1
|
Krupa H, Gearhardt AN, Lewandowski A, Avena NM. Food Addiction. Brain Sci 2024; 14:952. [PMID: 39451967 PMCID: PMC11506718 DOI: 10.3390/brainsci14100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we aim to draw a connection between drug addiction and overconsumption of highly palatable food (OHPF) by discussing common behaviors and neurochemical pathways shared by these two states. OHPF can stimulate reward pathways in the brain that parallel those triggered by drug use, increasing the risk of dependency. Behavioral similarities between food and drug addiction can be addressed by tracking their stages: loss of control when eating (bingeing), withdrawal, craving, sensitization, and cross-sensitization. The brain adapts to addiction by way of the mesolimbic dopamine system, endogenous opioids and receptors, acetylcholine and dopamine balance, and adaptations of serotonin in neuroanatomy. Studies from the current literature are reviewed to determine how various neurological chemicals contribute to the reinforcement of drug addiction and OHPF. Finally, protocols for treating food addiction are discussed, including both clinical and pharmacological modalities. There is consistent evidence that OHPF changes brain chemistry and leads to addiction in similar ways to drugs. However, more long-term research is needed on food addiction, binge eating, and their neurobiological effects.
Collapse
Affiliation(s)
- Haley Krupa
- Marian Regional Medical Center, Santa Maria, CA 93454, USA;
| | | | | | - Nicole M. Avena
- Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
2
|
Pendergast JS, Yamazaki S. The Mysterious Food-Entrainable Oscillator: Insights from Mutant and Engineered Mouse Models. J Biol Rhythms 2018; 33:458-474. [PMID: 30033846 DOI: 10.1177/0748730418789043] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The food-entrainable oscillator (FEO) is a mysterious circadian clock because its anatomical location(s) and molecular timekeeping mechanism are unknown. Food anticipatory activity (FAA), which is defined as the output of the FEO, emerges during temporally restricted feeding. FAA disappears immediately during ad libitum feeding and reappears during subsequent fasting. A free-running FAA rhythm has been observed only in rare circumstances when food was provided with a period outside the range of entrainment. Therefore, it is difficult to study the circadian properties of the FEO. Numerous studies have attempted to identify the critical molecular components of the FEO using mutant and genetically engineered mouse models. Herein we critically review the experimental protocols and findings of these studies in mouse models. Several themes emerge from these studies. First, there is little consistency in restricted feeding protocols between studies. Moreover, the protocols were sometimes not optimal, resulting in erroneous conclusions that FAA was absent in some mouse models. Second, circadian genes are not necessary for FEO timekeeping. Thus, another noncanonical timekeeping mechanism must exist in the FEO. Third, studies of mouse models have shown that signaling pathways involved in circadian timekeeping, reward (dopaminergic), and feeding and energy homeostasis can modulate, but are not necessary for, the expression of FAA. In sum, the approaches to date have been largely unsuccessful in discovering the timekeeping mechanism of the FEO. Moving forward, we propose the use of standardized and optimized experimental protocols that focus on identifying genes that alter the period of FAA in mutant and engineered mouse models. This approach is likely to permit discovery of molecular components of the FEO timekeeping mechanism.
Collapse
Affiliation(s)
| | - Shin Yamazaki
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
So M, Hashimoto H, Saito R, Yamamoto Y, Motojima Y, Ueno H, Sonoda S, Yoshimura M, Maruyama T, Kusuhara K, Ueta Y. Inhibition of ghrelin-induced feeding in rats by pretreatment with a novel dual orexin receptor antagonist. J Physiol Sci 2018; 68:129-136. [PMID: 28054308 PMCID: PMC6394659 DOI: 10.1007/s12576-016-0517-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Orexin-A and -B, and ghrelin are potent orexigenic peptides. The effects of ACT462206, a novel dual orexin receptor antagonist (DORA), on ghrelin-induced feeding were examined in adult male Wistar rats. Hyperphagia induced by the intracerebroventricular (icv) administration of ghrelin was significantly suppressed for at least 2 h by pretreatment with icv administration of DORA. A marked increase was observed in the number of neurons showing Fos immunoreactivity in the paraventricular nucleus, arcuate nucleus and lateral hypothalamic area (LHA), 90 min after icv administration of ghrelin. Pretreatment with DORA significantly decreased the number of Fos-immunoreactive (IR) neurons; however, Fos immunoreactivity remained significantly increased. Double-immunostaining for Fos and orexin-A showed that many orexin-A-IR neurons in the LHA coexisted with Fos immunoreactivity after icv administration of ghrelin, but their number was reduced significantly by DORA pretreatment. These results suggest that centrally administered ghrelin may activate the orexinergic and non-orexinergic pathways responsible for the regulation of feeding.
Collapse
Affiliation(s)
- Mariko So
- Department of Health and Nutritional Care, Faculty of Medical Science, University of East Asia, Shimonoseki, 751-0807, Japan
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yukiyo Yamamoto
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
4
|
Central amygdalar nucleus treated with orexin neuropeptides evoke differing feeding and grooming responses in the hamster. J Neurol Sci 2015; 351:46-51. [PMID: 25732800 DOI: 10.1016/j.jns.2015.02.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/27/2015] [Accepted: 02/16/2015] [Indexed: 01/23/2023]
Abstract
Interaction of the orexinergic (ORXergic) neuronal system with the excitatory (glutamate, l-Glu) or the inhibitory (GABA) neurosignaling complexes evokes major homeostatic physiological events. In this study, effects of the two ORXergic neuropeptides (ORX-A/B) on their receptor (ORX-2R) expression changes were correlated to feeding and grooming actions of the hibernating hamster (Mesocricetus auratus). Infusion of the central amygdala nucleus (CeA) with ORX-A caused hamsters to consume notable quantities of food, while ORX-B accounted for a moderate increase. Interestingly the latter neuropeptide was responsible for greater frequencies of grooming with respect to both controls and the hamsters treated with ORX-A. These distinct behavioral changes turned out to be even greater in the presence of l-Glu agonist (NMDA) while the α1 GABAA receptor agonist (zolpidem, Zol) greatly reduced ORX-A-dependent feeding bouts. Moreover, ORX-A+NMDA mainly promoted greater ORX-2R expression levels with respect to ORX-A-treated hamsters while ORX-B+Zol was instead largely responsible for a down-regulatory trend. Overall, these features point to CeA ORX-2R sites as key sensory limbic elements capable of regulating eating and grooming responses, which may provide useful insights regarding the type of molecular mechanism(s) operating during feeding bouts.
Collapse
|
5
|
Role of dorsal hippocampal orexin-1 receptors in associating morphine reward with contextual stimuli. Behav Pharmacol 2013; 24:237-48. [PMID: 23787292 DOI: 10.1097/fbp.0b013e3283635ee9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, we evaluated the role of orexin receptors in the dorsal hippocampus (dHPC) in the development of morphine-induced conditioned place preference (CPP) and modification of hippocampal c-Fos and cyclic AMP response element-binding protein (CREB) levels. Orexin-A (0.5, 5, and 50 pmol) and the orexin-1 receptor antagonist, SB334867 (10, 20, and 40 nmol), were bilaterally infused into the dHPC immediately before conditioning with morphine (0.5 or 7.5 mg/kg) using the CPP task. Western blotting was then used to measure the protein levels of c-Fos, total CREB, and phosphorylated CREB (pCREB) in the hippocampus. Orexin did not enhance the rewarding efficacy of morphine (0.5 mg/kg), but caused a reduction in hippocampal c-Fos. Successful conditioning with morphine (7.5 mg/kg) was associated with increased levels of hippocampal c-Fos and CREB, but with decreased CREB phosphorylation. Intrahippocampal administration of SB334867 before conditioning sessions disrupted the rewarding effect of morphine (7.5 mg/kg) and blocked morphine-induced increases in hippocampal CREB protein levels. The results suggest that orexin signaling within the dHPC is necessary for the development of morphine CPP. Morphine reward is related to altered levels of hippocampal c-Fos and CREB. Inhibition of morphine-induced increases in CREB levels might be the underlying mechanism for the disruption of morphine CPP.
Collapse
|
6
|
Patton DF, Mistlberger RE. Circadian adaptations to meal timing: neuroendocrine mechanisms. Front Neurosci 2013; 7:185. [PMID: 24133410 PMCID: PMC3796263 DOI: 10.3389/fnins.2013.00185] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 09/24/2013] [Indexed: 12/11/2022] Open
Abstract
Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is directly entrained by daily light-dark (LD) cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs) that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this system.
Collapse
Affiliation(s)
- Danica F Patton
- Department of Psychology, Simon Fraser University Burnaby, BC, Canada
| | | |
Collapse
|
7
|
Affiliation(s)
- Dyan Sellayah
- Metabolic Signaling and Disease Program; Diabetes and Obesity Research Center; Sanford-Burnham Medical Research Institute; Orlando Florida
| | - Devanjan Sikder
- Metabolic Signaling and Disease Program; Diabetes and Obesity Research Center; Sanford-Burnham Medical Research Institute; Orlando Florida
| |
Collapse
|
8
|
Orexin-1 receptor antagonism fails to reduce anxiety-like behaviour in either plus-maze-naïve or plus-maze-experienced mice. Behav Brain Res 2013; 243:213-9. [PMID: 23333844 DOI: 10.1016/j.bbr.2012.12.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 11/20/2022]
Abstract
Although several lines of evidence have recently implicated orexins and their receptors in fear and anxiety, there is also a growing number of apparently inconsistent and/or negative findings. In the present study, we have used ethological methods to comprehensively profile the behavioural effects of the orexin-1 receptor antagonist SB-334867 (3-30 mg/kg) in mice exposed to the elevated plus-maze. Two experiments were performed, the first involving test-naïve animals and the second using prior undrugged experience of the maze to induce a qualitatively different emotional response to that seen on first exposure. In Experiment 1, a reference benzodiazepine (chlordiazepoxide, CDP, 15 mg/kg) produced a robust anxioselective profile comprising substantial increases in open arm exploration and reduced risk assessment without any signiifcant change in general activity levels. In contrast, SB-334867 failed to produce any behavioural effects over the dose range tested. In Experiment 2, 5 min undrugged experience of the maze 24h prior to testing increased open arm avoidance and abolished the anxiolytic efficacy of CDP. Despite this altered baseline, SB-334867 again failed to alter plus-maze behaviour. These findings agree with several recent reports that orexin receptor antagonists, such as SB-334867 and almorexant, do not alter basal anxiety levels in rats but markedly contrast with the anxiolytic-like effects of the same agents when anxiety levels have been exacerbated by fear conditioning, drug challenge or hypercapnia. This unique pattern of activity suggests that orexin receptor antagonists may have therapeutic value in those clinical anxiety disorders characterised by intense emotional arousal.
Collapse
|
9
|
Karakus M, Gelisgen R, Topcuoglu A, Guralp O, Topcuoglu D, Simsek G, Uludag S, Uzun H. The effects of 17β-estradiol plus drospirenone on anthropometric and biochemical measures of adiposity in menopausal women. Arch Gynecol Obstet 2012; 286:1233-9. [DOI: 10.1007/s00404-012-2437-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 06/14/2012] [Indexed: 11/27/2022]
|
10
|
Abstract
In this chapter, we give an overview of the current status of the role of orexins in feeding and energy homeostasis. Orexins, also known as hypocretins, initially were discovered in 1998 as hypothalamic regulators of food intake. A little later, their far more important function as regulators of sleep and arousal came to light. Despite their restricted distribution, orexin neurons have projections throughout the entire brain, with dense projections especially to the paraventricular nucleus of the thalamus, the arcuate nucleus of the hypothalamus, and the locus coeruleus and tuberomammillary nucleus. Its two receptors are orexin receptor 1 and orexin receptor 2. These receptors show a specific and localized distribution in a number of brain regions, and a variety of different actions has been demonstrated upon their binding. Our group showed that through the autonomic nervous system, the orexin system plays a key role in the control of glucose metabolism, but it has also been shown to stimulate sympathetic outflow, to increase body temperature, heart rate, blood pressure, and renal sympathetic nerve activity. The well-known effects of orexin on the control of food intake, arousal, and wakefulness appear to be more extensive than originally thought, with additional effects on the autonomic nervous system, that is, to increase body temperature and energy metabolism.
Collapse
|
11
|
Sellayah D, Bharaj P, Sikder D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab 2011; 14:478-90. [PMID: 21982708 DOI: 10.1016/j.cmet.2011.08.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/29/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022]
Abstract
Orexin (OX) neuropeptides stimulate feeding and arousal. Deficiency of orexin is implicated in narcolepsy, a disease associated with obesity, paradoxically in the face of reduced food intake. Here, we show that obesity in orexin-null mice is associated with impaired brown adipose tissue (BAT) thermogenesis. Failure of thermogenesis in OX-null mice is due to inability of brown preadipocytes to differentiate. The differentiation defect in OX-null neonates is circumvented by OX injections to OX-null dams. In vitro, OX, triggers the full differentiation program in mesenchymal progenitor stem cells, embryonic fibroblasts and brown preadipocytes via p38 mitogen activated protein (MAP) kinase and bone morphogenetic protein receptor-1a (BMPR1A)-dependent Smad1/5 signaling. Our study suggests that obesity associated with OX depletion is linked to brown-fat hypoactivity, which leads to dampening of energy expenditure. Thus, orexin plays an integral role in adaptive thermogenesis and body weight regulation via effects on BAT differentiation and function.
Collapse
Affiliation(s)
- Dyan Sellayah
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | | | | |
Collapse
|
12
|
Bronsky J, Nedvidkova J, Krasnicanova H, Vesela M, Schmidtova J, Koutek J, Kellermayer R, Chada M, Kabelka Z, Hrdlicka M, Nevoral J, Prusa R. Changes of orexin A plasma levels in girls with anorexia nervosa during eight weeks of realimentation. Int J Eat Disord 2011; 44:547-52. [PMID: 21823139 DOI: 10.1002/eat.20857] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2010] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Orexin A (OXA) is a hypothalamic neuropeptide involved in regulation of food intake and nutritional status. There are multiple disturbances of neuropeptide signaling described in girls with anorexia nervosa (AN), but OXA levels have not been addressed in this population to date. Therefore, we analyzed OXA levels of AN girls in this study. METHOD OXA (radioimmunoassay/RIA/method), leptin, insulinlike growth factor-1 (IGF-1), and insulinlike growth factor-1 binding protein-3 (IGFBP-3) levels were measured before and after 8 weeks of realimentation in 36 girls with AN and in 14 healthy controls (control group: CG). RESULTS Average weight increased significantly in AN during the study (p < .0001), while plasma levels of OXA decreased (before realimentation: 56.2 ± 2.4 pg/ml; after realimentation: 47.5 ± 1.4 pg/ml; p = .0025). OXA levels before realimentation differed from levels in the CG (47.15 ± 2.6 pg/ml, p = .034), but not afterward. We did not find any correlation between OXA and age, height, weight, BMI; or IGF-1, IGFBP-3, and leptin levels. DISCUSSION OXA levels in untreated AN patients differ significantly from healthy subjects and decrease during realimentation. These findings indicate that OXA may be involved in the nutritional regulation of malnourished children and adolescents.
Collapse
Affiliation(s)
- Jiri Bronsky
- Department of Pediatrics, Second Medical Faculty, Charles University and University Hospital Motol, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Akimoto S, Miyasaka K. Age-associated changes of appetite-regulating peptides. Geriatr Gerontol Int 2010; 10 Suppl 1:S107-19. [PMID: 20590826 DOI: 10.1111/j.1447-0594.2010.00587.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging is associated with a progressive decrease in appetite and food intake. The reasons for the decline in food intake are multifactorial, and relate to both peripheral and central mechanisms. Current studies about the regulation of food intake suggest that there are many central mediators that control the appetite. To determine the mechanism of age-associated decrease in appetite and food intake, we focused on the age-associated changes of the suppressing and stimulatory effect of some appetite-regulating peptides. At first, we examined cholecystokinin (CCK), one of the typical appetite-suppressing factors. Although sensitivity to CCK is enhanced in old animals, the mechanism underlying this effect has not been elucidated. Next, we focused on the appetite-stimulating peptides, orexin-A, neuropeptide Y (NPY) and ghrelin, which are known to play a critical role in food intake. To determine the age-associated decrease in appetite and food intake, we compared the stimulatory effect of intracerebroventricular administration of orexin-A, NPY and ghrelin. We report the studies of the age-associated changes of appetite-regulating peptides in this review.
Collapse
Affiliation(s)
- Saeko Akimoto
- Tokyo Metropolitan Institute of Gerontology, Tokyo Kasei University, Itabashiku, Tokyo, Japan
| | | |
Collapse
|
14
|
Abstract
The hypocretins or orexins are endogenous neuropeptides synthesized in discrete lateral, perifornical and dorsal hypothalamic neurones. These multi-functional neuropeptides modulate energy homeostasis, arousal, stress, reward, reproduction and cardiovascular function. This review summarizes the role of hypocretins in modulating non-sleep-related energy expenditure with specific focus on the augmentation of whole body energy expenditure as well as hypocretin-induced physical activity and sympathetic outflow. We compare the efficacy of hypocretin-1 and 2 on energy expenditure and evaluate whether the literature implicates hypocretin signalling though the hypocretin-1 and -2 receptor as having shared and or functionally specific physiological effects. Thus far data suggest that hypocretin-1 has a more robust stimulatory effect relative to hypocretin-2. Furthermore, hypocretin-1 receptor predominantly mediates behaviours known to influence energy expenditure. Further studies on the hypocretin-2 receptor are needed.
Collapse
Affiliation(s)
- J A Teske
- Veterans Affairs Medical Center, Minneapolis, MN 55417, USA.
| | | | | |
Collapse
|
15
|
Hutchinson DS, Summers RJ, Bengtsson T. Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: Potential utility in treatment of diabetes and heart disease. Pharmacol Ther 2008; 119:291-310. [DOI: 10.1016/j.pharmthera.2008.05.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 12/25/2022]
|
16
|
Papakonstantinou P, Tziris N, Kesisoglou I, Gotzamani-Psarrakou A, Tsonidis C, Patsikas M, Papazoglou L. Impact of Porcine Orexin a on Glucagon Plasma Concentrations in Pigs. Int J Immunopathol Pharmacol 2008; 21:527-38. [DOI: 10.1177/039463200802100306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In 1998, Orexin A was added to the long list of orexigenic neuropeptides of the brain's physiology. Orexin A is involved in the central control of appetite and in energy homeostasis, as well as in the regulation of many other physiological functions. It is produced by a small cluster of the brain's neurons, located mainly in and around the lateral hypothalamic area. This site is known to be involved in regulating feeding in mammals. An intracerebroventricular injection of Orexin A into the rat's brain causes an impressive increase in the consumption of food, while an intravenous injection induces changes on glucagon plasma concentrations in rats. In addition, there are signs of changes on glucagon plasma concentrations when Orexin A acts on individual pancreatic islets of rats. In this study, we investigated the potential effects of the central administration of porcine Orexin A on glucagon plasma concentrations in pigs, and examined whether these changes are associated with the possible effect of the neuropeptide on the enteroinsular axis.
Collapse
Affiliation(s)
| | | | - I. Kesisoglou
- Department of Nuclear Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - A. Gotzamani-Psarrakou
- 2nd Neurosurgical Clinic A. U. T., Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | - Chr. Tsonidis
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Macedonia, Greece
| | | | | |
Collapse
|
17
|
Abstract
Orexin A (OXA) and orexin B were originally isolated as hypothalamic peptides regulating sleep, wakefulness and feeding. However, growing evidence suggests that orexins have major functions also in the peripheral tissues. Central orexigenic pathways originating from medulla activate the hypothalamus-pituitary axis and can influence the sympathetic tone. Orexins and their receptors are widely dispersed throughout the intestine, where orexin receptors are regulated by the nutritional status, affect insulin secretion and intestinal motility. Although the primary source of the peptide has not been elucidated, OXA is detected in plasma and its level varies in response to the metabolic state. In this review, we focus on the current knowledge on peripheral functions of orexins and discuss possible endocrine, paracrine and neurocrine roles.
Collapse
Affiliation(s)
- M V Heinonen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | |
Collapse
|
18
|
Akbari E, Motamedi F, Naghdi N, Noorbakhshnia M. The effect of antagonization of orexin 1 receptors in CA1 and dentate gyrus regions on memory processing in passive avoidance task. Behav Brain Res 2007; 187:172-7. [PMID: 17977608 DOI: 10.1016/j.bbr.2007.09.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 09/01/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
The hippocampal formation plays an essential role in associative learning like passive avoidance (PA) learning. It has been shown; orexin-containing terminals and orexin receptors densely are distributed in the hippocampal formation. We have previously demonstrated that antagonization of orexin 1 receptor (OX1R) in CA1 region of hippocampus and dentate gyrus (DG) impaired spatial memory processing. Although, there are few studies concerning function of orexinergic system on memory processing in PA task, but there is no study about physiological function of OX1R on this process. To address this, the OX1R antagonist, SB-334867-A, was injected into DG or CA1 regions of hippocampus and evaluated the influence of OX1R antagonization on acquisition, consolidation and retrieval in PA task. Our results show that, SB-334867-A administration into CA1 region impaired memory retrieval but not PA acquisition and consolidation. However, SB-334867-A administration into DG region impaired acquisition and consolidation but not PA memory retrieval. Therefore, it seems that endogenous orexins play an important role in learning and memory in the rat through OX1Rs.
Collapse
Affiliation(s)
- Esmaeil Akbari
- Department of Physiology and Neuroscience Research Center, Shaheed Beheshti University, Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
19
|
Papakonstantinou P, Tziris N, Kesisoglou I, Gotzamani-Psarrakou A, Tsonidis C, Patsikas M, Papazoglou L. The Effect of Porcine Orexin a on C-Peptide Plasma Concentrations in Pigs. EUR J INFLAMM 2007. [DOI: 10.1177/1721727x0700500303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The hypothalamus and the neuropeptides that are produced and act within its neuronal circuits constitute an area of extensive laboratory research. In 1998, the neuropeptide, Orexin A, was discovered and isolated from the hypothalamus of the rat. An i.c.v. injection of Orexin A into the lateral ventricle of the rat's brain causes an increase in the consumption of food, and, apart from appetite, it also seems to be regulating many other normal functions of the organism, whose regulatory and metabolic mechanisms remain unknown to date. The neuropeptide is produced by a small cluster located in and round the lateral hypothalamic area. It has been known for decades that this area is involved in the regulation of feeding and energy homeostasis in mammals. The intravenous, subcutaneous, or i.c.v. injection of Orexin A causes changes in insulin and glucagon concentrations. The same effect is also seen under in vitro experimental conditions. In this study, we investigated the potential effects of i.c.v. administration of porcine Orexin A on c-peptide concentrations in the peripheral blood of pigs, and tested whether these changes are associated with the potential effect of the neuropeptide on the function of the pancreas.
Collapse
Affiliation(s)
| | | | - I. Kesisoglou
- 3rd Surgical Clinic, Aristotle University of Thessaloniki, Macedonia, Thessaloniki, Greece
| | - A. Gotzamani-Psarrakou
- Department of Nuclear Medicine, Aristotle University of Thessaloniki, Macedonia, Thessaloniki, Greece
| | - C. Tsonidis
- 2nd Neurosurgical Clinic A. U. T., Aristotle University of Thessaloniki, Macedonia, Thessaloniki, Greece
| | | | - L.G. Papazoglou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Macedonia, Thessaloniki, Greece
| |
Collapse
|
20
|
Zhang S, Zeitzer JM, Sakurai T, Nishino S, Mignot E. Sleep/wake fragmentation disrupts metabolism in a mouse model of narcolepsy. J Physiol 2007; 581:649-63. [PMID: 17379635 PMCID: PMC2075199 DOI: 10.1113/jphysiol.2007.129510] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recent population studies have identified important interrelationships between sleep duration and body weight regulation. The hypothalamic hypocretin/orexin neuropeptide system is able to influence each of these. Disruption of the hypocretin system, such as occurs in narcolepsy, leads to a disruption of sleep and is often associated with increased body mass index. We examined the potential interrelationship between the hypocretin system, metabolism and sleep by measuring locomotion, feeding, drinking, body temperature, sleep/wake and energy metabolism in a mouse model of narcolepsy (ataxin-ablation of hypocretin-expressing neurons). We found that locomotion, feeding, drinking and energy expenditure were significantly reduced in the narcoleptic mice. These mice also exhibited severe sleep/wake fragmentation. Upon awakening, transgenic and control mice displayed a similar rate of increase in locomotion and food/water intake with time. A lack of long wake episodes partially or entirely explains observed differences in overall locomotion, feeding and drinking in these transgenic mice. Like other parameters, energy expenditure also rose and fell depending on the sleep/wake status. Unlike other parameters, however, energy expenditure in control mice increased upon awakening at a greater rate than in the narcoleptic mice. We conclude that the profound sleep/wake fragmentation is a leading cause of the reduced locomotion, feeding, drinking and energy expenditure in the narcoleptic mice under unperturbed conditions. We also identify an intrinsic role of the hypocretin system in energy expenditure that may not be dependent on sleep/wake regulation, locomotion, or food intake. This investigation illustrates the need for coordinated study of multiple phenotypes in mouse models with altered sleep/wake patterns.
Collapse
Affiliation(s)
- Shengwen Zhang
- Psychiatry and Behavioural Sciences, Stanford University, Palo Alto, CA 94304-5742, USA
| | | | | | | | | |
Collapse
|
21
|
Ellis J, Pediani JD, Canals M, Milasta S, Milligan G. Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J Biol Chem 2006; 281:38812-24. [PMID: 17015451 DOI: 10.1074/jbc.m602494200] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Following inducible expression in HEK293 cells, the human orexin-1 receptor was targeted to the cell surface but became internalized following exposure to the peptide agonist orexin A. By contrast, constitutive expression of the human cannabinoid CB1 receptor resulted in a predominantly punctate, intracellular distribution pattern consistent with spontaneous, agonist-independent internalization. Expression of the orexin-1 receptor in the presence of the CB1 receptor resulted in both receptors displaying the spontaneous internalization phenotype. Single cell fluorescence resonance energy transfer imaging indicated the two receptors were present as heterodimers/oligomers in intracellular vesicles. Addition of the CB1 receptor antagonist SR-141716A to cells expressing only the CB1 receptor resulted in re-localization of the receptor to the cell surface. Although SR-141716A has no significant affinity for the orexin-1 receptor, in cells co-expressing the CB1 receptor, the orexin-1 receptor was also re-localized to the cell surface by treatment with SR-141716A. Treatment of cells co-expressing the orexin-1 and CB1 receptors with the orexin-1 receptor antagonist SB-674042 also resulted in re-localization of both receptors to the cell surface. Treatment with SR-141716A resulted in decreased potency of orexin A to activate the mitogen-activated protein kinases ERK1/2 only in cells co-expressing the two receptors. Treatment with SB-674042 also reduced the potency of a CB1 receptor agonist to phosphorylate ERK1/2 only when the two receptors were co-expressed. These studies introduce an entirely novel pharmacological paradigm, whereby ligands modulate the function of receptors for which they have no significant inherent affinity by acting as regulators of receptor heterodimers.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- DNA Primers
- Dimerization
- Humans
- Ligands
- Orexin Receptors
- Pyrrolidines/pharmacology
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/physiology
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/physiology
- Thiazoles/pharmacology
Collapse
Affiliation(s)
- James Ellis
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
22
|
Milasta S, Evans N, Ormiston L, Wilson S, Lefkowitz R, Milligan G. The sustainability of interactions between the orexin-1 receptor and beta-arrestin-2 is defined by a single C-terminal cluster of hydroxy amino acids and modulates the kinetics of ERK MAPK regulation. Biochem J 2006; 387:573-84. [PMID: 15683363 PMCID: PMC1134986 DOI: 10.1042/bj20041745] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The orexin-1 receptor interacts with beta-arrestin-2 in an agonist-dependent manner. In HEK-293T cells, these two proteins became co-internalized into acidic endosomes. Truncations from the C-terminal tail did not prevent agonist-induced internalization of the orexin-1 receptor or alter the pathway of internalization, although such mutants failed to interact with beta-arrestin-2 in a sustained manner or produce its co-internalization. Mutation of a cluster of three threonine and one serine residue at the extreme C-terminus of the receptor greatly reduced interaction and abolished co-internalization of beta-arrestin-2-GFP (green fluorescent protein). Despite the weak interactions of this C-terminally mutated form of the receptor with beta-arrestin-2, studies in wild-type and beta-arrestin-deficient mouse embryo fibroblasts confirmed that agonist-induced internalization of this mutant required expression of a beta-arrestin. Although without effect on agonist-mediated elevation of intracellular Ca2+ levels, the C-terminally mutated form of the orexin-1 receptor was unable to sustain phosphorylation of the MAPKs (mitogen-activated protein kinases) ERK1 and ERK2 (extracellular-signal-regulated kinases 1 and 2) to the same extent as the wild-type receptor. These studies indicate that a single cluster of hydroxy amino acids within the C-terminal seven amino acids of the orexin-1 receptor determine the sustainability of interaction with beta-arrestin-2, and indicate an important role of beta-arrestin scaffolding in defining the kinetics of orexin-1 receptor-mediated ERK MAPK activation.
Collapse
Affiliation(s)
- Sandra Milasta
- *Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Nicholas A. Evans
- †GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, U.K
| | - Laura Ormiston
- *Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Shelagh Wilson
- †GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, U.K
| | - Robert J. Lefkowitz
- ‡Department of Medicine, HHMI/Duke University Medical Center, Durham, NC 27710, U.S.A
| | - Graeme Milligan
- *Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Abstract
The regulation of energy balance is complex and, in man, imprecise. Nevertheless, in many individuals intake and expenditure are balanced with <1% error with little or no conscious effect. Essential components of such a regulatory system are signals, leptin and insulin, that reflect the size of lipid stores. Leptin receptors signal via phosphatidylinositol 3-kinase (as do insulin receptors) and via the transcription factor signal transducer and activator of transcription-3 to activate various types of neurone. Obese rodents, and possibly man, are resistant to leptin; in some cases because of genetic or perinatal programming (primary resistance), but commonly in response to high leptin levels (secondary resistance). Secondary leptin resistance may be a result of reduced transport of leptin to the brain or down-regulation of leptin signalling. Signals that reflect lipid stores form the tonic homeostatic regulatory system. They interact with episodic homeostatic signals carried by neurones, hormones and metabolites to regulate meal size and frequency. They also interact with signals related to the palatability of food, biorhythms and learning. Many neurotransmitters and hormones mediate responses to more than one input (e.g. gastric and adipocyte leptin), but are nevertheless most involved with particular inputs (e.g. leptin with adipocyte fat stores). Feeding can be divided into appetitive (preparation for feeding) and consummatory phases, which can both be further subdivided. Different sets of neurotransmitters and hormones are involved at each stage. In the long term it may be possible to customise obesity therapies according to those inputs and outputs that are most disturbed and most amenable to intervention in individual subjects.
Collapse
|
24
|
Abstract
Although a role for hypocretin/orexin (HCT/ORX) in sleep/wakefulness and arousal is widely recognized, other actions, not necessarily related to sleep, have been identified. Neurons producing the peptides project to brain sites known to be important in neuroendocrine and autonomic function, as well as appetite regulation. There is consensus that HCT/ORX plays a role in the regulation of cardiovascular function via its effects on sympathetic nervous activity, and the reported pharmacologic effects have been demonstrated to be physiologically relevant. Equally provocative are the actions of these peptides in the hypothalamus and pituitary gland to regulate reproductive and stress hormone secretion. While HCT/ORX are less potent stimulators of food intake than other hypothalamic peptides, HCT/ORX may play an integral role in the organization of hunger and satiation behaviors because of their interaction with those other peptides. In fact recent discoveries of interactions of HCT/ORX with peptides such as corticotropin releasing hormone and neuropeptide Y, as well as with aminergic neurotransmitter systems, are now defining the cellular and molecular mechanisms by which these potent neuropeptides act and promise insight into their physiologic relevance in a variety of non-sleep related behaviors and other homeostatic mechanisms.
Collapse
Affiliation(s)
- Willis K Samson
- Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO 63104, USA.
| | | | | |
Collapse
|
25
|
Ishii Y, Blundell JE, Halford JCG, Upton N, Porter R, Johns A, Rodgers RJ. Satiety enhancement by selective orexin-1 receptor antagonist SB-334867: influence of test context and profile comparison with CCK-8S. Behav Brain Res 2004; 160:11-24. [PMID: 15836896 DOI: 10.1016/j.bbr.2004.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/05/2004] [Accepted: 11/11/2004] [Indexed: 11/29/2022]
Abstract
Acute systemic treatment with the selective orexin-1 (OX1R) antagonist SB-334867 reduces food intake in rats, an effect associated with an acceleration in behavioural satiety and unrelated to gross behavioural disruption, alterations in palatability, or toxicity. However, as enhanced satiety is behaviourally indexed by an earlier-than-normal transition from eating to resting, and since orexin-A has been implicated in mechanisms of arousal, it remains possible that sedation contributes to the anorectic effect of acute OX1R blockade. Previous work has shown that, when treated with SB-334867 (30 mg/kg, i.p.) 30 min before a 1h test with palatable food, rats begin to show appreciable levels of resting 10-15 min earlier than under control conditions (i.e. around 20 min versus 30-35 min into the session). The present results demonstrate that a 20 min increase in the injection-test interval (i.e. 50 min) had no significant impact on the anorectic, behavioural or weight gain effects of SB-334867 in non-deprived male rats. Most importantly, this altered treatment regimen led to a temporal profile of resting virtually identical to that previously observed with the more conventional 30 min injection-test interval. Although parallel studies indicated that the OX1R antagonist accelerated the onset of resting (and suppressed most active behaviours) even in the absence of food, an equianorectic dose of the natural satiety-related signal cholescystokinin octapeptide (CCK-8S; 5 microg/kg, i.p.) also produced very similar behavioural effects regardless of the presence of food. Together with evidence that SB-334867 preserves the structural integrity of natural feeding behaviour, does not induce nausea/illness or alter taste/palatability and fails to influence EEG measures of arousal/sleep, the present findings are consistent with the view that acute OX1R antagonism selectively enhances satiety. However, unlike the immediate short-circuiting of the satiety sequence induced by CCK-8S, the slower response to SB-334867 implies a more indirect mechanism of action.
Collapse
Affiliation(s)
- Y Ishii
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, University of Leeds, LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Takano S, Kanai S, Hosoya H, Ohta M, Uematsu H, Miyasaka K. Orexin-A does not stimulate food intake in old rats. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1182-7. [PMID: 15271651 DOI: 10.1152/ajpgi.00218.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aging is associated with a progressive decrease in appetite and food intake. Both A and B orexins, expressed in specific neurons of the lateral hypothalamic area, have been implicated in the regulation of sleep and feeding. In this study, the stimulatory effect of intracerebroventricular administration of the orexins on food intake was compared between young (4-mo-old) and old (25- to 27-mo-old) male Wistar rats. A stainless steel cannula was implanted stereotactically into the left lateral ventricle. After a 7-day recovery period, different doses (0-30 nmol) of orexins were injected into the left lateral ventricle without anesthesia. Food and water consumptions were measured at 1, 2, and 4 h after injection. The protein levels of orexin receptors, a specific receptor for orexin-A (OX1R) and a receptor for both orexin-A and -B (OX2R), in the hypothalamus were determined by Western blot analysis and compared between young and old rats. Intracerebroventricular administration of orexin-A stimulated food intake in a dose-dependent manner in young rats. However, no effects were observed at any dose in old rats. The protein level of OX1R in the hypothalamus was significantly lower in old rats than in young rats, although the protein level of OX2R was comparable between groups. Results of the present study indicate that the function of the orexin system is diminished in old rats. The decrease in the OX1R protein level in the hypothalamus could be responsible for orexin-A's lack of stimulation of food intake in old rats.
Collapse
Affiliation(s)
- Saeko Takano
- Department of Clinical Physiology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashiku Tokyo 173-0015, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Xu YL, Jackson VR, Civelli O. Orphan G protein-coupled receptors and obesity. Eur J Pharmacol 2004; 500:243-53. [PMID: 15464037 DOI: 10.1016/j.ejphar.2004.07.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 12/11/2022]
Abstract
The use of orphan G protein-coupled receptors (GPCRs) as targets to identify new transmitters has led over the last decade to the discovery of 12 novel neuropeptide families. Each one of these new neuropeptides has opened its own field of research, has brought new insights in distinct pathophysiological conditions and has offered new potentials for therapeutic applications. Interestingly, several of these novel peptides have seen their roles converge on one physiological response: the regulation of food intake and energy expenditure. In this manuscript, we discuss four deorphanized GPCR systems, the ghrelin, orexins/hypocretins, melanin-concentrating hormone (MCH) and neuropeptide B/neuropeptide W (NPB/NPW) systems, and review our knowledge of their role in the regulation of energy balance and of their potential use in therapies directed at feeding disorders.
Collapse
Affiliation(s)
- Yan-Ling Xu
- Department of Pharmacology, University of California Irvine, 101 Theory Dr., Suite 200, Irvine, CA 92612, USA
| | | | | |
Collapse
|
28
|
Ishii Y, Blundell JE, Halford JCG, Upton N, Porter R, Johns A, Rodgers RJ. Differential effects of the selective orexin-1 receptor antagonist SB-334867 and lithium chloride on the behavioural satiety sequence in rats. Physiol Behav 2004; 81:129-40. [PMID: 15059692 DOI: 10.1016/j.physbeh.2004.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 01/06/2004] [Accepted: 01/19/2004] [Indexed: 12/21/2022]
Abstract
Recent studies have shown that acute systemic administration of the selective orexin-1 receptor antagonist SB-334867 significantly reduces food intake in rats. Although this anorectic action of orexin-1 receptor blockade is associated with an acceleration in the transition from eating to resting, it is widely recognised that the behavioural indices of satiety are not dissimilar to those of illness. In this context, Experiment 1 confirmed a significant anorectic effect of 90 (but not 60) mg/kg lithium chloride (LiCl) in male rats presented with palatable mash in the home-cage environment. Experiment 2 employed a continuous monitoring technique to contrast the effects of LiCl (90 mg/kg) and SB-334867 (10 and 30 mg/kg) on food intake and behaviour during a 1-h test with palatable mash. SB-334867 dose-dependently inhibited food intake, with the higher dose producing a comparable degree of appetite suppression (approximately 40%) to that seen with LiCl. Despite equivalent anorectic action, the two compounds produced very different effects on behaviour. LiCl reduced active behaviours (locomotion, rearing, grooming and sniffing), slowed the rate of eating and disrupted the behavioural satiety sequence (BSS). In contrast, SB-334867 (30 mg/kg) decreased the duration of feeding and grooming, and modestly accelerated the transition between eating and resting. Furthermore, whereas LiCl failed to alter posttreatment bodyweight gain, SB-334867 (30 mg/kg) produced a significant weight loss in the 24-h period immediately following injection. Overall, the divergent profiles obtained with equianorectic doses of LiCl and SB-334867 provide convincing evidence for the behavioural selectivity of SB-334867-induced anorexia.
Collapse
Affiliation(s)
- Y Ishii
- Behavioural Pharmacology Laboratory, School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Energy balance is maintained via a homeostatic system involving both the brain and the periphery. A key component of this system is the hypothalamus. Over the past two decades, major advances have been made in identifying an increasing number of peptides within the hypothalamus that contribute to the process of energy homeostasis. Under stable conditions, equilibrium exists between anabolic peptides that stimulate feeding behavior, as well as decrease energy expenditure and lipid utilization in favor of fat storage, and catabolic peptides that attenuate food intake, while stimulating sympathetic nervous system (SNS) activity and restricting fat deposition by increasing lipid metabolism. The equilibrium between these neuropeptides is dynamic in nature. It shifts across the day-night cycle and from day to day and also in response to dietary challenges as well as peripheral energy stores. These shifts occur in close relation to circulating levels of the hormones, leptin, insulin, ghrelin and corticosterone, and also the nutrients, glucose and lipids. These circulating factors together with neural processes are primary signals relaying information regarding the availability of fuels needed for current cellular demand, in addition to the level of stored fuels needed for long-term use. Together, these signals have profound impact on the expression and production of neuropeptides that, in turn, initiate the appropriate anabolic or catabolic responses for restoring equilibrium. In this review, we summarize the evidence obtained on nine peptides in the hypothalamus that have emerged as key players in this process. Data from behavioral, physiological, pharmacological and genetic studies are described and consolidated in an attempt to formulate a clear statement on the underlying function of each of these peptides and also on how they work together to create and maintain energy homeostasis.
Collapse
Affiliation(s)
- Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Orexins, also called hypocretins, are a pair of neuropeptides expressed by a specific population of neurons in the lateral hypothalamic area, a region of the brain implicated in feeding, arousal and motivated behaviour. The purpose of this review is to summarize recent relevant findings on orexins, and discuss the physiological roles of these peptides. RECENT FINDINGS Recent findings suggest that orexin neurons provide a critical link between the peripheral energy balance and central nervous system mechanisms that coordinate sleep-wakefulness and motivated behaviours such as food seeking, especially in the physiological state of fasting stress. SUMMARY Orexin (hypocretin) neurons interact with feeding centres in the hypothalamus, arousal and sleep-wakefulness centres in the brainstem, sympathetic and parasympathetic nuclei and the limbic system. The central administration of orexin dose-dependently increases food intake, waking time, motor activity, and metabolic rate, as well as heart rate and blood pressure in many species. Recent electrophysiological studies have shown that orexin neurons are regulated by metabolic cues, including leptin, glucose, and ghrelin, as well as monoamines and acetylcholin. Orexin neurons thus have the requisite functional interactions with hypothalamic feeding pathways and monoaminergic-cholinergic centres in the brain stem, and regulation by nutritional factors, to suggest that they may be an important cellular link in the integration of adaptive behaviour associated with arousal and energy homeostasis.
Collapse
|
31
|
Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami KI, Sugiyama F, Goto K, Yanagisawa M, Sakurai T. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 2003; 38:701-13. [PMID: 12797956 DOI: 10.1016/s0896-6273(03)00331-3] [Citation(s) in RCA: 687] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammals respond to reduced food availability by becoming more wakeful and active, yet the central pathways regulating arousal and instinctual motor programs (such as food seeking) according to homeostatic need are not well understood. We demonstrate that hypothalamic orexin neurons monitor indicators of energy balance and mediate adaptive augmentation of arousal in response to fasting. Activity of isolated orexin neurons is inhibited by glucose and leptin and stimulated by ghrelin. Orexin expression of normal and ob/ob mice correlates negatively with changes in blood glucose, leptin, and food intake. Transgenic mice, in which orexin neurons are ablated, fail to respond to fasting with increased wakefulness and activity. These findings indicate that orexin neurons provide a crucial link between energy balance and arousal.
Collapse
Affiliation(s)
- Akihiro Yamanaka
- Institute of Basic Medical Science, University of Tsukuba, 305-8575, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Obstructive sleep apnea (OSA) is an increasingly recognized, common chronic disease in the developed nations and is a complex disease that has high social and economic costs. OSA and its associated 'intermediate' phenotypes-craniofacial structure, body fat distribution and metabolism, and neurological control of the upper airway muscles and of sleep and circadian rhythm-are under a substantial degree of genetic control. Investigating the genetic aetiology of OSA offers a means of better understanding its pathogenesis, with the goal of improving preventive strategies, diagnostic tools and therapies. Molecular studies of OSA itself are in their infancy, but considerable effort and expense has already been expended in attempts to detect genetic loci contributing to OSA-associated intermediate phenotypes, such as obesity. However, many of the fundamental questions relating to the genetic epidemiology of OSA and associated factors remain unanswered. This chapter reviews the current state of knowledge of the genetics of OSA, with a focus on genomic approaches to understanding sleep disorders.
Collapse
Affiliation(s)
- Lyle J Palmer
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
33
|
Abstract
Although it is clear that the orexin/hypocretin peptides have a significant, physiologically relevant role in sleep/wakefulness, a broader picture has emerged indicating metabolic actions that may depend upon both neural and endocrine mechanisms for their manifestation. The ability of exogenous peptide to activate sympathetic tone, increase locomotor activity, and alter feeding behavior, together with the observed alterations in those functions in knockout animals, strongly suggests important neural actions of the endogenous orexins/hypocretins. Likewise, the action of exogenously administered peptides to alter endocrine function, in particular corticotropin release, has now been mirrored by potential endocrinopathies in knockout animals. Thus these pluripotent peptides hold great potential not only for the treatment of human narcolepsy but also to provide insight into the coordinated regulation of multiple physiological systems.
Collapse
Affiliation(s)
- Meghan M Taylor
- Pharmacological and Physiological Science, St. Louis University School of Medicine, Missouri 63104, USA
| | | |
Collapse
|
34
|
Abstract
Initial research on the functional significance of two novel hypothalamic neuropeptides, orexin-A and orexin-B, suggested an important role in appetite regulation. Since then, however, these peptides have also been shown to influence a wide range of other physiological and behavioural processes. In this paper, we review the now quite extensive literature on orexins and appetite control, and consider their additional effects within this context. Although the evidence for orexin (particularly orexin-A and the orexin-1 receptor) involvement in many aspects of ingestive physiology and behaviour is incontrovertible, central administration of orexins is also associated with increased EEG arousal and wakefulness, locomotor activity and grooming, sympathetic and HPA activity, and pain thresholds. Since the orexin system is selectively activated by signals indicating severe nutritional depletion, it would be highly adaptive for a hungry animal not only to seek sustenance but also to remain fully alert to dangers in the environment. Crucial evidence indicates that orexin-A increases food intake by delaying the onset of a behaviourally normal satiety sequence. In contrast, a selective orexin-1 receptor antagonist (SB-334867) suppresses food intake and advances the onset of a normal satiety sequence. These data suggest that orexin-1 receptors mediate the episodic signalling of satiety and appear to bridge the transition from eating to resting in the rats' feeding-sleep cycle. The argument is developed that the diverse physiological and behavioural effects of orexins can best be understood in terms of an integrated set of reactions which function to rectify nutritional status without compromising personal survival. Indeed, many of the non-ingestive effects of orexin administration are identical to the cluster of active defences mediated via the lateral and dorsolateral columns of the midbrain periaqueductal gray matter, i.e., somatomotor activation, vigilance, tachycardia, hypertension and non-opioid analgesia. In our view, therefore, the LH orexin system is very well placed to orchestrate the diverse subsystems involved in foraging under potentially dangerous circumstances, i.e., finding and ingesting food without oneself becoming a meal for someone else.
Collapse
Affiliation(s)
- R J Rodgers
- School of Psychology, University of Leeds, Leeds, UK.
| | | | | | | |
Collapse
|