1
|
Mohammadi N, Fedele L, Chakravarthy P, Leonov V, Tsansizi L, Gu H, Seyedmousavi S, Cosson M, Bernardo AS, Gorelik J, Sanchez‐Alonso JL. Sympathetic neurons can modify the intrinsic structural and functional properties of human pluripotent stem cell-derived cardiomyocytes. J Physiol 2025; 603:2089-2118. [PMID: 40009457 PMCID: PMC11955862 DOI: 10.1113/jp287569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
The sympathetic nervous system densely innervates all cardiac chambers and is a key player in cardiac control, yet this relationship has scarcely been investigated using a stem cell-based model. This study investigates the effects that sympathetic neurons (SNs) have on human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) in vitro, and whether they induce any degree of functional or structural maturity in these conventionally immature cells. SNs were isolated from neonatal rat pups, and cocultured with hPSC-CMs for up to 15 days. Structural changes in hPSC-CMs were analysed by microscopy techniques. Fluorescence resonance energy transfer was used to measure second messenger molecule cAMP production and β-adrenergic receptor (βAR) response. Contractile and Ca2+ transient activity was measured using CytoCypher. These cocultures promoted hPSC-CM structural elongation and increased sarcomere organization. Furthermore, the βAR response of cocultured hiPSC-CMs was larger, indicated by increased cAMP production upon neuronal nicotinic stimulation. Faster contraction and ratiometric Ca2+ transient peak height and kinetic parameters strongly indicate increased chronotropic response in coculture. Coculture with SNs also elicited an increase in action potential amplitude and depolarization velocity, further confirming that SNs contribute to hiPSC-CM functional maturation. Overall, we have found that SNs modulate hPSC-CMs in vitro, inducing a more mature functional response. As an in vitro tool, these cocultures could serve as a model of sympathoadrenergic disease, enabling new discovery avenues. KEY POINTS: The sympathetic nervous system controls the involuntary 'fight-or-flight' response, with the heart being one of key target organs. In certain neuro-cardiac diseases, the input from the sympathetic nervous system is hyperregulated, and can lead to increased speed or force of the heart's contraction. Human induced pluripotent stem cells (hiPSCs) represent a rapidly evolving field which allow us to create a cell of interest and model its structural and functional activity in a dish. Here we have created hiPSC-derived cardiomyocytes (hiPSC-CMs) and cocultured them with sympathetic neurons (SNs). We found that SNs are able to modulate structure of the hiPSC-CMs by reducing their circularity and increasing sarcomeric organization, and can significantly increase the speed of contraction and Ca2+ handling. Together, our data provide a platform to investigate the neuro-cardiac relationship in vitro, which could be used for patient-specific disease modelling in future.
Collapse
Affiliation(s)
- Neda Mohammadi
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
| | - Laura Fedele
- Wolfson Sensory, Pain and Regeneration Centre (SPaRC), Guy's CampusKing's College LondonLondonUK
| | - Poornaa Chakravarthy
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
| | - Vlad Leonov
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
| | - Lorenza Tsansizi
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
- The Francis Crick InstituteLondonUK
| | - Hui Gu
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
| | - Sama Seyedmousavi
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
| | - Marie‐Victoire Cosson
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
- The Francis Crick InstituteLondonUK
| | - Andreia S. Bernardo
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
- The Francis Crick InstituteLondonUK
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
| | - Jose L. Sanchez‐Alonso
- Department of Cardiovascular Sciences, National Heart and Lung InstituteImperial College LondonDu Cane Road LondonUK
| |
Collapse
|
2
|
Paoli M, Haase A. In Vivo Two-Photon Imaging of the Olfactory System in Insects. Methods Mol Biol 2025; 2915:1-48. [PMID: 40249481 DOI: 10.1007/978-1-0716-4466-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, together with practical examples of pioneering applications of this imaging modality.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, Sorbonne Université, INSERM, CNRS, Paris, France.
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France.
| | - Albrecht Haase
- Center for Mind/Brain Sciences and Department of Physics, University of Trento, Trento, Italy
| |
Collapse
|
3
|
Takahashi N, Nagamatsu T, Akaike N, Kudo Y. TND1128, a 5-deazaflavin derivative with auto-redox ability, facilitates polarization of mitochondrial membrane potential (ΔΨ m) and on-demand ATP synthesis in mice brain slices. J Pharmacol Sci 2024; 156:218-229. [PMID: 39608846 DOI: 10.1016/j.jphs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 11/30/2024] Open
Abstract
TND1128, a 5-deazaflavin derivative, is a drug with self-redox ability. We examined the effect of TND1128 on the level of mitochondrial membrane potential (ΔΨm), which is the most critical motive power for the biosynthesis of ATP. We prepared brain slices from mice pretreated with TND1128 (0.1-10 mg/kg, intraperitoneally) and detected ΔΨm level with JC-1, a fluorescence ΔΨm indicator. We further examined the depolarization of ΔΨm under 5-min exposure to 25 mM KCl-ACSF (25K-ACSF), which activated neuronal voltage-dependent Ca2+ channels. We evaluated the effect of TND1128 by using the inverse number of the ΔΨm value as the ATP synthesis index (ASI). The level of ΔΨm increased significantly by 24-h pretreatment with TND1128 (10 mg/kg), and significantly higher depolarization of the ΔΨm was observed with 25K-ACSF exposure than in non-treated control. We found a significant decrease in 25K-ACSF induced [Ca2+]c and [Ca2+]m levels in the TND1128-pretreated preparations. We confirmed the dose and time-dependent facilitatory effects of TND1128 on the ASI. This study suggested that TND1128 could be incorporated into the TCA cycle and electron transfer chains to facilitate the polarization of ΔΨm and activate on-demand ATP synthesis. TND1128 might rescue neurons in various brain diseases caused by energy defects. (198).
Collapse
Affiliation(s)
- Nanae Takahashi
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan.
| | - Tomohisa Nagamatsu
- Laboratory of Curative Medicine Creation Study for Geriatric-diseases Prevention, Faculty of Pharmacological Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Juryou Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto, 860-8518, Japan.
| | - Yoshihisa Kudo
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan.
| |
Collapse
|
4
|
Takahashi N, Akaike N, Nagamatsu T, Uchino H, Kudo Y. Effects of TND1128 (a 5-deazaflavin derivative), with self-redox ability, as a mitochondria activator on the mouse brain slice and its comparison with β-NMN. J Pharmacol Sci 2023; 151:93-109. [PMID: 36707184 DOI: 10.1016/j.jphs.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
We have no definitive treatment for dementia characterized by prolonged neuronal death due to the enormous accumulation of foreign matter, such as β-amyloid. Since Alzheimer's type dementia develops slowly, we may be able to delay the onset and improve neuronal dysfunction by enhancing the energy metabolism of individual neurons. TND1128, a derivative of 5-deazaflavin, is a chemical known to have an efficient self-redox ability. We expected TND1128 as an activator for mitochondrial energy synthesis. We used brain slices prepared from mice 22 ± 2 h pretreated with TND1128 or β-NMN. We measured Ca2+ concentrations in the cytoplasm ([Ca2+]cyt) and mitochondria ([Ca2+]mit) by using fluorescence Ca2+ indicators, Fura-4F, and X-Rhod-1, respectively, and examined the protective effects of drugs on [Ca2+]cyt and [Ca2+]mit overloading by repeating 80K exposure. TND1128 (0.01, 0.1, and 1 mg/kg s.c.) mitigates the dynamics of both [Ca2+]cyt and [Ca2+]mit in a dose-dependent manner. β-NMN (10, 30, and 100 mg/kg s.c.) also showed significant dose-dependent mitigating effects on [Ca2+]cyt, but the effect on the [Ca2+]mit dynamics was insignificant. We confirmed the mitochondria-activating potential of TND1128 in the present study. We expect TND1128 as a drug that rescues deteriorating neurons with aging or disease.
Collapse
Affiliation(s)
- Nanae Takahashi
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center 1163 Tatemachi,Hachioji, Tokyo 193-0998, Japan.
| | - Norio Akaike
- Research Division for Clinical Pharmacology, Medical Corporation, Juryou Group, Kumamoto Kinoh Hospital, 6-8-1 Yamamuro, Kita-ku, Kumamoto 860-8518, Japan.
| | - Tomohisa Nagamatsu
- Laboratory of Curative Creation Study for Geriatric-diseases Prevention, Faculty of Pharmacological Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Sinjuku-ku, Tokyo 160-0023, Japan.
| | - Yoshihisa Kudo
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center 1163 Tatemachi,Hachioji, Tokyo 193-0998, Japan.
| |
Collapse
|
5
|
Amesz JH, Zhang L, Everts BR, De Groot NMS, Taverne YJHJ. Living myocardial slices: Advancing arrhythmia research. Front Physiol 2023; 14:1076261. [PMID: 36711023 PMCID: PMC9880234 DOI: 10.3389/fphys.2023.1076261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Living myocardial slices (LMS) are ultrathin (150-400 µm) sections of intact myocardium that can be used as a comprehensive model for cardiac arrhythmia research. The recent introduction of biomimetic electromechanical cultivation chambers enables long-term cultivation and easy control of living myocardial slices culture conditions. The aim of this review is to present the potential of this biomimetic interface using living myocardial slices in electrophysiological studies outlining advantages, disadvantages and future perspectives of the model. Furthermore, different electrophysiological techniques and their application on living myocardial slices will be discussed. The developments of living myocardial slices in electrophysiology research will hopefully lead to future breakthroughs in the understanding of cardiac arrhythmia mechanisms and the development of novel therapeutic options.
Collapse
Affiliation(s)
- Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lu Zhang
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bian R. Everts
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Natasja M. S. De Groot
- Translational Electrophysiology, Lowlands Institute for Bioelectric Medicine, Department of Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Lowlands Institute for Bioelectric Medicine, Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Zajac M, Modi S, Krishnan Y. The evolution of organellar calcium mapping technologies. Cell Calcium 2022; 108:102658. [PMID: 36274564 PMCID: PMC10224794 DOI: 10.1016/j.ceca.2022.102658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023]
Abstract
Intracellular Ca2+ fluxes are dynamically controlled by the co-involvement of multiple organellar pools of stored Ca2+. Endolysosomes are emerging as physiologically critical, yet underexplored, sources and sinks of intracellular Ca2+. Delineating the role of organelles in Ca2+ signaling has relied on chemical fluorescent probes and electrophysiological strategies. However, the acidic endolysosomal environment presents unique issues, which preclude the use of traditional chemical reporter strategies to map lumenal Ca2+. Here, we broadly address the current state of knowledge about organellar Ca2+ pools. We then outline the application of traditional probes, and their sensing paradigms. We then discuss how a new generation of probes overcomes the limitations of traditional Ca2+probes, emphasizing their ability to offer critical insights into endolysosomal Ca2+, and its feedback with other organellar pools.
Collapse
Affiliation(s)
- Matthew Zajac
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Souvik Modi
- Esya Labs, Translation and Innovation Hub, Imperial College White City Campus, 84 Wood Lane, London, W12 0BZ, UK
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, Illinois, 60637, USA; Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, 60637, USA.
| |
Collapse
|
7
|
Bolaños P, Calderón JC. Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research. Front Physiol 2022; 13:989796. [PMID: 36117698 PMCID: PMC9478590 DOI: 10.3389/fphys.2022.989796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The excitation–contraction coupling (ECC) in skeletal muscle refers to the Ca2+-mediated link between the membrane excitation and the mechanical contraction. The initiation and propagation of an action potential through the membranous system of the sarcolemma and the tubular network lead to the activation of the Ca2+-release units (CRU): tightly coupled dihydropyridine and ryanodine (RyR) receptors. The RyR gating allows a rapid, massive, and highly regulated release of Ca2+ from the sarcoplasmic reticulum (SR). The release from triadic places generates a sarcomeric gradient of Ca2+ concentrations ([Ca2+]) depending on the distance of a subcellular region from the CRU. Upon release, the diffusing Ca2+ has multiple fates: binds to troponin C thus activating the contractile machinery, binds to classical sarcoplasmic Ca2+ buffers such as parvalbumin, adenosine triphosphate and, experimentally, fluorescent dyes, enters the mitochondria and the SR, or is recycled through the Na+/Ca2+ exchanger and store-operated Ca2+ entry (SOCE) mechanisms. To commemorate the 7th decade after being coined, we comprehensively and critically reviewed “old”, historical landmarks and well-established concepts, and blended them with recent advances to have a complete, quantitative-focused landscape of the ECC. We discuss the: 1) elucidation of the CRU structures at near-atomic resolution and its implications for functional coupling; 2) reliable quantification of peak sarcoplasmic [Ca2+] using fast, low affinity Ca2+ dyes and the relative contributions of the Ca2+-binding mechanisms to the whole concert of Ca2+ fluxes inside the fibre; 3) articulation of this novel quantitative information with the unveiled structural details of the molecular machinery involved in mitochondrial Ca2+ handing to understand how and how much Ca2+ enters the mitochondria; 4) presence of the SOCE machinery and its different modes of activation, which awaits understanding of its magnitude and relevance in situ; 5) pharmacology of the ECC, and 6) emerging topics such as the use and potential applications of super-resolution and induced pluripotent stem cells (iPSC) in ECC. Blending the old with the new works better!
Collapse
Affiliation(s)
- Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
- *Correspondence: Juan C. Calderón,
| |
Collapse
|
8
|
Shkryl VM. Error correction due to background subtraction in ratiometric calcium measurements with CCD camera. Heliyon 2020; 6:e04180. [PMID: 32613103 PMCID: PMC7322130 DOI: 10.1016/j.heliyon.2020.e04180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/21/2019] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
Background Ca2+ plays an important role in many physiological processes and an accurate study of these signals is important. In modern fluorescence microscopy, a charge-coupled device (CCD) camera is widely deployed for calcium imaging. The ratiometric method is used for the fluorescence dye Fura-2 and Grynkiewitz's formula (Grynkiewicz et al., 1985) is commonly used to convert fluorescence to free Ca2+ concentration ([Ca2+]). But the need to subtract the background signal can lead to a big error in ratiometric calcium measurements. When the error due to background subtraction occurs, the fluorescence ratio of 340 nm divided by 380 nm lights may be twice as large as the actual value. Under conditions when the excitation intensity is not adjusted to ensure the same throughput of the objective lens for ultraviolet dye illumination, the indicator does not gradually bleach out for channels with a wavelength of 340 nm and 380 nm light, which lead to an additional error in determining the concentration of Ca2+. New method Here we present a new approach for calculating [Ca2+] from the ratiometric fluorescence of Fura-2 dye imaged by a CCD camera. It is designed to optimize [Ca2+] measurements with photobleaching correction without background subtraction error. A mathematical method is also provided for removing the existing underestimated value of fluorescence at an excitation wavelength of 340 nm and compensating for the bleaching rate for both channels with wavelengths of 340 nm and 380 nm using a power function. Results In cultured neurons, the calculations of the free Ca2+ concentration during Ca2+ transients estimated by the old and new methods, determine it to the same extent. This comparison was made under conditions without errors through background subtraction. If there is this error, the old method calculates [Ca2+] with a much higher, rather than the actual value. Conclusions We present a modified Grynkiewitz's formula for calculation [Ca2+] for ratiometric dye, such as Fura-2 imaged by a CCD camera, with photobleaching correction without background subtraction error.
Collapse
Affiliation(s)
- Vyacheslav M Shkryl
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, 4 Bogomoletz Street, Kyiv, 01024, Ukraine
| |
Collapse
|
9
|
Koebke KJ, Batelu S, Kandegedara A, Smith SR, Stemmler TL. Refinement of protein Fe(II) binding characteristics utilizing a competition assay exploiting small molecule ferrous chelators. J Inorg Biochem 2020; 203:110882. [PMID: 31683123 DOI: 10.1016/j.jinorgbio.2019.110882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
Iron is the most prevalent metal in biology. Its chemical and redox versatility allows it to direct activity of many Fe binding proteins. While iron's biological applications are diverse, challenges inherent in having Fe(II) present at high abundance means cells must ensure delivery to the correct recipient, while also ensuring its chemistry is regulated. Having a detailed understanding of the biophysical characteristics of a protein's iron binding characteristics allows us to understand general cellular metal homeostasis events. Unfortunately, most spectroscopic techniques available to measure metal binding affinity require protein be in a homogeneous state. Homogeneity creates an artificial environment when measuring metal binding since within cells numerous additional metal binding biomolecules compete with the target. Here we investigate commercially available Fe(II) chelators with spectral markers coupled to metal binding and release. Our goal was to determine their utility as competitors while measuring aspects of metal binding by apoproteins during a metal binding competition assay. Adding chelators during apoprotein metal binding mimics heterogeneous metal binding environments present in vivo, and provides a more realistic metal binding affinity measurement. Ferrous chelators explored within this report include: Rhod-5N, Magfura-2, Fura-4F, Fura-2, and TPA (Tris-(2-byridyl-methyl)amine; each forms a 1:1 complex with Fe(II) and combined cover a binding range of 5 orders of magnitude (micromolar to nanomolar Kd). These chelators were used to calibrate binding affinities for yeast and fly frataxin (Yfh1 and Dfh, respectively), involved in mitochondrial FeS cluster bioassembly.
Collapse
Affiliation(s)
- Karl J Koebke
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sharon Batelu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Ashoka Kandegedara
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sheila R Smith
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48101, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
High-Throughput Fluorescence Assays for Ion Channels and GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:27-72. [DOI: 10.1007/978-3-030-12457-1_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Wright PT, Tsui SF, Francis AJ, MacLeod KT, Marston SB. Approaches to High-Throughput Analysis of Cardiomyocyte Contractility. Front Physiol 2020; 11:612. [PMID: 32733259 PMCID: PMC7362994 DOI: 10.3389/fphys.2020.00612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/15/2020] [Indexed: 01/20/2023] Open
Abstract
The measurement of the contractile behavior of single cardiomyocytes has made a significant contribution to our understanding of the physiology and pathophysiology of the myocardium. However, the isolation of cardiomyocytes introduces various technical and statistical issues. Traditional video and fluorescence microscopy techniques based around conventional microscopy systems result in low-throughput experimental studies, in which single cells are studied over the course of a pharmacological or physiological intervention. We describe a new approach to these experiments made possible with a new piece of instrumentation, the CytoCypher High-Throughput System (CC-HTS). We can assess the shortening of sarcomeres, cell length, Ca2+ handling, and cellular morphology of almost 4 cells per minute. This increase in productivity means that batch-to-batch variation can be identified as a major source of variability. The speed of acquisition means that sufficient numbers of cells in each preparation can be assessed for multiple conditions reducing these batch effects. We demonstrate the different temporal scales over which the CC-HTS can acquire data. We use statistical analysis methods that compensate for the hierarchical effects of clustering within heart preparations and demonstrate a significant false-positive rate, which is potentially present in conventional studies. We demonstrate a more stringent way to perform these tests. The baseline morphological and functional characteristics of rat, mouse, guinea pig, and human cells are explored. Finally, we show data from concentration response experiments revealing the usefulness of the CC-HTS in such studies. We specifically focus on the effects of agents that directly or indirectly affect the activity of the motor proteins involved in the production of cardiomyocyte contraction. A variety of myocardial preparations with differing levels of complexity are in use (e.g., isolated muscle bundles, thin slices, perfused dual innervated isolated heart, and perfused ventricular wedge). All suffer from low throughput but can be regarded as providing independent data points in contrast to the clustering problems associated with isolated cell studies. The greater productivity and sampling power provided by CC-HTS may help to reestablish the utility of isolated cell studies, while preserving the unique insights provided by studying the contribution of the fundamental, cellular unit of myocardial contractility.
Collapse
|
12
|
Johnson M. Calcium Imaging of Store-Operated Calcium (Ca 2+) Entry (SOCE) in HEK293 Cells Using Fura-2. Methods Mol Biol 2019; 1925:163-172. [PMID: 30674026 DOI: 10.1007/978-1-4939-9018-4_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The store-operated calcium (Ca2+) entry (SOCE) pathway is an essential Ca2+ signaling pathway in non-excitable cells that serve many physiological functions. SOCE is mediated through the plasma membrane (PM) protein, Orai1, and the endoplasmic reticulum protein, stromal interaction molecule 1 (STIM1). One of the most well-established methods to study SOCE is using the Ca2+-sensing dye, fura-2. Here we describe a detailed protocol on how to use fura-2 to study Ca2+ signaling from SOCE in human embryonic kidney (HEK) cells.
Collapse
Affiliation(s)
- Martin Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
13
|
Guzman JN, Ilijic E, Yang B, Sanchez-Padilla J, Wokosin D, Galtieri D, Kondapalli J, Schumacker PT, Surmeier DJ. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 2018; 128:2266-2280. [PMID: 29708514 PMCID: PMC5983329 DOI: 10.1172/jci95898] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 03/13/2018] [Indexed: 01/04/2023] Open
Abstract
The ability of the Cav1 channel inhibitor isradipine to slow the loss of substantia nigra pars compacta (SNc) dopaminergic (DA) neurons and the progression of Parkinson's disease (PD) is being tested in a phase 3 human clinical trial. But it is unclear whether and how chronic isradipine treatment will benefit SNc DA neurons in vivo. To pursue this question, isradipine was given systemically to mice at doses that achieved low nanomolar concentrations in plasma, near those achieved in patients. This treatment diminished cytosolic Ca2+ oscillations in SNc DA neurons without altering autonomous spiking or expression of Ca2+ channels, an effect mimicked by selectively knocking down expression of Cav1.3 channel subunits. Treatment also lowered mitochondrial oxidant stress, reduced a high basal rate of mitophagy, and normalized mitochondrial mass - demonstrating that Cav1 channels drive mitochondrial oxidant stress and turnover in vivo. Thus, chronic isradipine treatment remodeled SNc DA neurons in a way that should not only diminish their vulnerability to mitochondrial challenges, but to autophagic stress as well.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paul T. Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
14
|
Abstract
This chapter describes how to apply two-photon neuroimaging to study the insect olfactory system in vivo. It provides a complete protocol for insect brain functional imaging, with some additional remarks on the acquisition of morphological information from the living brain. We discuss the most important choices to make when buying or building a two-photon laser-scanning microscope. We illustrate different possibilities of animal preparation and brain tissue labeling for in vivo imaging. Finally, we give an overview of the main methods of image data processing and analysis, followed by a short description of pioneering applications of this imaging modality.
Collapse
Affiliation(s)
- Marco Paoli
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Albrecht Haase
- Department of Physics, University of Trento, Povo, Italy. .,Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
| |
Collapse
|
15
|
Ma Q, Ye L, Liu H, Shi Y, Zhou N. An overview of Ca 2+ mobilization assays in GPCR drug discovery. Expert Opin Drug Discov 2017; 12:511-523. [PMID: 28277837 DOI: 10.1080/17460441.2017.1303473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Calcium ions (Ca2+) serve as a second messenger or universal signal transducer implicated in the regulation of a wide range of physiological processes. A change in the concentration of intracellular Ca2+ is an important step in intracellular signal transduction. G protein-coupled receptors (GPCRs), the largest and most versatile group of cell surface receptors, transduce extracellular signals into intracellular responses via their coupling to heterotrimeric G proteins. Since Ca2+ plays a crucial role in GPCR-induced signaling, measurement of intracellular Ca2+ has attracted more and more attention in GPCR-targeted drug discovery. Areas covered: This review focuses on the most popular functional assays measuring GPCRs-induced intracellular Ca2+ signaling. These include photoprotein-based, synthetic fluorescent indicator-based and genetically encoded calcium indicator (GECI)-based Ca2+ mobilization assays. A brief discussion of the design strategy of fluorescent probes in GPCR studies is also presented. Expert opinion: GPCR-mediated intracellular signaling is multidimensional. There is an urgent need for the development of multiple-readout screening assays capable of simultaneous detection of biased signaling and screening of both agonists and antagonists in the same assay. It is also necessary to develop GECIs offering low cost and consistent assays suitable for investigating GPCR activation in vivo.
Collapse
Affiliation(s)
- Qiang Ma
- a College of Life Sciences, Zijingang Campus , Zhejiang University, Institute of Biochemistry and Molecular Biology , Hangzhou , Zhejiang , China
| | - Lingyan Ye
- a College of Life Sciences, Zijingang Campus , Zhejiang University, Institute of Biochemistry and Molecular Biology , Hangzhou , Zhejiang , China
| | - Hongxia Liu
- b Department of Internal Medicine , Edong Healthcare Group , Huangshi , Hubei , China
| | - Ying Shi
- a College of Life Sciences, Zijingang Campus , Zhejiang University, Institute of Biochemistry and Molecular Biology , Hangzhou , Zhejiang , China
| | - Naiming Zhou
- a College of Life Sciences, Zijingang Campus , Zhejiang University, Institute of Biochemistry and Molecular Biology , Hangzhou , Zhejiang , China
| |
Collapse
|
16
|
|
17
|
Schultz SR, Copeland CS, Foust AJ, Quicke P, Schuck R. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2017; 105:139-157. [PMID: 28757657 PMCID: PMC5526632 DOI: 10.1109/jproc.2016.2577380] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size.
Collapse
Affiliation(s)
- Simon R Schultz
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| | - Caroline S Copeland
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| | - Amanda J Foust
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| | - Peter Quicke
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| | - Renaud Schuck
- Center for Neurotechnology and Department of Bioengineering Imperial College London, South Kensington, LondonSW7 2AZ, UK
| |
Collapse
|
18
|
Artoni P, Landi S, Sato SS, Luin S, Ratto GM. Arduino Due based tool to facilitate in vivo two-photon excitation microscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:1604-1613. [PMID: 27446677 PMCID: PMC4933559 DOI: 10.1364/boe.7.001604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 06/06/2023]
Abstract
Two-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra. This tool is portable, fast, affordable and precise. It allowed studying the impact of scattering and of blood absorption on two-photon excitation light. In this way, we determined the wavelength-dependent deformation of excitation spectra occurring in deep tissues in vivo.
Collapse
|
19
|
Jaimes R, Walton RD, Pasdois P, Bernus O, Efimov IR, Kay MW. A technical review of optical mapping of intracellular calcium within myocardial tissue. Am J Physiol Heart Circ Physiol 2016; 310:H1388-401. [PMID: 27016580 DOI: 10.1152/ajpheart.00665.2015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022]
Abstract
Optical mapping of Ca(2+)-sensitive fluorescence probes has become an extremely useful approach and adopted by many cardiovascular research laboratories to study a spectrum of myocardial physiology and disease conditions. Optical mapping data are often displayed as detailed pseudocolor images, providing unique insight for interpreting mechanisms of ectopic activity, action potential and Ca(2+) transient alternans, tachycardia, and fibrillation. Ca(2+)-sensitive fluorescent probes and optical mapping systems continue to evolve in the ongoing effort to improve therapies that ease the growing worldwide burden of cardiovascular disease. In this technical review we provide an updated overview of conventional approaches for optical mapping of Cai (2+) within intact myocardium. In doing so, a brief history of Cai (2+) probes is provided, and nonratiometric and ratiometric Ca(2+) probes are discussed, including probes for imaging sarcoplasmic reticulum Ca(2+) and probes compatible with potentiometric dyes for dual optical mapping. Typical measurements derived from optical Cai (2+) signals are explained, and the analytics used to compute them are presented. Last, recent studies using Cai (2+) optical mapping to study arrhythmias, heart failure, and metabolic perturbations are summarized.
Collapse
Affiliation(s)
- Rafael Jaimes
- Department of Biomedical Engineering, The George Washington University. Washington, District of Columbia
| | - Richard D Walton
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; and L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Philippe Pasdois
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; and L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Olivier Bernus
- Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France; and L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University. Washington, District of Columbia; L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University. Washington, District of Columbia;
| |
Collapse
|
20
|
Den Hartogh SC, Passier R. Concise Review: Fluorescent Reporters in Human Pluripotent Stem Cells: Contributions to Cardiac Differentiation and Their Applications in Cardiac Disease and Toxicity. Stem Cells 2015; 34:13-26. [DOI: 10.1002/stem.2196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Sabine C. Den Hartogh
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology; Leiden University Medical Centre; Leiden The Netherlands
- Department of Applied Stem cell Technologies. MIRA Institute for Biomedical Technology and Technical Medicine; University of Twente, P.O.Box 217; Enschede The Netherlands
| |
Collapse
|
21
|
Chelushkin PS, Nukolova NV, Melnikov AS, Serdobintsev PY, Melnikov PA, Krupenya DV, Koshevoy IO, Burov SV, Tunik SP. HSA-based phosphorescent probe for two-photon in vitro visualization. J Inorg Biochem 2015; 149:108-11. [DOI: 10.1016/j.jinorgbio.2015.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/19/2022]
|
22
|
Ghouri IA, Kelly A, Burton FL, Smith GL, Kemi OJ. 2-Photon excitation fluorescence microscopy enables deeper high-resolution imaging of voltage and Ca(2+) in intact mice, rat, and rabbit hearts. JOURNAL OF BIOPHOTONICS 2015; 8:112-23. [PMID: 24123976 DOI: 10.1002/jbio.201300109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/08/2013] [Accepted: 09/08/2013] [Indexed: 05/21/2023]
Abstract
We describe a novel two-photon (2P) laser scanning microscopy (2PLSM) protocol that provides ratiometric transmural measurements of membrane voltage (Vm ) via Di-4-ANEPPS in intact mouse, rat and rabbit hearts with subcellular resolution. The same cells were then imaged with Fura-2/AM for intracellular Ca(2+) recordings. Action potentials (APs) were accurately characterized by 2PLSM vs. microelectrodes, albeit fast events (<1 ms) were sub-optimally acquired by 2PLSM due to limited sampling frequencies (2.6 kHz). The slower Ca(2+) transient (CaT) time course (>1ms) could be accurately described by 2PLSM. In conclusion, Vm - and Ca(2+) -sensitive dyes can be 2P excited within the cardiac muscle wall to provide AP and Ca(2+) signals to ∼400 µm.
Collapse
Affiliation(s)
- Iffath A Ghouri
- Institute of Cardiovascular and Medical Sciences; College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | |
Collapse
|
23
|
Stoehr A, Neuber C, Baldauf C, Vollert I, Friedrich FW, Flenner F, Carrier L, Eder A, Schaaf S, Hirt MN, Aksehirlioglu B, Tong CW, Moretti A, Eschenhagen T, Hansen A. Automated analysis of contractile force and Ca2+ transients in engineered heart tissue. Am J Physiol Heart Circ Physiol 2014; 306:H1353-63. [PMID: 24585781 DOI: 10.1152/ajpheart.00705.2013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Contraction and relaxation are fundamental aspects of cardiomyocyte functional biology. They reflect the response of the contractile machinery to the systolic increase and diastolic decrease of the cytoplasmic Ca(2+) concentration. The analysis of contractile function and Ca(2+) transients is therefore important to discriminate between myofilament responsiveness and changes in Ca(2+) homeostasis. This article describes an automated technology to perform sequential analysis of contractile force and Ca(2+) transients in up to 11 strip-format, fibrin-based rat, mouse, and human fura-2-loaded engineered heart tissues (EHTs) under perfusion and electrical stimulation. Measurements in EHTs under increasing concentrations of extracellular Ca(2+) and responses to isoprenaline and carbachol demonstrate that EHTs recapitulate basic principles of heart tissue functional biology. Ca(2+) concentration-response curves in rat, mouse, and human EHTs indicated different maximal twitch forces (0.22, 0.05, and 0.08 mN in rat, mouse, and human, respectively; P < 0.001) and different sensitivity to external Ca(2+) (EC50: 0.15, 0.39, and 1.05 mM Ca(2+) in rat, mouse, and human, respectively; P < 0.001) in the three groups. In contrast, no difference in myofilament Ca(2+) sensitivity was detected between skinned rat and human EHTs, suggesting that the difference in sensitivity to external Ca(2+) concentration is due to changes in Ca(2+) handling proteins. Finally, this study confirms that fura-2 has Ca(2+) buffering effects and is thereby changing the force response to extracellular Ca(2+).
Collapse
Affiliation(s)
- Andrea Stoehr
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistraße, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hyrc KL, Minta A, Escamilla PR, Chan PPL, Meshik XA, Goldberg MP. Synthesis and properties of Asante Calcium Red--a novel family of long excitation wavelength calcium indicators. Cell Calcium 2013; 54:320-33. [PMID: 24017967 DOI: 10.1016/j.ceca.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
Although many synthetic calcium indicators are available, a search for compounds with improved characteristics continues. Here, we describe the synthesis and properties of Asante Calcium Red-1 (ACR-1) and its low affinity derivative (ACR-1-LA) created by linking BAPTA to seminaphthofluorescein. The indicators combine a visible light (450-540 nm) excitation with deep-red fluorescence (640 nm). Upon Ca2+ binding, the indicators raise their fluorescence with longer excitation wavelengths producing higher responses. Although the changes occur without any spectral shifts, it is possible to ratio Ca(2+)-dependent (640 nm) and quasi-independent (530 nm) emission when using visible (< 490 nm) or multiphoton (∼780 nm) excitation. Therefore, both probes can be used as single wavelength or, less dynamic, ratiometric indicators. Long indicator emission might allow easy [Ca2+]i measurement in GFP expressing cells. The indicators bind Ca2+ with either high (Kd = 0.49 ± 0.07 μM; ACR-1) or low affinity (Kd = 6.65 ± 0.13 μM; ACR-1-LA). Chelating Zn2+ (Kd = 0.38 ± 0.02 nM) or Mg2+ (Kd∼5mM) slightly raises and binding Co2+ quenches dye fluorescence. New indicators are somewhat pH-sensitive (pKa = 6.31 ± 0.07), but fairly resistant to bleaching. The probes are rather dim, which combined with low AM ester loading efficiency, might complicate in situ imaging. Despite potential drawbacks, ACR-1 and ACR-1-LA are promising new calcium indicators.
Collapse
Affiliation(s)
- Krzysztof L Hyrc
- The Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Alafi Neuroimaging Laboratory, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Benninger RK, Piston DW. Two-photon excitation microscopy for the study of living cells and tissues. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; Chapter 4:4.11.1-4.11.24. [PMID: 23728746 PMCID: PMC4004770 DOI: 10.1002/0471143030.cb0411s59] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two-photon excitation microscopy is an alternative to confocal microscopy that provides advantages for three-dimensional and deep tissue imaging. This unit will describe the basic physical principles behind two-photon excitation and discuss the advantages and limitations of its use in laser-scanning microscopy. The principal advantages of two-photon microscopy are reduced phototoxicity, increased imaging depth, and the ability to initiate highly localized photochemistry in thick samples. Practical considerations for the application of two-photon microscopy will then be discussed, including recent technological advances. This unit will conclude with some recent applications of two-photon microscopy that highlight the key advantages over confocal microscopy and the types of experiments which would benefit most from its application.
Collapse
|
26
|
Monteith A, Marszalec W, Chan P, Logan J, Yu W, Schwarz N, Wokosin D, Hockberger P. Imaging of mitochondrial and non-mitochondrial responses in cultured rat hippocampal neurons exposed to micromolar concentrations of TMRM. PLoS One 2013; 8:e58059. [PMID: 23483968 PMCID: PMC3587568 DOI: 10.1371/journal.pone.0058059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 01/31/2013] [Indexed: 11/24/2022] Open
Abstract
Tetramethylrhodamine methyl ester (TMRM) is a fluorescent dye used to study mitochondrial function in living cells. Previously, we reported that TMRM effectively labeled mitochondria of neurons deep within mouse brain slices. Use of micromolar concentration of dye, which was required to get sufficient staining for two-photon imaging, resulted in typical fluctuations of TMRM. With prolonged exposure, we recorded additional responses in some neurons that included slow oscillations and propagating waves of fluorescence. (Note: We use the terms “fluctuation” to refer to a change in the fluorescent state of an individual mitochondrion, “oscillation” to refer to a localized change in fluorescence in the cytosol, and “wave” to refer to a change in cytosolic fluorescence that propagated within a cell. Use of these terms does not imply any underlying periodicity.) In this report we describe similar results using cultured rat hippocampal neurons. Prolonged exposure of cultures to 2.5 µM TMRM produced a spontaneous increase in fluorescence in some neurons, but not glial cells, after 45–60 minutes that was followed by slow oscillations, waves, and eventually apoptosis. Spontaneous increases in fluorescence were insensitive to high concentrations of FCCP (100 µM) and thapsigargin (10 µM) indicating that they originated, at least in part, from regions outside of mitochondria. The oscillations did not correlate with changes in intracellular Ca2+, but did correlate with differences in fluorescence lifetime of the dye. Fluorescence lifetime and one-photon ratiometric imaging of TMRM suggested that the spontaneous increase and subsequent oscillations were due to movement of dye between quenched (hydrophobic) and unquenched (hydrophilic) compartments. We propose that these movements may be correlates of intracellular events involved in early stages of apoptosis.
Collapse
Affiliation(s)
- Andrew Monteith
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - William Marszalec
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Philip Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Juliette Logan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Weiming Yu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nicholas Schwarz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - David Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Philip Hockberger
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Abstract
Cardiac optical mapping has proven to be a powerful technology for studying cardiovascular function and disease. The development and scientific impact of this methodology are well-documented. Because of its relevance in cardiac research, this imaging technology advances at a rapid pace. Here, we review technological and scientific developments during the past several years and look toward the future. First, we explore key components of a modern optical mapping set-up, focusing on: (1) new camera technologies; (2) powerful light-emitting-diodes (from ultraviolet to red) for illumination; (3) improved optical filter technology; (4) new synthetic and optogenetic fluorescent probes; (5) optical mapping with motion and contraction; (6) new multiparametric optical mapping techniques; and (7) photon scattering effects in thick tissue preparations. We then look at recent optical mapping studies in single cells, cardiomyocyte monolayers, atria, and whole hearts. Finally, we briefly look into the possible future roles of optical mapping in the development of regenerative cardiac research, cardiac cell therapies, and molecular genetic advances.
Collapse
Affiliation(s)
- Todd J Herron
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109-2800, USA
| | | | | |
Collapse
|
28
|
Abstract
Calcium (Ca(2+)) is a ubiquitous signaling molecule that accumulates in the cytoplasm in response to diverse classes of stimuli and, in turn, regulates many aspects of cell function. In neurons, Ca(2+) influx in response to action potentials or synaptic stimulation triggers neurotransmitter release, modulates ion channels, induces synaptic plasticity, and activates transcription. In this article, we discuss the factors that regulate Ca(2+) signaling in mammalian neurons with a particular focus on Ca(2+) signaling within dendritic spines. This includes consideration of the routes of entry and exit of Ca(2+), the cellular mechanisms that establish the temporal and spatial profile of Ca(2+) signaling, and the biophysical criteria that determine which downstream signals are activated when Ca(2+) accumulates in a spine. Furthermore, we also briefly discuss the technical advances that made possible the quantitative study of Ca(2+) signaling in dendritic spines.
Collapse
Affiliation(s)
- Michael J Higley
- Department of Neurobiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
29
|
|
30
|
Trapani V, Schweigel-Röntgen M, Cittadini A, Wolf FI. Intracellular magnesium detection by fluorescent indicators. Methods Enzymol 2012; 505:421-44. [PMID: 22289466 DOI: 10.1016/b978-0-12-388448-0.00030-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Magnesium is essential for a wide variety of biochemical reactions and physiological functions, but its regulatory mechanisms (both at the cellular and at the systemic level) are still poorly characterized. Not least among the reasons for this gap are the technical difficulties in sensing minor changes occurring over a high background concentration. Specific fluorescent indicators are highly sensitive tools for dynamic evaluation of intracellular magnesium concentration. We herein discuss the main criteria to consider when choosing a magnesium-specific fluorescent indicator and provide examples among commercial as well as developmental sensors. We focus on spectrofluorimetric approaches to quantify Mg(2+) concentration in cell or mitochondria suspensions, and on imaging techniques to detect intracellular magnesium distribution and fluxes by live microscopy, reporting a detailed description of standard protocols for each method. The general guidelines we provide should be applicable to specific issues by any researcher in the field.
Collapse
Affiliation(s)
- Valentina Trapani
- Facoltà di Medicina e Chirurgia A. Gemelli, Istituto di Patologia Generale and Centro di Ricerche Oncologiche Giovanni XXIII, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | |
Collapse
|
31
|
Vetter I. Development and optimization of FLIPR high throughput calcium assays for ion channels and GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:45-82. [PMID: 22453938 DOI: 10.1007/978-94-007-2888-2_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ca(2+) permeable ion channels and GPCRs linked to Ca(2+) release are important drug targets, with modulation of Ca(2+) signaling increasingly recognized as a valid therapeutic strategy in a range of diseases. The FLIPR is a high throughput imaging plate reader that has contributed substantially to drug discovery efforts and pharmacological characterization of receptors and ion channels coupled to Ca(2+). Now in its fourth generation, the FLIPR(TETRA) is an industry standard for high throughput Ca(2+) assays. With an increasing number of excitation LED banks and emission filter sets available; FLIPR Ca(2+) assays are becoming more versatile. This chapter describes general methods for establishing robust FLIPR Ca(2+) assays, incorporating practical aspects as well as suggestions for assay optimization, to guide the reader in the development and optimization of high throughput FLIPR assays for ion channels and GPCRs.
Collapse
Affiliation(s)
- Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
32
|
|
33
|
Sapap3 deletion anomalously activates short-term endocannabinoid-mediated synaptic plasticity. J Neurosci 2011; 31:9563-73. [PMID: 21715621 DOI: 10.1523/jneurosci.1701-11.2011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retrograde synaptic signaling by endocannabinoids (eCBs) is a widespread mechanism for activity-dependent inhibition of synaptic strength in the brain. Although prevalent, the conditions for eliciting eCB-mediated synaptic depression vary among brain circuits. As yet, relatively little is known about the molecular mechanisms underlying this variation, although the initial signaling events are likely dictated by postsynaptic proteins. SAP90/PSD-95-associated proteins (SAPAPs) are a family of postsynaptic proteins unique to excitatory synapses. Using Sapap3 knock-out (KO) mice, we find that, in the absence of SAPAP3, striatal medium spiny neuron (MSN) excitatory synapses exhibit eCB-mediated synaptic depression under conditions that do not normally activate this process. The anomalous synaptic plasticity requires type 5 metabotropic glutamate receptors (mGluR5s), which we find are dysregulated in Sapap3 KO MSNs. Both surface expression and activity of mGluR5s are increased in Sapap3 KO MSNs, suggesting that enhanced mGluR5 activity may drive the anomalous synaptic plasticity. In direct support of this possibility, we find that, in wild-type (WT) MSNs, pharmacological enhancement of mGluR5 by a positive allosteric modulator is sufficient to reproduce the increased synaptic depression seen in Sapap3 KO MSNs. The same pharmacologic treatment, however, fails to elicit further depression in KO MSNs. Under conditions that are sufficient to engage eCB-mediated synaptic depression in WT MSNs, Sapap3 deletion does not alter the magnitude of the response. These results identify a role for SAPAP3 in the regulation of postsynaptic mGluRs and eCB-mediated synaptic plasticity. SAPAPs, through their effect on mGluR activity, may serve as regulatory molecules gating the threshold for inducing eCB-mediated synaptic plasticity.
Collapse
|
34
|
Elliott EB, Hasumi H, Otani N, Matsuda T, Matsuda R, Kaneko N, Smith GL, Loughrey CM. K201 (JTV-519) alters the spatiotemporal properties of diastolic Ca(2+) release and the associated diastolic contraction during β-adrenergic stimulation in rat ventricular cardiomyocytes. Basic Res Cardiol 2011; 106:1009-22. [PMID: 21901290 PMCID: PMC3228956 DOI: 10.1007/s00395-011-0218-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/24/2011] [Accepted: 08/20/2011] [Indexed: 11/25/2022]
Abstract
K201 has previously been shown to reduce diastolic contractions in vivo during β-adrenergic stimulation and elevated extracellular calcium concentration ([Ca2+]o). The present study characterised the effect of K201 on electrically stimulated and spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release and contractile events in isolated rat cardiomyocytes during β-adrenergic stimulation and elevated [Ca2+]o. Parallel experiments using confocal microscopy examined spontaneous diastolic Ca2+ release events at an enhanced spatiotemporal resolution. 1.0 μmol/L K201 in the presence of 150 nmol/L isoproterenol (ISO) and 4.75 mmol/L [Ca2+]o significantly decreased the amplitude of diastolic contractions to ~16% of control levels. The stimulated free Ca2+ transient amplitude was significantly reduced, but stimulated cell shortening was not significantly altered. When intracellular buffering was taken into account, K201 led to an increase in action potential-induced SR Ca2+ release. Myofilament sensitivity to Ca2+ was not changed by K201. Confocal microscopy revealed diastolic events composed of multiple Ca2+ waves (2–3) originating at various points along the cardiomyocyte length during each diastolic period. 1.0 μmol/L K201 significantly reduced the (a) frequency of diastolic events and (b) initiation points/diastolic interval in the remaining diastolic events to 61% and 71% of control levels respectively. 1.0 μmol/L K201 can reduce the probability of spontaneous diastolic Ca2+ release and their associated contractions which may limit the propensity for the contractile dysfunction observed in vivo.
Collapse
Affiliation(s)
- E. B. Elliott
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow, G12 8TA UK
| | - H. Hasumi
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi Japan
| | - N. Otani
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi Japan
| | - T. Matsuda
- Department of Cardiovascular Medicine, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi Japan
| | - R. Matsuda
- Department of Preventative Medical Sciences for the Heart, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi Japan
| | - N. Kaneko
- Utsunomiya Memorial Hospital, Utsunomiya, Japan
| | - G. L. Smith
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow, G12 8TA UK
| | - Christopher M. Loughrey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, University Place, Glasgow, G12 8TA UK
| |
Collapse
|
35
|
Lacerda SHDP, Semberova J, Holada K, Simakova O, Hudson SD, Simak J. Carbon nanotubes activate store-operated calcium entry in human blood platelets. ACS NANO 2011; 5:5808-13. [PMID: 21639133 DOI: 10.1021/nn2015369] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon nanotubes (CNTs) are known to potentiate arterial thrombosis in animal models, which raises serious safety issues concerning environmental or occupational exposure to CNTs and their use in various biomedical applications. We have shown previously that different CNTs, but not fullerene (nC60), induce the aggregation of human blood platelets. To date, however, a mechanism of potentially thrombogenic CNT-induced platelet activation has not been elucidated. Here we show that pristine multiwalled CNTs (MWCNTs) penetrate platelet plasma membrane without any discernible damage but interact with the dense tubular system (DTS) causing depletion of platelet intracellular Ca(2+) stores. This process is accompanied by the clustering of stromal interaction molecule 1 (STIM1) colocalized with Orai1, indicating the activation of store-operated Ca(2+) entry (SOCE). Our findings reveal the molecular mechanism of CNT-induced platelet activation which is critical in the evaluation of the biocompatibility of carbon nanomaterials with blood.
Collapse
Affiliation(s)
- Silvia H De Paoli Lacerda
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852-1448, USA
| | | | | | | | | | | |
Collapse
|
36
|
Franconville R, Revet G, Astorga G, Schwaller B, Llano I. Somatic calcium level reports integrated spiking activity of cerebellar interneurons in vitro and in vivo. J Neurophysiol 2011; 106:1793-805. [PMID: 21734102 DOI: 10.1152/jn.00133.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the relationship between somatic Ca²⁺ signals and spiking activity of cerebellar molecular layer interneurons (MLIs) in adult mice. Using two-photon microscopy in conjunction with cell-attached recordings in slices, we show that in tonically firing MLIs loaded with high-affinity Ca²⁺ probes, Ca²⁺-dependent fluorescence transients are absent. Spike-triggered averages of fluorescence traces for MLIs spiking at low rates revealed that the fluorescence change associated with an action potential is small (1% of the basal fluorescence). To uncover the relationship between intracellular Ca²⁺ concentration ([Ca²⁺](i)) and firing rates, spikes were transiently silenced with puffs of the GABA(A) receptor agonist muscimol. [Ca²⁺](i) relaxed toward basal levels following a single exponential whose amplitude correlated to the preceding spike frequency. The relaxation time constant was slow (2.5 s) and independent of the probe concentration. Data from parvalbumin (PV)-/- animals indicate that PV controls the amplitude and decay time of spike-triggered averages as well as the time course of [Ca²⁺](i) relaxations following spike silencing. The [Ca²⁺](i) signals were sensitive to the L-type Ca²⁺ channel blocker nimodipine and insensitive to ryanodine. In anesthetized mice, as in slices, fluorescence traces from most MLIs did not show spontaneous transients. They nonetheless responded to muscimol iontophoresis with relaxations similar to those obtained in vitro, suggesting a state of tonic firing with estimated spiking rates ranging from 2 to 30 Hz. Altogether, the [Ca²⁺](i) signal appears to reflect the integral of the spiking activity in MLIs. We propose that the muscimol silencing strategy can be extended to other tonically spiking neurons with similar [Ca²⁺](i) homeostasis.
Collapse
Affiliation(s)
- Romain Franconville
- Centre National de la Recherche Scientifique, Laboratoire de Physiologie Cérébrale, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
37
|
Novorodovskaya TS, Kulagina IB. Simulation Study of Non-Organellar Binding of Calcium by Fast and Slow Buffers in Dendrites Containing an Organellar Store. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Sumalekshmy S, Fahrni CJ. Metal Ion-Responsive Fluorescent Probes for Two-Photon Excitation Microscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2011; 23:483-500. [PMID: 28503029 PMCID: PMC5427716 DOI: 10.1021/cm1021905] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metal ion-responsive fluorescent probes are powerful tools for visualizing labile metal ion pools in live cells. To take full advantage of the benefits offered by two-photon excitation microscopy, including increased depth penetration, reduced phototoxicity, and intrinsic 3D capabilities, the photophysical properties of the probes must be optimized for nonlinear excitation. This review summarizes the challenges associated with the design of two-photon excitable fluorescent probes and labels and offers an overview on recent efforts in developing selective and sensitive reagents for the detection of metal ions in biological systems.
Collapse
|
39
|
Novorodovskaya TS, Korogod SM. Comparative Model Analysis of Calcium Exchange between the Cytosol and Stores of Mitochondria or Endoplasmic Reticulum. NEUROPHYSIOLOGY+ 2010. [DOI: 10.1007/s11062-010-9107-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Trapani V, Farruggia G, Marraccini C, Iotti S, Cittadini A, Wolf FI. Intracellular magnesium detection: imaging a brighter future. Analyst 2010; 135:1855-66. [DOI: 10.1039/c0an00087f] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Smith G, Reynolds M, Burton F, Kemi OJ. Confocal and Multiphoton Imaging of Intracellular Ca2+. Methods Cell Biol 2010; 99:225-61. [DOI: 10.1016/b978-0-12-374841-6.00009-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
42
|
Losavio BE, Iyer V, Saggau P. Two-photon microscope for multisite microphotolysis of caged neurotransmitters in acute brain slices. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:064033. [PMID: 20059271 PMCID: PMC2809696 DOI: 10.1117/1.3275468] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We developed a two-photon microscope optimized for physiologically manipulating single neurons through their postsynaptic receptors. The optical layout fulfills the stringent design criteria required for high-speed, high-resolution imaging in scattering brain tissue with minimal photodamage. We detail the practical compensation of spectral and temporal dispersion inherent in fast laser beam scanning with acousto-optic deflectors, as well as a set of biological protocols for visualizing nearly diffraction-limited structures and delivering physiological synaptic stimuli. The microscope clearly resolves dendritic spines and evokes electrophysiological transients in single neurons that are similar to endogenous responses. This system enables the study of multisynaptic integration and will assist our understanding of single neuron function and dendritic computation.
Collapse
Affiliation(s)
- Bradley E Losavio
- Baylor College of Medicine, Department of Neuroscience, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
43
|
Lusche DF, Wessels D, Soll DR. The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:567-87. [PMID: 19363786 PMCID: PMC2747089 DOI: 10.1002/cm.20367] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular Ca(++), a ubiquitous cation in the soluble environment of cells both free living and within the human body, regulates most aspects of amoeboid cell motility, including shape, uropod formation, pseudopod formation, velocity, and turning in Dictyostelium discoideum. Hence it affects the efficiency of both basic motile behavior and chemotaxis. Extracellular Ca(++) is optimal at 10 mM. A gradient of the chemoattractant cAMP generated in the absence of added Ca(++) only affects turning, but in combination with extracellular Ca(++), enhances the effects of extracellular Ca(++). Potassium, at 40 mM, can partially substitute for Ca(++). Mg(++), Mn(++), Zn(++), and Na(+) cannot. Extracellular Ca(++), or K(+), also induce the cortical localization of myosin II in a polar fashion. The effects of Ca(++), K(+) or a cAMP gradient do not appear to be similarly mediated by an increase in the general pool of free cytosolic Ca(++). These results suggest a model, in which each agent functioning through different signaling systems, converge to affect the cortical localization of myosin II, which in turn effects the behavioral changes leading to efficient cell motility and chemotaxis. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Daniel F Lusche
- Department of Biology, The W.M. Keck Dynamic Image Analysis Facility, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | |
Collapse
|
44
|
Impact of Geometrical Characteristics of the Organellar Store and Organelle-Free Cytosol on Intracellular Calcium Dynamics in the Dendrite: a Simulation Study. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9072-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Oliveira JM, Gonçalves J. In Situ Mitochondrial Ca2+ Buffering Differences of Intact Neurons and Astrocytes from Cortex and Striatum. J Biol Chem 2009; 284:5010-20. [DOI: 10.1074/jbc.m807459200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
46
|
Zinselmeyer BH, Dempster J, Wokosin DL, Cannon JJ, Pless R, Parker I, Miller MJ. Chapter 16. Two-photon microscopy and multidimensional analysis of cell dynamics. Methods Enzymol 2009; 461:349-78. [PMID: 19480927 DOI: 10.1016/s0076-6879(09)05416-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two-photon (2P) microscopy is a high-resolution imaging technique that was initially applied by neurobiologists and developmental cell biologists but has subsequently been broadly adapted by immunologists. The value of 2P microscopy is that it affords an unparalleled view of single-cell spatiotemporal dynamics deep within intact tissues and organs. As the technology develops and new transgenic mice and fluorescent probes become available, 2P microscopy will serve as an increasingly valuable tool for assessing cell function and probing molecular mechanisms. Here we discuss the technical aspects related to 2P microscope design, explain in detail various tissue imaging preparations, and walk the reader through the often daunting process of analyzing multidimensional data sets and presenting the experimental results.
Collapse
Affiliation(s)
- Bernd H Zinselmeyer
- Washington University School of Medicine, Department of Pathology and Immunology, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Paredes RM, Etzler JC, Watts LT, Zheng W, Lechleiter JD. Chemical calcium indicators. Methods 2008; 46:143-51. [PMID: 18929663 PMCID: PMC2666335 DOI: 10.1016/j.ymeth.2008.09.025] [Citation(s) in RCA: 419] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 09/12/2008] [Indexed: 11/24/2022] Open
Abstract
Our understanding of the underlying mechanisms of Ca2+ signaling as well as our appreciation for its ubiquitous role in cellular processes has been rapidly advanced, in large part, due to the development of fluorescent Ca2+ indicators. In this chapter, we discuss some of the most common chemical Ca2+ indicators that are widely used for the investigation of intracellular Ca2+ signaling. Advantages, limitations and relevant procedures will be presented for each dye including their spectral qualities, dissociation constants, chemical forms, loading methods and equipment for optimal imaging. Chemical indicators now available allow for intracellular Ca2+ detection over a very large range (<50 nM to >50 microM). High affinity indicators can be used to quantify Ca2+ levels in the cytosol while lower affinity indicators can be optimized for measuring Ca2+ in subcellular compartments with higher concentrations. Indicators can be classified into either single wavelength or ratiometric dyes. Both classes require specific lasers, filters, and/or detection methods that are dependent upon their spectral properties and both classes have advantages and limitations. Single wavelength indicators are generally very bright and optimal for Ca2+ detection when more than one fluorophore is being imaged. Ratiometric indicators can be calibrated very precisely and they minimize the most common problems associated with chemical Ca2+ indicators including uneven dye loading, leakage, photobleaching, and changes in cell volume. Recent technical advances that permit in vivo Ca2+ measurements will also be discussed.
Collapse
Affiliation(s)
- R Madelaine Paredes
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
49
|
Bothwell JHF, Kisielewska J, Genner MJ, McAinsh MR, Brownlee C. Ca2+ signals coordinate zygotic polarization and cell cycle progression in the brown alga Fucus serratus. Development 2008; 135:2173-81. [PMID: 18480164 DOI: 10.1242/dev.017558] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Zygotes of the fucoid brown algae provide excellent models for addressing fundamental questions about zygotic symmetry breaking. Although the acquisition of polarity is tightly coordinated with the timing and orientation of the first asymmetric division--with zygotes having to pass through a G1/S-phase checkpoint before the polarization axis can be fixed--the mechanisms behind the interdependence of polarization and cell cycle progression remain unclear. In this study, we combine in vivo Ca2+ imaging, single cell monitoring of S-phase progression and multivariate analysis of high-throughput intracellular Ca2+ buffer loading to demonstrate that Ca2+ signals coordinate polarization and cell cycle progression in the Fucus serratus zygote. Consistent with earlier studies on this organism, and in contrast to animal models, we observe no fast Ca2+ wave following fertilization. Rather, we show distinct slow localized Ca2+ elevations associated with both fertilization and S-phase progression, and we show that both S-phase and zygotic polarization are dependent on pre-S-phase Ca2+ increases. Surprisingly, this Ca2+ requirement cannot be explained by co-dependence on a single G1/S-phase checkpoint, as S phase and zygotic polarization are differentially sensitive to pre-S-phase Ca2+ elevations and can be uncoupled. Furthermore, subsequent cell cycle progression through M phase is independent of localized actin polymerization and zygotic polarization. This absence of a morphogenesis checkpoint, together with the observed Ca2+-dependences of S phase and polarization, show that the regulation of zygotic division in the brown algae differs from that in other eukaryotic model systems, such as yeast and Drosophila.
Collapse
Affiliation(s)
- John H F Bothwell
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB,UK
| | | | | | | | | |
Collapse
|
50
|
Jiménez-Moreno R, Wang ZM, Gerring RC, Delbono O. Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J 2008; 94:3178-88. [PMID: 18178643 PMCID: PMC2275691 DOI: 10.1529/biophysj.107.118786] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 12/03/2007] [Indexed: 11/18/2022] Open
Abstract
This study hypothesized that decline in sarcoplasmic reticulum (SR) Ca(2+) release and maximal SR-releasable Ca(2+) contributes to decreased specific force with aging. To test it, we recorded electrically evoked maximal isometric specific force followed by 4-chloro-m-cresol (4-CmC)-evoked maximal contracture force in single intact fibers from the mouse flexor digitorum brevis muscle. Significant differences in tetanic, but not in 4-CmC-evoked, contracture forces were recorded in fibers from aging mice as compared to younger mice. Peak intracellular Ca(2+) in response to 4-CmC did not differ significantly. SR Ca(2+) release was recorded in whole-cell patch-clamped fibers in the linescan mode of confocal microscopy using a low-affinity Ca(2+) indicator (Oregon green bapta-5N) with high-intracellular ethylene glycol-bis(alpha-aminoethyl ether)-N,N,N'N'-tetraacetic acid (20 mM). Maximal SR Ca(2+) release, but not voltage dependence, was significantly changed in fibers from old compared to young mice. Increasing the duration of fiber depolarization did not increase the maximal rate of SR Ca(2+) release in fibers from old compared to young mice. Voltage-dependent inactivation of SR Ca(2+) release did not differ significantly between fibers from young and old mice. These findings indicate that alterations in excitation-contraction coupling, but not in maximal SR-releasable Ca(2+), account for the age-dependent decline in intracellular Ca(2+) mobilization and specific force.
Collapse
Affiliation(s)
- Ramón Jiménez-Moreno
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|