-A, VEGF-D and cyclic RGD was tested for its ability to inhibit neointima formation and accelerate re-endothelialization following balloon injury to carotid arteries of rats. RESULTS In vitro, the cocktail stimulated endothelial cell growth yet inhibited smooth muscle cell growth. In vivo, cocktail-treated injured arteries exhibited reduced intimal thickening by >50% (P<0.05). It increased both re-endothelialization and endothelial nitric oxide synthase (NOS) expression. Cocktail reduced Egr-1 expression, an effect blocked by the NOS inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) that also prevented cocktail inhibition of neointima inhibition. CONCLUSIONS This combination may potentially be useful for the treatment of restenosis with concomitant stimulation of revascularization.
Collapse
Affiliation(s)
- Yue Li
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lucinda S McRobb
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Levon M Khachigian
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Li Y, McRobb LS, Khachigian LM. MicroRNA miR-191 targets the zinc finger transcription factor Egr-1 and suppresses intimal thickening after carotid injury. Int J Cardiol 2016; 212:299-302. [PMID: 27057945 DOI: 10.1016/j.ijcard.2016.03.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 03/03/2016] [Accepted: 03/13/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES Early growth response-1 (Egr-1) is an immediate-early gene that is rapidly and transiently induced by stimuli such as injury, hypoxia and shear stress and is implicated in a range of vascular disorders. Once activated it regulates the expression of a range of genes, instigating a healing response involved in cellular dedifferentiation, proliferation and migration. Knowledge of the mechanisms underpinning the control of Egr-1 is incompletely understood. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNAs that post-transcriptionally regulate gene expression by mRNA degradation or translational inhibition. METHODS The effects of a double-stranded mature mimic precursor of microRNA miR-191 were evaluated on Egr-1 and intimal thickening after balloon catheter injury to carotid arteries in rats. RESULTS miR-191 (pre-191) inhibits intimal thickening compared with the precursor mimic miRNA negative control (pre-CTL) 14days after carotid artery injury. Egr-1 expression was suppressed by miR-191 compared with the pre-CTL group. Moreover miR-191 reduced Ki67 proliferation marker expression. CONCLUSIONS miR-191 negatively regulates Egr-1 and controls neointima formation after vascular injury.
Collapse
Affiliation(s)
- Yue Li
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lucinda S McRobb
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Levon M Khachigian
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Ha YM, Nam JO, Kang YJ. Pitavastatin Regulates Ang II Induced Proliferation and Migration via IGFBP-5 in VSMC. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:499-506. [PMID: 26557016 PMCID: PMC4637352 DOI: 10.4196/kjpp.2015.19.6.499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/28/2015] [Accepted: 08/16/2015] [Indexed: 11/15/2022]
Abstract
Angiotensin II (Ang II), a key mediator of hypertensive, causes structural changes in the arteries (vascular remodeling), which involve alterations in cell growth, vascular smooth muscle cell (VSMC) hypertrophy. Ang II promotes fibrotic factor like IGFBP5, which mediates the profibrotic effects of Ang II in the heart and kidneys, lung and so on. The purpose of this study was to identify the signaling pathway of IGFBP5 on cell proliferation and migration of Ang II-stimulated VSMC. We have been interested in Ang II-induced IGFBP5 and were curious to determine whether a Pitavastatin would ameliorate the effects. Herein, we investigated the question of whether Ang II induced the levels of IGFBP5 protein followed by proliferation and migration in VSMC. Pretreatment with the specific Angiotensin receptor type 1 (AT1) inhibitor (Losartan), Angiotensin receptor type 2 (AT2) inhibitor (PD123319), MAPK inhibitor (U0126), ERK1/2 inhibitor (PD98059), P38 inhibitor (SB600125) and PI3K inhibitor (LY294002) resulted in significantly inhibited IGFBP5 production, proliferation, and migration in Ang II-stimulated VSMC. In addition, IGFBP5 knockdown resulted in modulation of Ang II induced proliferation and migration via IGFBP5 induction. In addition, Pitavastatin modulated Ang II induced proliferation and migration in VSMC. Taken together, our results indicated that Ang II induces IGFBP5 through AT1, ERK1/2, P38, and PI3K signaling pathways, which were inhibited by Pitavastatin. These findings may suggest that Pitavastatin has an effect on vascular disease including hypertension.
Collapse
Affiliation(s)
- Yu Mi Ha
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Korea
| | - Ju-Ock Nam
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 42415, Korea
| |
Collapse
|
10
|
Li D, Ilnytskyy Y, Kovalchuk A, Khachigian LM, Bronson RT, Wang B, Kovalchuk O. Crucial role for early growth response-1 in the transcriptional regulation of miR-20b in breast cancer. Oncotarget 2014; 4:1373-87. [PMID: 23945289 PMCID: PMC3824527 DOI: 10.18632/oncotarget.1165] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcriptional regulation of miRNAs that control the pathogenesis of breast cancer remains largely unknown. Here, we showed that ionizing radiation, a known breast carcinogen, triggered the differential expression of miR-20b in mammary tissues. We identified several GC-rich consensus binding motifs for the zinc finger transcription factor early growth response-1 (EGR1) in miR-20b promoter. miR-20b was upregulated by IR and its upregulation correlated with EGR1 expression in the breast cancer cell line HCC1806. Therefore, we used HCC1806 cells as a model system to explore the role of EGR1 in miR-20b transcription. siRNA knockdown of EGR1 attenuated miR-20b expression. Luciferase assays showed that whereas EGR1 stimulated luciferase activity driven by the wild-type miR-20b promoter, this induction was abolished in the mutant miR-20 promoter construct. We noted significant enrichment of EGR1 at miR-20b promoter in HCC1806 cells compared with normal human mammary epithelial cells. Suppression of miR-20b significantly inhibited HCC1806 cell proliferation and migration, and led to G 0/G 1 and S phase arrest. In vitro RNA-pull down assays indicated that miR-20b targets numerous tumor suppressors, including PTEN and BRCA1, which were downregulated in HCC1806. Conversely, suppression of miR-20b increased PTEN and BRCA1 levels. Moreover, immunohistochemical and FISH analyses showed that the miR-20b expression correlated significantly with EGR1 levels in breast cancer tissues. Our findings thus demonstrate for the first time that EGR1 is a key player in the transcriptional control of miR-20b, and miR-20b may in turn function as an oncogene by contributing to breast tumorigenesis via tumor suppressor targeting.
Collapse
Affiliation(s)
- Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Li Y, Bhindi R, Deng ZJ, Morton SW, Hammond PT, Khachigian LM. Inhibition of vein graft stenosis with a c-jun targeting DNAzyme in a cationic liposomal formulation containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Int J Cardiol 2013; 168:3659-64. [PMID: 23886527 PMCID: PMC3951723 DOI: 10.1016/j.ijcard.2013.05.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/02/2013] [Accepted: 05/31/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Coronary artery bypass grafting (CABG) is among the most commonly performed heart surgical procedures. Saphenous vein graft failure due to stenosis impedes the longer-term success of CABG. A key cellular event in the process of vein graft stenosis is smooth muscle cell hyperplasia. In this study, we evaluated the effect of a DNAzyme (Dz13) targeting the transcription factor c-Jun in a rabbit model of vein graft stenosis in a cationic liposomal formulation containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Dz13 in DOTAP/DOPE has undergone preclinical toxicological testing, and a Phase I clinical trial we recently conducted in basal cell carcinoma cancer patients demonstrates that it is safe and well tolerated after local administration. METHODS Effects of Dz13 in a formulation containing DOTAP/DOPE on smooth muscle cell (SMC) growth and c-Jun expression were assessed. Dz13 transfection was determined by cellular uptake of carboxyfluorescein-labeled Dz13. Autologous jugular vein to carotid artery transplantation was performed in New Zealand White rabbits to investigate the effect of the Dz13 in DOTAP/DOPE formulation on intimal hyperplasia. RESULTS Dz13/DOTAP/DOPE reduced SMC proliferation and c-Jun protein expression in vitro compared with an impotent form of Dz13 bearing a point mutation in its catalytic domain (Dz13.G>C). The Dz13(500 μg)/DOTAP/DOPE formed lipoplexes that were colloidally stable for up to 1h on ice (0°C) and 30 min at 37°C, allowing sufficient uptake by the veins. Dz13 (500 μg) inhibited neointima formation 28 d after end-to-side transplantation. CONCLUSIONS This formulation applied to veins prior to transplantation may potentially be useful in efforts to reduce graft failure.
Collapse
Affiliation(s)
- Yue Li
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Wu H, Lei S, Yuan J, Liu X, Zhang D, Gu X, Zhang L, Xia Z. Ischemic postconditioning downregulates Egr-1 expression and attenuates postischemic pulmonary inflammatory cytokine release and tissue injury in rats. J Surg Res 2013; 181:204-12. [DOI: 10.1016/j.jss.2012.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 06/14/2012] [Accepted: 07/11/2012] [Indexed: 11/28/2022]
|
13
|
Zhang J, Guo C, Wang R, Huang L, Liang W, Liu R, Sun B. An Egr-1-specific DNAzyme regulates Egr-1 and proliferating cell nuclear antigen expression in rat vascular smooth muscle cells. Exp Ther Med 2013; 5:1371-1374. [PMID: 23737882 PMCID: PMC3671740 DOI: 10.3892/etm.2013.1013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/25/2013] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to transfect rat aortic smooth muscle cells with an early growth response factor-1 (Egr-1)-specific DNAzyme (ED5), to observe its effect on Egr-1 and proliferating cell nuclear antigen (PCNA) expression and to elucidate the mechanism of ED5-mediated inhibition of vascular smooth muscle cell (VSMC) proliferation. VSMCs in primary culture obtained by tissue block adhesion were identified by morphological observation and α smooth muscle actin (α-SM-actin) immunocytochemistry. The cells were then transfected with ED5 or scrambled ED5 (ED5SCR). The three groups of cells used in the present study were the control group, ED5 group and ED5SCR group. The expression levels of Egr-1 and PCNA protein were detected following transfection by analyzing and calculating the integral optical density value in each group. Primary culture of VSMCs and transfection of ED5 and ED5SCR were successfully accomplished. Following stimulation with 10% fetal calf serum, the Egr-1 protein was expressed most strongly at 1 h and demonstrated a declining trend over time; the expression of PCNA protein began at 4 h, peaked at 24 h and then demonstrated a slightly declining trend over time. Compared with the control group and the ED5SCR group, ED5 inhibited the expression of Egr-1 and PCNA (P<0.05). ED5 was able to inhibit the expression of Egr-1 and PCNA proteins in VSMCs to a certain extent and VSMC proliferation in vitro. DNAzyme gene therapy may be useful as a new method for treating vascular proliferative diseases, including atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Junbiao Zhang
- Departments of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100
| | | | | | | | | | | | | |
Collapse
|
14
|
Dickinson MG, Bartelds B, Molema G, Borgdorff MA, Boersma B, Takens J, Weij M, Wichers P, Sietsma H, Berger RMF. Egr-1 expression during neointimal development in flow-associated pulmonary hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2199-209. [PMID: 21924231 DOI: 10.1016/j.ajpath.2011.07.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 07/13/2011] [Accepted: 07/26/2011] [Indexed: 11/25/2022]
Abstract
In flow-associated pulmonary arterial hypertension (PAH), increased pulmonary blood flow is an essential trigger for neointimal formation. Using microarray analysis, we recently found that the early growth response protein 1 (Egr-1) transcription factor is increased in experimental flow-associated end-stage PAH. Its role in PAH development is unknown. Here, we assessed the spatiotemporal expression of Egr-1 during neointimal development in flow-associated PAH. Flow-associated PAH was produced in rats by combining monocrotaline administration with an aortocaval shunt. Animals were sacrificed 1 day before or 1 day, 1 week, or 4 to 5 weeks after flow addition. Egr-1 expression was spatiotemporally assessed using laser microdissection, quantitative real-time PCR and immunohistochemistry. In addition, Egr-1 expression was assessed in a non-neointimal pulmonary hypertension model and in human PAH associated with congenital shunt. In 4 to 5 weeks, rats subjected to increased flow developed PAH with neointimal lesions. Egr-1 mRNA was increased 1 day after flow addition and in end-stage PAH, whereas monocrotaline only did not result in increased Egr-1 mRNA. Directly after flow addition, Egr-1 was expressed in endothelial cells. During disease development, Egr-1 protein expression increased and migrated throughout the vessel wall. In PAH patients, Egr-1 was expressed in vessels with media hypertrophy and neointimal lesions, including plexiform lesions. Thus, Egr-1 may be an important regulator in the development of pulmonary neointimal lesions induced by increased pulmonary blood flow.
Collapse
Affiliation(s)
- Michael G Dickinson
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen J, Liu MY, Parish CR, Chong BH, Khachigian L. Nuclear import of early growth response-1 involves importin-7 and the novel nuclear localization signal serine-proline-serine. Int J Biochem Cell Biol 2011; 43:905-12. [DOI: 10.1016/j.biocel.2011.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 03/04/2011] [Accepted: 03/09/2011] [Indexed: 01/12/2023]
|
16
|
Ganesh SK, Joo J, Skelding K, Mehta L, Zheng G, O'Neill K, Billings EM, Helgadottir A, Andersen K, Thorgeirsson G, Gudnason T, Geller NL, Simari RD, Holmes DR, O'Neill WW, Nabel EG. Time course analysis of gene expression identifies multiple genes with differential expression in patients with in-stent restenosis. BMC Med Genomics 2011; 4:20. [PMID: 21356094 PMCID: PMC3053213 DOI: 10.1186/1755-8794-4-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 02/28/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The vascular disease in-stent restenosis (ISR) is characterized by formation of neointima and adverse inward remodeling of the artery after injury by coronary stent implantation. We hypothesized that the analysis of gene expression in peripheral blood mononuclear cells (PBMCs) would demonstrate differences in transcript expression between individuals who develop ISR and those who do not. METHODS AND RESULTS We determined and investigated PBMC gene expression of 358 patients undergoing an index procedure to treat in de novo coronary artery lesions with bare metallic stents, using a novel time-varying intercept model to optimally assess the time course of gene expression across a time course of blood samples. Validation analyses were conducted in an independent sample of 97 patients with similar time-course blood sampling and gene expression data. We identified 47 probesets with differential expression, of which 36 were validated upon independent replication testing. The genes identified have varied functions, including some related to cellular growth and metabolism, such as the NAB2 and LAMP genes. CONCLUSIONS In a study of patients undergoing bare metallic stent implantation, we have identified and replicated differential gene expression in peripheral blood mononuclear cells, studied across a time series of blood samples. The genes identified suggest alterations in cellular growth and metabolism pathways, and these results provide the basis for further specific functional hypothesis generation and testing of the mechanisms of ISR.
Collapse
Affiliation(s)
- Santhi K Ganesh
- National Heart, Lung, and Blood Institute (NHLBI), Division of Intramural Research, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang B, Chen J, Santiago FS, Janes M, Kavurma MM, Chong BH, Pimanda JE, Khachigian LM. Phosphorylation and acetylation of histone H3 and autoregulation by early growth response 1 mediate interleukin 1beta induction of early growth response 1 transcription. Arterioscler Thromb Vasc Biol 2009; 30:536-45. [PMID: 20018936 DOI: 10.1161/atvbaha.109.193821] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE The transcription factor early growth response (EGR)-1 has been implicated as a key vascular phenotypic switch through its control of inducible transcription. EGR-1 autoregulation, and histone modification in the EGR-1 promoter, represent key mechanisms in EGR-1 control, but have not been explored. METHODS AND RESULTS We demonstrate that EGR-1 regulates its own transcription and that this involves histone H3 phosphorylation and acetylation. EGR-1 transactivates its promoter in smooth muscle cells exposed to interleukin (IL) 1beta through a novel cis-acting element (-211/-203). PD98059, which inhibits mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK/ERK) attenuates IL-1beta-inducible phosphorylation of extracellular signal-regulated kinase 1/2 and mitogen and stress-activated protein kinases 1/2; and reduces levels of phosphorylated and acetylated histone H3. Histone deacetylase inhibition enhances EGR-1 transcription in response to cytokine. Conversely, suppression of histone modification with mitogen and stress-activated protein kinase 1/2 short interfering RNA, or the histone H3 acetyltransferase inhibitor Garcinol, inhibits IL-1beta-inducible EGR-1 transcription. EGR-1 interacts with the acetyltransferase p300. Acetylated H3 and phosphorylated H3 are enriched at the promoter of EGR-1; and EGR-1 is enriched at the promoters of tissue factor and plasminogen activator inhibitor 1 in response to IL-1beta, and attenuated by PD98059, Garcinol, and mitogen and stress-activated protein kinase 1/2 short interfering RNA. CONCLUSIONS IL-1beta induction of EGR-1 transcription involves histone H3 phosphorylation, acetylation, and autoregulation by EGR-1.
Collapse
Affiliation(s)
- Bo Wang
- Centre for Vascular Research, University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tan NY, Li JM, Stocker R, Khachigian LM. Angiotensin II-inducible smooth muscle cell apoptosis involves the angiotensin II type 2 receptor, GATA-6 activation, and FasL-Fas engagement. Circ Res 2009; 105:422-30. [PMID: 19628789 DOI: 10.1161/circresaha.109.203323] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Fas ligand (FasL)-mediated smooth muscle cell (SMC) apoptosis within the vulnerable plaque may lead to plaque instability and rupture, events that underlie myocardial infarction and stroke. OBJECTIVE The molecular mechanisms underlying FasL transcription and FasL-dependent SMC apoptosis were investigated in this study in vitro and in vivo. METHODS AND RESULTS We demonstrate that GATA-6, the predominant GATA family member expressed in SMCs, stimulates SMC apoptosis in an extracellular FasL-dependent manner. Both GATA-6 and FasL were inducibly and transiently expressed following balloon injury to rat carotid arteries. We identified two potential GATA binding in the FasL promoter and demonstrated using DNA binding and chromatin immunoprecipitation assays that GATA-6 regulates FasL through one ((-298)TTATCA(-303)) but not both these elements. Angiotensin II (Ang II) stimulated expression of both GATA-6 and FasL. Ang II increased SMC apoptosis in an Ang II type 2 receptor-, caspase 8-, and FasL-dependent fashion. GATA-6 activation was MEK-ERK1/2- and JNK-dependent, and GATA-6 small interfering RNA blocked Ang II-inducible FasL expression and SMC apoptosis. Administration of Ang II to rats increased FasL expression and apoptosis in carotid artery SMCs in an Ang II type 2 receptor- and GATA-6-dependent manner. CONCLUSIONS This study provides new insights into the transcriptional events underpinning FasL-dependent SMC apoptosis after exposure to Ang II.
Collapse
Affiliation(s)
- Nicole Y Tan
- Centre for Vascular Research, University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | |
Collapse
|
19
|
Tan ML, Choong PFM, Dass CR. DNAzyme delivery systems: getting past first base. Expert Opin Drug Deliv 2009; 6:127-38. [PMID: 19239385 DOI: 10.1517/17425240902751605] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
DNAzyme technology has evolved into a discipline with the potential for presenting drug agents against cancer and atherosclerosis. However, current approaches still rely on sub-optimal drug delivery systems (DDSs) for DNAzymes. Certain DDSs have shown potential, such as chitosan and polyethylenimine (PEI), although more emphasis needs to be placed on actual efficacy and safety, in addition to establishing the pharmacokinetics of the molecule being tested. Unfortunately, the plethora of DDSs reported for antisense delivery--the trailblazer for target gene knockdown agents--have yet to yield even one entity capable of being used clinically, and clinicians have resorted to administering continuous systemic free oligonucleotides with promising, albeit lukewarm results. The challenge ahead for DNAzymes to be considered genuine drug candidates alongside siRNA and antisense simply lies in the better implementation of DDSs.
Collapse
Affiliation(s)
- Mei Lin Tan
- University of Melbourne, Melbourne, Australia
| | | | | |
Collapse
|
20
|
Wang B, Khachigian LM, Esau L, Birrer MJ, Zhao X, Parker MI, Hendricks DT. A key role for early growth response-1 and nuclear factor-kappaB in mediating and maintaining GRO/CXCR2 proliferative signaling in esophageal cancer. Mol Cancer Res 2009; 7:755-64. [PMID: 19435811 PMCID: PMC6944287 DOI: 10.1158/1541-7786.mcr-08-0472] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although early growth response-1 (EGR-1) has been shown as a key transcription factor in controlling cell growth, proliferation, differentiation, and angiogenesis, its role in the development of esophageal cancer is poorly understood despite the high frequency of this disease in many parts of the world. Here, immunohistochemistry showed that EGR-1 is overexpressed in 80% of esophageal tumor tissues examined. Furthermore, EGR-1 is constitutively expressed in all esophageal cancer cell lines analyzed. Esophageal squamous carcinoma WHCO1 cells stably transfected with EGR-1 short hairpin RNA displayed a 55% reduction in EGR-1 protein levels, 50% reduction in cell proliferation, a 50% reduction in cyclin-dependent kinase 4 levels, and a 2-fold induction in p27(Kip1) levels associated with a G(2)-M cell cycle arrest. EGR-1 knockdown also caused a marked induction in IkappaBalpha expression, an effect also observed in GRObeta RNA interference-expressing WHCO1 cells, because EGR-1 lies downstream of GRO/CXCR2 signaling. Furthermore, p65 mRNA levels were also reduced in cells treated with either short hairpin RNA EGR-1 or small interfering RNA EGR-1. Immunohistochemical analysis indicated that p65 is elevated in 78% (n = 61) of esophageal tumor sections analyzed. Moreover, nuclear factor-kappaB inhibition with either sodium salicylate or p65 RNA interference led to a significant reduction in GROalpha and GRObeta expression. These results indicate that EGR-1 and nuclear factor-kappaB mediate GRO/CXCR2 proliferative signaling in esophageal cancer and may represent potential target molecules for therapeutic intervention.
Collapse
Affiliation(s)
- Bo Wang
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | | | | | | | | | | | | |
Collapse
|
21
|
Lamon BD, Summers BD, Gotto AM, Hajjar DP. Pitavastatin suppresses mitogen activated protein kinase-mediated Erg-1 induction in human vascular smooth muscle cells. Eur J Pharmacol 2009; 606:72-6. [PMID: 19374880 PMCID: PMC2671580 DOI: 10.1016/j.ejphar.2008.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 11/27/2008] [Accepted: 12/18/2008] [Indexed: 01/22/2023]
Abstract
Statins have been demonstrated to elicit a broad range of cellular events resulting in an attenuation of the inflammatory response and enhanced protection to the components of the vessel wall. The present study was designed to examine the effect of pitavastatin on pathways associated with the proinflammatory gene, early growth response (Egr)-1, in human vascular smooth muscle cells. Pretreatment with pitavastatin resulted in a dose-dependent reduction in Egr-1 protein and suppressed Egr-1 mRNA expression in response to phorbol 12-myristate 13-acetate (PMA). A reduction in Egr-1 expression reduced the activation of NGFI-A binding protein (NAB)-2, an Egr-1-dependent gene. Furthermore, these events appeared to be dependent on the ability of pitavastatin to attenuate signaling cascades associated with extracellular regulated kinase (ERK) 1/2, but not p38 and c-Jun N-terminal kinase (JNK).
Collapse
Affiliation(s)
- Brian D Lamon
- Department of Pathology and Laboratory Medicine, Center of Vascular Biology, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
22
|
Liu X, Kelm RJ, Strauch AR. Transforming growth factor beta1-mediated activation of the smooth muscle alpha-actin gene in human pulmonary myofibroblasts is inhibited by tumor necrosis factor-alpha via mitogen-activated protein kinase kinase 1-dependent induction of the Egr-1 transcriptional repressor. Mol Biol Cell 2009; 20:2174-85. [PMID: 19261809 DOI: 10.1091/mbc.e08-10-0994] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transforming growth factor (TGF) beta1 is a mediator of myofibroblast differentiation in healing wounds in which it activates transcription of the smooth muscle alpha-actin (SMalphaA) gene via dynamic interplay of nuclear activators and repressors. Targeting components of TGFbeta1 signaling may be an effective strategy for controlling myofibroblasts in chronic fibrotic diseases. We examined the ability of proinflammatory tumor necrosis factor (TNF)-alpha to antagonize TGFbeta1-mediated human pulmonary myofibroblast differentiation. TNF-alpha abrogated TGFbeta1-induced SMalphaA gene expression at the level of transcription without disrupting phosphorylation of regulatory Smads. Intact mitogen-activated protein kinase kinase (Mek)-extracellular signal-regulated kinase (Erk) kinase signaling was required for myofibroblast repression by TNF-alpha via induction of the early growth response factor-1 (Egr-1) DNA-binding protein. Egr-1 bound to the GC-rich SPUR activation element in the SMalphaA promoter and potently suppressed Smad3- and TGFbeta1-mediated transcription. Reduction in Smad binding to the SMalphaA promoter in TNF-alpha-treated myofibroblasts was accompanied by an increase in Egr-1 and YB-1 repressor binding, suggesting that the molecular mechanism underlying repression may involve competitive interplay between Egr-1, YB-1, and Smads. The ability of TNF-alpha to attenuate myofibroblast differentiation via modulation of a Mek1/Erk/Egr-1 regulatory axis may be useful in designing new therapeutic targets to offset destructive tissue remodeling in chronic fibrotic disease.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Physiology and Cell Biology and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, 43210, USA
| | | | | |
Collapse
|
23
|
Malabanan KP, Kanellakis P, Bobik A, Khachigian LM. Activation Transcription Factor-4 Induced by Fibroblast Growth Factor-2 Regulates Vascular Endothelial Growth Factor-A Transcription in Vascular Smooth Muscle Cells and Mediates Intimal Thickening in Rat Arteries Following Balloon Injury. Circ Res 2008; 103:378-87. [DOI: 10.1161/circresaha.107.168682] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation transcription factor (ATF)-4 is a member of the ATF/CREB family of basic leucine zipper transcription factors that regulates cellular responses to a variety of stresses. The role of ATF-4 in smooth muscle cells of the vessel wall is completely unknown. Here, we show that ATF-4 expression is induced in smooth muscle cells in response to injury, both in vitro using a model of mechanical injury and in the media of balloon-injured rat carotid arteries. We demonstrate that ATF-4 is activated by fibroblast growth factor (FGF)-2, an injury-induced mitogen, through the phosphatidylinositol 3-kinase pathway. Injury also activates vascular endothelial growth factor (VEGF)-A, whose expression is stimulated by ATF-4 overexpression and exposure to FGF-2. FGF-2 induces ATF-4 binding to a recognition element located in the VEGF-A gene at +1767 bp and luciferase reporter gene expression dependent on this site. Moreover, ATF-4 knockdown with small interfering RNA or ATF-4 deficiency ameliorates FGF-2–inducible VEGF-A expression. Intraluminal delivery of ATF-4 small interfering RNA in rat carotid arteries blocks balloon injury–inducible ATF-4 and VEGF-A expression after 4 hours and intimal thickening after 14 days. These findings reveal, for the first time, the induction of ATF-4 by both vascular injury and FGF-2. ATF-4 serves as a conduit for the inducible expression of 1 growth factor by another during the process of intimal thickening.
Collapse
Affiliation(s)
- Kristine P. Malabanan
- From the Centre for Vascular Research (K.P.M., L.M.K.), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney; and Baker Heart Research Institute (P.K., A.B.), Melbourne, Australia
| | - Peter Kanellakis
- From the Centre for Vascular Research (K.P.M., L.M.K.), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney; and Baker Heart Research Institute (P.K., A.B.), Melbourne, Australia
| | - Alexander Bobik
- From the Centre for Vascular Research (K.P.M., L.M.K.), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney; and Baker Heart Research Institute (P.K., A.B.), Melbourne, Australia
| | - Levon M. Khachigian
- From the Centre for Vascular Research (K.P.M., L.M.K.), School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney; and Baker Heart Research Institute (P.K., A.B.), Melbourne, Australia
| |
Collapse
|
24
|
Abstract
Gene silencing techniques are gaining increasing popularity in the literature, both as a tool for unravelling gene function and to potentially deliver therapeutic benefit, especially in the context of cardiovascular disease. Gene-specific catalytic DNA molecules, or DNAzymes, have shown promise in ameliorating the effects of myocardial ischaemia reperfusion injury and in-stent restenosis in various animal models, demonstrating that these agents may be useful in a clinical setting. A review of the recent advances in the use of DNAzymes in treating cardiovascular disease is therefore essential given the increasing clinical burden of cardiovascular disease worldwide. We have thus sought to firstly provide background into the construct and mechanism of action of DNAzymes, with a discussion of recent improvements in design. Secondly, we have examined the effects of DNAzyme-mediated gene inhibition in in vitro studies of both endothelial and smooth muscle migration and proliferation, as well as in vivo models of acute myocardial infraction and neointima formation. Lastly we compare DNAzymes with other gene silencing tools and discuss issues involved in successfully delivering these drugs in a clinical setting.
Collapse
|
25
|
De Croos JNA, Jang B, Dhaliwal SS, Grynpas MD, Pilliar RM, Kandel RA. Membrane type-1 matrix metalloproteinase is induced following cyclic compression of in vitro grown bovine chondrocytes. Osteoarthritis Cartilage 2007; 15:1301-10. [PMID: 17548215 DOI: 10.1016/j.joca.2007.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 04/15/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if membrane type-1 matrix metalloproteinase (MT1-MMP) will respond to cyclic compression of chondrocytes grown in vitro and the regulatory mechanisms underlying this response. METHODS Cyclic compression (30min, 1kPa, 1Hz) was applied to bovine chondrocytes (6-9-month-old animals) grown on top of a biodegradable substrate within 3 days of initiating culture. Luciferase assays using bovine articular chondrocytes were undertaken to demonstrate the mechanosensitivity of MT1-MMP. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used to establish the time course of gene and protein upregulation in response to cyclic compression. The regulation of MT1-MMP was assessed by electrophoretic mobility shift assays, RT-PCR and western blot analysis. As well, an MT1-MMP decoy oligonucleotide and an extracellular signal-regulated kinase 1/2 (ERK1/2) pharmacological inhibitor were utilized to further characterize MT1-MMP regulation. RESULTS After cyclic compression, MT1-MMP showed a rapid and transient increase in gene expression. Elevated protein levels were detected within 2h of stimulation which returned to baseline by 6h. During cyclic compression, phosphorylation of the mitogen activated protein kinase ERK1/2 increased significantly. This was followed by increased gene and protein expression of the transcription factor; early growth factor-1 (Egr-1) and Egr-1 binding to the MT1-MMP promoter. Blocking Egr-1 DNA binding with a decoy MT1-MMP oligonucleotide, downregulated MT1-MMP gene expression. The ERK1/2 inhibitor U0126 also reduced Egr-1 DNA binding activity to MT1-MMP promoter sequences and subsequent transcription of MT1-MMP. CONCLUSIONS These data suggest that cyclic compression of chondrocytes in vitro upregulates MT1-MMP via ERK1/2 dependent activation of Egr-1 binding. Delineation of the regulatory pathways activated by mechanical stimulation will further our understating of the mechanisms influencing tissue remodeling.
Collapse
Affiliation(s)
- J N A De Croos
- CIHR BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Fahmy RG, Khachigian LM. Suppression of growth factor expression and human vascular smooth muscle cell growth by small interfering RNA targeting EGR-1. J Cell Biochem 2007; 100:1526-35. [PMID: 17171647 DOI: 10.1002/jcb.21145] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Smooth muscle cell (SMC) proliferation and migration are key processes that occur in the reparative response to injury after percutaneous coronary intervention and in failed bypass grafts for the treatment of atherosclerosis. In the present study, we generated novel synthetic small interfering RNA (siRNA) molecules targeting the coding region of human early growth response-1 (EGR-1) mRNA that attenuate the expression of EGR-1 and that of fibroblast growth factor-2 (FGF-2) and granulocyte-colony stimulating factor (G-CSF). These agents suppressed SMC proliferation in a dose-dependent and non-toxic manner and blocked SMC regrowth from the wound edge following mechanical injury in vitro. In contrast, the scrambled counterpart did not inhibit SMC proliferation, EGR-1 protein expression or SMC regrowth after injury. These findings demonstrate that EGR-1 siRNA can serve as inhibitors of SMC proliferation and wound repair suggesting that these agents may potentially be useful in the control of vascular proliferative disorders.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/physiopathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- Enzyme-Linked Immunosorbent Assay
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/metabolism
- Gene Expression Regulation/drug effects
- Granulocyte Colony-Stimulating Factor/genetics
- Granulocyte Colony-Stimulating Factor/metabolism
- Humans
- Immunohistochemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Roger G Fahmy
- Department of Pathology, Centre for Vascular Research, The University of New South Wales, Sydney, Australia
| | | |
Collapse
|
27
|
Ke J, Gururajan M, Kumar A, Simmons A, Turcios L, Chelvarajan RL, Cohen DM, Wiest DL, Monroe JG, Bondada S. The role of MAPKs in B cell receptor-induced down-regulation of Egr-1 in immature B lymphoma cells. J Biol Chem 2006; 281:39806-18. [PMID: 17065146 DOI: 10.1074/jbc.m604671200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cross-linking of the B cell receptor (BCR) on the immature B lymphoma cell line BKS-2 induces growth inhibition and apoptosis accompanied by rapid down-regulation of the immediate-early gene egr-1. In these lymphoma cells, egr-1 is expressed constitutively and has a prosurvival role, as Egr-1-specific antisense oligonucleotides or expression of a dominant-negative inhibitor of Egr-1 also prevented the growth of BKS-2 cells. Moreover, enhancement of Egr-1 protein with phorbol 12-myristate 13-acetate or an egr-1 expression vector rescued BKS-2 cells from BCR signal-induced growth inhibition. Nuclear run-on and mRNA stability assays indicated that BCR-derived signals act at the transcriptional level to reduce egr-1 expression. Inhibitors of ERK and JNK (but not of p38 MAPK) reduced egr-1 expression at the protein level. Transcriptional regulation appears to have a role because egr-1 promoter-driven luciferase expression was reduced by ERK and JNK inhibitors. Promoter truncation experiments suggested that several serum response elements are required for MAPK-mediated egr-1 expression. Our study suggests that BCR signals reduce egr-1 expression by inhibiting activation of ERK and JNK. Unlike ERK and JNK, p38 MAPK reduces constitutive expression of egr-1. Unlike the immature B lymphoma cells, normal immature B cells did not exhibit constitutive MAPK activation. BCR-induced MAPK activation was modest and transient with a small increase in egr-1 expression in normal immature B cells consistent with their inability to proliferate in response to BCR cross-linking.
Collapse
Affiliation(s)
- Jiyuan Ke
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Khomenko T, Szabo S, Deng X, Jadus MR, Ishikawa H, Osapay K, Sandor Z, Chen L. Suppression of early growth response factor-1 with egr-1 antisense oligodeoxynucleotide aggravates experimental duodenal ulcers. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1211-8. [PMID: 16484680 DOI: 10.1152/ajpgi.00078.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we demonstrated that cysteamine releases endothelin-1 in the rat duodenal mucosa, followed by increased expression of early growth response factor-1 (egr-1). We hypothesized that egr-1 is a key mediator gene in the multifactorial mechanisms of duodenal ulcer development and healing because its protein, transcription factor product Egr-1, regulates the expression of angiogenic growth factors. We wanted to determine the effect of egr-1 antisense oligonucleotide on cysteamine-induced duodenal ulcers as well as on the expression of bFGF, PDGF, and VEGF, of which synthesis is modulated by Egr-1. An antisense oligonucleotide to egr-1 was used to inhibit the synthesis of Egr-1 and to determine its effect on ulcer formation in the rat model of cysteamine-induced duodenal ulceration. Real-time RT-PCR and Western blot analysis were used to assess the expression of Egr-1 mRNA and protein as well as ERK, bFGF, PDGF, and VEGF. The antisense Egr-1 oligonucleotide inhibited the expression of egr-1 mRNA and protein and increased the duodenal ulcer size from 8.1 +/- 1.8 mm(2) in controls to 20.7 +/- 4.0 mm(2) (P < 0.01). Cysteamine induced phosphorylation of ERK1/2 and enhanced the synthesis of bFGF, PDGF, and VEGF in the preulcerogenic stages of duodenal ulceration, whereas egr-1 antisense oligonucleotide markedly decreased the expression of these growth factors in the duodenal mucosa. We also demonstrated that Egr-1 expression relates to the ulcerogenic effect of cysteamine because these actions were not exerted by the toxic analog ethanolamine. Thus Egr-1 seems to play a critical role in duodenal ulceration because Egr-1 downregulation aggravates experimental duodenal ulcers, most likely through the transcriptional inhibition of bFGF, PDGF, and VEGF synthesis.
Collapse
Affiliation(s)
- Tetyana Khomenko
- Diagnostic and Molecular Medicine Health Care Group, Veterans Affairs Medical Center, Long Beach, CA 90822-5201, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu Y, Lu JB, Ye ZR. Permeability of injured blood brain barrier for exogenous bFGF and protection mechanism of bFGF in rat brain ischemia. Neuropathology 2006; 26:257-66. [PMID: 16771184 DOI: 10.1111/j.1440-1789.2006.00693.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study aims to explore the protection mechanism of exogenous basic fibroblast growth factor (exo-bFGF) in brain ischemia. The first part of experiment was to determine the optimal time window for the permeation of exo-bFGF through damaged blood-brain barrier in rats with permanently occluded middle cerebral arteries. 125I labeled bFGF was administered to the rats through the caudal vein. The level of gamma-rays of 125I-bFGF in the ischemic brain were found to increase at 2 h and a high level was maintained for 14 days. The morphology of the basement membrane of capillaries was observed using anti-blood-brain barrier basement membrane glycoprotein immunohistochemistry. The normal continuous linear or ribbon-like immunostain of the basement membrane became granular at 0.5 h, gradually faint and finally negative. The newly formed capillaries at the edge of the infarct still showed a negative stain after 14 days. The result suggested the optimal time window of exo-bFGF began 2 h after insult. The second part of experiment was to observe the dynamic expression of early growth response protein (Egr-1), endogenous basic fibroblast growth factor (endo-bFGF) and bFGF receptor (bFGFR) using immunohistochemistry after exo-bFGF is administered to brain. Egr-1 was more significantly enhanced in the exo-bFGF-used group than in the control group. Endo-bFGF increased gradually, reaching its peak at 7 days in the control group, while in experiment group, the endo-bFGF expression showed its first peak at 6 h, indicating that exo-bFGF could induce earlier and stronger expression of endo-bFGF. The bFGFR-group presented an early expression, reaching its maximal level at 3 h, and declining at 6 h. There were no difference in expression of bFGFR between the two groups. The infarct areas reduced from 17% to 24% in the different time intervals. The results suggested that in exo-bFGF enhanced Egr-1 protein. Egr-1 in turn might play an important role in up-regulating the expression of endo-bFGF which overlapped with the expression of bFGFR to ensure the combination of ligand and receptor to protect against brain ischemia.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | | | | |
Collapse
|
30
|
Adhikari N, Charles N, Lehmann U, Hall JL. Transcription factor and kinase-mediated signaling in atherosclerosis and vascular injury. Curr Atheroscler Rep 2006; 8:252-60. [PMID: 16640963 DOI: 10.1007/s11883-006-0081-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Our understanding of the molecular signaling pathways regulating the initiation and progression of atherosclerosis or remodeling in response to injury has begun to cross the boundaries from regulation of well-described canonical pathways to the interplay between these pathways. The focus of this review is to summarize our current understanding of a finite group of transcription factors and kinases involved in vascular injury and atherosclerosis, including nuclear factor-kappaB (NF-kappaB), early growth response factor-1 (Egr-1), activator protein-1 (AP-1), hypoxia inducible factor-1alpha (HIF-1alpha), homeobox, and T cell factor/lymphoid enhancer factor (Tcf-Lef), as well as the kinases janus kinase/signal transducers and activators of transcription (JAK/STAT), protein kinase C (PKC), p38, Rho, ERK5, JNK, p44/p42, and phosphoinositide 3 (PI3) kinase/AKT.
Collapse
Affiliation(s)
- Neeta Adhikari
- Cardiovascular Division, University of Minnesota, Mayo Mail Code 508, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
31
|
Liang KW, Ting CT, Yin SC, Chen YT, Lin SJ, Liao JK, Hsu SL. Berberine suppresses MEK/ERK-dependent Egr-1 signaling pathway and inhibits vascular smooth muscle cell regrowth after in vitro mechanical injury. Biochem Pharmacol 2006; 71:806-17. [PMID: 16448624 PMCID: PMC2639653 DOI: 10.1016/j.bcp.2005.12.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/12/2005] [Accepted: 12/19/2005] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle cell (SMC) proliferation plays an important role in the pathogenesis of atherosclerosis and post-angioplasty restenosis. Berberine is a well-known component of the Chinese herb medicine Huanglian (Coptis chinensis), and is capable of inhibiting SMC contraction and proliferation, yet the exact mechanism is unknown. We therefore investigated the effect of berberine on SMC growth after mechanic injury in vitro. DNA synthesis and cell proliferation assay were performed to show that berberine inhibited serum-stimulated rat aortic SMC growth in a concentration-dependent manner. Mechanical injury with sterile pipette tip stimulated the regrowth of SMCs. Treatment with berberine prevented the regrowth and migration of SMCs into the denuded trauma zone. Western blot analysis showed that activation of the MEK1/2 (mitogen-activated protein kinase kinase 1/2), extracellular signal-regulated kinase (ERK), and up-regulation of early growth response gene (Egr-1), c-Fos and Cyclin D1 were observed sequentially after mechanic injury in vitro. Semi-quantitative reverse-transcription PCR assay further confirmed the increase of Egr-1, c-Fos, platelet-derived growth factor (PDGF) and Cyclin D1 expression in a transcriptional level. However, berberine significantly attenuated MEK/ERK activation and downstream target (Egr-1, c-Fos, Cyclin D1 and PDGF-A) expression after mechanic injury in vitro. Our study showed that berberine blocked injury-induced SMC regrowth by inactivation of ERK/Egr-1 signaling pathway thereby preventing early signaling induced by injury in vitro. The anti-proliferative properties of berberine may be useful in treating disorders due to inappropriate SMC growth.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic
- Berberine/pharmacology
- Cell Proliferation/drug effects
- DNA/biosynthesis
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression/drug effects
- Mitogen-Activated Protein Kinase 1/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Kae-Woei Liang
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Tai Ting
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sui-Chu Yin
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Tsung Chen
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - James K. Liao
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shih-Lan Hsu
- Institute of Clinical Medicine and Department of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Education & Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
32
|
Abstract
The immediate-early gene product and zinc finger transcription factor early growth response (Egr)-1 plays a key master regulatory role in multiple cardiovascular pathological processes. This article reviews the amazing recent evidence implicating Egr-1 in atherosclerosis, intimal thickening after acute vascular injury, ischemic pathology, angiogenesis, allograft rejection, and cardiac hypertrophy.
Collapse
Affiliation(s)
- Levon M Khachigian
- Centre for Vascular Research, Department of Pathology, The University of New South Wales, The Prince of Wales Hospital, Sydney, Australia.
| |
Collapse
|
33
|
Copland IB, Post M. Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. J Cell Physiol 2006; 210:133-43. [PMID: 16998809 DOI: 10.1002/jcp.20840] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High-tidal volume ventilation has been shown to increase the expression of several inflammation-associated genes prior to overt physiologic lung injury. Herein, using an in vitro stretch system, we investigated the mechanotransduction pathways involved in ventilation-induced expression of these early response genes (i.e., early growth response gene (Egr)1, heat-shock protein (HSP)70, and the pro-inflammatory cytokines interleukin (IL)-1beta, IL-6, and MIP-2). Mechanical stretch of fetal lung epithelial cells activated various signaling pathways, resulting in transient or progressive increases in gene expression of the early response genes. The transient increase in Egr1 and IL-6 expression was mediated via p44/42 mitogen-activated protein kinase (p44/42 MAPK), while nuclear factor-kappaB (NF-kappaB) was responsible for the sustained and progressive increase in expression of HSP70 and MIP-2. Blockage of Egr-1 expression did not affect the upregulation of IL-6, HSP70, MIP-2, and itself by stretch. Inhibition of calcium mobilization abolished stretch-induced p44/42 MAPK activation and NF-kappaB nuclear translocation as well as increased expression of all early response genes. Similar results were obtained with an inhibitor of Ras. These results suggest that mechanical stretch of fetal lung epithelial cells evokes a complex network of signaling molecules, which diverge downstream to regulate the temporal expression of a unique set of early response genes, but upstream converge at calcium. Thus, calcium mobilization may be a point of hierarchical integration of mechanotransduction in lung epithelial cells.
Collapse
Affiliation(s)
- Ian B Copland
- Lung Biology Program, Hospital for Sick Children Research Institute, University of Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Extracellular matrix gene expression in the developing mouse aorta. EXTRACELLULAR MATRIX IN DEVELOPMENT AND DISEASE 2005. [DOI: 10.1016/s1574-3349(05)15003-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Bousserouel S, Raymondjean M, Brouillet A, Béréziat G, Andréani M. Modulation of cyclin D1 and early growth response factor-1 gene expression in interleukin-1beta-treated rat smooth muscle cells by n-6 and n-3 polyunsaturated fatty acids. ACTA ACUST UNITED AC 2004; 271:4462-73. [PMID: 15560787 DOI: 10.1111/j.1432-1033.2004.04385.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proliferation of smooth muscle cells (SMC) is a key event in the development of atherosclerosis. In addition to growth factors or cytokines, we have shown previously that n-3 polyunsaturated fatty acids (PUFAs) act in opposition to n-6 PUFAs by modulating various steps of the inflammatory process. We have investigated the molecular mechanisms by which the incorporation of the n-6 PUFA, arachidonic acid, increases the proliferation of rat SMC treated with interleukin-1beta, while the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), elicit no mitogenic response. Incorporation of EPA or DHA into SMC, which are then activated by interleukin-1beta to mimic inflammation, decreases promoter activity of the cyclin D1 gene and phosphorylation of the retinoblastoma protein. Together, our data demonstrate that n-3 effects are dependent on the Ras/Raf-1/extracellular signal regulated kinase (ERK)/mitogen-activated protein kinase pathway, and that down-regulation of the cyclin D1 promoter activity is mediated by the specific binding of the early growth response factor-1. Finally, we have shown that the incorporation of EPA and DHA also increased the concentration of caveolin-1 and caveolin-3 in caveolae, which correlated with n-3 PUFA inhibition of SMC proliferation through the mitogen-activated protein kinase pathway. We provide evidence indicating that, in contrast to n-6 PUFAs, n-3 PUFAs exert antiproliferative effects on SMC through the mitogen-activated protein kinase/ERK pathway.
Collapse
MESH Headings
- Animals
- Cattle
- Caveolin 1
- Caveolin 2
- Caveolins/biosynthesis
- Cell Proliferation/drug effects
- Cyclin D1/biosynthesis
- Cyclin D1/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Early Growth Response Protein 1
- Enzyme Activation
- Fatty Acids, Unsaturated/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression/drug effects
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Interleukin-1/pharmacology
- Male
- Mice
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Promoter Regions, Genetic/drug effects
- Rats
- Rats, Wistar
- Retinoblastoma Protein/metabolism
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- raf Kinases/metabolism
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Souad Bousserouel
- UMR 7079 Physiologie et Physiopathologie, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
36
|
Banks MF, Gerasimovskaya EV, Tucker DA, Frid MG, Carpenter TC, Stenmark KR. Egr-1 antisense oligonucleotides inhibit hypoxia-induced proliferation of pulmonary artery adventitial fibroblasts. J Appl Physiol (1985) 2004; 98:732-8. [PMID: 15475598 DOI: 10.1152/japplphysiol.00821.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In most mammalian species, chronic exposure to hypoxia leads to pulmonary hypertension and vascular remodeling. The adventitial fibroblast, because of its ability to proliferate in response to hypoxia, is thought to be a critical cell in the remodeling process. However, the transcription factors driving hypoxia-induced fibroblast proliferation have yet to be elucidated. The early growth response-1 (Egr-1) transcription factor has been shown to be upregulated by hypoxia in pulmonary artery adventitial fibroblasts. We therefore hypothesized that Egr-1 is directly involved in hypoxia-induced adventitial fibroblast proliferation. Immunohistochemical analysis of in vivo lung tissue from animals exposed to chronic hypoxia revealed increased expression of Egr-1 in the pulmonary artery fibroblasts vs. expression shown in normoxic controls. In fibroblasts cultured from chronically hypoxic animals, exposure to 1% oxygen upregulated Egr-1 protein and cell proliferation. To evaluate the role of Egr-1 in hypoxia-induced proliferation, we employed an Egr-1 antisense strategy. Addition of antisense Egr-1 oligonucleotides, but not sense oligonucleotides, attenuated the hypoxia-induced upregulation of Egr-1 protein and reduced hypoxia-induced DNA synthesis by 50%. Cell proliferation was also significantly inhibited by the addition of antisense Egr-1 oligonucleotides but not the sense oligonucleotides. In addition, hypoxia-induced upregulations of cyclin D and epidermal growth factor receptor were attenuated by Egr-1 antisense oligonucleotides. We conclude that Egr-1 protein expression is very sensitive to upregulation by hypoxia in pulmonary artery adventitial fibroblasts and that it plays an important role in the autonomous growth phenotype induced by hypoxia in these cells.
Collapse
Affiliation(s)
- Mark F Banks
- Developmental Lung Biology Laboratory,Univ. of Colorado Health Sciences Center, 4200 E. 9th Ave., Box B131, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
37
|
Liu Y, Suzuki YJ, Day RM, Fanburg BL. Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res 2004; 95:579-86. [PMID: 15297378 DOI: 10.1161/01.res.0000141428.53262.a4] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There is now considerable evidence supporting a mitogenic action of serotonin (5-HT) on vascular smooth muscle cells (SMC) that might participate in pulmonary hypertension (PH). Our previous studies have demonstrated that 5-HT-induced proliferation depends on the generation of reactive oxygen species and activation of extracellular signal-regulated kinase (ERK) 1/ERK2. Activation of Rho kinase (ROCK) in SMC also may be important in PH. We undertook the present study to assess the role of Rho A/ROCK and its possible relation to ERK1/ERK2 in 5-HT-induced pulmonary artery SMC proliferation. We found that this stimulation of SMC proliferation requires Rho A/ROCK as inhibition with Y27632, a ROCK inhibitor, or dominant negative (DN) mutant Rho A blocks 5-HT-induced proliferation, cyclin D1 expression, phosphorylation of Elk, and the DNA binding of transcription factors, Egr-1 and GATA-4. 5-HT activated ROCK, and the activation was blocked by GR 55562 and GR127935, 5-HT 1B/1D receptor antagonists, but not by serotonin transport (SERT) inhibitors. Activation of Rho kinase by 5-HT was independent of activation of ERK1/ERK2, and 5-HT activated ERK1/ERK2 independently of ROCK. Treatment of SMC with Y27632 and expression of DNRho A in cells blocked translocation of ERK1/ERK2 to the cellular nucleus. Depolymerization of actin with cytochalasin D (CD) and latrunculin B (latB) failed to block the translocation of ERK, suggesting that the actin cytoskeleton does not participate in the translocation. The studies show for the first time to our knowledge combinational action of SERT and a 5-HT receptor in SMC growth and Rho A/ROCK participation in 5-HT receptor 1B/1D-mediated mitogenesis of vascular SMCs through an effect on cytoplasmic to nuclear translocation of ERK1/ERK2.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amides/pharmacology
- Animals
- Benzamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cattle
- Cell Division
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cytochalasin D/pharmacology
- Enzyme Activation/drug effects
- Intracellular Signaling Peptides and Proteins
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myosin-Light-Chain Phosphatase/metabolism
- Oxadiazoles/pharmacology
- Phosphoproteins/metabolism
- Phosphorylation
- Piperazines/pharmacology
- Protein Processing, Post-Translational
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Protein Subunits/metabolism
- Protein Transport/physiology
- Pulmonary Artery
- Pyridines/pharmacology
- Receptor, Serotonin, 5-HT1B/drug effects
- Receptor, Serotonin, 5-HT1B/physiology
- Receptor, Serotonin, 5-HT1D/drug effects
- Receptor, Serotonin, 5-HT1D/physiology
- Recombinant Fusion Proteins/physiology
- Serotonin/physiology
- Serotonin 5-HT1 Receptor Antagonists
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Thiazoles/pharmacology
- Thiazolidines
- Transcription Factors/metabolism
- rho-Associated Kinases
Collapse
Affiliation(s)
- Yinglin Liu
- Tufts-New England Medical Center, Pulmonary, Critical Care and Sleep Division, Tupper Research Institute, Boston, Mass 02111, USA
| | | | | | | |
Collapse
|
38
|
Blaschke F, Bruemmer D, Law RE. Egr-1 is a major vascular pathogenic transcription factor in atherosclerosis and restenosis. Rev Endocr Metab Disord 2004; 5:249-54. [PMID: 15211096 DOI: 10.1023/b:remd.0000032413.88756.ee] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Florian Blaschke
- Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA-90095, USA
| | | | | |
Collapse
|
39
|
Mitchell A, Dass CR, Sun LQ, Khachigian LM. Inhibition of human breast carcinoma proliferation, migration, chemoinvasion and solid tumour growth by DNAzymes targeting the zinc finger transcription factor EGR-1. Nucleic Acids Res 2004; 32:3065-9. [PMID: 15181171 PMCID: PMC434432 DOI: 10.1093/nar/gkh626] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNAzymes (synthetic catalytic DNA) have emerged as a new class of nucleic acid-based gene silencing agent. Using DNAzymes targeting the human mRNA of the immediate-early gene and C2H2-class zinc finger transcription factor early growth response-1 (EGR-1), we demonstrate here that EGR-1 plays an indispensable role in breast cancer proliferation, migration, chemoinvasion and xenograft growth in nude mice. DNAzyme inhibition of these tumorigenic processes and EGR-1 protein expression in breast carcinoma cells is sequence-specific and EGR-1 transcription-independent. These agents inhibit breast carcinoma cell migration and chemoinvasion in microchemotaxis chambers and solid tumour growth in athymic nude mice. Thus, DNAzymes targeting specific genes can inhibit multiple key tumorigenic processes in vitro and in vivo and may serve as useful anti-cancer agents.
Collapse
Affiliation(s)
- Ainslie Mitchell
- Department of Haematology, Centre for Vascular Research, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
40
|
Hjoberg J, Le L, Imrich A, Subramaniam V, Mathew SI, Vallone J, Haley KJ, Green FHY, Shore SA, Silverman ES. Induction of early growth-response factor 1 by platelet-derived growth factor in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2004; 286:L817-25. [PMID: 15003938 DOI: 10.1152/ajplung.00190.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Platelet-derived growth factors (PDGF) may contribute to the activation and growth of smooth muscle that is characteristic of airway remodeling in asthmatic patients. Early growth response 1 (EGR-1) is a transcription factor that is induced in several cell types by PDGF and may mediate some of the effects of PDGF. We show that human airway smooth muscle cells in cell culture express EGR-1 1 h after addition of PDGF. Analysis of the EGR-1 promoter indicates that a serum response element located between 663 and 654 bp 5' to the ATG start site is essential for this induction. Serum response factor, E26 transcription factor-like protein 1, and serum protein 1 bind to this region. PDGF causes phosphorylation of ERK1/2 and is temporally associated with E26 transcription factor-like protein 1 phosphorylation. Finally, the specific ERK1/2 inhibitor U-0126 abolishes PDGF-induced expression of EGR-1 in these cells. On the basis of these data, we speculated that EGR-1 would be increased in airway smooth muscle of asthmatic patients compared with nonasthmatic controls. Using immunohistochemistry, we found that EGR-1 protein was expressed in airway smooth muscle cells and epithelial cells of asthmatic patients and nonasthmatic controls; however, there was no significant difference in the intensity of staining between groups. EGR-1 was similarly expressed in the lungs of mice with and without ovalbumin-induced airway inflammation; however, there was no difference between groups by immunohistochemistry and quantitative PCR. Although EGR-1 is induced by PDGF in human airway smooth muscle cells in cell culture, the role of EGR-1 in airway remodeling and asthma remains to be established.
Collapse
Affiliation(s)
- Josephine Hjoberg
- Physiology Program, Dept. of Environmental Health, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115-6021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Baron V, Duss S, Rhim J, Mercola D. Antisense to the early growth response-1 gene (Egr-1) inhibits prostate tumor development in TRAMP mice. Ann N Y Acad Sci 2004; 1002:197-216. [PMID: 14751836 DOI: 10.1196/annals.1281.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Egr-1 is a transcription factor induced by stress or injury, mitogens, and differentiation factors. Egr-1 regulates the expression of genes involved in growth control or survival. Expression of Egr-1 results in either promotion or regression of cell proliferation, depending on cell type and environment. Egr-1 acts as a tumor suppressor in many cell types and loss of Egr-1 has been proposed to contribute to cancer progression. There is strong new evidence however suggesting that Egr-1 overexpression is involved in prostate cancer progression. For example, Egr-1 expression levels are elevated in human prostate carcinomas in proportion to grade and stage. Furthermore, prostate cancer progression was significantly delayed in two models of prostate cancer mice lacking Egr-1. Our objective in the present study is to test whether inhibition of Egr-1 function would block cell proliferation and inhibit the transformed phenotype of prostate cancer cells in vitro and in vivo. We describe the development of high affinity and high specificity antisense oligonucleotides that efficiently inhibit Egr-1 expression. We show that inhibition of Egr-1 expression in mouse or human prostate cancer cells decreased proliferation and reduced the capacity of these cells to form colonies and to grow in soft agar. Conversely, stable expression of Egr-1 in normal human prostate epithelial 267B1 cells promoted transformation. In TRAMP mice, treatment with Egr-1 antisense oligonucleotides delayed the occurrence of prostate tumors. Importantly, Egr-1 antisense showed little or no toxicity when injected into animals. Finally, we identified a few genes such as cyclin D2, p19ink4d, and Fas that are directly regulated by Egr-1 in prostate cancer cells and that control cell cycle and survival.
Collapse
Affiliation(s)
- Véronique Baron
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
42
|
Wada Y, Fujimori M, Suzuki JI, Tsukioka K, Ito KI, Sawa Y, Morishita R, Kaneda Y, Isobe M, Amano J. Egr-1 in vascular smooth muscle cell proliferation in response to allo-antigen. J Surg Res 2003; 115:294-302. [PMID: 14697297 DOI: 10.1016/s0022-4804(03)00213-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Early growth response factor-1 (Egr-1) plays an important role in regulating multiple factors involved in the progression of vascular lesions. This study examined our hypothesis that Egr-1 plays a critical role in the early stage of chronic cardiac allograft rejection and in the proliferation of the smooth muscle cell response to alloantigen. MATERIALS AND METHODS Antisense Egr-1 oligodeoxynucleotide (ODN) was ex vivo gene transfected into the donor hearts from DBA/2 mice, followed by heterotopic allografting into B10.D2 recipients. The allografts were harvested on day 30. Egr-1 and its target molecules, such as platelet-derived growth factor (PDGF)-A, basic fibroblastic growth factor (bFGF), vascular cell adhesion molecule (VCAM)-1, transforming growth factor (TGF)-beta and nonmuscle myosin heavy chain B (SMemb), were identified immunohistochemically, and the percentage of the lumen occluded by the intima was calculated. For the cell proliferation assay, sensitized T cells were harvested from B10.D2 recipients as stimulator and then added to the SMCs, which were harvested from DBA/2 mouse aorta. Cellular proliferation was measured and Egr-1 and its target gene expression were examined by real-time RT-PCR. RESULTS Egr-1 and its target genes were expressed in the thickened intima from untreated recipients. Egr-1 antisense ODN inhibited not only Egr-1 expression but also its target genes and significantly suppressed intimal thickening of coronary arteries. Egr-1 antisense ODN also significantly inhibited cell proliferation and expressions of Egr-1 and Egr-1 target genes in a mixed cell culture model. CONCLUSION We conclude that Egr-1 plays an important role in the formation of the cardiac allograft vasculopathy responding to alloantigens.
Collapse
Affiliation(s)
- Yuko Wada
- The Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Matussek A, Lauber J, Bergau A, Hansen W, Rohde M, Dittmar KEJ, Gunzer M, Mengel M, Gatzlaff P, Hartmann M, Buer J, Gunzer F. Molecular and functional analysis of Shiga toxin-induced response patterns in human vascular endothelial cells. Blood 2003; 102:1323-32. [PMID: 12702508 DOI: 10.1182/blood-2002-10-3301] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is the major cause of hemolyticuremic syndrome (HUS) characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. EHEC produces one or more Shiga toxins (Stx1 and Stx2), and it was assumed that Stx's only relevant biologic activity was cell destruction through inhibition of protein synthesis. However, recent data indicate that in vivo the cytokine milieu may determine whether endothelial cells survive or undergo apoptosis/necrosis when exposed to Stxs. In this study, we analyzed the genome-wide expression patterns of human endothelial cells stimulated with subinhibitory concentrations of Stxs in order to characterize the genomic expression program involved in the vascular pathology of HUS. We found that Stxs elicited few, but reproducible, changes in gene expression. The majority of genes reported in this study encodes for chemokines and cytokines, which might contribute to the multifaceted inflammatory response of host endothelial cells observed in patients suffering from EHEC disease. In addition, our data provide for the first time molecular insights into the epidemiologically well-established higher pathogenicity of Stx2 over Stx1.
Collapse
Affiliation(s)
- Andreas Matussek
- Department of Microbiology, German Research Centre for Biotechnology, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang C, Kavurma MM, Lai A, Khachigian LM. Ets-1 protects vascular smooth muscle cells from undergoing apoptosis by activating p21WAF1/Cip1: ETS-1 regulates basal and and inducible p21WAF1/Cip: ETS-1 regulates basal and inducible p21WAF1/Cip1 transcription via distinct cis-acting elements in the p21WAF/Cip1 promoter. J Biol Chem 2003; 278:27903-9. [PMID: 12740370 DOI: 10.1074/jbc.m304328200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The cyclin-dependent kinase inhibitor (CKI) p21WAF1/Cip1 is regulated at the level of transcription by nuclear factors such as the co-activator p300. It is presently unknown whether the Ets family of transcription factors control p21WAF1/Cip1 gene expression. Ets-1 inhibits apoptosis in vascular smooth muscle cells as determined by both fluorescein isothiocyanate-linked annexin V/propidium iodide staining of cells and fluorescence-activated cell sorting analysis and quantitative cytoplasmic histone-associated internucleosomal DNA fragmentation. p21WAF1/Cip1 can play a mitogenic and anti-apoptotic role in smooth muscle cells. Using transient transfection and Western blot analysis, we determined that Ets-1 activates p21WAF1/Cip1 transcription and protein expression. Electrophoretic mobility shift assays revealed that Ets-1 interacts selectively with the -1350GGAA-1347 Ets element in the p21WAF1/Cip1 promoter. Mutation of this element reduced basal and Ets1-inducible p21WAF1/Cip1 promoter-dependent expression. In contrast, the -1577GGAT-1574 motif mediates basal but not Ets-1 activation of the p21WAF1/Cip1 promoter. Co-immunoprecipitation and co-transfection analysis showed that Ets-1 binds p300 and cooperatively activates p21WAF1/Cip1 transcription. The phenotypic importance of Ets-1 regulation of p21WAF1/Cip1 was demonstrated by the capacity of antisense p21WAF1/Cip1 strategies to block Ets-1-inhibition of apoptosis and inhibit Ets-1-induction of proliferation.
Collapse
Affiliation(s)
- Cuili Zhang
- Centre for Vascular Research, The University of New South Wales and Department of Haematology, The Prince of Wales Hospital, Sydney, New South Wales 2052, Australia
| | | | | | | |
Collapse
|
45
|
Baron V, De Gregorio G, Krones-Herzig A, Virolle T, Calogero A, Urcis R, Mercola D. Inhibition of Egr-1 expression reverses transformation of prostate cancer cells in vitro and in vivo. Oncogene 2003; 22:4194-204. [PMID: 12833142 DOI: 10.1038/sj.onc.1206560] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcription factor early growth response-1 (Egr-1) is a crucial regulator of cell growth, differentiation and survival. Several observations suggest that Egr-1 is growth promoting in prostate cancer cells and that blocking its function may impede cancer progression. To test this hypothesis, we developed phosphorothioate antisense oligonucleotides that efficiently inhibit Egr-1 expression without altering the expression of other family members Egr-2, Egr-3 and Egr-4. In TRAMP mouse-derived prostate cancer cell lines, our optimal antisense oligonucleotide decreased the expression of the Egr-1 target gene transforming growth factor-beta1 whereas a control oligonucleotide had no effect, indicating that the antisense blocked Egr-1 function as a transcription factor. The antisense oligonucleotide deregulated cell cycle progression and decreased proliferation of the three TRAMP cell lines by an average of 54+/-3%. Both colony formation and growth in soft agar were inhibited by the antisense oligonucleotide. When TRAMP mice were treated systemically for 10 weeks, the incidence of palpable tumors at 32 weeks of age in untreated mice or mice injected with the control scramble oligonucleotide was 87%, whereas incidence of tumors in antisense-Egr-1-treated mice was significantly reduced to 37% (P=0.026). Thus, Egr-1 plays a functional role in the transformed phenotype and may represent a valid target for prostate cancer therapy.
Collapse
Affiliation(s)
- Véronique Baron
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Tan L, Peng H, Osaki M, Choy BK, Auron PE, Sandell LJ, Goldring MB. Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1beta. J Biol Chem 2003; 278:17688-700. [PMID: 12637574 DOI: 10.1074/jbc.m301676200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Following induction and activation of the early growth response (Egr)-1 transcription factor in human chondrocytes, interleukin-1beta (IL-1beta) suppresses the expression of the type II collagen gene (COL2A1), associated with induction of Egr-1 binding activity in nuclear extracts. The COL2A1 proximal promoter contains overlapping binding sites for Egr-1 and Sp1 family members at -119/-112 bp and -81/-74 bp. Mutations that block binding of Sp1 and Sp3 to either site markedly reduce constitutive expression of the core promoter. IL-1beta-induced Egr-1 binds strongly to the -119/-112 bp site, and mutations that block Egr-1 binding prevent inhibition by IL-1beta. Cotransfection with pCMV-Egr1 potentiates the inhibition of COL2A1 promoter activity by IL-1beta, whereas overexpression of dominant-negative Egr-1 mutant, Wilm's tumor-1 (WT1)/Egr1, Sp1, or Sp3 reverses the inhibition by IL-1beta. Cotransfection of pGL2-COL2/Gal4, in which we substituted the critical residue for Egr-1 binding with a Gal4 binding domain and a pCMV-Gal4-Egr1 chimera permits an inhibitory response to IL-1beta that is reversed by overexpression of Gal4-CBP. Our results indicate that IL-1beta-induced activation of Egr-1 binding is required for inhibition of COL2A1 proximal promoter activity and suggest that Egr-1 acts as a repressor of a constitutively expressed collagen gene by preventing interactions between Sp1 and the general transcriptional machinery.
Collapse
Affiliation(s)
- Lujian Tan
- Rheumatology Division, Beth Israel Deaconess Medical Center and New England Baptist Bone & Joint Institute, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Carl M, Akagi Y, Weidner S, Isaka Y, Imai E, Rupprecht HD. Specific inhibition of Egr-1 prevents mesangial cell hypercellularity in experimental nephritis. Kidney Int 2003; 63:1302-12. [PMID: 12631347 DOI: 10.1046/j.1523-1755.2003.00865.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mesangial cell proliferation is a frequent finding in glomerulonephritis. In cultured mesangial cells, we demonstrated that inhibition of the zinc finger transcription factor, early growth response gene-1 (Egr-1), by specific antisense oligonucleotides (AS ODN) blocks mesangial cell proliferation. Therefore, we here investigated the effect of Egr-1 inhibition on the course of an experimental mesangioproliferative glomerulonephritis in vivo. METHODS On day 3 after induction of anti-Thy-1.1 nephritis, specific glomerular oligonucleotide transfer was achieved by injection of an oligonucleotide/hemagglutinating virus of Japan/liposome mixture into the left renal artery. The right kidney was left untreated. RESULTS Induction of nephritis led to a sixfold induction of Egr-1 protein on day 6 of disease. This increase in Egr-1 expression was reduced by 48% in the left kidney by transfer of specific AS ODN. In parallel, the increases in glomerular cellularity, number of mitoses, and glomerular tuft area observed in day 6 nephritic animals were inhibited in the left kidney by 60%, 53%, and 50%, respectively. Changes in the right kidney were not significantly influenced. Likewise, control oligonucleotides showed no effect. Finally, the expression of platelet-derived growth factor-B (PDGF-B), a known target gene of Egr-1, was repressed by transfer of specific AS ODN against Egr-1. CONCLUSION We conclude that the transcription factor Egr-1 plays a critical role for mesangial cell proliferation in vivo. Interfering with the induction of Egr-1 or with its target genes could give rise to novel therapeutic principles in mesangioproliferative glomerulonephritis.
Collapse
Affiliation(s)
- Marina Carl
- Med. Klinik IV, University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Gerasimovskaya EV, Ahmad S, White CW, Jones PL, Carpenter TC, Stenmark KR. Extracellular ATP is an autocrine/paracrine regulator of hypoxia-induced adventitial fibroblast growth. Signaling through extracellular signal-regulated kinase-1/2 and the Egr-1 transcription factor. J Biol Chem 2002; 277:44638-50. [PMID: 12244041 DOI: 10.1074/jbc.m203012200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Important autocrine/paracrine functions for the adenine nucleotides have been proposed in several tissues. We addressed the possibility that extracellular ATP would modulate/mediate hypoxia-induced adventitial fibroblast growth. Acute hypoxia (3% O(2), 10-60 min) increased extracellular ATP concentrations in adventitial fibroblasts and in lung microvascular endothelial cells, and chronic hypoxia (3% O(2), 14-30 days) markedly attenuated the rate of extracellular ATP hydrolysis by ecto-nucleotidase(s). Exogenous ATP stimulated [(3)H]thymidine incorporation in fibroblasts as did UTP, ADPbeta, 2-methylthioadenosine triphosphate, adenosine 5'-(alpha,beta-methylene)triphosphate, and benzoylbenzoyl-ATP (2'-3'-O-(4-benzoylbenzoyl)-ATP), indicating that both P2Y and P2X purinoceptors can mediate mitogenic responses. Suramin (100 microm), Cibacron blue 3GA (100 microm), and pyridoxalphosphate-6-azophenyl-2',-4'-disulfonic acid (100 microm) as well as apyrase (5 units/ml) attenuated hypoxia- and ATP-induced and DNA synthesis, indicating activation and a functional role of purinoceptors under hypoxic conditions. ATP-induced DNA synthesis was augmented by hypoxia in an additive fashion, whereas ATP and hypoxia synergistically increased growth factor-induced DNA synthesis, again suggesting that ATP and hypoxia utilize similar signaling pathways to induce proliferation. Indeed, we found that ATP (100 microm) and hypoxia (3% O(2)) induced expression and activation of Egr-1 transcription factor, and both stimuli acted, in part, through a G(alpha)(i)/ERK1/2-dependent signaling pathway. Suramin, Cibacron blue 3GA, and apyrase attenuated hypoxia-induced ERK1/2 activation and Egr-1 expression. We conclude that hypoxia induces ATP release from endothelial cells and fibroblasts and that the activation of P2 purinoceptors is involved in the regulation of DNA synthesis by fibroblasts under hypoxic conditions.
Collapse
Affiliation(s)
- Evgenia V Gerasimovskaya
- Developmental Lung Biology Research Laboratory, Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Khachigian LM, Fahmy RG, Zhang G, Bobryshev YV, Kaniaros A. c-Jun regulates vascular smooth muscle cell growth and neointima formation after arterial injury. Inhibition by a novel DNA enzyme targeting c-Jun. J Biol Chem 2002; 277:22985-91. [PMID: 11891228 DOI: 10.1074/jbc.m200977200] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neointima formation is a characteristic feature of common vascular pathologies, such as atherosclerosis and post-angioplasty restenosis, and involves smooth muscle cell proliferation. Determination of whether the bZIP transcription factor c-Jun plays a direct regulatory role in arterial lesion formation, or indeed in other disease, has been hampered by the lack of a potent and specific pharmacological inhibitor. c-Jun is poorly expressed in the uninjured artery wall and transiently induced following arterial injury in animal models. Here we generated a gene-specific DNAzyme-targeting c-Jun. We show that c-Jun protein is expressed in human atherosclerotic lesions. Dz13, a catalytically active c-Jun DNAzyme, cleaved c-Jun RNA and inhibited inducible c-Jun protein expression in vascular smooth muscle cells. Dz13 blocked vascular smooth muscle cell proliferation with potency exceeding its exact non-catalytic antisense oligodeoxynucleotide equivalent. Moreover, Dz13 abrogated smooth muscle cell repair following scraping injury in vitro and intimal thickening in injured rat carotid arteries in vivo. These studies demonstrate the positive influence on neointima formation by c-Jun and the therapeutic potential of a DNAzyme controlling its expression.
Collapse
Affiliation(s)
- Levon M Khachigian
- Centre for Thrombosis and Vascular Research, Department of Pathology, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | | | |
Collapse
|
50
|
Khachigian LM. Catalytic oligonucleotides targeting EGR-1 as potential inhibitors of in-stent restenosis. Ann N Y Acad Sci 2001; 947:412-5. [PMID: 11795303 DOI: 10.1111/j.1749-6632.2001.tb03975.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This brief review discusses recent strategies targeting the zinc finger transcription factor and immediate-early gene product Egr-1 with catalytic DNA in efforts to inhibit postangioplasty restenosis.
Collapse
Affiliation(s)
- L M Khachigian
- Centre for Thrombosis and Vascular Research, The University of New South Wales, Sydney, Australia.
| |
Collapse
|