1
|
Zeng C, Liu J, Zheng X, Hu X, He Y. Prostaglandin and prostaglandin receptors: present and future promising therapeutic targets for pulmonary arterial hypertension. Respir Res 2023; 24:263. [PMID: 37915044 PMCID: PMC10619262 DOI: 10.1186/s12931-023-02559-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH), Group 1 pulmonary hypertension (PH), is a type of pulmonary vascular disease characterized by abnormal contraction and remodeling of the pulmonary arterioles, manifested by pulmonary vascular resistance (PVR) and increased pulmonary arterial pressure, eventually leading to right heart failure or even death. The mechanisms involved in this process include inflammation, vascular matrix remodeling, endothelial cell apoptosis and proliferation, vasoconstriction, vascular smooth muscle cell proliferation and hypertrophy. In this study, we review the mechanisms of action of prostaglandins and their receptors in PAH. MAIN BODY PAH-targeted therapies, such as endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, activators of soluble guanylate cyclase, prostacyclin, and prostacyclin analogs, improve PVR, mean pulmonary arterial pressure, and the six-minute walk distance, cardiac output and exercise capacity and are licensed for patients with PAH; however, they have not been shown to reduce mortality. Current treatments for PAH primarily focus on inhibiting excessive pulmonary vasoconstriction, however, vascular remodeling is recalcitrant to currently available therapies. Lung transplantation remains the definitive treatment for patients with PAH. Therefore, it is imperative to identify novel targets for improving pulmonary vascular remodeling in PAH. Studies have confirmed that prostaglandins and their receptors play important roles in the occurrence and development of PAH through vasoconstriction, vascular smooth muscle cell proliferation and migration, inflammation, and extracellular matrix remodeling. CONCLUSION Prostacyclin and related drugs have been used in the clinical treatment of PAH. Other prostaglandins also have the potential to treat PAH. This review provides ideas for the treatment of PAH and the discovery of new drug targets.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Jing Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xialei Zheng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| | - Yuhu He
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
2
|
Asirvatham-Jeyaraj N, Jones AD, Burnett R, Fink GD. Brain Prostaglandin D2 Increases Neurogenic Pressor Activity and Mean Arterial Pressure in Angiotensin II-Salt Hypertensive Rats. Hypertension 2019; 74:1499-1506. [PMID: 31587572 DOI: 10.1161/hypertensionaha.119.13175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study tested whether brain L-PGDS (lipocalin-type prostaglandin [PG] D synthase), through prostanoid signaling, might increase neurogenic pressor activity and thereby cause hypertension. Sprague Dawley rats on high-salt diet received either vehicle or Ang II (angiotensin II) infusion. On day 4, the developmental stage of hypertension, brains from different sets of control and Ang II-treated rats were collected for measuring L-PGDS expression, PGD2 levels, and DP1R (type 1 PGD2 receptor) expression. In a different set of 14-day Ang II-salt-treated rats, mini-osmotic pumps were used to infuse either a nonselective COX (cyclooxygenase) inhibitor ketorolac, L-PGDS inhibitor AT56, or DP1R inhibitor BWA868C to test the role of brain COX-PGD2-DP1R signaling in Ang II-salt hypertension. The acute depressor response to ganglion blockade with hexamethonium was used to quantify neurogenic pressor activity. During the developmental stage of Ang II-salt hypertension, L-PGDS expression was higher in cerebrospinal fluid, and PGD2 levels were increased in the choroid plexus, cerebrospinal fluid, and the cardioregulatory brain region rostral ventrolateral medulla. DP1R expression was decreased in rostral ventrolateral medulla. Both brain COX inhibition with ketorolac and L-PGDS inhibition with AT56 lowered mean arterial pressure by altering neurogenic pressor activity compared with vehicle controls. Blockade of DP1R with BWA868C, however, increased the magnitude of Ang II-salt hypertension and significantly increased neurogenic pressor activity. In summary, we establish that the development of Ang II-salt hypertension requires increased COX- and L-PGDS-derived PGD2 production in the brain, making L-PGDS a possible target for treating neurogenic hypertension.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru (N.A.-J.).,Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology (A.D.J.), Michigan State University, East Lansing.,Department of Chemistry (A.D.J.), Michigan State University, East Lansing
| | - Robert Burnett
- Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| | - Gregory D Fink
- Department of Pharmacology and Toxicology (N.A.-J., R.B., G.D.F.), Michigan State University, East Lansing
| |
Collapse
|
3
|
Nagata N, Iwanari H, Kumagai H, Kusano-Arai O, Ikeda Y, Aritake K, Hamakubo T, Urade Y. Generation and characterization of an antagonistic monoclonal antibody against an extracellular domain of mouse DP2 (CRTH2/GPR44) receptors for prostaglandin D2. PLoS One 2017; 12:e0175452. [PMID: 28394950 PMCID: PMC5386288 DOI: 10.1371/journal.pone.0175452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/27/2017] [Indexed: 01/09/2023] Open
Abstract
Prostaglandin D2 (PGD2) is a lipid mediator involved in sleep regulation and inflammation. PGD2 interacts with 2 types of G protein-coupled receptors, DP1 and DP2/CRTH2 (chemoattractant receptor homologous molecule expressed on T helper type 2 cells)/GPR44 to show a variety of biological effects. DP1 activation leads to Gs-mediated elevation of the intracellular cAMP level, whereas activation of DP2 decreases this level via the Gi pathway; and it also induces G protein-independent, arrestin-mediated cellular responses. Activation of DP2 by PGD2 causes the progression of inflammation via the recruitment of lymphocytes by enhancing the production of Th2-cytokines. Here we developed monoclonal antibodies (MAbs) against the extracellular domain of mouse DP2 by immunization of DP2-null mutant mice with DP2-overexpressing BAF3, murine interleukin-3 dependent pro-B cells, to reduce the generation of antibodies against the host cells by immunization of mice. Moreover, we immunized DP2-KO mice to prevent immunological tolerance to mDP2 protein. After cell ELISA, immunocytochemical, and Western blot analyses, we successfully obtained a novel monoclonal antibody, MAb-1D8, that specifically recognized native mouse DP2, but neither human DP2 nor denatured mouse DP2, by binding to a particular 3D receptor conformation formed by the N-terminus and extracellular loop 1, 2, and 3 of DP2. This antibody inhibited the binding of 0.5 nM [3H]PGD2 to mouse DP2 (IC50 = 46.3 ± 18.6 nM), showed antagonistic activity toward 15(R)-15-methyl PGD2-induced inhibition of 300 nM forskolin-activated cAMP production (IC50 = 16.9 ± 2.6 nM), and gave positive results for immunohistochemical staining of DP2-expressing CD4+ Th2 lymphocytes that had accumulated in the kidney of unilateral ureteral obstruction model mice. This monoclonal antibody will be very useful for in vitro and in vivo studies on DP2-mediated diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibody Specificity
- CD4-Positive T-Lymphocytes/metabolism
- CHO Cells
- COS Cells
- Cricetulus
- Cyclic AMP/metabolism
- Disease Models, Animal
- Epitope Mapping
- HEK293 Cells
- Humans
- Hybridomas/metabolism
- Immunization
- Immunohistochemistry
- Kidney/metabolism
- Kidney/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Precursor Cells, B-Lymphoid/immunology
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/immunology
- Ureteral Obstruction/immunology
- Ureteral Obstruction/metabolism
- Ureteral Obstruction/pathology
- beta-Arrestins/metabolism
Collapse
Affiliation(s)
- Nanae Nagata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan
- * E-mail: (YU); (NN)
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hidetoshi Kumagai
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yuichi Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kosuke Aritake
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Urade
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Furuedai, Suita, Osaka, Japan
- * E-mail: (YU); (NN)
| |
Collapse
|
4
|
Physiological and Pathological Roles of 15-Deoxy-Δ12,14-Prostaglandin J2 in the Central Nervous System and Neurological Diseases. Mol Neurobiol 2017; 55:2227-2248. [PMID: 28299574 DOI: 10.1007/s12035-017-0435-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 02/03/2017] [Indexed: 12/29/2022]
|
5
|
|
6
|
Pathophysiological Roles of Cyclooxygenases and Prostaglandins in the Central Nervous System. Mol Neurobiol 2015; 53:4754-71. [PMID: 26328537 DOI: 10.1007/s12035-015-9355-3] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/07/2015] [Indexed: 01/01/2023]
Abstract
Cyclooxygenases (COXs) oxidize arachidonic acid to prostaglandin (PG) G2 and H2 followed by PG synthases that generates PGs and thromboxane (TX) A2. COXs are divided into COX-1 and COX-2. In the central nervous system, COX-1 is constitutively expressed in neurons, astrocytes, and microglial cells. COX-2 is upregulated in these cells under pathophysiological conditions. In hippocampal long-term potentiation, COX-2, PGE synthase, and PGE2 are induced in post-synaptic neurons. PGE2 acts pre-synaptic EP2 receptor, generates cAMP, stimulates protein kinase A, modulates voltage-dependent calcium channel, facilitates glutamatergic synaptic transmission, and potentiates long-term plasticity. PGD2, PGE2, and PGI2 exhibit neuroprotective effects via Gs-coupled DP1, EP2/EP4, and IP receptors, respectively. COX-2, PGD2, PGE2, PGF2α, and TXA2 are elevated in stroke. COX-2 inhibitors exhibit neuroprotective effects in vivo and in vitro models of stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, epilepsy, and schizophrenia, suggesting neurotoxicities of COX products. PGE2, PGF2α, and TXA2 can contribute to the neurodegeneration via EP1, FP, and TP receptors, respectively, which are coupled with Gq, stimulate phospholipase C and cleave phosphatidylinositol diphosphate to produce inositol triphosphate and diacylglycerol. Inositol triphosphate binds to inositol triphosphate receptor in endoplasmic reticulum, releases calcium, and results in increasing intracellular calcium concentrations. Diacylglycerol activates calcium-dependent protein kinases. PGE2 disrupts Ca(2+) homeostasis by impairing Na(+)-Ca(2+) exchange via EP1, resulting in the excess Ca(2+) accumulation. Neither PGE2, PGF2α, nor TXA2 causes neuronal cell death by itself, suggesting that they might enhance the ischemia-induced neurodegeneration. Alternatively, PGE2 is non-enzymatically dehydrated to a cyclopentenone PGA2, which induces neuronal cell death. Although PGD2 induces neuronal apoptosis after a lag time, neither DP1 nor DP2 is involved in the neurotoxicity. As well as PGE2, PGD2 is non-enzymatically dehydrated to a cyclopentenone 15-deoxy-Δ(12,14)-PGJ2, which induces neuronal apoptosis without a lag time. However, neurotoxicities of these cyclopentenones are independent of their receptors. The COX-2 inhibitor inhibits both the anchorage-dependent and anchorage-independent growth of glioma cell lines regardless of COX-2 expression, suggesting that some COX-2-independent mechanisms underlie the antineoplastic effect of the inhibitor. PGE2 attenuates this antineoplastic effect, suggesting that the predominant mechanism is COX-dependent. COX-2 or EP1 inhibitors show anti-neoplastic effects. Thus, our review presents evidences for pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system.
Collapse
|
7
|
Zhou H, Zhu Q, Gan Z, Dong G, Xu Y. Synthesis and biological evaluation of novel laropiprant derivatives as potential anti-allergic agents. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1431-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Medani M, Collins D, Mohan HM, Walsh E, Winter DC, Baird AW. Prostaglandin D2 regulates human colonic ion transport via the DP1 receptor. Life Sci 2014; 122:87-91. [PMID: 25534438 DOI: 10.1016/j.lfs.2014.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/20/2014] [Accepted: 12/09/2014] [Indexed: 01/07/2023]
Abstract
AIMS Prostaglandin D2 is released by mast cells and is important in allergies. Its role in gastrointestinal function is not clearly defined. This study aimed to determine the effect of exogenous PGD2 on ion transport in ex vivo normal human colonic mucosa. MATERIALS AND METHODS Mucosal sheets were mounted in Ussing chambers and voltage clamped to zero electric potential. Ion transport was quantified as changes in short-circuit current. In separate experiments epithelial monolayers or colonic crypts, isolated by calcium chelation, were treated with PGD2 and cAMP levels determined by ELISA or calcium levels were determined by fluorimetry. KEY FINDINGS PGD2 caused a sustained, concentration-dependent rise in short-circuit current by increasing chloride secretion (EC50=376nM). This effect of PGD2 is mediated by the DP1 receptor, as the selective DP1 receptor antagonist BW A686C inhibited PGD2-induced but not PGE2-induced rise in short-circuit current. PGD2 also increased intracellular cAMP in isolated colonic crypts with no measurable influence on cytosolic calcium. PGD2 induces chloride secretion in isolated human colonic mucosa in a concentration-dependent manner with concomitant elevation of cytoplasmic cAMP in epithelial cells. SIGNIFICANCE The involvement of DP2 receptor subtypes has not previously been considered in regulation of ion transport in human intestine. Since inflammatory stimuli may induce production of eicosanoids, selective regulation of these pathways may be pivotal in determining therapeutic strategies and in understanding disease.
Collapse
Affiliation(s)
- M Medani
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - D Collins
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - H M Mohan
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - E Walsh
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - D C Winter
- Department of Surgery, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland; UCD School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - A W Baird
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
10
|
Liu H, Li W, Rose ME, Pascoe JL, Miller TM, Ahmad M, Poloyac SM, Hickey RW, Graham SH. Prostaglandin D2 toxicity in primary neurons is mediated through its bioactive cyclopentenone metabolites. Neurotoxicology 2013; 39:35-44. [PMID: 23973622 DOI: 10.1016/j.neuro.2013.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022]
Abstract
Prostaglandin D2 (PGD2) is the most abundant prostaglandin in brain but its effect on neuronal cell death is complex and not completely understood. PGD2 may modulate neuronal cell death via activation of DP receptors or its metabolism to the cyclopentenone prostaglandins (CyPGs) PGJ2, Δ(12)-PGJ2 and 15-deoxy-Δ(12,14)-PGJ2, inducing cell death independently of prostaglandin receptors. This study aims to elucidate the effect of PGD2 on neuronal cell death and its underlying mechanisms. PGD2 dose-dependently induced cell death in rat primary neuron-enriched cultures in concentrations of ≥10μM, and this effect was not reversed by treatment with either DP1 or DP2 receptor antagonists. Antioxidants N-acetylcysteine (NAC) and glutathione which contain sulfhydryl groups that can bind to CyPGs, but not ascorbate or tocopherol, attenuated PGD2-induced cell death. Conversion of PGD2 to CyPGs was detected in neuronal culture medium; treatment with these CyPG metabolites alone exhibited effects similar to those of PGD2, including apoptotic neuronal cell death and accumulation of ubiquitinated proteins. Disruption of lipocalin-type prostaglandin D synthase (L-PGDS) protected neurons against hypoxia. These results support the hypothesis that PGD2 elicits its cytotoxic effects through its bioactive CyPG metabolites rather than DP receptor activation in primary neuronal culture.
Collapse
Affiliation(s)
- Hao Liu
- Geriatric Research Education and Clinical Center, V.A. Pittsburgh Healthcare System, 7180 Highland Drive, Pittsburgh, PA 15206, USA; Department of Neurology, University of Pittsburgh School of Medicine, 811 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Cancer initiation and progression are multistep events that require cell proliferation, migration, extravasation to the blood or lymphatic vessels, arrest to the metastatic site, and ultimately secondary growth. Tumor cell functions at both primary or secondary sites are controlled by many different factors, including growth factors and their receptors, chemokines, nuclear receptors, cell-cell interactions, cell-matrix interactions, as well as oxygenated metabolites of arachidonic acid. The observation that cyclooxygenases and lipoxygenases and their arachidonic acid-derived eicosanoid products (prostanoids and HETEs) are expressed and produced by tumor cells, together with the finding that these enzymes can regulate cell growth, survival, migration, and invasion, has prompted investigators to analyze the roles of these enzymes in cancer progression. In this review, we focus on the contribution of cyclooxygenase- and lipoxygenase-derived eicosanoids to tumor cell function in vitro and in vivo and discuss hope and tribulations of targeting these enzymes for cancer prevention and treatment.
Collapse
Affiliation(s)
- Claus Schneider
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | |
Collapse
|
12
|
Fredenburgh LE, Velandia MMS, Ma J, Olszak T, Cernadas M, Englert JA, Chung SW, Liu X, Begay C, Padera RF, Blumberg RS, Walsh SR, Baron RM, Perrella MA. Cyclooxygenase-2 deficiency leads to intestinal barrier dysfunction and increased mortality during polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5255-67. [PMID: 21967897 DOI: 10.4049/jimmunol.1101186] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sepsis remains the leading cause of death in critically ill patients, despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase (COX)-2 is highly upregulated in the intestine during sepsis, and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2(-/-) and COX-2(+/+) BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD(2), or vehicle and stimulated with cytokines. COX-2(-/-) mice developed exaggerated bacteremia and increased mortality compared with COX-2(+/+) mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype, suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1, occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD(2) attenuated cytokine-induced hyperpermeability and zonula occludens-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis.
Collapse
Affiliation(s)
- Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yamamoto Y, Takase K, Kishino J, Fujita M, Okamura N, Sakaeda T, Fujimoto M, Yagami T. Proteomic identification of protein targets for 15-deoxy-Δ(12,14)-prostaglandin J2 in neuronal plasma membrane. PLoS One 2011; 6:e17552. [PMID: 21445266 PMCID: PMC3060826 DOI: 10.1371/journal.pone.0017552] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 02/04/2011] [Indexed: 01/05/2023] Open
Abstract
15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) is one of factors contributed to the neurotoxicity of amyloid β (Aβ), a causative protein of Alzheimer's disease. Type 2 receptor for prostaglandin D(2) (DP2) and peroxysome-proliferator activated receptorγ (PPARγ) are identified as the membrane receptor and the nuclear receptor for 15d-PGJ(2), respectively. Previously, we reported that the cytotoxicity of 15d-PGJ(2) was independent of DP2 and PPARγ, and suggested that 15d-PGJ(2) induced apoptosis through the novel specific binding sites of 15d-PGJ(2) different from DP2 and PPARγ. To relate the cytotoxicity of 15d-PGJ(2) to amyloidoses, we performed binding assay [(3)H]15d-PGJ(2) and specified targets for 15d-PGJ(2) associated with cytotoxicity. In the various cell lines, there was a close correlation between the susceptibilities to 15d-PGJ(2) and fibrillar Aβ. Specific binding sites of [(3)H]15d-PGJ(2) were detected in rat cortical neurons and human bronchial smooth muscle cells. When the binding assay was performed in subcellular fractions of neurons, the specific binding sites of [(3)H]15d-PGJ(2) were detected in plasma membrane, nuclear and cytosol, but not in microsome. A proteomic approach was used to identify protein targets for 15d-PGJ(2) in the plasma membrane. By using biotinylated 15d-PGJ(2), eleven proteins were identified as biotin-positive spots and classified into three different functional proteins: glycolytic enzymes (Enolase2, pyruvate kinase M1 (PKM1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH)), molecular chaperones (heat shock protein 8 and T-complex protein 1 subunit α), cytoskeletal proteins (Actin β, F-actin-capping protein, Tubulin β and Internexin α). GAPDH, PKM1 and Tubulin β are Aβ-interacting proteins. Thus, the present study suggested that 15d-PGJ(2) plays an important role in amyloidoses not only in the central nervous system but also in the peripheral tissues.
Collapse
Affiliation(s)
- Yasuhiro Yamamoto
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Kenkichi Takase
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Junji Kishino
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
| | - Megumi Fujita
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Noboru Okamura
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Toshiyuki Sakaeda
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
- Center for Integrative Education of Pharmacy Frontier, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan
| | - Masafumi Fujimoto
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
- Laboratory of Applied Pharmacology, Faculty of Pharmacy, Chiba Institute of Science, Choshi, Japan
| | - Tatsurou Yagami
- Division of Physiology, Department of Pharmaceutical Health Care, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan
| |
Collapse
|
14
|
Charles RL, Burgoyne JR, Mayr M, Weldon SM, Hubner N, Dong H, Morisseau C, Hammock BD, Landar AL, Eaton P. Redox regulation of soluble epoxide hydrolase by 15-deoxy-delta-prostaglandin J2 controls coronary hypoxic vasodilation. Circ Res 2011; 108:324-34. [PMID: 21164107 PMCID: PMC3259859 DOI: 10.1161/circresaha.110.235879] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/03/2010] [Indexed: 12/28/2022]
Abstract
RATIONALE 15-Deoxy-Δ-prostaglandin (15d-PG)J(2) is an electrophilic oxidant that dilates the coronary vasculature. This lipid can adduct to redox active protein thiols to induce oxidative posttranslational modifications that modulate protein and tissue function. OBJECTIVE To investigate the role of oxidative protein modifications in 15d-PGJ(2)-mediated coronary vasodilation and define the distal signaling pathways leading to enhanced perfusion. METHODS AND RESULTS Proteomic screening with biotinylated 15d-PGJ(2) identified novel vascular targets to which it adducts, most notably soluble epoxide hydrolase (sEH). 15d-PGJ(2) inhibited sEH by specifically adducting to a highly conserved thiol (Cys521) adjacent to the catalytic center of the hydrolase. Indeed a Cys521Ser sEH "redox-dead" mutant was resistant to 15d-PGJ(2)-induced hydrolase inhibition. 15d-PGJ(2) dilated coronary vessels and a role for hydrolase inhibition was supported by 2 structurally different sEH antagonists each independently inducing vasorelaxation. Furthermore, 15d-PGJ(2) and sEH antagonists also increased coronary effluent epoxyeicosatrienoic acids consistent with their vasodilatory actions. Indeed 14,15-EET alone induced relaxation and 15d-PGJ(2)-mediated vasodilation was blocked by the EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE). Additionally, the coronary vasculature of sEH-null mice was basally dilated compared to wild-type controls and failed to vasodilate in response to 15d-PGJ(2). Coronary vasodilation to hypoxia in wild-types was accompanied by 15d-PGJ(2) adduction to and inhibition of sEH. Consistent with the importance of hydrolase inhibition, sEH-null mice failed to vasodilate during hypoxia. CONCLUSION This represents a new paradigm for the regulation of sEH by an endogenous lipid, which is integral to the fundamental physiological response of coronary hypoxic vasodilation.
Collapse
Affiliation(s)
- Rebecca L. Charles
- King’s College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Joseph R. Burgoyne
- King’s College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Manuel Mayr
- King’s College London, Cardiovascular Division, The James Black Centre, King's College London School of Medicine, King's College London, 125 Coldharbour Lane, London SE59NU, UK
| | - Steven M. Weldon
- Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0368, USA
| | - Norbert Hubner
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hua Dong
- Department of Entomology and Cancer Center, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and Cancer Center, University of California, Davis, CA 95616, USA
| | - Aimee L. Landar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0022
| | - Philip Eaton
- King’s College London, Cardiovascular Division, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
| |
Collapse
|
15
|
Yagami T. Cerebral arachidonate cascade in dementia: Alzheimer's disease and vascular dementia. Curr Neuropharmacol 2010; 4:87-100. [PMID: 18615138 DOI: 10.2174/157015906775203011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/17/2005] [Accepted: 09/30/2005] [Indexed: 11/22/2022] Open
Abstract
Phospholipase A(2) (PLA(2)), cyclooxygenase (COX) and prostaglandin (PG) synthase are enzymes involved in arachidonate cascade. PLA(2) liberates arachidonic acid (AA) from cell membrane lipids. COX oxidizes AA to PGG(2) followed by an endoperoxidase reaction that converts PGG(2) into PGH(2). PGs are generated from astrocytes, microglial cells and neurons in the central nervous system, and are altered in the brain of demented patients. Dementia is principally diagnosed into Alzheimer's disease (AD) and vascular dementia (VaD). In older patients, the brain lesions associated with each pathological process often occur together. Regional brain microvascular abnormalities appear before cognitive decline and neurodegeneration. The coexistence of AD and VaD pathology is often termed mixed dementia. AD and VaD brain lesions interact in important ways to decline cognition, suggesting common pathways of the two neurological diseases. Arachidonate cascade is one of the converged intracellular signal transductions between AD and VaD. PLA(2) from mammalian sources are classified as secreted (sPLA(2)), Ca(2+)-dependent, cytosolic (cPLA(2)) and Ca(2+)-independent cytosolic PLA(2) (iPLA(2)). PLA(2) activity can be regulated by calcium, by phosphorylation, and by agonists binding to G-protein-coupled receptors. cPLA(2) is upregulalted in AD, but iPLA(2) is downregulated. On the other hand, sPLA(2) is increased in animal models for VaD. COX-2 is induced and PGD(2) are elevated in both AD and VaD. This review presents evidences for central roles of PLA(2)s, COXs and PGs in the dementia.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Faculty of Health Care Sciences, Himeji Dokkyo University, 2-1, Kami-ohno 7-Chome, Himeji, Hyogo, 670-8524, Japan.
| |
Collapse
|
16
|
Moreira V, Gutiérrez JM, Amaral RB, Zamunér SR, Teixeira CDFP. Effects of Bothrops asper snake venom on the expression of cyclooxygenases and production of prostaglandins by peritoneal leukocytes in vivo, and by isolated neutrophils and macrophages in vitro. Prostaglandins Leukot Essent Fatty Acids 2009; 80:107-14. [PMID: 19155166 DOI: 10.1016/j.plefa.2008.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/07/2008] [Accepted: 11/17/2008] [Indexed: 11/29/2022]
Abstract
In this study, the ability of Bothrops asper snake venom (BaV) to increase the production of prostaglandins PGE(2) and PGD(2) was assessed in a mouse model in vivo and in inflammatory cells in vitro. In addition, the expressions of COX-1 and COX-2 were assessed. BaV induced an increment in the in vivo synthesis of PGE(2) and PGD(2), together with an enhanced expression of COX-2, but not of COX-1. However, enzymatic activities of COX-1 and COX-2 were increased. Incubation of isolated macrophages and neutrophils with a sub-cytotoxic concentration of BaV in vitro resulted in increased release of PGE(2) and PGD(2) by macrophages and PGE(2) by neutrophils, concomitantly with an increment in the expression of COX-2, but not of COX-1 by both cell types. Our results demonstrate the ability of BaV to promote the expression of COX-2 and to induce the synthesis of proinflammatory prostaglandins. Macrophages and neutrophils may be important targets for this venom under in vivo situation.
Collapse
Affiliation(s)
- Vanessa Moreira
- Laboratorio de Farmacologia, Instituto Butantan, Av. Vital Brasil, 1500, CEP 05503-900, Sao Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
17
|
Su X, Leon LA, Wu CW, Morrow DM, Jaworski JP, Hieble JP, Lashinger ESR, Jin J, Edwards RM, Laping NJ. Modulation of bladder function by prostaglandin EP3 receptors in the central nervous system. Am J Physiol Renal Physiol 2008; 295:F984-94. [DOI: 10.1152/ajprenal.90373.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prostaglandin EP3 receptors in the central nervous system (CNS) may exert an excitatory effect on urinary bladder function via modulation of bladder afferent pathways. We have studied this action, using two EP3 antagonists, (2 E)-3-{1-[(2,4-dichlorophenyl)methyl]-5-fluoro-3-methyl-1 H-indol-7-yl}- N-[(4,5-dichloro-2-thienyl)sulfonyl]-2-propenamide (DG041) and (2 E)- N-{[5-bromo-2-(methyloxy)phenyl] sulfonyl}-3-[2-(2-naphthalenylmethyl)phenyl]-2-propenamide (CM9). DG041 and CM9 were proven to be selective EP3 antagonists with radioligand binding and functional fluorescent imaging plate reader (FLIPR) assays. Their effects on volume-induced rhythmic bladder contraction and the visceromotor reflex (VMR) response to urinary bladder distension (UBD) were evaluated in female rats after intrathecal or intracerebroventricular administration. Both DG041 and CM9 showed a high affinity for EP3 receptors at subnanomolar concentrations without significant selectivity for any splice variants. At the human EP3C receptor, both inhibited calcium influx produced by the nonselective agonist PGE2. After intrathecal or intracerebroventricular administration both CM9 and DG041 dose-dependently reduced the frequency, but not the amplitude, of the bladder rhythmic contraction. With intrathecal administration DG041 and CM9 produced a long-lasting and robust inhibition on the VMR response to UBD, whereas with intracerebroventricular injection both compounds elicited only a transient reduction of the VMR response to bladder distension. These data support the concept that EP3 receptors are involved in bladder micturition at supraspinal and spinal centers and in bladder nociception at the spinal cord. A centrally acting EP3 receptor antagonist may be useful in the control of detrusor overactivity and/or pain associated with bladder disorders.
Collapse
|
18
|
Telleria-Diaz A, Ebersberger A, Vasquez E, Schache F, Kahlenbach J, Schaible HG. Different effects of spinally applied prostaglandin D2 on responses of dorsal horn neurons with knee input in normal rats and in rats with acute knee inflammation. Neuroscience 2008; 156:184-92. [PMID: 18678231 DOI: 10.1016/j.neuroscience.2008.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/19/2008] [Accepted: 07/10/2008] [Indexed: 11/18/2022]
Abstract
Prostaglandin D2(PGD2) is the most produced prostanoid in the CNS of mammals, and in behavioral experiments it has been implicated in the modulation of spinal nociception. In the present study we addressed the effects of spinal PGD2 on the discharge properties of nociceptive spinal cord neurons with input from the knee joint using extracellular recordings in vivo, both in normal rats and in rats with acute inflammation in the knee joint. Topical application of PGD2 to the spinal cord of normal rats did not influence responses to mechanical stimulation of the knee and ankle joint except at a high dose. Specific agonists at either the prostaglandin D2 receptor 1 (DP1) or the prostaglandin D2 receptor 2 (DP2) receptor had no effect on responses to mechanical stimulation of the normal knee. By contrast, in rats with inflamed knee joints either PGD2 or a DP1 receptor agonist decreased responses to mechanical stimulation of the inflamed knee and the non-inflamed ankle thus reducing established inflammation-evoked spinal hyperexcitability. Vice versa, spinal application of an antagonist at DP1 receptors increased responses to mechanical stimulation of the inflamed knee joint and the non-inflamed ankle joint suggesting that endogenous PGD2 attenuated central sensitization under inflammatory conditions, through activation of DP1 receptors. Spinal application of a DP2 receptor antagonist had no effect. The conclusion that spinal PGD2 attenuates spinal hyperexcitability under inflammatory conditions is further supported by the finding that spinal coapplication of PGD2 with prostaglandin E2 (PGE2) attenuated the PGE2-induced facilitation of responses to mechanical stimulation of the normal joint.
Collapse
Affiliation(s)
- A Telleria-Diaz
- Department of Physiology I, Neurophysiology, Friedrich-Schiller-Universität Jena, Teichgraben 8, D-07740 Jena, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Grill M, Heinemann A, Hoefler G, Peskar BA, Schuligoi R. Effect of endotoxin treatment on the expression and localization of spinal cyclooxygenase, prostaglandin synthases, and PGD2 receptors. J Neurochem 2008; 104:1345-57. [PMID: 18028337 DOI: 10.1111/j.1471-4159.2007.05078.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systemic inflammation leads to increased expression of spinal cyclooxygenase (COX)-2 and to a subsequent increase of prostaglandin (PG) biosynthesis, which contribute to the development of hyperalgesia and allodynia. In this study, endotoxin caused a sequential induction of membrane bound prostaglandin E synthase-1 and lipocalin-type PGD synthase (L-PGDS) in the mouse spinal cord. L-PGDS expression was detected in the leptomeninges, oligodendrocytes, and interestingly, in discrete perivascular cells. Endotoxin-caused increase was most prominent in oligodendrocytes. Endotoxin-induced COX-2 and membrane bound prostaglandin E synthase-1 were restricted to the leptomeninges and perivascular cells. COX-1 was not influenced by endotoxin. We found COX-1 expressed in microglia, some of them in close proximity to L-PGDS-positive oligodendrocytes and co-localization of COX-1 with L-PGDS in perivascular and leptomeningeal cells under control conditions. It can be assumed, that PGD2 biosynthesis under control conditions is mediated via COX-1 and that during inflammation, increased PGD2 is dependent on COX-2. We found the PGD2 receptors DP1 and chemoattractant receptor homologous molecule expressed on T helper type 2 cells (CRTH2) localized in neurons of the dorsal, and motoneurons in the ventral horn. The localization of the PGD2 receptors DP1 and CRTH in spinal cord neurons, particularly in neurons of lamina I and II involved in the processing of nociceptive stimuli, supports a role of PGD2 under inflammatory conditions.
Collapse
MESH Headings
- Animals
- Cytokines/biosynthesis
- Cytokines/genetics
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Inflammation Mediators/metabolism
- Injections, Intraperitoneal
- Lipopolysaccharides/administration & dosage
- Male
- Mice
- Mice, Inbred BALB C
- Prostaglandin D2/metabolism
- Prostaglandin-Endoperoxide Synthases/biosynthesis
- Prostaglandin-Endoperoxide Synthases/genetics
- Prostaglandin-Endoperoxide Synthases/metabolism
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/biosynthesis
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Spinal Cord/drug effects
- Spinal Cord/enzymology
- Spinal Cord/metabolism
- Time Factors
Collapse
Affiliation(s)
- Magdalena Grill
- Institute of Experimental and Clinical Pharmacology, Medical University Graz, Graz, Austria
| | | | | | | | | |
Collapse
|
20
|
Saleem S, Zhuang H, de Brum-Fernandes AJ, Maruyama T, Narumiya S, Doré S. PGD(2) DP1 receptor protects brain from ischemia-reperfusion injury. Eur J Neurosci 2007; 26:73-8. [PMID: 17573924 PMCID: PMC2386988 DOI: 10.1111/j.1460-9568.2007.05627.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prostaglandin D(2) is the most abundant prostaglandin in the brain. It has long been described as a modulator of the neuroinflammatory process, but little is known regarding the role of its Galpha(s)-coupled receptor, DP1. Therefore, in this study, the effect of the DP1 receptor on the outcome of cerebral ischemia in wildtype (WT) and DP1 knockout (DP1(-/-)) C57Bl/6 mice was investigated. Ischemia-reperfusion injury was produced by a 90-min occlusion of the right middle cerebral artery followed by a 4-day reperfusion. Infarct size was 49.0 +/- 11.0% larger in DP1(-/-) mice (n = 11; P < 0.01) than in WT mice (n = 9 per group). However, no differences were detected in the relative cerebral blood flow (CBF) or any of the physiological parameters measured (n = 5 per group) or in the large blood vessel anatomy (n = 3 per group). To further address whether the DP1 protective role in the brain could be extended to neurons, mouse primary corticostriatal neuronal cultures were exposed to the DP1-selective agonist, BW245C, which provided dose-dependent protection against excitotoxicity induced by glutamate. Protection was significant at a dose as low as 0.05 microm. The results indicate that the DP1 receptor is neuroprotective in both in vivo and in vitro paradigms. Development of drugs to stimulate the DP1 receptor in brain could provide a new therapeutic strategy against cerebral ischemia and potentially other neurological conditions.
Collapse
Affiliation(s)
- Sofiyan Saleem
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, 720 Rutland Ave, Ross 365, Baltimore, MD 21205, USA
| | - Hean Zhuang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, 720 Rutland Ave, Ross 365, Baltimore, MD 21205, USA
| | | | - Takayuki Maruyama
- Discovery Research Institute I, Ono Pharmaceutical Co Ltd, Mishima-gun, Osaka, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Faculty of Medicine, Kyoto 606−8501, Japan
| | - Sylvain Doré
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, 720 Rutland Ave, Ross 365, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University, School of Medicine, MD, USA
| |
Collapse
|
21
|
Koch KA, Wessale JL, Moreland R, Reinhart GA, Cox BF. Effects of BW245C, a prostaglandin dp receptor agonist, on systemic and regional haemodynamics in the anaesthetized rat. Clin Exp Pharmacol Physiol 2006; 32:931-5. [PMID: 16405449 DOI: 10.1111/j.1440-1681.2005.04287.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1. Prostaglandin D (DP) receptor agonists have been shown to induce hypotension in rat models, possibly via peripheral vasodilation. However, it is not known which tissues and organs are most responsive. 2. In the present study, BW245C, a DP receptor-selective agonist, was administered to Inactin (Sigma, St Louis, MO, USA)-anaesthetized rats. Animals received three serial i.v. infusions (17 min each) of either BW245C (escalating doses of 0.3, 3 and 30 microg/kg; n=6) or vehicle (6% ethanol in normal saline; n=6). Mean arterial pressure (MAP) and heart rate were monitored continuously and regional blood flow was determined by the radionuclide-labelled microsphere method at baseline and at the end of each infusion. 3. It was found that BW245C dose-dependently reduced MAP; blood flow increased in forelimb skeletal muscle and skin, resulting in decreases in the regional vascular resistance (RVR) of skeletal muscle to -6+/-13, -53+/-11 and -68+/-6% of baseline following 0.3, 3 and 30 microg/kg BW245C, respectively (P<0.05 vs vehicle treatment for the two higher doses), and skin to -29+/-8, -55+/-8 (P<0.05) and -30+/-16% of baseline, respectively. Relative to vehicle, blood flow and RVR for brain, heart, lung, liver, stomach and kidney were not significantly affected by BW245C. 4. These results demonstrate that the hypotension resulting from DP receptor activation in the rat is mediated primarily through vasodilation of arterioles of skeletal muscle independent of changes in blood flow to vital organs.
Collapse
Affiliation(s)
- Kristin A Koch
- Neurological Diseases Research, Global Pharmaceutical Research and Development, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064-6119, USA.
| | | | | | | | | |
Collapse
|
22
|
Grill M, Peskar BA, Schuligoi R, Amann R. Systemic inflammation induces COX-2 mediated prostaglandin D2 biosynthesis in mice spinal cord. Neuropharmacology 2006; 50:165-73. [PMID: 16182321 DOI: 10.1016/j.neuropharm.2005.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 07/01/2005] [Accepted: 08/08/2005] [Indexed: 01/03/2023]
Abstract
Although prostaglandin (PG)D2 is one of the main metabolites of the cyclooxygenase (COX) pathway of arachidonate metabolism in the brain, relatively little is known about the regulation of PGD2 biosynthesis in the spinal cord during systemic inflammation. Therefore, the present study was aimed at investigating the effect of endotoxin treatment on spinal PGD2 biosynthesis in BALB/c mice. Spinal inflammatory response to systemic endotoxin was verified by determination of spinal TNFalpha and IL-1beta mRNA. COX-1, COX-2, membrane-bound prostaglandin E synthase-1 (mPGES-1), and lipocalin-type prostaglandin D synthase (L-PGDS) mRNA and protein were determined by RT-PCR and western blot, respectively. The concentrations of immunoreactive PGD2 and PGE2 were measured in superfusion media of spinal cord samples in-vitro. Endotoxin treatment (1 mg/kg; 24 h before) enhanced the expression of COX-2, mPGES-1, and L-PGDS mRNA and protein in spinal cord, while there was no significant effect on COX-1 mRNA and protein. In superfusion media of spinal cord samples obtained from endotoxin treated mice, the concentrations of immunoreactive PGE2 and PGD2 were higher than in the control group suggesting enhanced spinal PG biosynthesis after endotoxin treatment. Addition of the selective COX-2 inhibitor lumiracoxib (100 nM) to the superfusion medium did not significantly affect PGE2 or PGD2 release in spinal cord obtained from non-treated mice. In spinal cord of endotoxin-treated mice, lumiracoxib (100 nM) attenuated PGE2 and PGD2 release to values similar to those observed in tissue obtained from non-endotoxin-treated mice. These results show enhanced expression of spinal L-PGDS and increased spinal PGD2 biosynthesis during systemic inflammation whereby enhanced biosynthesis seems to be dependent primarily on COX-2 activity.
Collapse
Affiliation(s)
- Magdalena Grill
- Medical University Graz, Institute of Experimental and Clinical Pharmacology, Universitatsplatz 4, A-8010, Graz, Austria
| | | | | | | |
Collapse
|
23
|
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are generally prescribed to ameliorate symptoms associated with acute pain and chronic inflammatory diseases such as arthritis. Recent epidemiologic studies and clinical trials indicate that use of NSAIDs and cyclooxygenase (COX)-2 selective inhibitors are associated with a reduced risk of certain malignancies, especially gastrointestinal cancer. The cyclooxygenase enzymes are the best known targets of NSAIDs; this diverse class of compounds blocks conversion of arachidonic acid to prostanoids. Prostaglandins and other eicosanoids derived from COX-1 and COX-2 are involved in a variety of physiologic and pathologic processes in the gastrointestinal tract. Recent efforts to identify the molecular mechanisms by which COX-2-derived prostanoids exert their proneoplastic effects have provided a rationale for the possible use of NSAIDs alone or in a combination with conventional or experimental anticancer agents for the treatment or prevention of gastrointestinal cancers.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
24
|
|
25
|
Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The Choroid Plexus‐Cerebrospinal Fluid System: From Development to Aging. Curr Top Dev Biol 2005; 71:1-52. [PMID: 16344101 DOI: 10.1016/s0070-2153(05)71001-2] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The function of the cerebrospinal fluid (CSF) and the tissue that secretes it, the choroid plexus (CP), has traditionally been thought of as both providing physical protection to the brain through buoyancy and facilitating the removal of brain metabolites through the bulk drainage of CSF. More recent studies suggest, however, that the CP-CSF system plays a much more active role in the development, homeostasis, and repair of the central nervous system (CNS). The highly specialized choroidal tissue synthesizes trophic and angiogenic factors, chemorepellents, and carrier proteins, and is strategically positioned within the ventricular cavities to supply the CNS with these biologically active substances. Through polarized transport systems and receptor-mediated transcytosis across the choroidal epithelium, the CP, a part of the blood-CSF barrier (BCSFB), controls the entry of nutrients, such as amino acids and nucleosides, and peptide hormones, such as leptin and prolactin, from the periphery into the brain. The CP also plays an important role in the clearance of toxins and drugs. During CNS development, CP-derived growth factors, such as members of the transforming growth factor-beta superfamily and retinoic acid, play an important role in controlling the patterning of neuronal differentiation in various brain regions. In the adult CNS, the CP appears to be critically involved in neuronal repair processes and the restoration of the brain microenvironment after traumatic and ischemic brain injury. Furthermore, recent studies suggest that the CP acts as a nursery for neuronal and astrocytic progenitor cells. The advancement of our knowledge of the neuroprotective capabilities of the CP may therefore facilitate the development of novel therapies for ischemic stroke and traumatic brain injury. In the later stages of life, the CP-CSF axis shows a decline in all aspects of its function, including CSF secretion and protein synthesis, which may in themselves increase the risk for development of late-life diseases, such as normal pressure hydrocephalus and Alzheimer's disease. The understanding of the mechanisms that underlie the dysfunction of the CP-CSF system in the elderly may help discover the treatments needed to reverse the negative effects of aging that lead to global CNS failure.
Collapse
Affiliation(s)
- Zoran B Redzic
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Kan KKW, Jones RL, Ngan MP, Rudd JA. Excitatory action of prostanoids on the ferret isolated vagus nerve preparation. Eur J Pharmacol 2004; 491:37-41. [PMID: 15102531 DOI: 10.1016/j.ejphar.2004.02.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 02/26/2004] [Indexed: 11/30/2022]
Abstract
We have investigated the actions of various prostanoid receptor agonists on an isolated preparation of the ferret cervical vagus using a grease-gap extracellular recording technique. The potency ranking for depolarization was BW245C (5-(6-carboxyhexyl)-1-(3-cyclohexyl-3-hydroxypropyl) hydantoin; DP-selective, EC50=0.14 microM)>prostaglandin E2 (nonselective EP agonist)>U-46619 (11alpha, 9alpha-epoxymethano-15S-hydroxyprosta-5Z,13E-dienoic acid; TP agonist)>prostaglandin F2alpha (FP receptor agonist). Sulprostone (EP1/EP3-selective), fluprostenol (FP-selective) and cicaprost and iloprost (both IP-selective) had minimal effects. It is likely that DP, EP2/EP4 and TP receptors are present on the vagal fibres of the ferret.
Collapse
Affiliation(s)
- Kelvin K W Kan
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | | | | | | |
Collapse
|
27
|
Hawcroft G, Gardner SH, Hull MA. Expression of prostaglandin D2 receptors DP1 and DP2 by human colorectal cancer cells. Cancer Lett 2004; 210:81-4. [PMID: 15172124 DOI: 10.1016/j.canlet.2004.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 01/13/2004] [Indexed: 11/15/2022]
Abstract
The expression and function of prostaglandin (PG) D2 DP receptors during colorectal carcinogenesis has not been elucidated. Therefore, we studied expression of DP1 and DP2 receptors by reverse transcription-polymerase chain reaction analysis of receptor mRNA levels in five human colorectal cancer cell lines (HT-29, HCA-7, HCT116, SW480 and SW48) and VACO-235 human colorectal adenoma cells. DP1 receptor transcripts were present only in HT-29 cells. In addition, none of the human colorectal epithelial cell lines tested expressed DP2 receptor mRNA. Therefore, PGD2 is unlikely to have direct activity on neoplastic colorectal epithelial cells via cell surface DP receptors.
Collapse
Affiliation(s)
- Gillian Hawcroft
- Molecular Medicine Unit, University of Leeds, Clinical Sciences Building, St James's University Hospital, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
28
|
Nantel F, Fong C, Lamontagne S, Wright DH, Giaid A, Desrosiers M, Metters KM, O'Neill GP, Gervais FG. Expression of prostaglandin D synthase and the prostaglandin D2 receptors DP and CRTH2 in human nasal mucosa. Prostaglandins Other Lipid Mediat 2004; 73:87-101. [PMID: 15165034 DOI: 10.1016/j.prostaglandins.2003.12.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prostaglandin D2 (PGD2) is released from mast cells during the allergic response. OBJECTIVE Since PGD2 has been shown to induce nasal congestion in humans, we investigated the distribution of hematopoietic prostaglandin D synthase (PGDS) and the two PGD2 receptors, DP and CRTH2 in human nasal mucosa from healthy subjects and subjects suffering from polyposis, a severe form of chronic rhinosinusitis. METHODS DP mRNA expression was detected by in situ hybridization while PGDS, CRTH2 and various leukocyte markers expression were revealed by immunohistochemistry. RESULTS In the normal mucosa, PGDS was only detected in few resident mast cells while CRTH2 was undetectable. In contrast, DP receptor mRNA was detected in epithelial goblet cells, serous glands and in the vasculature. In the nasal mucosa of subjects suffering from polyposis: (1) PGDS was detected in mast cells and other large infiltrating inflammatory cells, (2) both DP mRNA and CRTH2 were detected in eosinophils and (3) CRTH2 was detected on a subset of infiltrating T cells. Although DP mRNA could not be detected in the T cells invading the nasal mucosa, it was found to be expressed in the T cells present in the lymph node and the thymus from normal individuals. CONCLUSION This study indicates that cells capable of producing PGD2 are present in the nasal mucosa and that both PGD2 receptors, DP and CRTH2, might play a role in inflammatory disease of the upper airways.
Collapse
Affiliation(s)
- François Nantel
- Merck Frosst Canada & Co. 16711 Trans Canada Hwy., Kirkland, Que., Canada H9H 3L1
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yagami T, Ueda K, Asakura K, Takasu N, Sakaeda T, Itoh N, Sakaguchi G, Kishino J, Nakazato H, Katsuyama Y, Nagasaki T, Okamura N, Hori Y, Hanasaki K, Arimura A, Fujimoto M. Novel binding sites of 15-deoxy-Delta12,14-prostaglandin J2 in plasma membranes from primary rat cortical neurons. Exp Cell Res 2003; 291:212-27. [PMID: 14597421 DOI: 10.1016/s0014-4827(03)00369-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
15-Deoxy-Delta12,14-prostaglandin J2 (15d-Delta12,14-PGJ2) is an endogenous ligand for a nuclear peroxysome proliferator activated receptor-gamma (PPAR). We found novel binding sites of 15d-Delta12,14-PGJ2 in the neuronal plasma membranes of the cerebral cortex. The binding sites of [3H]15d-Delta12,14-PGJ2 were displaced by 15d-Delta12,14-PGJ2 with a half-maximal concentration of 1.6 microM. PGD2 and its metabolites also inhibited the binding of [3H]15d-Delta12,14-PGJ2. Affinities for the novel binding sites were 15d-Delta12,14-PGJ2 > Delta12-PGJ2 > PGJ2 > PGD2. Other eicosanoids and PPAR agonists did not alter the binding of [3H]15d-Delta12,14-PGJ2. In primary cultures of rat cortical neurons, we examined the pathophysiologic roles of the novel binding sites. 15d-Delta12,14-PGJ2 triggered neuronal cell death in a concentration-dependent manner, with a half-maximal concentration of 1.1 microM. The neurotoxic potency of PGD2 and its metabolites was also 15d-Delta12,14-PGJ2 > Delta12-PGJ2 > PGJ2 > PGD2. The morphologic and ultrastructural characteristics of 15d-Delta12,14-PGJ2-induced neuronal cell death were apoptotic, as evidenced by condensed chromatin and fragmented DNA. On the other hand, we detected little neurotoxicity of other eicosanoids and PPAR agonists. In conclusion, we demonstrated that novel binding sites of 15d-Delta12,14-PGJ2 exist in the plasma membrane. The present study suggests that the novel binding sites might be involved in 15d-Delta12,14-PGJ2-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co., Ltd., 12-4, Sagisu 5-Choume, Fukushima-ku, Osaka 553-0002, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Prostaglandin (PG) D(2) is the major cyclooxygenase metabolite of arachidonic acid produced by mast cells in response to allergen in diseases, such as asthma, atopic dermatitis, allergic rhinitis and allergic conjunctivitis. However, whether PGD(2) regulates allergic process per se, and, if so, whether it facilitates or down-regulates the disease process has remained unknown. PGD(2) exerts its actions by binding to two types of specific cell surface receptor. One is DP (the PGD receptor) and the other is chemoattractant receptor-homologous molecule expressed on Th2. Between the two, the DP receptor has been better characterized since its cDNA cloning in 1994, and novel class of DP antagonists have been and are being developed. Furthermore, mice deficient in DP were generated and have been subjected to several models of allergic diseases to reveal the role of PGD(2) in allergy. In this article, we summarize these findings and provide an overview of the current status of the DP receptor research to discuss the therapeutic potential of modulating the PGD(2)-DP pathway in allergic diseases.
Collapse
Affiliation(s)
- Kenji Kabashima
- Faculty of Medicine, 2nd Department of Pharmacology, Kyoto University, Yoshida-Konoe cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|
31
|
Sawyer N, Cauchon E, Chateauneuf A, Cruz RPG, Nicholson DW, Metters KM, O'Neill GP, Gervais FG. Molecular pharmacology of the human prostaglandin D2 receptor, CRTH2. Br J Pharmacol 2002; 137:1163-72. [PMID: 12466225 PMCID: PMC1573602 DOI: 10.1038/sj.bjp.0704973] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The recombinant human prostaglandin D(2) (PGD(2)) receptor, hCRTH2, has been expressed in HEK293(EBNA) and characterized with respect to radioligand binding and signal transduction properties. High and low affinity binding sites for PGD(2) were identified in the CRTH2 receptor population by saturation analysis with respective equilibrium dissociation constants (K(D)) of 2.5 and 109 nM. This revealed that the affinity of PGD(2) for CRTH2 is eight times less than its affinity for the DP receptor. 2. Equilibrium competition binding assays revealed that of the compounds tested, only PGD(2) and several related metabolites bound with high affinity to CRTH2 (K(i) values ranging from 2.4 to 34.0 nM) with the following rank order of potency: PGD(2)>13,14-dihydro-15-keto PGD(2)>15-deoxy-Delta(12,14)-PGJ(2)>PGJ(2)>Delta(12)-PGJ(2)>15(S)-15 methyl-PGD(2). This is in sharp contrast with the rank order of potency obtained at DP : PGD(2)>PGJ(2)>Delta(12)-PGJ(2)>15-deoxy-Delta(12,14)-PGJ(2) >>>13,14-dihydro-15-keto-PGD(2). 3. Functional studies demonstrated that PGD(2) activation of recombinant CRTH2 results in decrease of intracellular cAMP in a pertussis toxin-sensitive manner. Therefore, we showed that CRTH2 can functionally couple to the G-protein G(alphai/o). PGD(2) and related metabolites were tested and their rank order of potency followed the results of the membrane binding assay. 4. By Northern blot analysis, we showed that, besides haemopoietic cells, CRTH2 is expressed in many other tissues such as brain, heart, thymus, spleen and various tissues of the digestive system. In addition, in situ hybridization studies revealed that CRTH2 mRNA is expressed in human eosinophils. Finally, radioligand binding studies demonstrated that two eosinophilic cell lines, butyric acid-differentiated HL-60 and AML 14.3D10, also endogenously express CRTH2.
Collapse
MESH Headings
- Binding, Competitive/drug effects
- Binding, Competitive/physiology
- Cell Line
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- HL-60 Cells
- Humans
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Receptors, Immunologic/agonists
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/biosynthesis
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin/physiology
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Transfection
Collapse
Affiliation(s)
- Nicole Sawyer
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada H9R 4P8
| | - Elizabeth Cauchon
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada H9R 4P8
| | - Anne Chateauneuf
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada H9R 4P8
| | - Rani P G Cruz
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada H9R 4P8
| | - Donald W Nicholson
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada H9R 4P8
| | - Kathleen M Metters
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada H9R 4P8
| | - Gary P O'Neill
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada H9R 4P8
| | - Francois G Gervais
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada H9R 4P8
- Author for correspondence:
| |
Collapse
|
32
|
Svensson CI, Yaksh TL. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol 2002; 42:553-83. [PMID: 11807183 DOI: 10.1146/annurev.pharmtox.42.092401.143905] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intrathecal phospholipase A2 (PLA2) and cyclooxygenase-2 (COX-2), but not COX-1, inhibitors attenuate facilitated pain states generated by peripheral injury/inflammation and by direct activation of spinal glutamate and substance P receptors. These results are consistent with the constitutive expression of PLA2 and COX-2 in spinal cord, the spinal release of prostaglandins by persistent afferent input, and the effects of prostaglandins on spinal excitability. Whereas the acute actions of COX-2 inhibitors are clearly mediated by constitutively expressed spinal COX-2, studies of spinal COX-2 expression indicate that it is upregulated by neural input and circulating cytokines. Given the intrathecal potency of COX-2 inhibitors, the comparable efficacy of intrathecal versus systemic COX-2 inhibitors in hyperalgesic states not associated with inflammation, and the onset of antihyperalgesic activity prior to COX-2 upregulation, it is argued that a principal antihyperalgesic mechanism of COX-2 inhibitors lies with modulation of constitutive COX-2 present at the spinal level.
Collapse
Affiliation(s)
- Camilla I Svensson
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093-0818, USA.
| | | |
Collapse
|
33
|
Harris SG, Smith RS, Phipps RP. 15-deoxy-Delta 12,14-PGJ2 induces IL-8 production in human T cells by a mitogen-activated protein kinase pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1372-9. [PMID: 11801678 DOI: 10.4049/jimmunol.168.3.1372] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells, platelets, and some macrophages are abundant sources of PGD(2) and its active metabolite 15-deoxy-Delta(12,14)-PGJ(2) (15-d-PGJ(2)). The lipid mediator 15-d-PGJ(2) regulates numerous processes, including adipogenesis, apoptosis, and inflammation. The 15-d-PGJ(2) has been shown to both inhibit as well as induce the production of inflammatory mediators such as TNF-alpha, IL-1beta, and cyclooxygenase, mostly occurring via a nuclear receptor called peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Data concerning the effects of 15-d-PGJ(2) on human T cells and immune regulation are sparse. IL-8, a cytokine with both chemotactic and angiogenic effects, is produced by T lymphocytes following activation. Whether 15-d-PGJ(2) can regulate the production of IL-8 in T cells in unknown. Interestingly, 15-d-PGJ(2) treatment of unstimulated T cells induces cell death. In contrast, in activated human T lymphocytes, 15-d-PGJ(2) does not kill them, but induces the synthesis of IL-8. In this study, we report that 15-d-PGJ(2) induced a significant increase in both IL-8 mRNA and protein from activated human T lymphocytes. The induction of IL-8 by 15-d-PGJ(2) did not occur through the nuclear receptor PPAR-gamma, as synthetic PPAR-gamma agonists did not mimic the IL-8-inducing effects of 15-d-PGJ(2). The mechanism of IL-8 induction was through a mitogen-activated protein kinase and NF-kappaB pathway, as inhibitors of both systems abrogated IL-8 protein induction. Therefore, 15-d-PGJ(2) can act as a potent proinflammatory mediator in activated T cells by inducing the production of IL-8. These findings show the complexity with which 15-d-PGJ(2) regulates T cells by possessing both pro- and anti-inflammatory properties depending on the activation state of the cell. The implications of this research also include that caution is warranted in assigning a solely anti-inflammatory role for 15-d-PGJ(2).
Collapse
Affiliation(s)
- Sarah G Harris
- Cancer Center, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
34
|
Harris SG, Phipps RP. Prostaglandin D(2), its metabolite 15-d-PGJ(2), and peroxisome proliferator activated receptor-gamma agonists induce apoptosis in transformed, but not normal, human T lineage cells. Immunology 2002; 105:23-34. [PMID: 11849312 PMCID: PMC1782633 DOI: 10.1046/j.0019-2805.2001.01340.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Prostaglandin D(2) (PGD(2)) is abundantly produced by mast cells, platelets, and alveolar macrophages and has been proposed as a key immunoregulatory lipid mediator. 15-Deoxy-Delta(12,14)-PGJ(2) (15-d-PGJ(2)), a key PGD(2) metabolite, is under intense study as a potential anti-inflammatory mediator. Little is known about PGD(2) or the role of 15-d-PGJ(2), if any, in regulating the activities of human T lineage cells. In this report we demonstrate that both PGD(2) and 15-d-PGJ(2) have potent antiproliferative effects, and in fact kill human T lymphocyte lines derived from malignant cells by an apoptotic mechanism. Interestingly, normal human T cells were not similarly affected. Although the T lymphocyte lines express mRNA for the PGD(2) receptor (DP-R), a potent DP receptor agonist, BW245C, did not inhibit the proliferation or viability of the cells, suggesting an alternative mechanism of action. PGD(2) and 15-d-PGJ(2) can bind to the peroxisome proliferator activated receptor-gamma (PPAR-gamma) which is implicated in lipid metabolism and apoptosis. Exposure to synthetic PPAR-gamma ligands (e.g. ciglitazone, troglitazone) mimicked the inhibitory responses of PGD(2) and 15-d-PGJ(2), and induced apoptosis in the transformed T cells consistent with a PPAR-gamma-dependent mechanism. These observations suggest that PPAR-gamma ligands (which may include PGD2) provide strong apoptotic signals to transformed, but not normal T lymphocytes. Thus, the efficacy of utilizing PPAR-gamma and its ligands as therapeutics for human T cell cancers needs to be further evaluated.
Collapse
Affiliation(s)
- Sarah G Harris
- Department of Microbiology and Immunology and the James P. Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
35
|
Gervais FG, Cruz RP, Chateauneuf A, Gale S, Sawyer N, Nantel F, Metters KM, O'neill GP. Selective modulation of chemokinesis, degranulation, and apoptosis in eosinophils through the PGD2 receptors CRTH2 and DP. J Allergy Clin Immunol 2001; 108:982-8. [PMID: 11742277 DOI: 10.1067/mai.2001.119919] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND PGD(2) is the major prostanoid released by mast cells during an allergic response. Its role in the allergic response, however, remains unclear. OBJECTIVE Because the accumulation of eosinophils is a feature of allergic reactions, we investigated the role of PGD(2) in the modulation of eosinophil function. METHODS Circulating human eosinophils were isolated and challenged with PGD(2). The effects of PGD(2) on various eosinophil functions were then analyzed. RESULTS PGD(2) binds with high affinity preferentially to 2 receptors, DP and chemoattractant receptor-homologous molecule expressed on T(H)2 cells (CRTH2). We show that both DP and CRTH2 are detectable on circulating eosinophils. We demonstrate that PGD(2) (1-10 nmol/L) induces a rapid change in human eosinophil morphology and an increase in chemokinesis and promotes eosinophil degranulation. These effects are induced by the CRTH2-selective agonist 13-14-dihydro-15-keto-PGD(2) (DK-PGD(2)) but not by the DP-selective agonist BW245C. These results suggest a role for CRTH2 in the modulation of eosinophil movement and in triggering the release of cytotoxic proteins. Finally, we demonstrate that BW245C, but not DK-PGD(2), can delay the onset of apoptosis in cultured eosinophils, presumably through interaction with DP. CONCLUSION These data support the hypothesis that PGD(2) controls eosinophil functions through 2 pharmacologically distinct receptors with independent functions. Blockade of PGD(2)-mediated effects on human eosinophils may reduce the damage caused by these cells during an allergic response, but inhibition of both receptors may be required.
Collapse
Affiliation(s)
- F G Gervais
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Over the past three decades studies have been conducted to determine the role of prostaglandins in normal physiology and in certain diseases. Cyclo-oxygenase (COX) or prostaglandin endoperoxide synthase (Pghs) is required for the conversion of arachidonic acid to prostaglandins. Two isoforms of this enzyme have been identified which are referred to as COX-1 and COX-2. Under most circumstances, COX-1 is produced constitutively, whereas COX-2 can be induced by several physiological stimuli and is expressed at sites of inflammation. Although these isozymes catalyze identical reactions, they are often regulated by different signalling systems. The goal of this chapter is to provide a review of the role of cyclo-oxygenase in biology and disease, and to summarize the current understanding of mechanisms for the regulation of COX-2 expression.
Collapse
Affiliation(s)
- E Stack
- Department of Medicine/GI, Vanderbilt University Medical Center, Nashville, TN 27232-2279, USA
| | | |
Collapse
|
37
|
Halm DR, Halm ST. Prostanoids stimulate K secretion and Cl secretion in guinea pig distal colon via distinct pathways. Am J Physiol Gastrointest Liver Physiol 2001; 281:G984-96. [PMID: 11557519 DOI: 10.1152/ajpgi.2001.281.4.g984] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Short-circuit current (I(sc)) and transepithelial conductance (Gt) were measured in guinea pig distal colonic mucosa isolated from submucosa and underlying muscle layers. Indomethacin (2 microM) and NS-398 (2 microM) were added to suppress endogenous production of prostanoids. Serosal addition of PGE2 (10 nM) stimulated negative I(sc) consistent with K secretion, and concentrations >30 nM stimulated positive I(sc) consistent with Cl secretion. PGE2 also stimulated Gt at low and high concentrations. Dose responses to prostanoids specific for EP prostanoid receptors were consistent with stimulating K secretion through EP2 receptors, based on a rank order potency (from EC50 values) of PGE2 (1.9 nM) > 11-deoxy-PGE1 (8.3 nM) > 19(R)-hydroxy-PGE2 (13.9 nM) > butaprost (67 nM) > 17-phenyl-trinor-PGE2 (307 nM) >> sulprostone (>10 microM). An isoprostane, 8-iso-PGE2, stimulated K secretion with an EC50 of 33 nM. Cl secretory response was stimulated by PGD2 and BW-245C, a DP prostanoid receptor-specific agonist: BW-245C (15 nM) > PGD2 (30 nM) > PGE2 (203 nM). Agonists specific for FP, IP, and TP prostanoid receptors were ineffective in stimulating I(sc) and Gt at concentrations <1 microM. These results indicate that PGE2 stimulated electrogenic K secretion through activation of EP2 receptors and electrogenic KCl secretion through activation of DP receptors. Thus stimulation of Cl secretion in vivo would occur either via physiological concentrations of PGD2 (<100 nM) or pathophysiological concentrations of PGE2 (>100 nM) that could occur during inflammatory conditions.
Collapse
Affiliation(s)
- D R Halm
- Department of Physiology and Biophysics, Wright State University, Dayton, Ohio 45435, USA.
| | | |
Collapse
|
38
|
Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases [correction of cycloxygenases] in the spinal cord. Prog Neurobiol 2001; 64:327-63. [PMID: 11275357 DOI: 10.1016/s0301-0082(00)00063-0] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spinal cord is one of the sites where non-steroidal anti-inflammatory drugs (NSAIDs) act to produce analgesia and antinociception. Expression of cyclooxygenase(COX)-1 and COX-2 in the spinal cord and primary afferents suggests that NSAIDs act here by inhibiting the synthesis of prostaglandins (PGs). Basal release of PGD(2), PGE(2), PGF(2alpha) and PGI(2) occurs in the spinal cord and dorsal root ganglia. Prostaglandins then bind to G-protein-coupled receptors located in intrinsic spinal neurons (receptor types DP and EP2) and primary afferent neurons (EP1, EP3, EP4 and IP). Acute and chronic peripheral inflammation, interleukins and spinal cord injury increase the expression of COX-2 and release of PGE(2) and PGI(2). By activating the cAMP and protein kinase A pathway, PGs enhance tetrodotoxin-resistant sodium currents, inhibit voltage-dependent potassium currents and increase voltage-dependent calcium inflow in nociceptive afferents. This decreases firing threshold, increases firing rate and induces release of excitatory amino acids, substance P, calcitonin gene-related peptide (CGRP) and nitric oxide. Conversely, glutamate, substance P and CGRP increase PG release. Prostaglandins also facilitate membrane currents and release of substance P and CGRP induced by low pH, bradykinin and capsaicin. All this should enhance elicitation and synaptic transfer of pain signals in the spinal cord. Direct administration of PGs to the spinal cord causes hyperalgesia and allodynia, and some studies have shown an association between induction of COX-2, increased PG release and enhanced nociception. NSAIDs diminish both basal and enhanced PG release in the spinal cord. Correspondingly, spinal application of NSAIDs generally diminishes neuronal and behavioral responses to acute nociceptive stimulation, and always attenuates behavioral responses to persistent nociception. Spinal application of specific COX-2 inhibitors sometimes diminishes behavioral responses to persistent nociception.
Collapse
Affiliation(s)
- H Vanegas
- Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, 1020A, Caracas, Venezuela.
| | | |
Collapse
|
39
|
Abstract
Renal cyclooxygenase 1 and 2 activity produces five primary prostanoids: prostaglandin E2, prostaglandin F2alpha, prostaglandin I2, thromboxane A2, and prostaglandin D2. These lipid mediators interact with a family of distinct G protein-coupled prostanoid receptors designated EP, FP, IP, TP, and DP, respectively, which exert important regulatory effects on renal function. The intrarenal distribution of these prostanoid receptors has been mapped, and the consequences of their activation have been partially characterized. FP, TP, and EP1 receptors preferentially couple to an increase in cell calcium. EP2, EP4, DP, and IP receptors stimulate cyclic AMP, whereas the EP3 receptor preferentially couples to Gi, inhibiting cyclic AMP generation. EP1 and EP3 mRNA expression predominates in the collecting duct and thick limb, respectively, where their stimulation reduces NaCl and water absorption, promoting natriuresis and diuresis. The FP receptor is highly expressed in the distal convoluted tubule, where it may have a distinct effect on renal salt transport. Although only low levels of EP2 receptor mRNA are detected in the kidney and its precise intrarenal localization is uncertain, mice with targeted disruption of the EP2 receptor exhibit salt-sensitive hypertension, suggesting that this receptor may also play an important role in salt excretion. In contrast, EP4 receptor mRNA is predominantly expressed in the glomerulus, where it may contribute to the regulation of glomerular hemodynamics and renin release. The IP receptor mRNA is highly expressed near the glomerulus, in the afferent arteriole, where it may also dilate renal arterioles and stimulate renin release. Conversely, TP receptors in the glomerulus may counteract the effects of these dilator prostanoids and increase glomerular resistance. At present there is little evidence for DP receptor expression in the kidney. These receptors act in a concerted fashion as physiological buffers, protecting the kidney from excessive functional changes during periods of physiological stress. Nonsteroidal anti-inflammatory drug (NSAID)-mediated cyclooxygenase inhibition results in the loss of these combined effects, which contributes to their renal effects. Selective prostanoid receptor antagonists may provide new therapeutic approaches for specific disease states.
Collapse
Affiliation(s)
- M D Breyer
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
40
|
Abstract
Cyclooxygenases metabolize arachidonate to five primary prostanoids: PGE(2), PGF(2 alpha), PGI(2), TxA(2), and PGD(2). These autacrine lipid mediators interact with specific members of a family of distinct G-protein-coupled prostanoid receptors, designated EP, FP, IP, TP, and DP, respectively. Each of these receptors has been cloned, expressed, and characterized. This family of eight prostanoid receptor complementary DNAs encodes seven transmembrane proteins which are typical of G-protein-coupled receptors and these receptors are distinguished by their ligand-binding profiles and the signal transduction pathways activated on ligand binding. Ligand-binding selectivity of these receptors is determined by both the transmembrane sequences and amino acid residues in the putative extracellular-loop regions. The selectivity of interaction between the receptors and G proteins appears to be mediated at least in part by the C-terminal tail region. Each of the EP(1), EP(3), FP, and TP receptors has alternative splice variants described that alter the coding sequence in the C-terminal intracellular tail region. The C-terminal variants modulate signal transduction, phosphorylation, and desensitization of these receptors, as well as altering agonist-independent constitutive activity.
Collapse
Affiliation(s)
- R M Breyer
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
41
|
Wright DH, Ford-Hutchinson AW, Chadee K, Metters KM. The human prostanoid DP receptor stimulates mucin secretion in LS174T cells. Br J Pharmacol 2000; 131:1537-45. [PMID: 11139429 PMCID: PMC1572485 DOI: 10.1038/sj.bjp.0703688] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study demonstrates the localization of the prostaglandin (PG)D(2) receptor (DP) within the mucous-secreting globlet cells of the human colon by in situ hybridization, which suggests a role for DP in mucous secretion. Selective high affinity ligands were used, therefore, to evaluate DP regulation of mucous secretion in LS174T human colonic adenocarcinoma cells. The expression of hDP in LS174T cells was confirmed at the mRNA level by reverse transcriptase-polymerase chain reaction, and at the protein level by radioligand binding assays and signal transduction (cyclic AMP accumulation) assays. PGD(2) and the highly selective DP-specific agonist L-644,698 ((4-(3-(3-(3-hydroxyoctyl)-4-oxo-2-thiazolidinyl) propyl) benzoic acid) (racemate)), but not PGE(2) competed for [(3)H]-PGD(2)-specific binding to LS174T cell membranes (K:(i) values of 0.4 nM and 7 nM, respectively). The DP-specific agonists PGD(2), PGJ(2), BW245C (5-(6-carboxyhexyl)-1-(3-cyclohexyl-3-hydroxypropylhydantoin)), and L-644,698 showed similar potencies in stimulating cyclic AMP accumulation (EC(50) values: 45 - 90 nM) and demonstrated the expected rank order of potency. PGE(2) also elicited cyclic AMP production in this cell line (EC(50) value: 162 nM). The activation of cyclic AMP production by PGD(2) and L-644,698, but not PGE(2), was inhibited by the selective DP antagonist BW A868C. Thus, PGD(2) and L-644,698 act through hDP in LS174T cells. PGD(2), L-644,698 and PGE(2) (an established mucin secretagogue) potently stimulated mucin secretion in LS174T cells in a concentration-dependent manner (EC(50)<50 nM). However, BW A868C effectively antagonized only the mucin secretion mediated by PGD(2) and L-644,698 and not PGE(2). These data support a role for the DP receptor in the regulation of mucous secretion.
Collapse
MESH Headings
- Benzoates/pharmacology
- Binding, Competitive/drug effects
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Colon/drug effects
- Colon/metabolism
- Cyclic AMP/metabolism
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Humans
- Hydantoins/pharmacology
- In Situ Hybridization
- Mucins/drug effects
- Mucins/metabolism
- Prostaglandin D2/metabolism
- Prostaglandin D2/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Receptors, Immunologic
- Receptors, Prostaglandin/drug effects
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/physiology
- Thiazoles/pharmacology
- Thiazolidines
- Transcription, Genetic
- Tritium
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- D H Wright
- Department of Pharmacology & Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir-William-Osler, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
42
|
Okada Y, Hara A, Ma H, Xiao CY, Takahata O, Kohgo Y, Narumiya S, Ushikubi F. Characterization of prostanoid receptors mediating contraction of the gastric fundus and ileum: studies using mice deficient in prostanoid receptors. Br J Pharmacol 2000; 131:745-55. [PMID: 11030724 PMCID: PMC1572385 DOI: 10.1038/sj.bjp.0703627] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Receptors mediating prostanoid-induced contractions of longitudinal sections of gastric fundus and ileum were characterized by using tissues obtained from mice deficient in each type and subtype of prostanoid receptors. The fundus and ileum from mice deficient in either EP(3) (EP(3)(-/-) mice), EP(1) (EP(1)(-/-) mice) and FP (FP(-/-) mice) all showed decreased contraction to PGE(2) compared to the tissues from wild-type mice, whereas contraction of the fundus slightly increased in EP(4)(-/-) mice. 17-phenyl-PGE(2) also showed decreased contraction of the fundus from EP(3)(-/-), EP(1)(-/-) and FP(-/-) mice. Sulprostone showed decreased contraction of the fundus from EP(3)(-/-) and FP(-/-) mice, and decreased contraction of the ileum to this compound was seen in tissues from EP(3)(-/-), EP(1)(-/-) and FP(-/-) mice. In DP(-/-) mice, sulprostone showed increased contraction. DI-004 and AE-248 caused the small but concentration-dependent contraction of both tissues, and these contractions were abolished in tissues obtained from EP(1)(-/-) and EP(3)(-/-) mice, respectively, but not affected in other mice. Contractions of both fundus and ileum to PGF(2)alpha was absent at lower concentrations (10(-9) to 10(-7) M), and suppressed at higher concentrations (10(-6) to 10(-5) M) of the agonist in the FP(-/-) mice. Suppression of the contractions at the higher PGF(2)alpha concentrations was also seen in the fundus from EP(3)(-/-), EP(1)(-/-) and TP(-/-) mice and in the ileum from EP(3)(-/-) and TP(-/-) mice. Contraction of the fundus to PGD(2) was significantly enhanced in DP(-/-) mice, and contractions of the fundus and ileum to this PG decreased in FP(-/-) and EP(3)(-/-) mice. Contractions of both tissues to I-BOP was absent at 10(-9) to 10(-7) M and much suppressed at higher concentrations in TP(-/-) mice. Slight suppression to this agonist was also observed in the tissues from EP(3)(-/-) mice. PGI(2) induced small relaxation of both tissues from wild-type mice. These relaxation reactions were much potentiated in EP(3)(-/-) mice. On the other hand, significant contraction to PGI(2) was observed in both tissues obtained from IP(-/-) mice. These results show that contractions of the fundus and ileum induced by each prostanoid agonist are mediated by actions of this agonist on multiple types of prostanoid receptors and in some cases modified by its action on relaxant receptors.
Collapse
Affiliation(s)
- Yuji Okada
- Department of Pharmacology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
- Third Department of Internal Medicine, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Akiyoshi Hara
- Department of Pharmacology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Hong Ma
- Department of Pharmacology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Chun-Yang Xiao
- Department of Pharmacology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Osamu Takahata
- Department of Pharmacology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Yutaka Kohgo
- Third Department of Internal Medicine, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8315, Japan
| | - Fumitaka Ushikubi
- Department of Pharmacology, Asahikawa Medical College, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan
- Author for correspondence:
| |
Collapse
|
43
|
Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 2000; 59:561-74. [PMID: 10901227 DOI: 10.1093/jnen/59.7.561] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Choroid plexuses (CPs) are localized in the ventricular system of the brain and form one of the interfaces between the blood and the central nervous system (CNS). They are composed of a tight epithelium responsible for cerebrospinal fluid secretion, which encloses a loose connective core containing permeable capillaries and cells of the lymphoid lineage. In accordance with its peculiar localization between 2 circulating fluid compartments, the CP epithelium is involved in numerous exchange processes that either supply the brain with nutrients and hormones, or clear deleterious compounds and metabolites from the brain. Choroid plexuses also participate in neurohumoral brain modulation and neuroimmune interactions, thereby contributing greatly in maintaining brain homeostasis. Besides these physiological functions, the implication of choroid plexuses in pathological processes is increasingly documented. In this review, we focus on some of the novel aspects of CP functions in relation to brain development, transfer of neuro-humoral information, brain/immune system interactions, brain aging, and cerebral pharmaco-toxicology.
Collapse
Affiliation(s)
- N Strazielle
- INSERM U433, Faculté de Médecine Laennec, Lyon, France
| | | |
Collapse
|
44
|
Abstract
During the past three decades, many studies have been conducted to determine the precise role of eicosanoids in colorectal physiology and pathophysiology. This research has increased our understanding of bioactive lipid signaling, and may contribute to the development of more effective therapeutic modalities for digestive diseases in the future. The purpose of this report is to provide a brief overview of the role of eicosanoids in the colon and rectum. This information has been organized according to both functional and disease-related categories. The role of eicosanoids in colonic secretion, motility, inflammatory bowel disease, and colorectal neoplasia will be discussed.
Collapse
Affiliation(s)
- W Krause
- Department of Medicine, The Vanderbilt Cancer Center, Nashville, TN 37232-2279, USA
| | | |
Collapse
|